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The Rivlin-Ericksen model is one of the oldest models in fluid dynamics to describe non-Newtonian
properties. The model comes with two independent transports at second order. In this paper, we study the
relativistic origin of the Rivlin-Ericksen fluid. Starting from a relativistic Weyl invariant uncharged fluid in
3þ 1 dimensions, we reduce it over light-cone directions and obtain a generic nonrelativistic uncharged
fluid in one lower dimension with all possible second-order terms in the constitutive relations. We observe
that the Rivlin-Ericksen fluid is a subclass of our generalized nonrelativistic system. We also compute the
holographic values of all the nonrelativistic second-order transports and find that three of them satisfy a
universal constraint relation.
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I. INTRODUCTION

Fluid dynamics, one of the oldest and widely studied
subjects, is offering new surprises even today. A few
experimental evidences and theoretical results in the recent
past have created a lot of interest in the field of relativistic
hydrodynamics and opened up new avenues for further
investigation with many fundamental questions. One of the
interesting results in this direction was the discovery of
an anomalous transport coefficient in the context of the
AdS/CFT correspondence [1,2]. Later in Ref. [3], it was
shown that such a term in the constitutive relation (energy-
momentum tensor and other charge currents) is not only
allowed by the symmetry but is also indispensable to preserve
the second lawof thermodynamics. Thiswas the beginningof
a new era in the field of relativistic hydrodynamics.
Nonrelativistic systems, on the other hand, are also

interesting mainly because they are expected to be realized
in low-energy experiments and condensed matter physics.
Being an effective description of a nearly equilibrium
interacting system, the constitutive relations of a fluid
dynamic system (relativistic or nonrelativistic) are pertur-
batively written in derivative expansion of fluid variables.1

To write the independent derivative terms at every order
in perturbative expansion, one has to follow a guiding
principle. Such a principle could either be empirical or
fundamental. For example, to a certain order in derivative
expansion, one can include all the terms allowed by the
symmetry of the system. In this paper, we follow a
fundamental principle to write down the allowed inde-
pendent terms systematically in the constitutive relations
of a nonrelativistic uncharged fluid up to second order
in derivative expansion. It is believed that all the interact-
ing systems are relativistic at the microscopic level.
A nonrelativistic system is an effective low-energy (veloc-
ity) description of an underlying relativistic system.
Therefore, we start with a generic second-order relativistic
fluid with all possible independent terms in energy-
momentum tensors allowed by the symmetries [8]. We
then take the nonrelativistic limit and obtain a reduced
nonrelativistic system with independent second derivative
terms in its stress tensors and other conserved currents.
Taking the nonrelativistic limit is not unique, and hence
the nonrelativistic constitutive relations, in general,
depend on how the limit is taken [9–17]. In this paper,
we consider light-cone reduction [18–20] to obtain the
nonrelativistic system.
Light-cone reduction reduces a relativistic field theory

to a nonrelativistic field theory in one lower space
dimension. This is because the symmetry algebra of the
relativistic theory reduces to corresponding nonrelativistic
symmetry algebra in one lower space dimension upon
light-cone reduction. For example, the Poincaré algebra
reduces to Galilean algebra, and conformal algebra boils
down to Schrödinger algebra [21–25]. Therefore, light-
cone reduction of relativistic constitutive equations ren-
ders the nonrelativistic constitutive equations for a fluid in
one lower dimension. Light-cone reduction of relativistic
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1In the relativistic system, consideration of second-order terms
in conserved currents is essential because the first-order formal-
ism is inconsistent with causality [4–6]. See Ref. [7] for a
comparing discussion.
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fluids2 up to first order in derivative expansion has
been discussed in Refs. [18–20]. Construction of a non-
relativistic entropy current was also discussed in Ref. [20].
A holographic computation of the nonrelativistic stress
tensor and transports have been reported in Refs. [30,31].
However, all the works so far mainly considered con-
stitutive relations up to first order in derivative expan-
sions. In this paper, we consider a parity-odd uncharged
relativistic fluid obeying Poincaré and Weyl symmetry
in 3þ 1-dimensional flat spacetime and use the light-
cone reduction to obtain a nonrelativistic fluid with
Schrödinger symmetry in 2þ 1-dimensional flat space
with generic second-order terms in constitutive relations.
The appearance of second and higher derivative terms in

the constitutive relations of a nonrelativistic fluid has been
well known for a long time. Such fluids are broadly known
as non-Newtonian fluid. The Newtonian fluid possesses a
linear relation between the viscous stress and rate of strain
tensor. Explaining the properties of a more general class of
fluid like honey, thick oils, paints, etc., requires relaxing the
linear relation between stress and strain tensor, thus leading
to the study of non-Newtonian fluid. One way to include
such higher derivative terms in the stress tensor is by
modifying the constitutive relations as suggested by experi-
ments. The other approach is more fundamental—mainly
based on symmetries. This was first studied by Reiner [32]
in 1945. Later in 1948, Rivlin generalized Reiner’s idea
for isotropic fluid assuming that the stress tensor depends
only on the velocity gradients and is invariant under a
coordinate transformation [33]. This model, known as the
Reiner-Rivlin model, explains non-Newtonian properties
like the normal stress effect, centripetal pump effect, and
Merrington effect. The model also predicts that in a simple
shear flow the normal stresses in and perpendicular to the
plane of shear are equal, which was in contradiction to
observations. To explain the difference between two normal
stresses, the form of the stress tensor requires being
generalized and was given by Rivlin and Ericksen [34]
in 1955. They assumed that the higher derivative terms in
the stress tensor of an isotropic and homogeneous fluid
depend on the gradient of velocity, acceleration, second
acceleration, and so on and are also frame invariant.
However, this model fails to explain gradual stress relax-
ation. Later in 1960, Coleman and Noll generalized the
Rivlin-Ericksen model further to explain fluid with gradu-
ally fading memory [35]. This generalized version is
widely known as Rivlin-Ericksen (RE) fluid and success-
fully explains flow of a wide class of fluids. The second-
order RE fluid comes with three independent transport
coefficients: one first-order transport n (shear viscosity) and
two second-order transports, the first and second normal
stress coefficients denoted by α1 and α2, respectively. For
an equilibrium RE fluid (assuming specific Helmholtz free

energy is minimum at equilibrium) satisfying the
Claussius-Duhem inequality, Dunn and Fosdick [36]
showed that both the shear viscosity, n and the first normal
coefficient α1 are positive, i.e., n; α1 > 0. In addition, the
two second-order transports add up to zero, i.e.,
α1 þ α2 ¼ 0. It has been further studied by Fosdick and
Rajagopal [37] that shear viscosity and the first normal
coefficient are always positive but the sum of the two
second-order coefficients may not be zero always.
In this paper, we explore the relativistic origin of Rivlin-

Ericksen terms in the stress tensor of a non-Newtonian
fluid. Starting with a generic second-order relativistic
parity-odd uncharged fluid in 3þ 1 dimensions, we reduce
its constitutive relations over the light-cone and obtain a
nonrelativistic parity-odd uncharged fluid in 2þ 1 dimen-
sions up to second order in derivative expansion. At first
order, the reduced fluid has two independent transports:
shear viscosity and thermal conductivity [18–20]. We
observe that at second order there are in total eight
independent terms in the stress tensor with four indepen-
dent transports: ξ̃σ; ξ̃ω; τ̃ω, and τ̃π . Among these, the terms
proportional to ξ̃σ and τ̃π are present in the RE model. The
RE fluid, therefore, is a subset of the generic second-order
fluid that we have obtained in this paper. The relativistic
source of the first RE term (ξ̃σ) is the square of the shear
stress tensor. The origin of the second RE transport is
interesting—it is proportional to the relaxation time of the
relativistic fluid. Apart from the regular RE terms, we also
obtain terms dependent on vorticity and temperature
gradient at the second order.
We further compute the holographic values of the

second-order transports using the fluid/gravity correspon-
dence. We use the dictionary between relativistic and
nonrelativistic transports (Table I) and use the holographic
values of the relativistic ones to find the corresponding
nonrelativistic values. We find that all four second-order
transports are not independent. Three of them satisfy a
universal relation, namely, ξ̃σ þ τ̃ω þ τ̃π ¼ 0, which is
holographic and a generalization of the relation
α1 þ α2 ¼ 0, Ref. [36]. Furthermore, it is consistent with
the observations of Ref. [37].

TABLE I. Relation among transport coefficients of relativistic
and nonrelativistic fluid.

Relativistic transport
coefficient

Nonrelativistic transport
coefficient

ηr n ¼ ηruþð1þ τπuþð∂:vÞÞ
κ ¼ ηr

T
ξσ ξ̃σ ¼ uþ2

4
ðξσ − 4ηrτπÞ

ξω ξ̃ω ¼ uþ2

4
ξω

τω τ̃ω ¼ − uþ2

2
ηrðτπ þ τωÞ

τπ τ̃π ¼ ηruþ2τπ

2See Refs. [26–29] for null reduction of relativistic fluids.
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The plan of the paper is as follows. In Sec. II, we
present the energy-momentum tensor of a relativistic
second-order fluid. A short discussion about nonrelativistic
fluid is given in Sec. III. In Sec. IV, we discuss light-cone
reduction of relativistic fluid and explicitly compute the
constitutive relations and transports of nonrelativistic fluid
in terms of relativistic data up to second order in derivative
expansion. We compare our nonrelativistic stress tensor
with Rivlin-Ericksen fluid and find out the holographic
values of nonrelativistic transports. Finally, we end our
paper with concluding remarks and possible future direc-
tions in Sec. V.

II. SECOND-ORDER RELATIVISTIC FLUID

A relativistic fluid in 3þ 1 dimensions without any
chemical potential (uncharged fluid) is specified by six
parameters: three velocity components (assuming uμuμ ¼
−1) and three local thermodynamic quantities [energy
EðxÞ, temperature TðxÞ, and pressure PðxÞ]. However,
local thermal equilibrium implies that the thermodynamic
variables energy, temperature, and pressure satisfy the
first law of thermodynamics at every spacetime point.
Additionally, EðxÞ, PðxÞ, and TðxÞ also follow the equation
of state and Euler relation Eþ P ¼ TS, where S is the local
entropy density. As a result, a relativistic fluid is specified
by three independent components of velocity and one
thermodynamic variable, which we choose to be local
temperature TðxÞ. The energy-momentum tensor of a
relativistic fluid therefore depends on temperature and
fluid velocities. To find an expression for the energy-
momentum tensor, we use its conservation equation

∂μTμν ¼ 0: ð1Þ

In 3þ 1 dimensions, there is a total of four equations and
we also have four unknown variables. Hence, the system is
solvable. Since a fluid is considered to be in local thermal
equilibrium and the length scale of variation of fluid
variables is much, much larger than the mean free path
of the system, hence, we express the energy-momentum
tensor perturbatively in derivatives of fluid variables. At
every order in derivative expansion, the energy-momentum
tensor contains independent symmetric second-rank ten-
sors constructed out of derivatives of fluid variables. If a
fluid obeys any extra symmetry, we include that informa-
tion in the energy-momentum tensor as well. For example,
for a conformal fluid, the energy-momentum tensor is
traceless. Therefore, while writing the independent terms at
different orders, we take care of this constraint.
Relativistic hydrodynamics has been studied extensively

in the last two decades in the context of the fluid/gravity
correspondence and also independently. The energy-
momentum tensor of boundary gauge theory in flat
spacetime has been constructed holographically by
Refs. [38,39] up to second order in derivative expansion

by solving Einstein’s equation perturbatively. The second-
order corrected energy-momentum tensor and conserved
current of a charged fluid are constructed in Refs. [1,2].
The authors in Ref. [8] give the most generic form of a
second-order energy-momentum tensor and entropy current
of a relativistic, conformal fluid in a Weyl covariant
manner. The corresponding stress tensor contains all
possible independent second-rank symmetric terms (up
to second order) that are Weyl covariant, transverse, and
traceless. The transport coefficients are also constrained
due to the second law of thermodynamics.3

Following Ref. [8], the stress tensor of (3þ 1)-
dimensional, uncharged, conformal fluid in a flat spacetime
up to second order is given by

Tμν ¼ ðEþ PÞuμuν þ Pημν − 2ηrðσμν − τπχ
μν − τωT

μν
2aÞ

þ ξσT
μν
2b þ ξωT

μν
2f: ð2Þ

The first-order term σμν is called the shear stress and is
given by

σμν ¼ 1

2
PμαPνβ

�
∂αuβ þ ∂βuα −

2

dþ 1
∂:u

�
: ð3Þ

The transport ηr appearing at the first order is the shear
viscosity coefficient. Since the fluid under consideration
has scale invariance, the bulk viscosity coefficient is zero.
The second-order terms are given by

Tμν
2a ¼ −ðωμ

λσ
λν þ ων

λσ
λμÞ;

Tμν
2b ¼ σμασ

ν
α −

1

3
Pμνσαβσαβ;

Tμν
2c ¼ ð∂:uÞσμν;

Tμν
2d ¼ ðu:∂uμÞðu:∂uνÞ − 1

3
Pμνðu:∂uαÞðu:∂uαÞ;

Tμν
2e ¼

1

2
PμαPνβuγ∂γð∂αuβ þ ∂βuαÞ −

Pμν

3
Pαβðu:∂Þð∂αuβÞ;

Tμν
2f ¼ ωμ

λω
λν þ Pμν

3
ωαβωαβ;

χμν ¼ 1

3
Tμν
2c þ Tμν

2d þ Tμν
2e: ð4Þ

The vorticity tensor ωμν is

ωμν ¼ 1

2
ð∂μuν − ∂νuμ þ uμðu:∂Þuν − uνðu:∂ÞuμÞ; ð5Þ

and the projector Pμν is given by

Pμν ¼ ημν þ uμuν: ð6Þ

3See Ref. [40] also.
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We start with this stress tensor and reduce it over the light
cone to obtain the constitutive relations of a nonrelativistic
fluid living in 2þ 1 dimensions.

III. NONRELATIVISTIC FLUID

We now briefly review the nonrelativistic fluid living
in flat 2þ 1 dimensions. The dynamics of nonrelativistic
uncharged fluid is governed by the following constitutive
equations [41]:

(i) The continuity equation is

∂tρþ ∂iðρviÞ ¼ 0; ð7Þ

where ρ is the mass density and vi is the fluid
velocity.

(ii) The conservation of momentum is

∂tðρviÞ þ ∂jtij ¼ 0; ð8Þ

where tij is the stress tensor.
(iii) The conservation of energy is

∂t

�
εþ 1

2
ρv2

�
þ ∂iji ¼ 0; ð9Þ

where ji is the energy current and ε is the energy
density.

These are in total four equations. There are six non-
relativistic fluid variables in 2þ 1 dimensions: two
components of velocity vector vi, energy density ε, mass
density ρ, temperature ϑ, and pressure p. We again consider
that the fluid is in local thermal equilibrium and thermo-
dynamic variables obey the Euler relation and equation of
state locally. Thus, we are left with four independent fluid
variables. One may consider them to be fluid velocities,
temperature, and pressure.
We shall later see that nonrelativistic fluid obtained

under light-cone reduction is a restricted class of fluid
[20,31]. Starting from the relativistic thermodynamic rela-
tions dE ¼ TdS (first law) and Euler relation Eþ P ¼ ST,
one obtains the usual nonrelativistic thermodynamics dε ¼
ϑdsþ ρmdρ (first law) and Euler equation εþ p ¼ sϑþ
ρmρ if εþ pþ ρmρ ¼ 0. Here, ρm is the mass chemical
potential. The last equation puts a further restriction on
the system. Using this equation, one can also consider the
independent variables to be velocities, temperature, and
mass chemical potential.
At ideal order, when there is no dissipation, the stress

tensor and the energy current do not contain any derivatives
and are solely expressed in terms of thermodynamic
quantities and velocities. In the presence of dissipation,
the stress tensor and energy current receive corrections
proportional to the first derivative of velocities and
temperature. The stress tensor and energy current of a

compressible, uncharged, nonrelativistic fluid up to the first
order in derivative expansion are given by [41]

tij ¼ ρvivj þ pηij − nσ̃ij;

ji ¼
�
εþ pþ 1

2
ρv2

�
vi þ nvjσ̃ij − κ∂iϑ; ð10Þ

where the dissipative stress tensor σ̃ij is given by

σ̃ij ¼ ∂ivj þ ∂jvi − δij∂kvk: ð11Þ
n is the shear viscosity coefficient, and κ is the thermal
conductivity. Since σ̃ij is proportional to derivative of
velocity, the first-order fluid is called Newtonian fluid.

A. Second grade non-Newtonian fluid

There are several models for non-Newtonian fluids, both
empirical and theoretical. The stress tensor of the simplest,
second-order, incompressible, non-Newtonian fluid is
given by Coleman and Noll [35],

tij ¼ −pδij þ nAij þ α1Bij þ α2AikAk
j; ð12Þ

whereA and B are first and second Rivlin-Ericksen tensors
[34] and are given by

Aij ¼ ∂ivj þ ∂jvi;

Bij ¼ ∂iaj þ ∂jai þ 2∂ivk∂jvk; ð13Þ
and

ai ¼
∂vi
∂t þ vj∂jvi ð14Þ

is the nonrelativistic acceleration. n is the shear viscosity,
and α1 and α2 are the first and second normal stress
coefficients, respectively. It was shown in Ref. [36] that a
RE fluid in thermal equilibrium satisfying Clausius-Duhem
inequality has the following constraints on transports:

n; α1 ≥ 0; and α1 þ α2 ¼ 0: ð15Þ

The first condition ensures the positivity of local entropy
production. Experimental results, however, show that there
exist fluids which obey (12), but not the second relation
in (15). It was further shown in Ref. [37] that stable fluids
obey α1 ≥ 0 but the addition of α1 and α2 may not be zero
always.
Another model of differential, second grade fluid is

given by Huilgol [42]. In our notation, the corresponding
stress tensor is

tij ¼ −pδij þ nAij þ α01ðBij − ðω̃ikAk
j −Aikω̃k

jÞÞ
þ α2AikAk

j; ð16Þ
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where

ω̃ik ¼ ∂ivk − ∂kvi ð17Þ

is the nonrelativistic vorticity tensor. In the subsequent
section, we shall see that these two models of non-
Newtonian fluid are subclass of a more generic second-
order nonrelativistic fluid obtained from its relativistic
counterpart under light-cone reduction.

IV. LIGHT-CONE REDUCTION OF A
SECOND-ORDER RELATIVISTIC FLUID

Light-cone reduction of the relativistic conservation
equation (1) works in the following way. We first write
down the metric of 3þ 1-dimensional flat spacetime as
ds2 ¼ −2dxþdx− þ Σ2

i¼1ðdxiÞ2, where x� are light-cone
directions. We then take the x− direction to be an isometry
direction; i.e., only those solutions of the relativistic
energy-momentum tensor that do not depend on x− are
considered. Next, we identify the xþ direction with the
nonrelativistic time. Expressing different components
of (1) in light-cone coordinates and comparing them with
(7), (8), and (9), we find the relations between non-
relativistic quantities and components of the relativistic
energy-momentum tensor, valid at each order of derivative
expansion [18,25]. The relations are given by

Tþþ ¼ ρ; Tþi ¼ ρvi; Tþ− ¼ εþ 1

2
ρv2;

T−i ¼ ji; Tij ¼ tij: ð18Þ

Using these, different nonrelativistic constitutive relations
were computed in Refs. [18–20] from relativistic fluid up to
first order in derivative expansion. We shall follow a similar
procedure to write down the second-order nonrelativistic
constitutive relations.

A. Second-order fluid

Using the above reduction prescription, we compute
nonrelativistic mass density, energy density, velocities,
pressure, stress tensor, and energy current up to second
order. Expressions are quite cumbersome. We present the
expressions of the stress tensor in the main text. Other
expressions (mass density, pressure, energy density, energy
current, velocities, and mass chemical potential) have been
provided in the Appendix.
The nonrelativistic stress4 tensor up to second order in

derivative expansion is given by

tij ¼ pδij þ ρvivj − nσ̃ij þ ξ̃σσ̃
ikσ̃k

j þ τ̃πBij

þ τ̃ωðω̃ikσ̃jk − σ̃ikω̃j
kÞ þ ξ̃ωω̃

ikω̃j
k

−
κ2ρ

ϑs

�
1

ϑs
þ 1

n2
ðξ̃ω − ξ̃σ − 2ðτ̃π þ τ̃ωÞÞ

�
∂iϑ∂jϑ

þ nκ
ϑs

ð∂i∂jϑþ ∂j∂iϑÞ − 4ξ̃ω
ρ

ϑs
aiaj

þ 2κρ

ϑs

�
τ̃w
n
−
ξ̃ω
n
þ 2n

ϑs

�
ðai∂jϑþ aj∂jϑÞ; ð19Þ

where ai and ω̃ij are the nonrelativistic acceleration and
vorticity tensor given in by Eqs. (14) and (17), respectively.
Bij is second Rivlin-Ericksen tensor mentioned as before
[Eq. (13)]. The expressions for ρ, p, and vi are given by
(A3), (A7), and (A6), respectively. The nonrelativistic
temperature ϑ is given by

ϑ ¼ T
uþ

; ð20Þ

and s ¼ Suþ is the nonrelativistic entropy density at the
leading order. Nonrelativistic transports n, κ, ξ̃σ, ξ̃ω, τ̃π , and
τ̃ω are determined in terms of relativistic transports and
other variables. The relations are given in Table I.
The first four second-derivative terms in the nonrelativ-

istic stress tensor (19) are functions of derivatives of
velocities. These four terms come under direct light-cone
reduction of relativistic terms χμν, Tμν

2a, T
μν
2b, and Tμν

2f terms
in (2). Among these four terms, the first and the second
terms are same as the second and the first Rivlin-Ericksen
terms,5 respectively, with ξ̃σ ¼ α2 and τ̃π ¼ α1. Thus, RE
fluid is a subclass of (19). The Huilgol model (16) contains
another term proportional to the product of vorticity and
viscous stress tensor and is also present in (19) but comes
with an independent transport τ̃ω. Therefore, Huilgol fluid
is another subclass of (19) with τ̃ω ¼ −τ̃π ¼ −α01. It is
mentioned in Sec. III that nonrelativistic fluid has two
independent thermodynamic variables, and constitutive
relations can depend on the derivatives of these two
thermodynamic variables and velocities. Our light-cone
reduced nonrelativistic fluid also contains these terms.
From Table I, we see that the second-order nonrelativ-

istic transport coefficients satisfy the following relation:

ξ̃σ þ τ̃ω þ τ̃π ¼
uþ2

4
ðξσ − 2ηrðτπ þ τωÞÞ: ð21Þ

1. Holographic nonrelativistic fluid

Using the AdS/CFT correspondence Policastro et al.
computed the holographic value of shear viscosity

4To derive the nonrelativistic stress tensor, we have used
relativistic constraint equations (A1), and the identities
ηr
uþ2 ð∂iuþ − uþ∂ iP

EþP Þ ¼ −κ∂iϑ and Eþ P ¼ ϑs.
5However, the light-cone reduced nonrelativistic fluid that we

are considering is not incompressible.
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coefficient for a conformal fluid and showed that the ratio
shear viscosity to entropy density for a holographic fluid is
universal [43]. Holographic values of second-order trans-
ports were first computed by Refs. [38,39,44] independ-
ently. Universality of second-order relativistic transports
of conformal, nonconformal holographic fluid, and fluid
with higher-derivative gravity dual are discussed in
Refs. [45–50].
The holographic values of nonrelativistic transports can

be computed in two different ways. One can use the
dictionary between the nonrelativistic and relativistic trans-
ports (Table I) and then use the holographic values of
relativistic transports computed in Refs. [38,39,44]. In the
second approach, one constructs the holographic dual of a
Schrödinger fluid using the TsT transformations and
compute the transports by writing down the boundary
stress tensor. These two methods are equivalent up to first
order in derivative expansion [31]. The first-order non-
relativistic transports were computed in Refs. [18,19] using
the first method. Here, we follow the same method to
compute the holographic values of second-order transports.
It is shown in Refs. [45,46] that in any arbitrary

dimensions d > 2 uncharged relativistic conformal fluids
that admit a gravity dual respect a universal relation among
the second-order transport coefficients,

ξσ ¼ 2ηrðτω þ τπÞ: ð22Þ

This relation can easily be checked by computing the
transports in anti-de Sitter (AdS)–Schwarzschild back-
ground [38,39,45],

ξσ ¼
4ηr
2πT

; τπ ¼
2 − log 2
2πT

;

τω ¼ log 2
2πT

and ξω ¼ 0: ð23Þ

The holographic constraint on relativistic transports poses
restriction on nonrelativistic transport that stemmed from a
holographic relativistic fluid. Using (21), we find that the
second-order nonrelativistic transports satisfy

ξ̃σ þ τ̃ω þ τ̃π ¼ 0: ð24Þ

On this constraint, the stress tensor (19) is given by

tij ¼ ρvivj − nσ̃ij þ pδij þ ξ̃σσ̃
ikσ̃jk þ τ̃πBij

þ τ̃ωðω̃ikσ̃jk − σ̃ikω̃j
kÞ þ

2nκ
ϑs

∂i∂jϑ

−
κ2ρ

ϑs

�
1

ϑs
þ ξ̃σ
n2

�
∂iϑ∂jϑ

þ 2κρ

ϑs

�
τ̃w
n
þ 2n

ϑs

�
ðai∂jϑþ aj∂jϑÞ: ð25Þ

Comparing (25) with the stress tensor of RE fluid (12),
we find

α1 ¼ τ̃π ¼
n

2πϑ
ð2 − log 2Þ; α2 ¼ ξ̃σ ¼

n
2πϑ

ðlog 2 − 1Þ:
ð26Þ

Holographic values of other second-order nonrelativistic
transports are given by

τ̃ω ¼ −
n

2πϑ
and ξ̃ω ¼ 0: ð27Þ

The stress tensor (25) is a generalized version of the
Huilgol stress tensor (16) with τ̃ω ¼ −τ̃π . The constraint
relation (24) is the generalization of the relation given by
Dunn and Fosdick (15). Apart from the regular velocity
dependent terms, our expression (25) also contains terms
dependent on derivatives of temperature. Thus, we have
constructed the most generic holographic nonrelativistic
stress tensor corrected up to second order in the derivative
expansion.
As mentioned in Sec. III, the light-cone reduced non-

relativistic fluid belongs to a restricted class where the
mass chemical potential ρm follows the relation
εþ pþ ρmρ ¼ 0. One can use this relation to find the
mass chemical potential corrected up to second order
(A10). ρm does not receive any correction at first order
as before [20]; however, it has corrections at the sec-
ond order.
The AdS/CFT correspondence relates a strongly coupled

gauge theory to a weakly coupled gravity in AdS space.
Therefore, the holographic relation (24) puts a constraint on
the nonrelativistic fluid in the strong coupling regime.
Although the relation (24) is an interesting generalization
of Dunn and Fosdick (15), the physical origin of such a
relation is not clear. Even the relativistic counterpart (22)
appears to be a mathematical outcome of holographic
construction. There is no first principle or symmetry
argument behind such a relation. Therefore, it would be
interesting to understand the physical origin of this con-
straint relation. Since a dissipative fluid system produces
entropy locally, the divergence of the entropy current is
positive. It would be interesting if one could reproduce such
a constraint on the second-order transports from the
positivity of the local nonrelativistic entropy current.

V. CONCLUSION

In this paper, we have studied the holographic constraint
on second-order transports of an uncharged nonrelativistic
fluid obtained from a relativistic uncharged fluid with Weyl
invariance by light-cone reduction. The resultant holo-
graphic stress tensor has seven terms at the second order
with four transports. We also compute the holographic
values of these second-order transports and observe that
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three of them satisfy a universal relation: the sum of the three
coefficients is zero. The expression of the nonrelativistic
stress tensor obtained from its relativistic counterpart is a
generalization of two well-known Rheological models,
namely, the Rivlin-Ericksen and Huilgol models. Since
the AdS/CFT dictionary relates a strongly coupled gauge
theory to a weakly coupled gravity in AdS space, the
holographic constraint (24) is valid in the strong coupling
regime. In this paper, we have explicitly reduced a 3þ 1-
dimensional relativistic fluid to a 2þ 1-dimensional non-
relativistic fluid. However, our construction holds for
relativistic fluid in any arbitrary dimensions. We picked
up 3þ 1-dimensional relativistic fluid as our starting point
because we also intend to reduce the corresponding holo-
graphic setup in 4þ 1 dimensions following Ref. [31].
Light-cone reduction of nonconformal charged fluid

up to first order in derivative expansion is considered in
Ref. [20]. Relativistic nonconformal, uncharged fluid has
been studied up to third order in derivative expansion
[40,51,52], whereas the relativistic charged fluid is studied
up to second order [53]. One can start with a relativistic
nonconformal fluid of higher order. Such a fluid will come
with more transports in the first and second orders. The
light-cone reduction principle will be the same for such a
fluid. However, the reduced nonrelativistic fluid will also
have extra transports. In this paper, we have focused on the
conformal sector because the holographic constraint (22)
relates the transports in the conformal sector. Considering
the reduction of the nonconformal fluid is an interesting
generalization of this work, and we leave it as a future
open problem.
As mentioned in the Introduction, there are several ways

to deduce a nonrelativistic system from a relativistic one.
The most common technique is to consider the speed of
light c to be infinity. In this limit, the Lorentz trans-
formations boil down to the Galilean transformations.
On the other hand, the light-cone reduction reduces the
Lorentz algebra directly to Galilean algebra. These two
reduction prescriptions have completely different mecha-
nisms when applied to fluid dynamics. A priory there is no
reason to expect that the nonrelativistic constitutive rela-
tions obtained by applying these two techniques will
match. It is shown by Ref. [16] that the light-cone reduction
(LCR) and large c expansion render the same nonrelativ-
istic constitutive relations in the parity-even sector.
However, they differ in the parity-odd sector [14]. In either
case, the authors considered constitutive relations only up
to the first order in derivative. It would definitely be
interesting to obtain second-order nonrelativistic constitu-
tive relations using the large c expansion technique and
compare that with the result we obtained in this paper. This,
however, goes beyond the scope of our paper, and we thus
keep it for a future endeavor.
Our results open up the platform to study the second-

order stress tensor for a nonrelativistic charged fluid under

light-cone reduction of charged, second-order relativistic
fluid. The construction of second-order constitutive rela-
tions of the nonrelativistic fluids from a nonrelativistic
gravity dual is another important problem to look at.
Second-order entropy current for uncharged/charged non-
relativistic fluid can also be studied. It would be interesting
to find the constraints on second-order nonrelativistic
transports imposed by the second law of thermodynamics.
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APPENDIX: DETAILED CALCULATION OF
NONRELATIVISTIC QUANTITIES

The first-order relativistic fluid satisfies the following
relations:

ðu:∂ÞEþ ðEþ PÞð∂:uÞ ¼ ηrð∂μuν þ ∂νuμÞσμν;
Pμν∂μPþ ðEþ PÞðu:∂Þuν ¼ 2ηrð∂μσ

μν − uνσαβσαβÞ:
ðA1Þ

The relativistic fluid velocity is normalized: uμuμ ¼ −1.
We use this relation to replace the u− component in terms of
other components,

u− ¼ 1

2uþ
ð1þ ukukÞ: ðA2Þ

Computing theþþ component of the relativistic energy-
momentum tensor (2) and identifying that with the non-
relativistic mass density ρ ¼ Tþþ, we obtain

ρ ¼ ðEþ PÞðuþÞ2 − 2η2ruþ

Eþ P
∂kYk

−
uþ2

3

�
ξσ −

16η2r
Eþ P

�
σαβσ

αβ þ ξω
3
uþ2ωαβω

αβ

þ ð2ηrðτπ þ τωÞ − ξωÞ
uþYk∂kP
Eþ P

þ ð4ηrτω þ ξσ − ξωÞ
YkYk

4
− ξω

uþ2∂kP∂kP
ðEþ PÞ2 ; ðA3Þ

where

Yα ¼ Yαþ ¼ ∂αuþ þ uþðu:∂Þuα − uþuα

3
ð∂:uÞ; ðA4Þ

and
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Yμν ¼ ∂μuν þ uνuγ∂γuμ −
1

3
uμuνð∂:uÞ: ðA5Þ

At first order, it reduces to Yα ¼ ð∂αuþ − uþ∂αP
EþP Þ. As before, the nonrelativistic mass density does not receive any correction

at first order for the conformal fluid [1,18].
We now use the mapping Tþi ¼ ρvi to compute the nonrelativistic velocity in terms of relativistic data. Computing

the þi component of Tμν, we find

vi ¼ ui

uþ
−
ηr
ρ
Yi þ η2ruþ2

ρ2

�
∂kYk −

8

3
uþσαβσαβ

�
ui þ ηr

ρ
τω

��
Yk þ uþ∂kP

Eþ P

��
∂kui −

ui

uþ
Yk −

ui∂kP
Eþ P

�

þ ðu:∂P − uk∂kPÞ
Yi

Eþ P
þ uþ

Eþ P
ð2u:∂P − uk∂kPÞ

∂iP
Eþ P

þ uþ
∂iuk∂kP
Eþ P

�

þ ξσ
4ρ

�
YþYi þ 4u:∂P

Eþ P
Yi þ Yk

�
∂kui þ ∂iuk −

uk∂iP
Eþ P

�
− Yk

�
Yk þ uþ∂kP

Eþ P

�
ui

uþ

�

þ ξω
4ρ

��
Yþ þ 2

uþ∂þP
Eþ P

�
Yi −

�
Yk þ 2

uþ∂kP
Eþ P

�
ð∂kui − ∂iukÞ

þ ∂iP
Eþ P

�
ukYk þ 2uþYþ þ 2uþ

Eþ P
ð2u:∂P − uk∂kPÞ

�
þ
�
YkYk þ 3uþ

Yk∂kP
Eþ P

þ 2uþ2
∂kP∂kP
ðEþ PÞ2

�
ui

uþ

�

þ ηr
ρ
τπ

�
u:∂Yi þ uþ∂kP

Eþ P

�
∂kui −

ui∂kP
Eþ P

�
−

u:∂P
Eþ P

�
Yi −

uþ∂iP
Eþ P

�
− ui

Yk∂kP
Eþ P

þ uþ
∂αP∂iuα
Eþ P

�
: ðA6Þ

Second-order corrected nonrelativistic equilibrium pressure in terms of relativistic variables can be obtained from the
diagonal terms in Tij and is given by

p ¼ Pþ η2r
ρ

�
2uþ∂kYk −

8

3
uþ2σαβσ

αβ − 2YkYk þ 6uþ3akYk

�

− ηrτπuþ2ð∂:a − ∂kvm∂mvk þ ð∂:vÞ2Þ − ξσ
3
σαβσ

αβþ ξω
3
ωαβω

αβ: ðA7Þ

Computation of the þ− component of the relativistic stress tensor and the identification Tþ− ¼ εþ 1
2
ρv2 give us the

nonrelativistic energy density

ε ¼ E − P
2

−
1

2uþ2

�
ηr

2

ðEþ PÞ þ ηrτω þ ξσ − ξω
4

�
YkYk −

1

2uþ2

�
−2

η2ruþ

Eþ P
∂kYk þ ð2ηrðτπ þ τωÞ − ξωÞuþ

Yk∂kP
Eþ P

−
uþ2

3

�
ξσ −

16η2r
Eþ P

�
σαβσ

αβ þ ξω
3
uþ2ωαβω

αβ − ξωuþ2
∂kP∂kP
ðEþ PÞ2

�
: ðA8Þ

The nonrelativistic energy current density can be computed by identifying T−i ¼ ji. It is given by

ji ¼
�
εþ pþ 1

2
ρv2

�
vi − nvkσ̃ki − κ

�
1þ 3n

2ϑs
ð∂:vÞ

�
∂iϑþ κ

n
ðξ̃σ − τ̃ωÞ∂kϑσ̃

ki −
�
n2

ϑs
þ 2τ̃ω

�
akσ̃ki

þ nκ
ϑs

vkð∂k∂iϑþ ∂i∂kϑÞ − κ

n

�
n2

ϑs
þ ξ̃ω þ τ̃ω

�
∂kϑω

ki þ ξ̃ωvkω̃klω̃i
l −

κ2ρ

ϑs

�
1

ϑs
þ ξ̃ω − ξ̃σ − 2ðτ̃π þ τ̃ωÞ

n2

�
vk∂kϑ∂iϑ

− 4ξ̃ω
ρ

ϑs
akvkai þ τ̃πvkBki þ ξ̃σvkσ̃klσ̃li þ

2κρ

nϑs

�
2n2

ϑs
þ τ̃ω − ξ̃ω

�
vkð∂kϑai þ ∂iϑakÞ − 2ξ̃ωakω̃ki

þ τ̃ωvkðωklσ̃il − σ̃klωi
lÞ −

�
τ̃π −

n2

ϑs

��
ϑs
ρ

�
∂ið∂:vÞ þ n2

ρ
∂kσ̃

ki: ðA9Þ
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Using the relation εþ pþ ρmρ ¼ 0, we find the mass chemical potential as follows:

ρm ¼ −
1

2uþ2
þ 2n2

ϑ2s2uþ2
σ̃klσ̃kl þ

τ̃π
ϑsuþ2

ðð∂:vÞ2 − ∂kvm∂mvkÞ þ
�
4n2

ϑs
− τ̃π

� ∂k∂kϑ

ϑ2suþ4

þ
�
τ̃π þ 2τ̃ω − ξ̃ω þ ξ̃σ −

7n2

2ϑs

� ∂kϑ∂kϑ

ϑ3suþ4
þ
�
2τ̃π þ 4τ̃ω − 4ξ̃ω −

2n2

ϑs

� ∂kϑ∂kuþ

ϑ2suþ3

−
τ̃π

ϑsuþ5
∂k∂kuþ þ 3τ̃π − 4ξ̃ω

ϑsuþ6
∂kuþ∂kuþ: ðA10Þ
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