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We discuss the construction of relational observables in time-reparametrization invariant quantum
mechanics, and we argue that their physical interpretation can be understood in terms of conditional
probabilities, which are defined from the solutions of the quantum constraint equation in a generalization of
the Page-Wootters formalism. In this regard, we show how conditional expectation values of worldline tensor
fields are related to quantum averages of suitably defined relational observables.We also comment on how the
dynamics of these observables can be related to a notion of quantum reference frames. After presenting the
general formalism, we analyze a recollapsing cosmological model, for which we construct unitarily evolving
quantum relational observables. We conclude with some remarks about the relevance of these results for the
construction and interpretation of diffeomorphism-invariant operators in quantum gravity.
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I. INTRODUCTION

At present, there are many approaches to quantum
gravity (see, for instance, [1] and references therein).
Among the various conceptual and technical difficulties
that each of them faces, there are two pressing issues. The
first is a matter of quantum foundations, which is the
correct physical interpretation of the quantum states of
geometry and matter: how are they related to probability
distributions of histories or configurations of a gravitational
system? The second is the precise definition of the quantum
observables and their classical limit: assuming there is a
physical Hilbert space of states, what operators act on this
space and have a reasonable interpretation?
Over the years, several proposals have been made to

(partially) resolve these issues. For example, it has been
argued that quantumstates in generally covariant systems can
be used to define conditional probabilities [2–10], or that the
probabilistic interpretation of wave functions is justified
within (a generalization of) the consistent or decoherent
histories formalism (see [11–15] and references therein).
There are also other related approaches, such as Rovelli’s
relational quantum mechanics [16]. Alternatively, one may
adopt the de Broglie-Bohm theory (see [17,18] and refer-
ences therein) and consider that solutions to the quantum
constraint equation give rise to trajectories in configuration
space, whereas probabilities would play a secondary role.
Moreover, the construction of relevant observables in

quantum gravity and cosmology has been a topic of active
research. Rovelli has argued that the relevant observables
are “evolving constants of motion” [19–21], which are
diffeomorphism-invariant extensions of tensor fields

[22–28] that capture the relational evolution between differ-
ent quantities. For this reason, they can also be referred to as
“relational observables” [29]. The correct way to construct
these quantities in the quantum theory has been a subject of
debate [26,27,29–32]. Recently, the author has proposed a
systematic method to construct quantum relational observ-
ables in generally covariant quantum mechanics [28] (see
also [10] for another recent, similar approach).
In the present article, we relate the two issues (the

probabilistic interpretation of the physical states and the
construction of relevant observables in quantum gravity) by
arguing that relational observables are conditional quan-
tities and that their quantum dynamics can be encoded in
conditional probability amplitudes. We first make this
argument in general, i.e., for any time-reparametrization
invariant mechanical theory. We then support this claim by
analyzing the construction of quantum relational observ-
ables in a cosmological model. For simplicity, we tackle
these problems in the framework of canonical quantum
gravity using metric variables. This might not be the most
fundamental approach to quantum gravity, but it is suffi-
cient for our purposes since it has a straightforward
classical limit [33]. We use a generalization of the formal-
ism presented by the author in [28], and the reader is
referred to [10] for a discussion of conditional probabilities
in the subsequent, related approach that was developed
there. The restriction to mechanical (symmetry-reduced)
models is made to avoid the field-theoretic issues of
regularization and possible presence of anomalies in the
quantum theory. In our conclusions, we discuss the
relevance of our results to the construction of relational
observables in the field-theoretic case.
The article is organized into four sections. In Sec. II, we

review and generalize the method of construction of*lcmr@thp.uni-koeln.de
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quantum relational observables which was presented by the
author in [28], and we relate it to conditional probabilities,
which are defined from the solutions of the quantum
constraint equation. We also comment on the relation of
our approach with previous proposals, specifically the
Page-Wootters formalism [2–10] and the relativization
maps and G-twirl operations used in the study of quantum
reference frames in the context of quantum foundations and
quantum information science (see [10,34–37] and refer-
ences therein). We then analyze the concrete example of a
Friedmann-Lemaître-Robertson-Walker (FLRW) model in
Sec. III. We construct the relevant relational observables,
which have the expected unitary evolution governed by a
physical Hamiltonian operator. Finally, in Sec. IV, we
restate our results and present our conclusions.

II. THE GENERAL FRAMEWORK

In this section, we generalize the formalism presented in
[28] for the construction of quantum relational observables
in time-reparametrization invariant mechanical systems.
The reader is directed to [28] for further details and
references to the earlier literature. Furthermore, we argue
that the physical interpretation of relational observables
should be tied to the use of conditional probabilities in the
quantum theory, and we relate the matrix elements of
quantum relational observables to conditional expectation
values. A concrete example of the general formalism
presented in this section will be analyzed in Sec. III.

A. Classical theory

We consider a general mechanical system comprised of
the degrees of freedom piðτÞ; qiðτÞ, ði ¼ 1;…; nÞ and the
action in Hamiltonian form

S ¼
Z

b

a
dτ½piðτÞ _qiðτÞ − eðτÞCðqðτÞ; pðτÞÞ�; ð1Þ

where ·≡ d
dτ and a summation over the index i is implied.We

assume that piðτÞ; qiðτÞ transform as scalars under τ-repar-
ametrizations. The field eðτÞ is an arbitrary multiplier, which
transforms as a scalar density under τ-reparametrizations,

eðτÞ ¼ e0ðτ0Þ dτ
0

dτ
: ð2Þ

For this reason, eðτÞ can be interpreted as the einbein on the
τ-manifold (the “worldline”). Its field equation is a constraint

CðqðτÞ; pðτÞÞ ¼ 0: ð3Þ

From (1), we see that the canonical Hamiltonian is
eðτÞCðqðτÞ; pðτÞÞ, and it vanishes on shell, i.e., on the
constraint surface defined by (3). Under an infinitesimal
reparametrization, τ ↦ τ − ϵðτÞ, the action (1) remains
invariant if ϵðaÞ ¼ ϵðbÞ ¼ 0. In general (ϵðaÞ; ϵðbÞ ≠ 0),
the action can be made invariant with the addition of

certain boundary terms [38]. On the other hand, a general
phase-space function fðqðτÞ; pðτÞÞ is not invariant, as it
transforms as

δϵðτÞf ¼ ϵðτÞ df
dτ

¼ ϵðτÞff; eðτÞCg; ð4Þ

where f·; ·g is the Poisson bracket. For reasons which will
become clear in what follows, we will be interested in
invariant operators (also called Dirac observables) in the
quantum theory. Therefore, it is important to understandwhat
kind of invariant objects one can construct already at the
classical level.
The object [28,39]

Oω ≔
Z

∞

−∞
dτωðτÞ; ð5Þ

where ωðτÞ is a worldline one-form, is a well-defined
invariant, provided the integral converges. Indeed, Eq. (5) is
independent of the choice of parametrization τ. Can we find
objects of form of (5) that have a clear physical interpre-
tation? The answer is yes. To do so, we follow [28] and
define a new coordinate s on the worldline via the “gauge
condition”

χðqðτÞ; pðτÞÞ ¼ s; ð6Þ

where χ is a worldline scalar that satisfies

dχ
dτ

¼ fχ; eðτÞCg ≠ 0; ð7Þ

in certain regions of phase space. Due to (7), we can locally
solve (6) for τ to obtain

τ ¼ ϕðqð0Þ; pð0Þ; sÞ≡ ϕðsÞ; ð8Þ

where ϕ defines a worldline diffeomorphism. Given a
worldline scalar fðτÞ, we can consider its pullback,

O½fjχ ¼ s� ≔ ϕ�f ¼ fðτÞjτ¼ϕ: ð9Þ

It is straightforward to verify that (9) can also be written
as [28]

O½fjχ ¼ s� ¼ Δχ

Z
∞

−∞
dτδðχðqðτÞ; pðτÞÞ − sÞfðτÞ; ð10Þ

where1

1Aword of caution: the notation used here is different from the
one used in [28], where Δχ was used to denote

dχ
dτ, and jΔO

χ j−1 was
used to denote the quantity that appears in the right-hand side of
Eq. (11) in the present article. Here, we use a simpler notation for
convenience.
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Δ−1
χ ≔

Z
∞

−∞
dτδðχðqðτÞ; pðτÞÞ − sÞ: ð11Þ

Equation (10) is of the same form as (5), and it defines a
relational observable, which is a diffeomorphism-invariant
quantity that represents the value of fðτÞ when
χðqðτÞ; pðτÞÞ ¼ s. In otherwords, the physical interpretation
of the observable given in (10) is that it yields the value of
fðτÞ in relation to a given value of χðqðτÞ; pðτÞÞ, the level
sets ofwhich are used to define a newcoordinate s. Evidently,
fðτÞ can be replaced by a general phase-space func-
tion fðqðτÞ; pðτÞÞ.
It should be noted that, in the most general case, it may

be necessary to modify both (10) and (11) with the
substitution

δðχðqðτÞ; pðτÞÞ − sÞ ↦ δðχðqðτÞ; pðτÞÞ − sÞgðqðτÞ; pðτÞÞ;
ð12Þ

where gðqðτÞ; pðτÞÞ is a phase-space function that vanishes
outside of a given phase-space region where (7) is fulfilled.
Indeed, a general choice of χðqðτÞ; pðτÞÞ is not a monotonic
function of τ and will feature turning points where (7) does
not hold. The role of gðqðτÞ; pðτÞÞ is thus to restrict a
general χðqðτÞ; pðτÞÞ to a region where it is admissible, i.e.,
where (7) is satisfied. Only then are the field-dependent
diffeomorphism (8) and, consequently, the observables (10)
well-defined. For example, in certain cases, one could set
gðqðτÞ; pðτÞÞ ¼ θð� dχ

dτÞ to restrict the gauge condition to
regions where its derivative is either positive or negative
[θðxÞ is the Heaviside step function]. A similar observation
was made in [28]. For simplicity, we will omit the use of
gðqðτÞ; pðτÞÞ in what follows. We briefly comment on the
effect of its inclusion in the formalism in Sec. II B 3 (see
footnote).
In the particular case in which fðτÞ ¼ 1, we obtain

O½1jχ ¼ s� ¼ 1; ð13Þ

due to (11). This is the usual Faddeev-Popov resolution of
the identity [40,41], more commonly expressed by rewrit-
ing (11) as

1 ¼ Δχ

Z
∞

−∞
dτδðχðqðτÞ; pðτÞÞ − sÞ: ð14Þ

Moreover, if fðqðτÞ; pðτÞÞ ¼ χðq; ðτÞpðτÞÞ, we find from
(10) that O½χjχ ¼ s� ¼ s. It is also possible to consider
relational observables associated with worldline one-forms,
but we do not consider this here (see [28]). This con-
struction of relational observables was extensively ana-
lyzed in [28], where it was shown that the observables
satisfy gauge-fixed equations of motion with respect to the
new coordinate s. In Sec. III, we present a concrete example
of such observables.

The on-shell invariant observables constructed from
general phase-space functions fðqðτÞ; pðτÞÞ can be seen
as functions on the so-called physical or reduced phase
space [24], which is the space of orbits generated by the
constraint (3) (or, more precisely, by the related gauge
generator [28]), and it can be labeled by a complete set of
independent on-shell invariants of the form O½fjχ ¼ s0� ¼
ϕ�f [cf. (9)] for a fixed value of s0. As explained in [28],
these quantities can be seen as diffeomorphism-invariant
extensions of the initial values of the worldline scalars.
More precisely, we note that choosing an admissible

gauge condition χðqðτÞ; pðτÞÞ [cf. (7)] corresponds to
selecting a particular “time reference frame” for the
reparametrization-invariant system, i.e., the frame defined
by the level sets of the scalar χðqðτÞ; pðτÞÞ, and that
O½fjχ ¼ s� corresponds to (a diffeomorphism-invariant
extension of) the worldline scalar f described in that
frame. The evolution of worldline scalars fðqðτÞ; pðτÞÞ
in a given frame is governed by a quantity Hσ

χ, called the
physical or reduced phase-space Hamiltonian, which cor-
responds to (an invariant extension of) the opposite of pχ ,
the canonical momentum conjugate to χ. This can be
justified from the on-shell action in the following way.
We assume that χðqðτÞ; pðτÞÞ is one of the configuration
variables (after a canonical transformation, if necessary)
and that we can solve the constraint equation (3) for pχ to
find

pχ ¼ −Hσ
χðqðτÞ; pðτÞÞ≡ −Hσ

χðτÞ; ð15Þ

where σ is a possible multiplicity of the solution. This
multiplicity depends on the form of the original constraint
C (e.g., the positive and negative frequency sectors which
result from the quadratic constraint for the free relativistic
particle [28]). From (1) and (15), we obtain the on-shell
action

SC¼0 ¼
Z

b

a
dτ

�X
i≠χ

piðτÞ _qiðτÞ −Hσ
χðτÞ_χðτÞ

�
; ð16Þ

where we have neglected a possible boundary term needed
to make the action reparametrization-invariant [38], since it
will not concern us here. If we now reparametrize the
integrand of (16) using (8), we obtain

SC¼0 ¼
Z

ϕ−1ðbÞ

ϕ−1ðaÞ
ds

�X
i≠χ

piðϕðsÞÞ
dqiðϕðsÞÞ

ds
−Hσ

χðϕðsÞÞ
�
;

ð17Þ

which is the action of an ordinary (unconstrained) physical
system that describes the evolution of the invariantsO½qjχ ¼
s� ¼ ϕ�q with respect to the gauge-fixed time parameter s.
The physical Hamiltonian is Hσ

χðϕðsÞÞ ¼ ϕ�Hσ
χ ; i.e., it can
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also in principle be described as a diffeomorphism-invariant
quantity (for each fixed value of s).
In Sec. II B, we will discuss possible definitions of

quantum relational observables and argue that they are
related to a notion of “quantum reference frames” that can,
furthermore, be physically interpreted with the use of
conditional probabilities.

B. Quantum theory

1. The physical Hilbert space

To construct the quantum theory, we consider an
auxiliary (off-shell) Hilbert space in which p̂i; q̂i are
self-adjoint operators with respect to an auxiliary inner
product h·j·i. We then promote the classical constraint (3) to
a linear operator Ĉwhich is self-adjoint with respect to h·j·i.
Its eigenstates jE;ki satisfy

ĈjE;ki ¼ EjE;ki;
hE0;k0jE;ki ¼ δðE0; EÞðE;k0jE;kÞ;

where we defined the induced inner product [28,42–47]

ðE;k0jE;kÞ ≔ δðk0;kÞ: ð18Þ

Here, k is a degeneracy that can be seen as a label in the
reduced configuration space, and δð·; ·Þ is a Kronecker or
Dirac delta if the spectrum of Ĉ is, respectively, discrete or
continuous. The induced inner product (18) is well-defined
even for on-shell states (for which E0 ¼ E ¼ 0). The
physical (on-shell) Hilbert space is the vector space of
superpositions of jE ¼ 0;ki that are square-integrable with
respect to the induced inner product ð·j·Þ. Given two on-
shell states,

jΨð1;2Þi ¼
X
k

Ψð1;2ÞðkÞjE ¼ 0;ki; ð19Þ

we can compute their induced overlap,

ðΨð1ÞjΨð2ÞÞ ¼
X
k

Ψ̄ð1ÞðkÞΨð2ÞðkÞ: ð20Þ

The summation over k should be replaced by an integral if
k is a continuous index. In what follows, we assume that E
is a continuous label that takes values overR. The improper
projectors onto a given eigenspace of Ĉ are

P̂E ¼
X
k

jE;kihE;kj; ð21Þ

and they satisfy

P̂E0P̂E ¼ δðE0 − EÞP̂E; ð22Þ

P̂EjΨð1;2Þi ¼ δðEÞjΨð1;2Þi: ð23Þ

If we denote by • the action of P̂E¼0 with respect to the
induced inner product (18), then (23) implies that

P̂E¼0 • jΨð1;2Þi ¼ jΨð1;2Þi; ð24Þ

i.e., P̂E¼0 acts as the identity in the physical Hilbert space
equipped with the induced inner product.
The inner product (20) leads to the “group-averaging”

inner product [45,47] in the following way. We can
write

P̂E¼0 ¼
Z

∞

−∞
dEδðEÞ

X
k

jE;kihE;kj

¼ 1

2πℏ

Z
dτdEe

i
ℏτĈ

X
k

jE;kihE;kj

¼ 1

2πℏ

Z
∞

−∞
dτe

i
ℏτĈ; ð25Þ

where we used the fact that the states jE;ki form a
complete orthonormal system. If we assume that there
exist off-shell states jψ ð1;2Þi such that

Ψð1;2ÞðkÞ ¼ hE ¼ 0;kjψ ð1;2Þi;

then from (19) we obtain

jΨð1;2Þi ¼ P̂E¼0jψ ð1;2Þi; ð26Þ

and from (20),

ðΨð1ÞjΨð2ÞÞ ¼ hψ ð1ÞjP̂E¼0jψ ð2Þi: ð27Þ

Using (25) in (27), we find the usual expression for the
“group averaging” inner product,

ðΨð1ÞjΨð2ÞÞ ¼
D
ψ ð1Þ

��� 1

2πℏ

Z
∞

−∞
dτe

i
ℏτĈ

���ψ ð2Þ
E
: ð28Þ

2. On-shell operators

As (5) is independent of the choice of parametrization τ,
we can choose eðτÞ ¼ 1 [cf. (2)] and promote (5) to the
operator

Ôω ≔
Z

∞

−∞
dτe

i
ℏτĈω̂e−

i
ℏτĈ; ð29Þ

assuming ω̂ can be defined with an appropriate choice of
factor ordering. Why are these invariant objects interesting
in the quantum theory? The reason is that the relevant
operators are those which correspond to linear transforma-
tions between on-shell states. Such operators act only on
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the physical Hilbert space [via the induced inner product
(24)], and they have the general form

Ô ¼
X
k0;k

Oðk0;kÞjE ¼ 0;k0ihE ¼ 0;kj: ð30Þ

Let us now see that (29) leads precisely to objects of this
kind (see also [28,39]). We first note that the matrix element
of (29) between two eigenstates of the constraint operator
with respect to the auxiliary inner product is

hE0;k0jÔωjE;ki ¼ δðE0 − EÞðE;k0jÔωjE;kÞ; ð31Þ

where

ðE;k0jÔωjE;kÞ ¼ 2πℏhE;k0jω̂jE;ki ð32Þ

is the induced matrix element of (29). In the physical
Hilbert space spanned by the eigenstates jE ¼ 0;ki, we
therefore can write the induced matrix elements of (29) as

Oωðk0;kÞ ≔ 2πℏhE ¼ 0;k0jω̂jE ¼ 0;ki: ð33Þ

In this way, the invariant operator Ôω can be represented in
the physical Hilbert space as the operator (30) with
Oðk0;kÞ given by (33). Using (21), (30) and (33), we
can also represent Ôω as the on-shell operator

Ôω ¼ 2πℏP̂E¼0ω̂P̂E¼0: ð34Þ

Thus, the invariant operators (29) can be represented as
linear transformations in the physical Hilbert space.
Nevertheless, not all invariant operators are of immediate
physical significance. As we have argued in the classical
theory, the relational observables are invariants which have
a clear physical interpretation. Our task is then to find and
interpret the equivalent of (10) in the quantum theory.

3. Quantum relational observables I

We now examine a slightly refined version of the method
presented in [28] for the construction of quantum relational
observables. Afterwards, we present a different perspective
on this formalism (as well as an alternative choice of
operator ordering) in Sec. II B 4. In Secs. II B 6 and II B 8,
respectively, we comment on the physical interpretation of
the constructed observables, and we show how their matrix
elements can be related to conditional probabilities, with a
view to obtaining a clear physical interpretation of the
formalism.
To quantize (10), we must determine a choice of operator

ordering. In [28], it was argued that the ordering should be
chosen so as to yield an operator-version of the Faddeev-
Popov resolution of the identity (14). In order to achieve
this, we assume that we can promote the classical gauge
condition χ to an operator χ̂ which is self-adjoint with

respect to the auxiliary inner product and which has the
eigenstates jχ;ni, where n indicates possible (discrete or
continuous) degeneracies. In general, the on-shell compo-
nents of these eigenstates, P̂E¼0jχ;ni, do not form a
complete orthonormal system in the physical Hilbert space.
To obtain such a system, we define a self-adjoint2 on-shell
operator

Ω̂σ
χ ¼

X
k0;k

Ωσ
χðk0;kÞjE ¼ 0;k0ihE ¼ 0;kj ð35Þ

by requiring that it satisfies the orthonormality conditions

2πℏ
X
σ

Ω̂σ
χ P̂χ¼sΩ̂σ

χ ¼ P̂E¼0; ð36Þ

hχ ¼ s;n0jΩ̂σ0
χ • Ω̂σ

χ jχ ¼ s;ni ¼ δσ0;σδðn0;nÞ
2πℏ

; ð37Þ

where

P̂χ¼s ≔
X
n

jχ ¼ s;nihχ ¼ s;nj; ð38Þ

and σ is a possible discrete degeneracy related to the
classical multiplicity in (15) (see also Sec. II B 4).
Concretely, the degeneracy σ is related to different fre-
quency sectors of the theory if the constraint is quadratic in
the momenta (see [28] for a discussion applied to the
quantum relativistic particle and Sec. III for an analysis of a
quantum cosmological model). If only one multiplicity
sector is defined, one may formally set Ω̂σ

χ ¼ δσ;0Ω̂χ and
drop the δσ0;σ in (37). Equation (36) is a symmetric
resolution of the identity in the physical Hilbert space
and, therefore, it is a quantum version of the on-shell
Faddeev-Popov resolution of the identity (14).
Classically, χ is admissible if (7) is fulfilled, which

implies that Δ−1
χ is well-defined and invertible [cf. (11)] [if

necessary, one needs to make the substitution (12)]. In the
quantum theory, we shall consider the gauge condition χ̂ to
be admissible if the invertible operator Ω̂σ

χ can be deter-
mined from the orthonormality conditions (36) and (37) in
a unique manner. In what follows, we assume that this is
the case.
We can now define quantum relational observables.

Given any worldline-scalar operator f̂, we define its

2As we will see in the discussion following (44), Ω̂σ
χ can be

interpreted as the on-shell quantum analogue of the square root of
the Faddeev-Popov determinant Δχ . We have seen that in the
most general classical case, it may be necessary to make the
substitution (12) to ensure that the gauge condition is admissible.
In the quantum theory, it may be necessary to consider Ω̂σ

χ that is
not self-adjoint, in which case it would be a quantum analogue of
the square root of the product gðqðτÞ; pðτÞÞΔχ with a suitable
choice of ordering. We do not consider this complication here.
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associated relational observable relative to the gauge
condition χ̂ as the on-shell operator3

ÔðIÞ½fjχ ¼ s� ≔ πℏ
X
σ

Ω̂σ
χ ½f̂; P̂χ¼s�þΩ̂σ

χ ; ð39Þ

where ½·; ·�þ is the anticommutator,4

½f̂; P̂χ¼s�þ ¼ f̂P̂χ¼s þ P̂χ¼sf̂;

and the subscript (I) is included in order to distinguish (39)
from the subsequent definition (72) to be analyzed in
Sec. II B 4. Due to (36), we find the on-shell quantum
analogue of (13),

ÔðIÞ½1jχ ¼ s� ¼ P̂E¼0: ð40Þ

Moreover, let us assume we can define the invariant
operator [cf. (35)]

ðΔ̂σ
χÞ12 ¼

X
k0;k

Z
R
dEΩσ

χðE;k0;kÞjE;k0ihE;kj;

with Ωσ
χðE ¼ 0;k0;kÞ ¼ Ωσ

χðk0;kÞ. In this case, we can
write

Ω̂σ
χ ¼ P̂E¼0ðΔ̂σ

χÞ12; ð41Þ

such that (39) becomes [cf. (34)]

ÔðIÞ½fjχ ¼ s� ¼ 2πℏP̂E¼0ω̂ðIÞ½fjχ ¼ s�P̂E¼0; ð42Þ

where

ω̂ðIÞ½fjχ ¼ s� ≔ 1

2

X
σ

ðΔ̂σ
χÞ12½f̂; P̂χ¼s�þðΔ̂σ

χÞ12: ð43Þ

Due to the relation between on-shell and general invariant
operators given in (29) and (34), we conclude from (42) and
(43) that the quantum relational observable ÔðIÞ½fjχ ¼ s�
may also be represented as the invariant

ÔðIÞ½fjχ ¼ s� ¼
Z

∞

−∞
dτe

i
ℏτĈω̂ðIÞ½fjχ ¼ s�e− i

ℏτĈ; ð44Þ

which is a quantum version of (10). We note that P̂χ¼s is the

operator version of δðχðqðτÞ; pðτÞÞ − sÞ and ðΔ̂σ
χÞ12

corresponds to the square root of the classical quantity
Δχ in (10).
Finally, let us assume that f̂ commutes with the gauge

condition χ̂; i.e.,

f̂ ≔
X
n0;n

Z
R
dχf̃ðχ;n0;nÞjχ;n0ihχ;nj

¼
X
m

Z
R
dχfðχ;mÞjχ;mihχ;mj; ð45Þ

where jχ;mi is the simultaneous complete orthonormal
eigenbasis of χ̂ and f̂. In this case, the on-shell relational
observable ÔðIÞ½fjχ ¼ s� given in (39) has the eigenstates

jσ;m; si ≔
ffiffiffiffiffiffiffiffi
2πℏ

p
Ω̂σ

χ jχ ¼ s;mi; ð46Þ

which form a complete orthonormal system with respect to
the induced inner product due to (36), (37) and the fact that
the bases jχ;ni and jχ;mi form a complete orthonormal
system with respect to the auxiliary inner product. Indeed,
due to (36) and (37), we may write

X
σ

X
m

jσ;m; sihσ;m; sj ¼ P̂E¼0;

ðσ0;m0; sjσ;m; sÞ ¼ δσ0;σδðm0;mÞ: ð47Þ

We note that the observables (39) may be interpreted as
gauge-fixed5 Heisenberg-picture operators, while the states
(46) can be seen as their Heisenberg-picture eigenstates
[see also Eq. (78) and the discussion in Sec. II B 5].
An earlier version of this construction was extensively

analyzed in [28], where its relation to the classical
expression (10) and its evolution were examined for the
examples of a free relativistic particle and a vacuum
Bianchi I model.

4. Quantum relational observables II

We now analyze an alternative formulation of the
construction of quantum relational observables for the
particular case in which the canonical momentum

3See [28] for a heuristic motivation.
4Another factor ordering of the term f̂P̂χ¼s was suggested in

[28]. In what follows, we will focus on the case in which f̂
commutes with χ̂, such that the choice of ordering of the term
f̂P̂χ¼s is irrelevant.

5As was stressed in [28] (see also references therein), relational
observables are invariant extensions of gauge-fixed quantities.
Since we are only interested in on-shell invariants, we will take
the terms “gauge-fixed quantity” and “invariant extension of a
gauge-fixed quantity” to be synonyms. Indeed, one may consider
that the quantities written in a particular gauge are gauge-
invariant precisely because it is in principle possible to invariantly
extend them [24] if the canonical gauge condition is well defined
[cf. (7)]. For this reason, in a slight abuse of terminology, we refer
to the on-shell relational observables as gauge-fixed operators. In
the same way, we refer to their equations of motion found for a
particular case in Sec. II B 4 as the gauge-fixed Heisenberg
equations and to the overlap of their eigenstates as the gauge-
fixed propagator [cf. Sec. II B 5].
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conjugate to the quantum gauge condition is invariant; i.e.,
it commutes with Ĉ. To consider the most general instance
of this case, instead of choosing a quantum gauge condition
χ̂, we first choose an invariant Hamiltonian and sub-
sequently derive what is the canonical gauge to be used.
Since we assume that the eigenstates of the constraint

operator are degenerate (which is equivalent to assuming
the reduced phase space is not trivial), it is possible to
define arbitrary invariant operators as follows:

Ĥχ ≔
X
k0;k

Z
R
dEHχðE;k0;kÞjE;k0ihE;kj; ð48Þ

where HχðE;k0;kÞ ¼ HχðE;k;k0Þ. Equivalently, one
could choose an invariant of the form (29). Analogously
to Ĉ, we require that the spectrum of Ĥχ is continuous and
ranges over R. If such an Ĥχ can be defined, it commutes
with Ĉ, and thus they are simultaneously diagonalizable.
Let us denote the simultaneous complete orthonormal
eigenbasis as jh;ni and write

Ĉjh;ni ¼ Cðh;nÞjh;ni;
Ĥχ jh;ni ¼ hjh;ni; ð49Þ

where Cðh;nÞ is a real function. More precisely, Eq. (49)
corresponds to the situation in which one finds a complete
set of commuting invariants, the eigenstates of which are
labeled by h, n, in terms of which the eigenvalues of
constraint operator are expressed. We will see a concrete
example in Sec. III. If we take Ĥχ to be a Hamiltonian, we
can find the corresponding time operator (gauge condition)
χ̂ as follows.6 Consider the states

jχ;ni ≔
Z
R

dhffiffiffiffiffiffiffiffi
2πℏ

p e
i
ℏhχ jh;ni; ð50Þ

which satisfy the orthogonality condition

hχ0;n0jχ;ni ¼
Z
R

dh
2πℏ

e
i
ℏhðχ−χ0Þδðn0;nÞ

¼ δðχ0 − χÞδðn0;nÞ; ð51Þ

and the completeness relation

X
n

Z
R
dχjχ;nihχ;nj ¼

X
n

Z
R
dhjh;nihh;nj ¼ 1̂:

Due to (50), the operator

χ̂ ≔
X
n

Z
R
dχχjχ;nihχ;nj ð52Þ

satisfies the “covariance” property

e
i
ℏĤχsχ̂e−

i
ℏĤχs ¼ χ̂ − s1̂: ð53Þ

For this reason, χ̂ is a “covariant time operator” [10,36,37]
associated with the Hamiltonian Ĥχ . By differentiating (53)
with respect to s and setting s ¼ 0 [10], we find the formal
commutation relation7

½χ̂; Ĥχ � ¼ −iℏ1̂: ð54Þ

This construction has thus far been with respect to the
auxiliary Hilbert space. We are now in a position to
construct on-shell observables in the physical Hilbert
space.
First, in analogy to the classical equation (15), we

assume that, for a certain interval of values of E that
contains E ¼ 0, the equation

Cðh;nÞ ¼ E ð55Þ

has the real solutions

h ¼ −Hσ
χðE;nÞ; ð56Þ

where σ denotes a possible discrete degeneracy; i.e., if
σ0 ≠ σ, thenHσ0

χ ðE;nÞ ≠ Hσ
χðE;nÞ for all allowed values of

E, n. We also define

1

N
jE; σ;ni ≔ jh;nih¼−Hσ

χ ðE;nÞ; ð57Þ

where N ≡N ðE; σ;nÞ is a normalization factor.
Second, we note that the induced inner product of the
states jE; σ;ni can be computed from the auxiliary overlap
of jh;ni,

hh0;n0jh;ni ¼ δðh0 − hÞδðn0;nÞ

¼ δðE0 − EÞ ðE; σ
0;n0jE; σ;nÞ
N 2

; ð58Þ

where the induced product reads

ðE; σ0;n0jE; σ;nÞ ≔ N 2δσ0;σδðn0;nÞ
���� ∂C∂h

����
h¼−Hσ

χ ðE;nÞ
: ð59Þ

6We note that the Pauli theorem [37,48] can be avoided due to
the assumption that h ∈ R. However, the on-shell, physical
Hamiltonian will possibly be bounded from below or above in
each multiplicity sector (see below) due to the restriction of Ĥχ to
the physical Hilbert space.

7This is the correct (formal) commutation relation between a
(reduced phase-space) Hamiltonian and the associated time
operator; i.e., the Hamiltonian plays the role of the opposite of
the canonical momentum conjugate to χ̂ [cf. (15) and (17)].
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The Kronecker delta δσ0;σ is included in (59) because δðh0−
hÞ is zero if h0; h belong to different σ-sectors [cf. discussion
after (56)]. We normalize the states jE; σ;ni with respect to
the induced inner product by setting

N ¼
���� ∂C∂h

����
−1
2

h¼−Hσ
χ ðE;nÞ

: ð60Þ

For convenience, we will also denote on-shell states by the
abbreviated notation jσ;ni ≔ jE ¼ 0; σ;ni. We can now
define the (improper) projectors

P̂σ
E ≔

X
n

jE; σ;nihE; σ;nj; ð61Þ

P̂E ≔
X
σ

P̂σ
E; ð62Þ

which, due to (58) and (59), satisfy P̂σ0
E0P̂σ

E ¼
δσ0;σδðE0 − EÞP̂σ

E. The quantum analogue of (11) is defined
to be the self-adjoint on-shell operator [cf. (34)]

ðΩ̂σ
χÞ−2 ≔ 2πℏP̂σ

E¼0P̂χ¼sP̂
σ
E¼0; ð63Þ

which will be referred to as the inverse Faddeev-Popov
operator for the σ-sector. To find its matrix elements, we
compute the overlap [cf. (50)]

hσ;n0jχ;ni ¼ ðΩσ
χÞ−1

δðn0;nÞffiffiffiffiffiffiffiffi
2πℏ

p e
i
ℏhχ jh¼−Hσ

χ ð0;nÞ; ð64Þ

where

Ωσ
χ ≡Ωσ

χðnÞ ≔
���� ∂C∂h

����
1
2

h¼−Hσ
χ ð0;nÞ

: ð65Þ

We thus obtain

ðΩ̂σ
χÞ−2 ≔

X
n

ðΩσ
χðnÞÞ−2jσ;nihσ;nj: ð66Þ

If we now define, more generally, the operators

ðΩ̂σ
χÞρ ≔

X
n

ðΩσ
χðnÞÞρjσ;nihσ;nj; ð67Þ

and if we use (59) together with (60), we find

P̂σ
E¼0 • ðΩ̂σ

χÞρ ¼ ðΩ̂σ
χÞρ • P̂σ

E¼0 ¼ ðΩ̂σ
χÞρ; ð68Þ

Ω̂σ
χ • ðΩ̂σ

χÞ−1 ¼ ðΩ̂σ
χÞ−1 • Ω̂σ

χ ¼ P̂σ
E¼0: ð69Þ

Thus, we obtain from (63), (68) and (69) the Faddeev-Popov
resolution of the identity in the σ-sector of the physical
Hilbert space,

P̂σ
E¼0 ¼ 2πℏðΩ̂σ

χÞ2P̂χ¼sP̂
σ
E¼0

¼ 2πℏP̂σ
E¼0P̂χ¼sðΩ̂σ

χÞ2; ð70Þ

which can also be written symmetrically as

P̂σ
E¼0 ¼ 2πℏΩ̂σ

χ P̂χ¼sΩ̂σ
χ : ð71Þ

Equations (70) and (71) are quantum analogues of (14) and
correspond to different factor ordering choices for the
quantum relational observables. Indeed, Eq. (71) is equiv-
alent to (36), from which we can define the relational
observable ÔðIÞ½fjχ ¼ s� given in (39). From (70), we see
that another possible factor ordering is8

ÔðIIÞ½fjχ ¼ s� ≔ πℏ
X
σ

ðΩ̂σ
χÞ2P̂χ¼sf̂P̂

σ
E¼0 þ h:c:; ð72Þ

i.e., ÔðIIÞ½fjχ ¼ s� is another possible definition of the on-
shell quantum relational observable associated with a world-
line scalar f̂ relative to the gauge condition χ̂. By using (62)
and (70), we find

ÔðIIÞ½1jχ ¼ s� ¼ P̂E¼0; ð73Þ

just as ÔðIÞ½1jχ ¼ s� ¼ P̂E¼0 in (40). The definition (72) also
has the attractive feature that the observable associated with
an invariant of the form

f̂ ≔
X
σ

X
n0;n

Z
dEfσðE;n0;nÞjE; σ;n0ihE; σ;nj ð74Þ

is just f̂P̂E¼0, due to (70) [this is true provided f̂ in (74) is
well-defined, i.e., that the integral overE can be performed].
We will, however, focus on operators f̂ that commute with
the gauge condition [cf. (45)]. In this case, we can find a
dynamical equation for ÔðI;IIÞ½fjχ ¼ s� as follows. Due to
(49), we obtain

Ĥχ jσ;ni ¼ −Hσ
χð0;nÞjσ;ni; ð75Þ

which, together with (67), implies

½ðΩ̂σ
χÞρ; Ĥχ � ¼ 0: ð76Þ

Moreover, Eqs. (45) and (50) yield

iℏ
d
ds

ðf̂P̂χ¼sÞ ¼
X
m

iℏ
∂f
∂s jχ ¼ s;mihχ ¼ s;mj

þ ½f̂P̂χ¼s; Ĥχ �: ð77Þ

8The abbreviation “h.c.” stands for “Hermitian conjugate”.
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Thus, using (76) and (77), we may write the derivative of
ÔðI;IIÞ½fjχ ¼ s� as

d
ds

Ô½fjχ ¼ s� ¼ Ô
�∂f
∂s

����χ ¼ s

�
þ 1

iℏ
½Ô½fjχ ¼ s�; Ĥχ �;

ð78Þ

where we have suppressed the ðI; IIÞ subscripts for brevity,
as (78) holds for both definitions. We interpret (78) as the
gauge-fixed Heisenberg equation of motion9 for the rela-
tional observables.

5. Gauge-fixed propagator

The quantum relational observables (39) and (72) are
formally symmetric with respect to the auxiliary inner
product, and they commute with the constraint operator Ĉ.
Therefore, they are formally symmetric with respect to the
induced inner product (18). If we furthermore assume that
they are self-adjoint, one may find a complete orthonormal
system of eigenstates of the observables. In this case, every
on-shell state can thus be expanded into the bases of
eigenstates of relational observables for a fixed value of s.
The physical interpretation of this fact will be discussed in
Secs. II B 7 and II B 9.
Let us consider for definiteness the eigenstates of

ÔðIÞ½fjχ ¼ s� given in (46). By construction, they form a
complete orthonormal system in the physical Hilbert space
due to the orthonormality conditions (36) and (37). As was
remarked at the end of Sec. II B 3, such states are the
eigenstates of the gauge-fixed Heisenberg-picture opera-
tors. For a fixed value s ¼ s0, we can write any on-shell
state as

jΨi ¼
X
σ

X
m

ΨσðmÞjσ;m; s0i: ð79Þ

We define ðσ0;m0; s0jσ;m; sÞ to be the gauge-fixed propa-
gator, which encodes the evolution with respect to the
gauge-fixed time parameter s. Due to the orthonormality of
the states jσ;m; si for all values of s [cf. (47)], we have

lim
s0→s

ðσ0;m0; s0jσ;m; sÞ ¼ δσ0;σδðm0;mÞ: ð80Þ

To see that this evolution corresponds to a unitary trans-
formation in the physical Hilbert space (regardless of
whether p̂χ is an invariant, as considered in Sec. II B 4),
we consider the (gauge-fixed Schrödinger-picture) state

jΨ; si ¼
X
σ

X
m

Ψσðm; sÞjσ;m; s0i; ð81Þ

where

Ψσðm; sÞ ≔
X
σ0

X
m0

ðσ;m; sjσ0;m0; s0ÞΨσ0ðm0Þ: ð82Þ

Due to the completeness of the states jσ;m; si for all values
of s [cf. (47)], we thus obtain

X
σ

X
m

jΨσðm; sÞj2

¼
X
σ0;σ00;σ

X
m0;m0

0;m

Ψ̄σ0
0
ðm0

0Þðσ00;m0
0; s0jσ;m; sÞ

× ðσ;m; sjσ0;m0; s0ÞΨσ0ðm0Þ
¼

X
σ0;σ00

X
m0;m0

0

Ψ̄σ0
0
ðm0

0Þðσ00;m0
0; s0jσ0;m0; s0ÞΨσ0ðm0Þ

¼
X
σ0

X
m0

jΨσ0ðm0Þj2:

Therefore, the norm of the on-shell states is conserved,

ðΨ; sjΨ; sÞ ¼ ðΨjΨÞ: ð83Þ

6. Quantum reference frames

What is the physical interpretation of the quantum
observables (39) or (72)? As previously stated, the classical
relational observable (10) represents the value of
fðqðτÞ; pðτÞÞ in relation to the value s of χðqðτÞ; pðτÞÞ;
i.e., it is the value of fðqðτÞ; pðτÞÞ when χðqðτÞ; pðτÞÞ ¼ s.
Do ÔðI;IIÞ½fjχ ¼ s� represent f̂ “in relation to” the eigen-
value s of χ̂? If so, in what sense? The formalism of [28]
and the earlier treatments [19–21,29] do not seem to
provide a satisfactory answer at the conceptual level.
The structural similarity of (44) with its classical

counterpart guarantees that certain properties of the
classical observables are translated into the quantum theory.
For instance, as shown in [28] and as was discussed in
Sec. II B 4, the quantum observables ÔðI;IIÞ½fjχ ¼ s� obey
gauge-fixed Heisenberg equations which are the quantum
analogues of the classical reduced phase-space equations.
This is true provided one works with a gauge condition that
is conjugate to an invariant Hamiltonian operator.
Furthermore, as shown in Sec. II B 5, the gauge-fixed
evolution encoded in the gauge-fixed propagator is a
unitary transformation in the physical Hilbert space.
As remarked in Sec. II A, the reduced phase-space

equations can be thought of as the field equations in a
particular reference frame, in which the time coordinate s is
defined by the level sets of χðqðτÞ; pðτÞÞ. In this way, we
may also consider that the gauge-fixed Heisenberg equa-
tions (78) or the gauge-fixed propagator (80), which
describe the quantum dynamics with respect to the c-
number s, are related to (or can be used to define) a notion of
“quantum reference frames”. Given a time-reparametrization

9In the derivation of (78), we assumed that the Hamiltonian Ĥχ
does not depend on the gauge-fixed time parameter s.
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invariant quantum system, we consider that a choice of
reference frame corresponds to a partitioning of the system
into a reference (the gauge condition χ̂) and a subsystem,
which is the set of all worldline tensors f̂ that commutewith χ̂
(see also the discussion in [35,36]). The quantum relational
observables [constructed as in (39) or (72)] thus describe the
evolution of the subsystem in the reference frame defined by
χ̂. A similar point of viewwas expressed in [28], where it was
argued that the quantum relational observables capture all the
relational content of the theory.We do not dispute this view in
the present article, but we wish to further understand (in a
precise yet pragmatic way) in what sense the theory of
quantum relational observables is indeed “relational”. In
Sec. II B 8, we suggest that a clearer physical interpretation
of such observables can be obtained if we make use of
conditional probabilities.
It is worthwhile to mention that a great deal of effort has

been devoted to the precise definition and study of quantum
reference frames and “relational quantum clocks” (see
[10,30–32,34–37] and references therein). In particular,
the authors of [10,30–32] establish a formalism to relate
different choices of quantum reference frames and discuss
under which circumstances these choices can be related to a
direct quantization of the reduced phase-space equations
that can be derived from the action (16). In [31], it is
discussed in detail how one may map the physical Hilbert
space of on-shell states (as presented in Sec. II B 1 of the
present article) to the different Hilbert spaces associated
with the various quantizations of the reduced phase-space
equations for different choices of χ in (16). We note that an
early reference with a similar investigation is [49], in which
Barvinsky relates the transition amplitudes of on-shell
states (expressed as path integrals) with the reduced
phase-space path integrals written in terms of the action
(16). Thus, the work of [49] can be seen as a possible
formalism to relate different choices of reference frames
(defined from the reduced phase-space path integrals) with
the physical Hilbert space of on-shell states. In [49], the
canonical (operator-based) theory associated with the
various path integrals is also discussed at the semiclassical
(one-loop) order.
The (in principle) different approaches of [10,35,36,49]

point to the conclusion that different choices of reference
frames (different choices of χ) can be described in a single
space, which is the physical Hilbert space of on-shell states
(variously referred to as the “Dirac-Wheeler-DeWitt for-
mulation” in [49] and as the “perspective-neutral” or
“reference-system-neutral” framework in [31]). This is also
the case in the formalism here presented. In Sec. II B 7, we
use the quantum relational observables and the gauge-fixed
propagator here defined to argue that a change in quantum
reference frames indeed corresponds to a change of basis in
the physical Hilbert space. Moreover, in the recent article
[10], it was shown that the formalism of [31] was
equivalent to the use of conditional probabilities for a

simple class of models. In the same spirit, in Sec. II B 8, we
argue that the use of conditional probabilities can elucidate
the physical interpretation of the quantum relational
observables here defined and their connection to quantum
reference frames without the restriction of [49] to a
perturbative treatment in ℏ. Finally, in Sec. II B 11, we
comment on how the formalism here presented can be
related to the relativization maps and G-twirl operations
employed in [10,34–37].

7. Switching reference frames

As we have seen in Sec. II B 5, one may expand any on-
shell state jΨi into the bases of eigenstates of relational
observables. From the discussion in Sec. II B 6, we thus
interpret the overlap ðσ;m; sjΨÞ as the representation of the
on-shell state in the quantum reference frame defined by the
gauge condition χ̂. We will see in Sec. II B 8 that this
overlap may also be interpreted in terms of conditional
probabilities.
Can we switch reference frames in this formalism? Yes,

the switch corresponds to a change of basis in the physical
Hilbert space.10 Let χ̂1 and χ̂2 be two admissible gauge
conditions and jσ1;m1; χ1i; jσ2;m2; χ2i be the correspond-
ing complete orthonormal systems of eigenstates of rela-
tional observables [cf. Sec. II B 3]. To switch from the
representation of an on-shell state jΨi in the reference
frame defined by χ̂1 to the one defined by χ̂2, we insert the
corresponding resolution of the identity,

ðσ1;m1; χ1jΨÞ
¼

X
σ2

X
m2

ðσ1;m1; χ1jσ2;m2; χ2Þðσ2;m2; χ2jΨÞ:

We note that the gauge-fixed propagator [cf. Sec. II B 5]
is a particular case of the change of basis matrix
ðσ1;m1; χ1jσ2;m2; χ2Þ, in which instead of switching refer-
ence frames, one simply switches the value s of the gauge
condition.

8. Conditional probabilities

What is the meaning of the gauge-fixed time parameter s
in the quantum theory? As we have argued, it is the time
parameter in a particular reference frame, but how is it
related to observations? Classically, s is a value of
χðqðτÞ; pðτÞÞ. Once we know χðqðτÞ; pðτÞÞ ¼ s (via an
observation), we can predict, in a diffeomorphism-invariant
fashion, what is the value of fðqðτÞ; pðτÞÞ by computing

10This is reminiscent of the assertion made in [38] (see also
[24]) that the difference between the reduced phase-space path
integral and the path integral related to the transition amplitude of
on-shell states corresponds to the difference between the kernels
of an operator in different representations.
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O½fjχ ¼ s�. Thus, classical relational observables are con-
ditional quantities, in the sense that they yield predictions
based on a certain condition [the observed value of
χðqðτÞ; pðτÞÞ]. It is thus reasonable to consider that what
one should compute in the quantum theory is the proba-
bility of observing a certain (eigen)value of f̂, given that χ̂
is in the state jχ ¼ s;ni. In other words, we should consider
conditional probabilities defined from the on-shell
states (19).
There is an extensive literature on the use of conditional

probabilities in time-reparametrization invariant mechani-
cal systems (see [2–10] and references therein; see also
Sec. II B 11). Most articles focus on models in which the
constraint Ĉ can be written as

Ĉ≡ Cðq̂; p̂Þ ¼ Cð1Þðq̂1; p̂1Þ þ Cð>1Þðq̂; p̂Þ; ð84Þ
where Cð>1Þðq̂; p̂Þ only depends on q̂i; p̂i for i > 1. For this
form of the constraint operator, a variable canonically
conjugate to Cð1Þðq̂1; p̂1Þ is usually chosen to play the role
of time (the quantity χ̂ in the present article). Furthermore, the
connection between relational observables and conditional
probabilities was analyzed in [10] (see also [9]) for models
with constraints of the form (84) and gauge conditions χ̂
(formally) conjugate to Cð1Þðq̂1; p̂1Þ.
As we wish to keep the discussion as general as possible,

we do not restrict the constraint to the form (84), and we
allow a gauge condition χ̂ that is admissible according to
the criterion discussed in Sec. II B 3, but not necessarily
conjugate to Cð1Þðq̂1; p̂1Þ. In this framework, we establish a
connection between conditional probabilities and quantum
relational observables, which clarifies their physical mean-
ing. We will comment on the relation of this formalism
to previous approaches to conditional probabilities in
Secs. II B 10 and II B 11.
For a general on-shell state jΨi defined as in (19), we

postulate that

pΨðmjχ ¼ sÞ ¼ jhχ ¼ s;mjΨij2P
mjhχ ¼ s;mjΨij2 ; ð85Þ

is the conditional probability of observing the eigenvaluem
given that χ̂ is observed to have the eigenvalue s. The
conditional expectation value of the operator f̂ given in (45)
is defined as

EΨ½fjχ ¼ s� ≔
X
m

fðs;mÞpΨðmjχ ¼ sÞ;

which, due to (45), can be written as

EΨ½fjχ ¼ s� ¼ hΨjf̂P̂χ¼sjΨi
hΨjP̂χ¼sjΨi

: ð86Þ

Although we have used the noninvariant operators f̂ and
P̂χ¼s and the auxiliary inner product h·j·i in (86), we can

evidently also write it in terms of on-shell operators and the
induced inner product ð·j·Þ as defined in (18). Indeed, due to
(24), Eq. (86) can be written as

EΨ½fjχ ¼ s� ¼ ðΨjP̂E¼0f̂P̂χ¼sP̂E¼0jΨÞ
ðΨjP̂E¼0P̂χ¼sP̂E¼0jΨÞ

: ð87Þ

From the general formulas (29) and (34), we can thus
rewrite (87) as

EΨ½fjχ ¼ s� ¼ ðΨj R∞
−∞ dτe

i
ℏτĈf̂P̂χ¼se−

i
ℏτĈjΨÞ

ðΨj R∞
−∞ dτe

i
ℏτĈP̂χ¼se−

i
ℏτĈjΨÞ ;

which is to be compared to the classical formulas (10)
and (11).
We can go further and relate the conditional expectation

values to the quantum averages of relational observables.
The quantum average of an on-shell observable Ô with
respect to an on-shell state jΨi is defined as

hÔiΨ ≔
ðΨjÔjΨÞ
ðΨjΨÞ : ð88Þ

Furthermore, we define the (improper) projector onto a
given σ sector either as in (61) or as

P̂σ
E¼0 ≔

X
m

jσ;m; sihσ;m; sj; ð89Þ

where jσ;m; si are the eigenstates of ÔðIÞ½fjχ ¼ s� defined
in (46). Thus, we take

pΨðσÞ ¼ hP̂σ
E¼0iΨ ð90Þ

to be the probability that the mechanical system is observed
to be in the σ sector (e.g., the probability that a free
relativistic particle has frequency σ). Due to (39), the
quantum average of ÔðIÞ½fjχ ¼ s� can be written as

hÔðIÞ½fjχ ¼ s�iΨ ¼
X
σ

pΨðσÞ
ðΨjΩ̂σ

χ f̂P̂χ¼sΩ̂σ
χ jΨÞ

ðΨjΩ̂σ
χ P̂χ¼sΩ̂σ

χ jΨÞ
:

If we now define

jΨσi ≔ Ω̂σ
χ • jΨi; ð91Þ

we obtain [cf. (41)]
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hÔðIÞ½fjχ ¼ s�iΨ
¼

X
σ

pΨðσÞ
ðΨσjP̂E¼0f̂P̂χ¼sP̂E¼0jΨσÞ
ðΨσjP̂E¼0P̂χ¼sP̂E¼0jΨσÞ

¼
X
σ

pΨðσÞ
hΨσjf̂P̂χ¼sjΨσi
hΨσjP̂χ¼sjΨσi

:

Therefore, we conclude from (86) that

hÔðIÞ½fjχ ¼ s�iΨ ¼
X
σ

pΨðσÞEΨσ
½fjχ ¼ s�; ð92Þ

i.e., the quantum average of the relational observable
ÔðIÞ½fjχ ¼ s� is the weighted sum of the σ-sector (“sin-

gle-frequency”) expectation values of f̂ conditioned on
χ ¼ s, provided one suitably redefines the states as in (91).
The weights are the probabilities that the system has a given
value of σ. In particular, if the state jΨi has a definite value
σ ¼ σ0, then pΨðσÞ ¼ δσ;σ0 and the quantum average of

ÔðIÞ½fjχ ¼ s� coincides with a conditional expectation
value. In this case, if jΨi is normalized,

1 ¼ ðΨjΨÞ ¼ ðΨjP̂σ0
E¼0jΨÞ ¼ 2πℏhΨσ0 jP̂χ¼sjΨσ0i; ð93Þ

then its overlap with the eigenstates of the relational
observable coincides with a conditional probability ampli-
tude; i.e.,

jðσ0;m; sjΨÞj2 ¼ 2πℏjhχ ¼ s;mjΨσ0ij2
¼ pΨσ0

ðmjχ ¼ sÞ; ð94Þ

where we used (85) and (93).
This result clarifies the physical interpretation of the

quantum relational observable ÔðIÞ½fjχ ¼ s�. As expected,
it is the operator which represents the quantity f̂ given the
condition that the quantity χ̂ is observed to have the value s
(in definite σ sectors). A similar result for ÔðIIÞ½fjχ ¼ s�
does not seem to be readily available. Since we regard the
use of conditional probabilities intuitively clear and we
wish to work with relational observables that have a
straightforward physical interpretation, we will thus favor
the use of ÔðIÞ½fjχ ¼ s� in the remainder of this article.
What is the connection of this result to quantum

reference frames? As discussed in Secs. II B 6 and
II B 7, we interpret the quantum relational observables as
invariant descriptions of the dynamics in the reference
frame defined by χ̂, i.e., the frame in which the dynamics is
described relative to the observed value of χ̂. Likewise, the
overlap ðσ0;m; sjΨÞ is interpreted as the representation of
the on-shell state in that frame. For definite σ sectors, the
equivalence of averages of relational observables with
conditional expectation values [cf. (92)] and of the overlap
ðσ0;m; sjΨÞ with a conditional probability amplitude

[cf. (94)] means that these relational quantities describe
the quantum dynamics conditioned on the observed value
of one of the dynamical fields χ̂. We believe that this
corroborates our interpretation of relational observables
and their eigenstates in a straightforward, intuitive way. As
was argued in Secs. II B 6 and II B 7, one can describe the
change in reference frames as a change of basis in the
physical Hilbert space.11

In fact, Eq. (92) shows that there are two equivalent
descriptions of the quantum dynamics. One is based on the
definite-σ conditional expectation values of tensor fields
(gauge-fixed point of view), whereas the other is based on
the manifestly invariant average of on-shell relational
observables in the induced inner product (invariant point
of view). This equivalence was first noted in [10] for a
special case, which we analyze in Sec. II B 11.
To the best of our knowledge, the formalism here

presented is new. Although the there is a vast literature
on the use of conditional probabilities (see [2–10] and
references therein) and on the construction of relational
observables (see [10,19–22,24–28,30,31] for previous pro-
posals and further references) for time-reparametrization
invariant systems, the precise connection between the two
has so far remained unclear (see, however, the results of
[10]). We hope that the above construction can help bridge
the gap between the two approaches and clarify the
meaning of quantum relational observables.
What is the significance of this formalism for quantum

gravity? There, the construction of well-defined relational
observables is notoriously difficult. The present discussion,
which is focused on a general mechanical model, cannot be
directly applied to field theory, since in the field-theoretic
case one must first solve the issue of regularization of the
constraint operators and ascertain whether the constraint
algebra is anomalous. Nevertheless, the formalism we have
presented can be applied to symmetry-reduced models
which are frequently used in quantum cosmology. This
makes it directly useful to the analysis of quantum-
gravitational effects in the early Universe in particular
(see the article [50]) and of toy-models of quantum gravity
in general. Most importantly, we see from (92) that it is, in
fact, unnecessary to construct relational observables, as
long as one is content with computing definite-σ condi-
tional expectation values (gauge-fixed point of view).

11It is also worthwhile to note that the early formalism
presented by Barvinsky in [49] is claimed to be related to the
idea of conditional probabilities in quantum cosmology (see page
294 of [49]), but that formalism is restricted to a perturbative
expansion in ℏ. This restriction is, in principle, not necessary
here. We also note that unitarity in [49] was achieved by
restricting the theory to a definite σ sector. In our formalism,
this is also the case in the sense that the conditional expectation
values are only equivalent to the averages of relational observ-
ables [which evolve unitarily due to (78) or (83)] in definite σ
sectors [cf. (92)].

LEONARDO CHATAIGNIER PHYS. REV. D 103, 026013 (2021)

026013-12



9. Invariant extensions of states

We have seen that, in the gauge-fixed point of view, one
deals with conditional probabilities defined from the on-
shell states. There is, of course, an inherent ambiguity in the
definition of conditional probabilities that can be seen if
one performs the factorization

hχ ¼ s;mjΨi ¼ ξðsÞψðs;mÞ; ð95Þ

proposed in [51]. Here, ψðs;mÞ is called the conditional
wave function or the conditional probability amplitude. The
conditional probability (85) only depends on the condi-
tional wave function,

pΨðmjχ ¼ sÞ ¼ jψðs;mÞj2P
mjψðs;mÞj2 : ð96Þ

Both the factorization (95) and the conditional probability
(96) are invariant under the transformations

ξðsÞ ↦ eαðsÞþiβðsÞξðsÞ;
ψðs;mÞ ↦ e−αðsÞ−iβðsÞψðs;mÞ; ð97Þ

where αðsÞ, βðsÞ are real functions of s. Thus, as far as the
conditional probabilities are concerned, we are free to
choose ξðsÞ in a convenient manner. A simple choice is
ξðsÞ≡ 1. If we perform the factorization (95) for all values
of s and a general choice of ξðsÞ, then the conditional wave
function is a solution to the modified constraint equation

Ĉξψðs;mÞ ¼ 0; ð98Þ

where

Ĉξ ≔ ξ−1ðsÞĈ
�
s;−iℏ

∂
∂s ;m;−iℏ

∂
∂m

�
ξðsÞ: ð99Þ

Now suppose that we know what the conditional proba-
bility distribution is at a certain moment of time s ¼ s0 (i.e.,
for a certain observed value of the field χ̂). Let us call this
the “relative initial data”. Can we determine from this data
what is the corresponding on-shell state? Can we sub-
sequently evolve this state with respect to the gauge-fixed
time parameter s?
The answer to both questions is yes. To see this, suppose

that jψi is an auxiliary (off-shell) state, such that
ψðs0;mÞ ¼ hχ ¼ s0;mjψi is a conditional wave function
compatible with the relative initial data. Then we can define
the on-shell state

jΨσi ≔ 2πℏΩ̂σ
χ • Ω̂σ

χ P̂χ¼s0 jψi: ð100Þ

Due to (37), we have the identity

2πℏP̂χ¼s0Ω̂
σ
χ • Ω̂σ

χ P̂χ¼s0 ¼ P̂χ¼s0 ; ð101Þ

which implies that

P̂χ¼s0 jΨσi ¼ P̂χ¼s0 jψi; ð102Þ

or, equivalently,

hχ ¼ s0;mjΨσi ¼ ψðs0;mÞ; ð103Þ

i.e., jΨσi is an on-shell state that reduces to the initial
conditional wave function when projected onto the initial
gauge condition.12 We refer to such states as invariant
extensions. The “invariantization map” is a projection in
the sense that its square is itself. Indeed, due to (101), we
find

ð2πℏÞ2Ω̂σ
χ • Ω̂σ

χ P̂χ¼s0Ω̂
σ
χ • Ω̂σ

χ P̂χ¼s0

¼ 2πℏΩ̂σ
χ • Ω̂σ

χ P̂χ¼s0 : ð104Þ

As the relational observables, the invariant extensions
of states can be interpreted in a relational way: they
correspond to the value of a given conditional probability
amplitudewhen the field χ̂ is observed to have a certainvalue.
In other words, they encode the relative initial data in a
diffeomorphism-invariant fashion. The use of an “invarian-
tization” procedure to obtain solutions to the quantum
constraint equation was advocated by Woodard in [25]
and, more recently, similar proposals were made in the
quantum foundations and quantum information literature
(see [34–37] and references therein; we return to this point in
Sec. II B 11).
If the state jΨσi is projected onto the gauge condition

jχ ¼ s;mi for s ≠ s0, we obtain an evolved conditional
probability amplitude via the gauge-fixed propagator
[cf. Sec. II B 5]. Indeed, due to (46) and (100), we
obtain

hχ ¼ s;mjΨσi
¼

X
m0

ðσ;m; sjσ;m0; s0Þψðs0;m0Þ: ð105Þ

We will provide an example of an invariant extension and
its relational interpretation in Sec. III.

10. Remark on notation and terminology

Before we continue, it is worth making a brief remark
concerning the notation and terminology used here for
conditional probabilities. We note that in [9], the proba-
bility given in (85) was denoted by pΨðm when χ ¼ sÞ,

12The use of gauge conditions in the determination of the
initial data for solutions of the quantum constraint equation was
also considered in the formalism of [49].
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and the term “conditional probability” was reserved for the
different object

palt
Ψ ðmjχ ¼ sÞ ≔ hΨjP̂χ¼sP̂E¼0P̂mP̂E¼0P̂χ¼sjΨi

hΨjP̂χ¼sP̂E¼0P̂χ¼sjΨi
: ð106Þ

In [9], the main motivation to consider (106) was that it
leads to a derivation of the usual Schrödinger propagator
for constraints of the form (84). Indeed, if one chooses the
gauge condition χ̂ to be canonically conjugate to Ĉð1Þ, then
one can show that palt

Ψ ðm2 when χ ¼ s2jm1 when χ ¼ s1Þ
is the correct transition probability associated with the
Schrödinger propagator (see [9] and also the alternative
discussion in [10] for details). In the present article, we are
content with defining the conditional probability to be (85),
because we will show that the correct Schrödinger propa-
gator is obtained from the gauge-fixed propagator in Sec. II
B 11, without the need to consider (106).

11. Relation to the Page-Wootters formalism

It is now important to note what is the relation of the
above construction to the Page-Wootters formalism [2–10],
which is the most widely used framework for conditional
probabilities in time-reparametrization invariant quantum
systems. The goal of the Page-Wootters formalism is to
recover the usual notion of evolution with respect to an
external time parameter and the time-dependent
Schrödinger equation from a stationary constraint equation.
This can be seen as a particular case of the formalism
presented here.
It is also worthwhile to mention another approach that

aims at recovering the usual Schrödinger equation, which is
the Born-Oppenheimer approach to quantum gravity [52].
In this approach, one performs the factorization of the on-
shell states as in (95) and finds that ξðsÞ has a Wentzel-
Kramers-Brillouin (WKB)-like form, which arises from a
weak-coupling expansion of the quantum constraint equa-
tion ĈjΨi ¼ 0. This expansion concerns a weak-coupling
between “heavy” degrees of freedom (e.g., a laboratory that
defines the reference frame) and “light” fields (e.g. a
subsystem of the model universe). The time-dependent
Schrödinger equation for the conditional wave function is
then recovered from (98) at the lowest order of the
expansion. In quantum cosmology, the heavy degrees of
freedom are those of the gravitational field, whereas the
light fields are those of the matter sector. In this case, the
weak-coupling expansion is a (formal) expansion in inverse
powers of the Planck mass. We will not pursue this
approach here. The reader is referred to [53] for a review
and further details in the context of quantum cosmology
and to [50] for an application to the computation of
corrections to the dynamics of primordial fluctuations.
Alternatively, in the Page-Wootters formalism, one often

assumes that the laboratory and the system to be studied do

not interact. In this case, the constraint is assumed to be of
the form (84), and we set ξðsÞ≡ 1. In (84), Ĉð1Þ can be
interpreted as the laboratory Hamiltonian, whereas Ĉð>1Þ is
the Hamiltonian of the system. In the language of the
present article, the first step to recover the time-dependent
Schrödinger equation for the system is to choose a gauge
condition χ̂.
It is reasonable to choose χ̂ to be canonically conjugate

to Ĉð1Þ (i.e., χ̂ is the “proper time” of the laboratory). We

assume for simplicity that the spectra of Ĉ, Ĉð1Þ and Ĉð>1Þ
are continuous. In this way, if jEð1Þ; qii (i > 1) is an

eigenstate of Ĉð1Þ, one may define the eigenstates of χ̂ as13

jχ; qii ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
Z
R
dEð1Þe−

i
ℏEð1Þχ jEð1Þ; qii; ð107Þ

from which one determines

iℏ
d
ds

jχ ¼ s; qii ¼ Ĉð1Þjχ ¼ s; qii: ð108Þ

Given an on-shell state jΨi, which is a solution to
ĈjΨi ¼ 0, we define the conditional wave function as
ψðs; qiÞ ≔ hχ ¼ s; qijΨi [cf. (95)]. Using (84) and (108),
we find

iℏ
d
ds

ψðs; qiÞ ¼ hχ ¼ s; qij − Ĉð1ÞjΨi
¼ hχ ¼ s; qijĈð>1ÞjΨi

¼ Ĉð>1Þ

�
q;
ℏ
i
∂
∂q

�
ψðs; qiÞ: ð109Þ

This is the usual derivation of the Schrödinger equation for
the system in the Page-Wootters formalism. The dynamics
is described with respect to the laboratory proper time s.
What about the relational observables? To construct

them as in (92), we first note that Ĉð1Þ and Ĉð>1Þ form a
complete set of commuting invariants. We may thus use the
results of Sec. II B 4. Let jEð1Þ; Eð>1Þ;ni be a system of

simultaneous eigenstates of Ĉð1Þ and Ĉð>1Þ which are
orthornormal with respect to the auxiliary inner product
h·j·i. We obtain [cf. (49)]

13Classically, we assume that the system Hamiltonian Cð>1Þ is
positive definite, whereas Cð1Þ is not, such that the constraint (84),
C ¼ 0, is satisfied. In the quantum case, we thus assume that
Ĉð>1Þ is positive-definite, whereas the spectrum of Ĉð1Þ ranges
over R. The reader is referred to [10] for a careful discussion of
these issues and possible generalizations. In particular, the
general case of χ̂ being symmetric but not self-adjoint, such
that its associated gauge-fixed time function is a “covariant
positive-operator valued measure (POVM)”, is discussed in [10].
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ĈjEð1Þ; Eð>1Þ;ni ¼ CðEð1Þ; Eð>1ÞÞjEð1Þ; Eð>1Þ;ni
¼ ðEð1Þ þ Eð>1ÞÞjEð1Þ; Eð>1Þ;ni;

and, therefore, Eq. (55) becomes

Eð1Þ þ Eð>1Þ ¼ E:

For this simple case, there is no multiplicity in the solution,

Eð1Þ ¼ E − Eð>1Þ;

i.e., there is only one σ sector, σ ≡ 1. From this, it also
follows that the on-shell states [cf. (57)]

jϵ;ni ≔ jEð1Þ ¼ −ϵ; Eð>1Þ ¼ ϵ;ni

are orthonormal in the induced inner product [cf. (59)],

ðϵ0;n0jϵ;nÞ ¼ δðϵ0 − ϵÞδðn0 − nÞ:

The improper projector onto the physical Hilbert space is,
thus,

P̂E¼0 ≔
Z

dϵdnjϵ;nihϵ;nj: ð110Þ

To compute the on-shell Faddeev-Popov operator as in
(63), we note from (107) that

hEð1Þ; Eð>1Þ;njχ; qii ¼
e−

i
ℏEð1Þχffiffiffiffiffiffiffiffi
2πℏ

p hEð>1Þ;njqii; ð111Þ

which implies that

hϵ0;n0jP̂χ¼sjϵ;ni

¼ e
i
ℏðϵ0−ϵÞs

2πℏ
δðϵ − ϵ0Þδðn − n0Þ; ð112Þ

if one uses the completeness relation for the q̂i eigenstates.
Using (110) and (112) in the definition (63), we obtain the
result Ω̂χ ≡ P̂E¼0; i.e., the Faddeev-Popov operator is the
identity in the physical Hilbert space. In this case, we note
that both choices of factor ordering for the relational
observables (39) and (72) coincide for operators f̂ that
commute with χ̂, i.e., ÔðIÞ½fjχ ¼ s� ¼ ÔðIIÞ½fjχ ¼ s�.
Moreover, in this case (92) simplifies to

hÔðIÞ½fjχ ¼ s�iΨ ¼ EΨ½fjχ ¼ s�; ð113Þ

i.e., the quantum average of relational observables are
exactly the conditional expectation values. This was the
case analyzed in [10], where the equivalence of the
construction of relational observables and the use of
conditional probabilities in the Page-Wootters formalism

was established for a constraint of the form (84) (it is
worthwhile to note that, in [10], one does not restrict the
analysis to the case in which the spectrum of Ĉð1Þ is
unbounded in both directions, as we did here for simplic-
ity). The formalism we have presented in Secs. II B 3 and
II B 4 can thus be seen as a generalization of this result to
more general constraint operators and also to gauge
conditions χ̂ that are admissible according to the criterion
of Sec. II B 3, but which are not necessarily the canonical
conjugates of the constraint operator.14

The observables also obey the gauge-fixed Heisenberg
equations of motion (78), with the invariant Hamiltonian
Ĥχ ¼ −Ĉð1Þ. In particular, since Ĥχ jϵ;ni ¼ Ĉð>1Þjϵ;ni, we
obtain

d
ds

ÔðIÞ½qijχ ¼ s� ¼ 1

iℏ
½ÔðIÞ½qijχ ¼ s�; Ĉð>1Þ�ði > 1Þ;

which are just the usual Heisenberg equations in non-
relativistic quantum mechanics. Furthermore, due to (84)
and (107), we can also write (44) as

ÔðIÞ½qijχ ¼ s� ¼
Z

∞

−∞
dτq̂iðτÞ ⊗ P̂χ¼s−τ; ð114Þ

where

q̂iðτÞ ≔ e
i
ℏτĈð>1Þ q̂ie−

i
ℏτĈð>1Þ :

Equation (114) is reminiscent of the relativization map
defined in [35–37] and it is, in fact, the result of the G-twirl
operation used in [10] in the context of time-reparametri-
zation invariant quantum mechanics (the G-twirl operation
has also been used in the context of spatial reference
frames [34]).
Finally, let us mention how, instead of using (106) (as in

[9], see also the alternative discussion in [10]), one can
recover the usual Schrödinger propagator from the gauge-
fixed propagator for the Page-Wootters case. From (46)

14It is also worth mentioning that, in [54], the use of relational
observables and the Page-Wootters formalism were combined.
However, the method of [54] is rather different from the one we
present here. In [54], one first defines the relational observables,
e.g., based on the classical solutions to the field equations, and
then one computes conditional probabilities associated with these
observables. To achieve this, one integrates over the gauge-fixed
time parameter s, considered to be unobservable. We do not
follow this approach because s is the “reading of a clock” (as was
also remarked in [10]); i.e., it is the value of the field χ̂
conditioned on which observations of the other fields are made.
Thus, one should not integrate over s. Moreover, the construction
of the quantum observables here described (see also our previous
article [28]) does not require one to first solve the classical field
equations and subsequently quantize the invariant observables,
which can be defined directly in the quantum theory, if needed.
This is a potential technical advantage over the formalism of [54].
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with Ω̂χ ≡ P̂E¼0, we see that the quantum relational
observable Ô½qijχ ¼ s� (i > 1) has the eigenstates

jqi; si ≔
ffiffiffiffiffiffiffiffi
2πℏ

p
P̂E¼0jχ ¼ s; qii: ð115Þ

Using (110) and (111), we obtain the gauge-fixed propa-
gator

ðq0i; s0jqj; sÞ ¼ 2πℏhχ ¼ s0; q0ijP̂E¼0jχ ¼ s; qji

¼
Z

dEð>1Þdnhq0ijEð>1Þ;nie− i
ℏEð>1Þðs0−sÞ

× hEð>1Þ;njqji
¼ hq0ije− i

ℏĈð>1Þðs0−sÞjqji; ð116Þ

where we assumed that jEð>1Þ;ni is a complete orthonor-
mal system in the subspace of the auxiliary Hilbert space
spanned by jqii. Here, i; j > 1. Equation (116) is the usual
Schrödinger propagator. It is important to note that, in the
formalism here described, the evolution of conditional
wave functions, understood as invariant extensions of
relative initial data [cf. Sec. II B 9], is dictated by the
gauge-fixed propagator according to (105). The fact that the
gauge-fixed propagator reduces to the usual Schrödinger
propagator in this case is consistent with the fact that the
conditional wave function evolves according to the
Schrödinger equation (109).
Thus, we see that the theory of relational observables and

the corresponding conditional probabilities presented in
Secs. II B 3, II B 4 and II B 8 reproduces both the Page-
Wootters formalism and the correct Schrödinger propaga-
tor, without the need to use the alternative definition (106).
In the next section, we will examine a cosmological

example.

III. FLRW MODEL

We are now in a position to apply the general framework
developed above to a useful example in cosmology. We
consider a closed FLRW model with a massless, minimally
coupled and homogeneous scalar field. This model was
analyzed before in [55], whereas [39] dealt with a general
analysis of quantum observables and recollapsing uni-
verses. In [55], wave packets of on-shell states were
constructed, but the precise definition of the physical
Hilbert space and the quantum observables was not given.
In [39], a general analysis of the quantum observables and
the induced inner product was carried out, but no con-
nection to conditional probabilities was established. In fact,
as was remarked in [28], the quantum observables were
defined in [39] in such a way that the Faddeev-Popov
resolution of the identity O½1jχ ¼ s� ¼ 1 [cf. (13)] was not
obtained. We consider this to be undesirable. Here, on
the contrary, we take this resolution of the identity to be one
of the defining properties of the formalism we have

developed, both in its original version presented in [28]
and in its revised version presented in Secs. II B 3
and II B 4. Thus, our analysis differs from the previous
ones in terms of the precise definition of the quantum
observables, and we establish their relation to conditional
probabilities.

A. Classical theory

The action in a spacetime region M is

S ¼ SM þ S∂M; ð117Þ

SM ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
R −

1

2
ð∇ϕÞ2

�
; ð118Þ

S∂M ¼ −
1

κ

Z
∂M

d3x
ffiffiffi
h

p
K; ð119Þ

where κ ¼ 8πG
c4 , R is the Ricci scalar and h, K are the

determinant of the induced metric and the trace of the
extrinsic curvature of the boundary, respectively. We
assume the line element

ds2 ¼ −N2ðτÞdτ2 þ a2ðτÞdΩ2
3; ð120Þ

where dΩ2
3 ¼ dχ2 þ sin2χðdθ2 þ sin2θdφ2Þ is the line

element on S3. From (120), we find (see, for instance [33])

R ¼ 6

N2

�
ä
a
−

_a _N
aN

þ
�
_a
a

�
2
�
þ 6

a2
; ð121Þ

K ¼ 3_a
aN

: ð122Þ

Assuming NðτÞ> 0, we also have
ffiffiffiffiffiffi−gp ¼ Na3 sin2 χ sin θ.

An integration by parts of the first term in (121) yields the
symmetry-reduced action15

S ¼ 2π2
Z

τ1

τ0

dτ

�
−3

a _a2

κN
þ 3Na

κ
þ a3

2

_ϕ2

N

�
: ð123Þ

It is convenient to choose units in which 6π2

κ ¼ 1
2
and to

make the following redefinitions:

aðτÞ ¼ eαðτÞ;

NðτÞ ¼ e3αðτÞeðτÞ;

ϕðτÞ → 1ffiffiffi
2

p
π
ϕðτÞ; ð124Þ

15The reason we can impose the symmetry reduction directly at
the level of the action and not only in the field equations is that
this homogeneous, isotropic model satisfies the symmetric
criticality principle (see [33,56–58] for more details).
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such that (123) becomes

S ¼
Z

τ1

τ0

dτ

�
−
_α2

2e
þ

_ϕ2

2e
þ e
2
e4α

�
: ð125Þ

After the usual Legendre transform (with pe ¼ 0), we
obtain the action in Hamiltonian form,

S ¼
Z

τ1

τ0

dτðpα _αþ pϕ
_ϕ − eðτÞCÞ; ð126Þ

with the constraint

C ¼ −
p2
α

2
þ p2

ϕ

2
−
e4α

2
: ð127Þ

Equation (126) is of the form (1). The symmetry-reduced
field equations are

_α ¼ −eðτÞpα; _pα ¼ 2eðτÞe4α;
_ϕ ¼ eðτÞpϕ; _pϕ ¼ 0;

0 ¼ −
p2
α

2
þ p2

ϕ

2
−
e4α

2
: ð128Þ

For any choice of time coordinate τ [for any choice of eðτÞ],
we can solve the above system of equations in a relational
manner, i.e. by describing the dynamics of one field in
terms of another. In this way, we can conveniently rewrite
(128) as follows:

_α ¼ −
pα

pϕ

_ϕ; _pα ¼
2e4α

pϕ

_ϕ;

pϕ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
α þ e4α

q
≡ σjkj; ð129Þ

where σ ¼ �1 labels the different multiplicity (frequency)
sectors and k is a constant of integration. The relational
solution of (129) is

a2ðτÞ ¼ jkj
cosh ½2σðϕðτÞ − sÞ þ arctanhðpαjϕðτÞ¼s

jkj Þ�
;

pαðτÞ ¼ jkj tanh
�
2σðϕðτÞ − sÞ þ arctanh

�
pαjϕðτÞ¼s

jkj
��

;

and it is valid for any choice of τ. We note that this solution
depends on jkj and pαjϕðτÞ¼s. From (129), we can replace
jkj by

jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
αjϕðτÞ¼s þ a4jϕðτÞ¼s

q
:

Therefore, the relational solution only depends on the
quantities αjϕðτÞ¼s and pαjϕðτÞ¼s, which label the physical

or reduced phase space of the theory. These quantities are
the relational observables. We can find explicit expressions
for them by inverting the relational solution. For example,
we find

a2jϕðτÞ¼s ¼
jkj

cosh ½2σðs − ϕðτÞÞ þ arctanhðpαðτÞ
jkj Þ�

; ð130Þ

and similarly for pαjϕðτÞ¼s. It is straightforward to verify
that these observables are invariant under on-shell diffeo-
morphisms of τ for a fixed value of s. Indeed, we obtain
from (129) the on-shell identity

d
dτ

�
2σðs − ϕðτÞÞ þ arctanh

�
pαðτÞ
jkj

��
¼ 0: ð131Þ

Thus, under an infinitesimal diffeomorphism, a2jϕðτÞ¼s

transforms as

δϵðτÞa2jϕðτÞ¼s ¼ ϵðτÞ d
dτ

a2jϕðτÞ¼s ¼ 0;

where we used (131). An analogous calculation shows that
pαjϕðτÞ¼s is also an invariant. The evolution of the relational
observables in terms of the variable s can be expressed in
terms of Poisson brackets. For example, we find

d
ds

a2jϕðτÞ¼s ¼ −
∂

∂ϕðτÞ a
2jϕðτÞ¼s

¼ fpϕ; a2jϕðτÞ¼sg: ð132Þ

Equation (132) is the gauge-fixed equation of motion for
the field a2 (cf. Sec. II A and [28]). In Sec. III B, we will
show how the quantum relational observables obey the
quantum version of (132), which is the gauge-fixed
Heisenberg equation of motion [cf. Sec. II B 4].
Moreover, the (reduced phase-space) evolution of a2jϕ¼s

with respect to s can be expressed entirely in terms of the
relational observables, without reference to the noninvar-
iant fields ϕðτÞ and pαðτÞ. This can be obtained directly
from (130), by evaluating it at different values of s. We find

a2jϕ¼s ¼
jkj

cosh ½2σðs − s0Þ þ arccoshð jkj
a2jϕ¼s0

Þ�
: ð133Þ

This equation shows that this model universe recollapses;
i.e., the scale factor expands to a maximum value and starts
to contract again.
Finally, as all the variables in this model are worldline

scalars, we can express the relational observables as
integrals as in (10) (see [28] for a generalization to
worldline one-forms). We obtain
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O½a2jϕ ¼ s� ≔ a2jϕðτÞ¼s

¼ Δϕ

Z
∞

−∞
dτδðϕðτÞ − sÞa2ðτÞ; ð134Þ

where

Δ−1
ϕ ≔

Z
∞

−∞
dτδðϕðτÞ − sÞ: ð135Þ

Therefore, we see that the above relational observables are
obtained by choosing the gauge condition to be [cf. (6)]

χðαðτÞ; pαðτÞ;ϕðτÞ; pϕðτÞÞ≡ ϕðτÞ: ð136Þ

In this way, the level sets of ϕðτÞ define a new time
coordinate s.

B. Quantum theory

1. The physical Hilbert space

Let us take the auxiliary (off-shell) Hilbert space of the
theory to be L2ðR2; dαdϕÞ. The quantum constraint is
[cf. (127)]

Ĉ ≔ −
p̂2
α

2
þ p̂2

ϕ

2
−
e4α̂

2
: ð137Þ

In order to define the on-shell states and the induced inner
product, we consider the eigenvalue problem of (137),

�
ℏ2

2

∂2

∂α2 −
ℏ2

2

∂2

∂ϕ2
−
e4α

2

�
Ψðα;ϕÞ ¼ EΨðα;ϕÞ: ð138Þ

For E ≥ 0, we define E ¼ λ2

2
, and we find the eigenstates

hα;ϕjE; σ; ki ≔ ΨE;σ;kðα;ϕÞ

¼ exp

�
i
ℏ
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2

p
ϕ

�
K ik

2ℏ

�
e2α

2ℏ

�
; ð139Þ

where σ ¼ �1 and K ik
2ℏ
ðe2α
2ℏÞ is a modified Bessel function.

This solution was chosen to satisfy the boundary condition
limα→∞ΨE;σ;k ¼ 0. In what follows, we will make use of
the following identities [59]:

KiνðxÞ ¼ K−iνðxÞ ¼ KiνðxÞ; ð140Þ
Z
R
dαKiν0

�
e2α

2ℏ

�
Kiν

�
e2α

2ℏ

�
¼ π2δðjνj − jν0jÞ

4ν sinhðπνÞ ; ð141Þ

KiνðxÞ ¼
1

2

Z
∞

−∞
dye−x cosh y cosðνyÞ: ð142Þ

Using (140) and (141), we obtain the auxiliary inner
product

hE0; σ0; k0jE; σ; ki ¼ δðE0 − EÞðE; σ0; k0jE; σ; kÞ; ð143Þ

where

ðE;σ0;k0jE;σ;kÞ¼ 2π3ℏ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þλ2

p

ksinhðπk
2ℏÞ

δσ0;σδðjk0j− jkjÞ: ð144Þ

One can also repeat this analysis for E ≤ 0 by setting
E ¼ − λ2

2
. In this case, instead of (139), we obtain

hα;ϕjE; σ; ki ≔ e
i
ℏσjkjϕKiνðλ;kÞ

�
e2α

2ℏ

�
; ð145Þ

where

νðλ; kÞ ≔ 1

2ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2

p
:

The auxiliary inner product of two of the eigenstates given
in (145) is of the same form as (143) with

ðE; σ0; k0jE; σ; kÞ ¼ 2π3ℏ3

sinhðπ
ffiffiffiffiffiffiffiffiffi
k2þλ2

p
2ℏ Þ

δσ0;σδðjk0j − jkjÞ: ð146Þ

Finally, we can define the on-shell states

jσ; ki ≔ N ðkÞjE ¼ 0; σ; ki; ð147Þ

where N ðkÞ is a normalization factor,

N ðkÞ ≔
�
sinhðπjkj

2ℏ Þ
4π3ℏ3

�1
2

: ð148Þ

In this way, the induced inner product of the on-shell states
(147) can be found by taking the λ → 0 limit of (144) or
(146). The result is

ðσ0; k0jσ; kÞ ¼ 1

2
δσ0;σδðjk0j − jkjÞ: ð149Þ

The physical Hilbert space is then defined to be the vector
space of superpositions of (147) that are square-integrable
with respect to the induced inner product (149). The
(improper) projector onto the physical Hilbert space is

P̂E¼0 ≔
X
σ¼�

Z
∞

−∞
dkjσ; kihσ; kj: ð150Þ

2. Quantum relational observables

Our goal is now to construct the quantum analogue of
(130) and to show that it obeys a gauge-fixed Heisenberg
equation [cf. (78)] that is the quantum version of (132). We
thus consider the gauge condition ϕ̂ [cf. (136)]. Since its

LEONARDO CHATAIGNIER PHYS. REV. D 103, 026013 (2021)

026013-18



momentum is already an invariant, i.e., p̂ϕ commutes
with the constraint operator, we will use the formalism
of Sec. II B 4.
Let us define the states jk; pϕi to be the simultaneous

orthonormal eigenstates of the complete set of commuting

invariants p̂ϕ and Ĉα ¼ p̂2
ϕ

2
− Ĉ, where

Ĉα ≔
p̂2
α

2
þ e4α

2
;

Ĉαjk; pϕi ¼
k2

2
jk; pϕi;

hα;ϕjk; pϕi ≔ jkj12N ðkÞei
ℏpϕϕK ik

2ℏ

�
e2α

2ℏ

�
;

and [cf. (55)]

Ĉjk; pϕi ¼
�
p2
ϕ

2
−
k2

2

�
jk; pϕi: ð151Þ

We thus find from (151) the on-shell condition [cf. (56)]

pϕ ¼ −Hσ
ϕ ¼ σjkjðσ ¼ �1Þ;

and the on-shell states [cf. (57) and (60)]

jσ; ki ¼ jkj−1
2jk; pϕipϕ¼σjkj;

which are in accordance with (147). From (65) and (67), we
obtain the Faddeev-Popov operator

Ω̂σ
ϕ ≔

Z
R
dkjkj12jσ; kihσ; kj: ð152Þ

We can now construct the observable

ÔðIÞ½fðαÞjϕ ¼ s� ≔
X
σ¼�

Z
R
dαfðαÞjσ; α; sihσ; α; sj: ð153Þ

Its eigenstates read [cf. (46)]

jσ; α; si ≔
ffiffiffiffiffiffiffiffi
2πℏ

p
Ω̂σ

ϕjα;ϕ ¼ si: ð154Þ

To verify that they form a complete system in the physical
Hilbert space [cf. (36)], we must calculate the matrix
element ðσ0; k0jÔ½1jϕ ¼ s�jσ; kÞ, which is equal to

X
σ00¼�

Z
R
dαðσ0; k0jσ00; α; sÞðσ00; α; sjσ; kÞ: ð155Þ

If we insert

ðσ0; k0jσ; α; sÞ

¼
ffiffiffiffiffiffiffiffi
2πℏ

p
δσ0;σN ðk0ÞK ik0

2ℏ

�
e2α

2ℏ

�
jk0j12e− i

ℏσ
0jk0js; ð156Þ

into (155) and use (141) and the definition of the normali-
zation factor given in (148), we find

ðσ0; k0jÔðIÞ½1jϕ ¼ s�jσ; kÞ ¼ 1

2
δσ0;σδðjk0j − jkjÞ: ð157Þ

Thus, we conclude that ÔðIÞ½1jϕ ¼ s� is the identity in the
physical Hilbert space, as it should be [cf. (40)].
What about the dynamics of the general operator

ÔðIÞ½fðαÞjϕ ¼ s�? From (156), we find

�
σ0; k0

����iℏ ∂
∂s

����σ; α; s
�

¼ σ0jk0jðσ0; k0jσ; α; sÞ: ð158Þ

Moreover, the identity

p̂ϕjσ; ki ¼ σjkjjσ; ki; ð159Þ

holds due to the definitions given in (139) and (147). Thus,
we can use (159) in (158) to obtain

iℏ
∂
∂s jσ; α; si ¼ p̂ϕjσ; α; si; ð160Þ

which, due to (153), implies that the operator
ÔðIÞ½fðαÞjϕ ¼ s� is a solution to the gauge-fixed
Heisenberg equation [cf. (78)]

iℏ
∂
∂s ÔðIÞ½fðαÞjϕ ¼ s� ¼ ½p̂ϕ; ÔðIÞ½fðαÞjϕ ¼ s��; ð161Þ

which is the quantum version of (132) for the particular case
fðαÞ ¼ e2α. As p̂ϕ is self-adjointwith respect to the auxiliary
(off-shell) inner product h·j·i and it commutes with the
constraint operator, it is self-adjoint with respect to the
induced inner product ð·j·Þ. Thus, the dynamics described
by (161) is unitary. The physical Hamiltonian is Ĥϕ ¼ −p̂ϕ.

3. Relational quantum dynamics

Let us now examine the relational quantum dynamics of
this cosmological model by applying the formalism of the
gauge-fixed propagator [cf. Sec. II B 5] and invariant
extensions [cf. Sec. II B 9] to a simplified example.
Suppose the relative initial data (at ϕ ¼ s0) is the condi-
tional wave function

hα;ϕ ¼ s0jψi ¼ ψðαÞ ¼
Z
R
dkψðkÞK ik

2ℏ

�
e2α

2ℏ

�
; ð162Þ

where ψðkÞ is an even function of k, possibly also
dependent on s0. Its invariant extension in a given σ sector
is [cf. (100) and (105)]
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hα;ϕjΨσi ≔
Z
R
dα0ðσ; α;ϕjσ; α0; s0Þψðα0Þ; ð163Þ

where ðσ; α;ϕjσ; α0; s0Þ is the σ-sector gauge-fixed propa-
gator. For convenience, we define jΨi ≔ 1

2

P
σ jΨσi. The

gauge-fixed propagator then reads [cf. (152)]

1

2

X
σ

ðσ; α;ϕjσ; α0; s0Þ

≔ πℏ
X
σ

hα;ϕjΩ̂σ
ϕ • Ω̂σ

ϕjα0; s0i

¼ πℏhα;ϕjjp̂ϕjP̂E¼0jα0; s0i

¼ 2πℏ
Z
R
dkN 2jkj cos

�
k
ℏ
ðϕ − s0Þ

�
K ik

2ℏ
ðxÞK ik

2ℏ
ðx0Þ;

ð164Þ

where we denoted x ¼ e2α
2ℏ (similarly for x0) for brevity.

Using (141), (162) and (164), the invariant extension
hα;ϕjΨi≡Ψðα;ϕÞ is found from (163) to be

Ψðα;ϕÞ ¼
Z
R
dkψðkÞ cos

�
k
ℏ
ðϕ − s0Þ

�
K ik

2ℏ

�
e2α

2ℏ

�
: ð165Þ

One may verify that (165) is a solution to the constraint
equation (137) that reduces to (162) if ϕ ¼ s0. As an
example, let us consider the case

ψðkÞ ¼ k
ℏ
sin

�
k
ℏ
c0

�
; ð166Þ

where c0 is a real constant. Using (142) and (166),
Eq. (165) becomes

Ψðα;ϕÞ¼−πℏ
X
σ¼�

∂
∂c0exp

�
−
e2α

2ℏ
cosh½2σðϕ−s0Þþ2c0�

	
:

ð167Þ

This is an invariant extension of the initial conditional wave
function (relative initial data)

Ψðα; s0Þ ¼ 2πe2α sinhð2c0Þ exp
�
−
e2α

2ℏ
coshð2c0Þ

�
: ð168Þ

For a general value ϕ ¼ s, Eq. (167) corresponds to the
superposition of two conditional probability amplitudes,
each of which leads to a conditional exponential distribu-
tion of the scale factor squared, a2 ¼ e2α, with the
corresponding mean values

a2jmean ¼
2ℏ

cosh ½2σðs − s0Þ þ 2c0�
; ð169Þ

which are to be compared to the classical solution (133). In
particular, Eq. (169) also exhibits a recollapse, i.e.,
lims→�∞a2jmean ¼ 0. One might then conclude that the
singularity is not avoided in the quantum theory here
described. However, at least for the state (167), the condi-
tional probability vanishes in the region of the classical
singularity; i.e., it satisfies

lim
α→�∞

pΨðαjϕ ¼ sÞ ¼ 0: ð170Þ

This is (a probabilitistic version of) DeWitt’s criterion for
singularity avoidance [33,60] and can be interpreted as the
statement: “given that ϕ is observed to have the value s, the
probability that a2 ¼ 0 is zero”.

IV. CONCLUSIONS

Despite decades of great effort, there are still some
crucial technical and conceptual challenges that face
candidate theories of quantum gravity. One of them is
the precise understanding of what probabilitistic predic-
tions a diffeormorphism-invariant quantum theory can
make. How dowe use the wave function(al) of gravitational
and matter fields to predict the probabilities of certain
observations? Another issue is the proper comprehension
of the diffeomorphism symmetry in the quantum realm.
What observables act on the physical Hilbert space, and
what is their physical interpretation?
In this article, we have brought these two topics together

by describing a formalism of construction of quantum
relational observables, the averages of which can be related
to conditional expectation values of tensor fields. The
formalism here described can be seen as an extension of
certain results of [10,35,36,49], although adapted to a
generalization of the method presented by the author in
[28]. We have not addressed the measurement problem or
the origin of probabilities, but we argued that the relational
content of a diffeomorphism-invariant quantum theory can
be understood in terms of conditional probabilities. The
formalism here presented is not meant to be the definitive
method of construction and interpretation of observables in
quantum gravity, but we believe it may prove useful in
several toy models of quantum gravity (such as symmetry-
reduced quantum cosmology) and, in particular, in the
computation of quantum-gravitational effects in the early
Universe.
Relational observables describe the evolution of on-shell

tensor fields with respect to each other in a diffeomor-
phism-invariant fashion. In the classical theory, such
observables are constructed as diffeomorphism-invariant
extensions of gauge-fixed components of tensor fields [i.e.,
the components written in a particular coordinate system
defined by a gauge condition such as (6)]. The interpre-
tation of the classical relational observable O½fjχ ¼ s� is
straightforward: it is the value of the field f when the field χ
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is observed to have the value s. Thus, O½fjχ ¼ s� is a
prediction conditioned on the value of χ. But how do we
construct these observables in the quantum theory, and in
what sense are they relational?
A method of constructing the quantum version of rela-

tional observables was proposed by the author in [28] (see
also [10] for a similar approach). In the present article, we
have presented a refined version of the method of [28],
which corresponds to building the quantum relational
observables via their spectral decomposition [cf. (36)
and (37)]. As we have shown in Sec. II B 5, once the
eigenstates of relational observables are known, one can
construct a gauge-fixed propagator, which dictates the
unitary evolution of physical states with respect to the
(in principle arbitrarily chosen) gauge-fixed time parameter
s. The unitarity is a consequence of the fact that eigenstates
of the relational observables form a complete orthonormal
system in the physical Hilbert space for each value of s if
the gauge condition is well-defined, i.e., admissible accord-
ing to the criterion discussed in Sec. II B 3. This complete-
ness yields an operator version of the Faddeev-Popov
resolution of the identity frequently used in path integrals.
In analogy to the classical theory, the physical Hilbert space
is divided into multiplicity σ sectors, which are the
generalization of the positive and negative frequency
sectors of the quantum relativistic particle.
Moreover, we have discussed how this formalism can be

applied to the case in which the gauge condition is canoni-
cally conjugate to an invariant self-adjoint Hamiltonian
[cf. Sec. II B 4]. In this case, an explicit formula for the
Faddeev-Popov operator is available [cf. (67)], and we have
derived the operator equations of motion for the relational
observables, referred to as the gauge-fixed Heisenberg
equations [cf. (78)]. We have shown that these equations
hold for two choices of factor ordering in the definition of the
quantum relational observables. The unitarity of the evolu-
tion associatedwith the gauge-fixedHeisenberg equations or
with the gauge-fixed propagator shows that time and dynam-
ics do not vanish in the quantum theory (“problem of time”)
as is frequently claimed [33]. The measurement problem is,
however, still present.
Nevertheless, the gauge-fixed time parameter s (or, as

described in [10], the reading of a clock) is a c-number that
requires a clear physical interpretation. This interpretation
should also clarify the sense in which the quantum
observables are really “relational” objects. This was not
addressed in [28], and the previous proposals [19–21,29]
also do not seem to give a satisfactory interpretation. In this
article, we have argued that, just as the classical relational
observables can be seen as descriptions of the physical
quantities (worldline tensors) in the time reference frame
defined by the level sets of the gauge condition, the
quantum relational observables define a notion of quantum
reference frames [cf. Sec. II B 6], in which the time
parameter s is defined from the spectrum of the gauge

condition χ̂. More generally, we have argued that the
overlap of physical states with the eigenstates of relational
observables corresponds to the representation of the states
in the reference frame defined by χ̂. In this way, a change of
quantum reference frame corresponds to change of basis in
the physical Hilbert space [cf. Sec. II B 7]. Thus, different
reference frames can in principle be described in a single
Hilbert space (this was also observed in the other
approaches described in [10,35,36,49]). However, it is
not sufficient to declare that s is an eigenvalue of the
gauge condition χ̂ or that χ̂ takes the definite classical value
s (in the appropriate reference frame) without any further
explanation. One must relate s to observations. Since the
classical O½fjχ ¼ s� is a conditional prediction, it then
seems reasonable to consider that its quantum version must
be associated with conditional probabilities.
For this reason, we considered in Sec. II B 8 the

definition of conditional probabilities from the solutions
of the quantum constraint equation(s), and we have shown
that the quantum averages of suitably defined relational
observables are equivalent to conditional expectation val-
ues of the worldline tensors in definite multiplicity sectors
(e.g., definite frequency sectors in the case of the relativistic
particle). We believe this clarifies the physical interpreta-
tion of s and, thus, the sense in which Ô½fjχ ¼ s� is a
relational object. Indeed, s is the observed value of the field χ̂
(in an experiment), conditioned on which we can make
probabilistic predictions about the values of f̂. As shown in
Sec. II B 8, this information is equivalently encoded in the
conditional probabilities or in the eigenstates of the quantum
relational observables. Thus, Ô½fjχ ¼ s� is a relational object
in the sense that it allows one tomake conditional predictions
about the quantum fields in a generally covariant theory.
In this way, the quantum reference frame in which time is

defined from the spectrum of χ̂ can also be defined from the
space of conditional wave functions associated with the
conditional probabilities [cf. Sec. II B 9]. We thus have two
descriptions of the quantum dynamics in definite multi-
plicity sectors: the use of conditional probability ampli-
tudes (referred to as the gauge-fixed point of view, since it
represents the dynamics given that χ̂ is observed to have the
value s) and the use of relational observables (referred to as
the invariant point of view, as observables are diffeo-
morphism-invariant quantitites). The equivalence of these
two points of view was first noted in [10], and the present
article can be seen an extension of [10] adapted to the
formalism of [28]. Moreover, we note that, after the
submission of the present article, the authors of [10] have
released a generalization of their related formalism, which
features similar conclusions and results that are technically
complementary to the ones presented here [61].
We have also shown in Sec. II B 11 that the frequently

used Page-Wootters formalism is a particular case of our
approach and that our results can be seen as a generalization
of the equivalence between the Page-Wootters method and
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the construction of relational observables which was found
in [10] for a particular class of models and gauge
conditions. Furthermore, we have seen how our construc-
tion of quantum relational observables reduces in the Page-
Wootters case to the G-twirl operation (related to the
so-called relativization maps) that have been used in the
quantum foundations literature [10,34–37]. It would be
interesting to apply our approach to different examples of
time-reparametrization invariant quantum mechanics in an
effort to generalize certain results already obtained with the
Page-Wootters formalism. We hope to address this in the
future.
In Sec. III, we have analyzed the example of a recol-

lapsing cosmology, for which we constructed the physical
Hilbert space and the relevant quantum relational observ-
ables, which obey a unitary gauge-fixed Heisenberg equa-
tion of motion governed by an invariant Hamiltonian
[cf. (161)]. We have also discussed how the relational
quantum dynamics can be understood from the definition
of conditional wave functions that are invariant extensions
of relative initial data [cf. Sec. III B 3]. This example
illustrates how the formalism here described can be of
use in quantum cosmology. Indeed, the present formalism
is useful because it is directly applicable to solvable
minisuperspace (symmetry-reduced) models of quantum
cosmology and, more generally, to models of time-repar-
ametrization invariant quantum mechanics. Such models
are often analyzed as toy-models of quantum gravity or as
attempts to describe quantum mechanics without an exter-
nal time parameter.
While our focus has been on conceptual matters and on

formalism, which is necessary if one is to obtain a
consistent diffeomorphism-invariant quantum theory with
a sensible interpretation, one must also face the question of
extracting falsifiable predictions. What kind of predictions
can be made? And are they relevant to cosmology? By
assuming that all physical degrees of freedom should be
described in a diffeomorphism invariant way, one is led to
the view that physical observables are relational and,
according to the formalism we have presented, that their
quantum dynamics is encoded in conditional correlation
functions. These are the quantities that can be predicted in
the quantum theory. Moreover, the early Universe may be
one of the epochs in which imprints of quantum gravity
might have observable consequences. It is then pertinent to
ask: (1) how does the formalism we present here relate to
the usual observations and measurements in cosmology?
(2) What is the connection between the (quantum) rela-
tional observables we have constructed and the usual
cosmological observables?
Our current cosmological measurements refer to a

classical spacetime background, with respect to which
the usual observables and primordial correlation functions
are computed. Note that this is also a relational description:
one may reinterpret the usual primordial correlation

functions (and the usual cosmological observables) as
relational quantities that are conditioned on the (“late-
time”) classical values of the metric field. However, if one
adopts a quantum description of spacetime in the early
Universe, it is, in principle, possible to compute corrections
to the dynamics of primordial correlators. These corrections
would originate from the hypotheses: (1) there is no
preferred, classical spacetime background in the early
Universe; (2) the quantum dynamics is diffeomorphism
invariant and relational. In this way, the formalism we
present here would recover the description of the usual
observations and measurements in cosmology in the “late-
time” classical limit of the metric field, whereas all
observables are relational. The primordial correlators and
their corrections would be understood as conditional
quantities. This program has been carried out in the recent
article [50], in which a weak-coupling expansion is used to
compute corrections of quantum-gravitational origin to the
power spectra of primordial fluctuations in (quasi-)de Sitter
space. The question of unitarity and observability of these
corrections (e.g., in the cosmic microwave background
spectrum) is also discussed in [50], and comments on
further directions of research are given.
Finally, what is the relevance of these results for the

construction and interpretation of diffeomorphism-
invariant operators in quantum gravity? The classical
diffeomorphism-invariant observables in general relativity
are complicated, possibly nonlocal objects, and their
quantization is hardly a trivial matter. A generalization
to field theory of the formalism here described could
facilitate this issue. This is because of the equivalence
between the gauge-fixed and invariant points of view
explained above. Indeed, instead of working with the
complicated relational observables (invariant point of
view), one may choose to compute the often simpler
conditional probabilities (gauge-fixed point of view) in a
definite multiplicity sector. This equivalence would also
provide the physical interpretation of the relational observ-
ables in field theory: as in the mechanical case, their
eigenstates can be used to make conditional predictions.
As the formalism we have presented was restricted to

mechanical models, its generalization to the field-theoretic
setting would necessarily require a careful regularization of
the quantum constraint equations. Moreover, one would
need to ascertain whether the quantum constraint algebra is
anomalous. These are nontrivial problems which are out-
side of the scope of this article. Nevertheless, if the
quantum constraint algebra were to be successfully regu-
larized and proven to be consistent, a generalization of the
method here presented would be possible. In this case, the
solutions to the quantum constraint equations would be
used to define conditional probabilities associated with
observations of tensor fields given certain gauge condi-
tions. If one is content with computing conditional expect-
ation values (i.e., if one is satisfied with working only in the
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gauge-fixed point of view), the construction of diffeo-
morphism-invariant relational observables would not be
necessary. In this case, the quantum dynamics could be
understood from the conditional predictions made directly
from the on-shell wave functional, which is interpreted
relationally as an invariant extension of relative initial data.
We leave this fascinating topic for future work.
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