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We discuss how electromagnetically dualizing a 1-form to a 2-form in AdS5 exchanges regular
and alternate boundary conditions, and thus gauges the originally global Uð1Þ symmetry in the dual field
theory. The generalized symmetry current dual to the 2-form in the bulk is identified as the dual field
strength of the gauged Uð1Þ, and the associated double-trace operator with a logarithmically running
coupling is just the gauged Uð1Þ Maxwell action. Applying this dualization to an AdS Maxwell-Chern-
Simons theory dual to a global Uð1Þ ×Uð1Þ model with a ’t Hooft anomaly results in a theory with a
modified field strength that holographically realizes a 2-group symmetry. We explicitly carry out the
holographic renormalization to verify this, and discuss the generalization to other rank fields in other
dimensions.
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I. INTRODUCTION

Symmetries are a fundamental aspect of physics, and
their association with conserved charges and currents is a
deep principle. In recent years, it has become increasingly
apparent that it is useful to think about nonscalar conserved
quantities beyond the familiar energy-momentum. These
higher-rank conserved quantities are associated with so-
called generalized symmetries, which have become the
subject of much study since the work of Gaiotto, Kapustin,
Seiberg, and Willett [1]. An elementary example occurs
with a Uð1Þ gauge field in four dimensions, where the dual
field strength behaves as a two-index generalized current
that is conserved in the absence of magnetic sources due to
the Bianchi identity.
Novel symmetry structures may also arise when these

generalized symmetries interplay with ordinary symmetries.
Córdova, Dumitrescu and Intriligator have described how
gauging certain global symmetries with ’t Hooft anomalies
leads to a generalized symmetry that for consistency must
also transform nontrivially under ordinary symmetries
of the theory, producing a so-called 2-group structure [2].
This 2-group structure can illuminate aspects of the
field theory, and is generalizable to cases with higher rank

symmetries. Earlier developments of 2-group symmetries
include [3–10], while more recent work on 2-groups
includes [11–17].
Meanwhile, the AdS=CFT correspondence is a powerful

way to understand quantum field theories outside of theweak
coupling limit bymeans of a “holographic” dual gravitational
description living in asymptotically anti–de Sitter space
[18–20]. The quantum field theory “lives” at the boundary
of the bulk spacetime, and the boundary limits of bulk fields
are associated to field theory operators and their sources,
while holographic renormalization to remove divergences is
carried out by adding counterterms living at the boundary.
Symmetry properties of the field theory have natural realiza-
tions in the dual gravity picture; spacetime symmetries are
mapped to isometries of the metric, and global symmetries
are mapped to symmetries of fluctuating gauge fields. It is
natural that higher-rank generalized symmetries are realized
in the gravity dual by dynamical p-form gauge fields.
The holographic dual of a 2-form current in four-

dimensional conformal field theories is thus a 2-form
gauge field in AdS5, and this was studied by Grozdanov
and Poovuttikul [21] and Hofman and Iqbal [22], who
noticed that the solutions to the ordinary Maxwell action
for the 2-form involve logarithmic behavior, which is not
compatible with conformal invariance [21,22]. This loga-
rithmic behavior is associated with the possibility of adding
to the field theory action a classically marginal “multitrace”
term bilinear in the 2-form current, whose coupling runs
logarithmically. More work on generalized symmetries and
AdS=CFT includes [23–25].
In this paper we explore this issue further, and find an

interpretation of the logarithmic behavior of the 2-form
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current. In the AdS=CFT correspondence, the boundary
conditions on bulk fields determine the identity of the
dual field theory operator. One set of “regular” boundary
conditions is always possible, but for certain fields one may
have additional “alternate” boundary conditions where
what was the source now becomes the dual operator,
leading to an entirely different dual quantum field theory.
An ordinary 1-form gauge field in the bulk with regular
boundary conditions is dual to the current of a conserved
global Uð1Þ symmetry, with a nondynamical background
gauge field as its source. However, were the 1-form gauge
field given alternate boundary conditions this background
gauge field would become dynamical, and the dual theory
would describe a gauged Uð1Þ. This was noted in the
context of AdS4 by Witten [26], where the phenomenon
was related to bulk electromagnetic duality.
We observe that in five dimensions, a 1-form gauge field

Aμ and a 2-form Bμν are electromagnetic duals of each
other, and thus represent the same bulk physics. We may
ask how this relates to the physics in the dual field theory.
We indeed find that the electromagnetic duality exchanges
regular and alternate boundary conditions. Thus the 2-form
gauge field with regular boundary conditions describes the
dual physics of a 1-form with alternate boundary con-
ditions, that is, a dynamical Uð1Þ gauge field. Indeed, the
electromagnetic duality map reveals that the conserved
two-index generalized symmetry current in the field theory
is nothing but the dual field strength of this gauged Uð1Þ.
Moreover, the associated multitrace operator is shown to be
simply the Maxwell action for this gauged Uð1Þ, and thus
the running coupling that breaks conformal symmetry is the
ordinary coupling of a QED-like theory coupled to electric
matter. Related observations, with an application to mag-
netohydrodynamics, are made in [21].
After going through the case of the 1-form and the

2-form in AdS5 in some detail, we show how the statement
that electromagnetic duality in AdS exchanges regular and
alternate boundary conditions, and thus gauges the dual
global symmetry, holds for general rank p-forms in general
dimension. This is the gravity dual of the statement that
gauging any conserved generalized symmetry produces a
new generalized symmetry from the Bianchi identity of the
new dynamical gauge field.
We also examine an application of this relationship. In

[2], the expected gravity dual for a theory with a 2-group
symmetry was identified as a theory of a 2-form and a
1-form where the 2-form has a modified field strength. Also
in [2] a simple example of a field theory with a 2-group
structure was given, by starting with a Uð1Þ ×Uð1Þ global
symmetry with a ’t Hooft anomaly, and gauging one of
the Uð1Þs; the new generalized symmetry from the gauge
field combines with the remaining global symmetry to
produce a 2-group. In AdS=CFT, the global symmetry
model is realized by a pair of gauge fields in AdS5 with
a Chern-Simons coupling capturing the ’t Hooft anomaly.

We show that performing electromagnetic duality to replace
one of the gauge fields with a 2-form, thereby gauging the
associated Uð1Þ, leads precisely to the gravity theory with
modified field strength expected to capture the 2-group
structure, and verify in detail using holographic renorm-
alization that the 2-group structure is indeed present. We
also discuss the natural generalization to n-group structure
in arbitrary dimension. Other work on AdS=CFT and
2-groups with a focus on hydrodynamics recently appeared
in [27].
In Sec. II we recapitulate the ideas of boundary con-

ditions and holographic renormalization in AdS=CFT,
and study the 1-form and 2-form in AdS5 in detail, showing
how their electromagnetic duality relation exchanges
boundary conditions and gauges the global symmetry,
before discussing generalizations to other forms in other
dimensions at the end of the section. In Sec. III, we review
the Uð1Þ ×Uð1Þ 2-group model of [2], and show how
electromagnetic duality on the gravity dual Chern-Simons
theory produces the holographic dual to a theory with the
2-group symmetry, before commenting on the generaliza-
tion to n-groups. Two flowcharts are provided to summa-
rize the relations discussed. In Sec. IV we conclude.

II. ELECTROMAGNETIC DUALITY,
BOUNDARY CONDITIONS AND GAUGING

GLOBAL SYMMETRIES

In anti–de Sitter space, one must specify boundary
conditions for a dynamical field at spatial infinity, and
moreover the choice of boundary conditions affects the
identity of the corresponding operator in the dual field
theory and its dynamics. Rendering the action finite and
compatible with the boundary conditions involves the
addition of appropriate boundary counterterms, a process
called holographic renormalization.
We first review this for the more familiar case of a scalar

field, before turning to our primary subjects of study, the
1-form Aμ and 2-form Bμν in AdS5, and their relationship
via electromagnetic duality. We will see how alternate
boundary conditions for the gauge field Aμ, which describe
a dynamical Uð1Þ field in the dual field theory, can be
realized by ordinary boundary conditions for the magnetic
dual field Bμν. This 2-form field is dual to a 2-form
conserved current, which is shown to be just the magnetic
field strength of the dynamical Uð1Þ gauge field. Double-
trace boundary conditions are possible given an appropriate
choice of finite counterterm, which we identity as the
Maxwell action for this dynamical Uð1Þ.

A. Review of holographic renormalization

Consider a field ϕðx⃗; t; rÞ living in (dþ 1)-dimensional
anti–de Sitter space, whose metric in the Poincaré patch we
take to be
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ds2 ¼ gμνdxμdxν ¼
r2

L2
ηijdxidxj þ

L2

r2
dr2; ð1Þ

where L is the AdS length scale, Greek indices denote
(dþ 1)-dimensional coordinates in the bulk, while
Roman indices denote d-dimensional coordinates on the
boundary (which exclude r), and ηij is the d-dimensional
Minkowski metric. Solutions to the Klein-Gordon equation
1ffiffiffiffi−gp ∂μ

ffiffiffiffiffiffi−gp
gμν∂νϕ ¼ m2ϕ near the boundary look like

ϕðx⃗; t; r → ∞Þ ¼ αðx⃗; tÞL
2Δ−

rΔ−
þ � � � þ βðx⃗; tÞL

2Δþ

rΔþ
þ…;

Δ� ≡ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d
2

�
2

þm2L2

s
; ð2Þ

where αðx⃗; tÞ and βðx⃗; tÞ are the leading terms in
each independent solution. Using the scaling isometry
x⃗ → ζx⃗; t → ζt; r → r=ζ we can see that αðx⃗; tÞ has scaling
dimension Δ− and βðx⃗; tÞ has scaling dimension Δþ; we
have inserted factors of L in (2) to make the engineering
dimensions match the scaling dimensions.
The bulk action evaluated on solutions to the equations

of motion generally diverges. This can be remedied by
cutting off the bulk space at some large radial coordinate
r ¼ R, with induced boundary metric

ds2 ¼ hijdxidxj ¼
R2

L2
ηijdxidxj; ð3Þ

and adding boundary terms to the action that cancel the
divergences as the cutoff is removed R → ∞. In general,
the finite parts of these boundary counterterms can be
adjusted freely. This process is the bulk realization of the
process of regularizing and renormalizing a quantum field
theory, and goes by the name “holographic renormaliza-
tion” [28–31] (for additional review, see [32,33]; for
additional developments, see [33,34]).
Moreover, boundary conditions for fields in AdS are

naturally associated to the choice of terms in the boundary
action. We demand the action be stationary on solutions to
the equations of motion, and while the bulk action will
always be so, in general the boundary part of the action is
only stationary when suitable boundary conditions are
chosen. For a scalar ϕðx⃗; t; rÞ of generic mass m2, the
natural choice is αðx⃗; tÞ fixed, the so-called regular boundary
condition. In this case βðx⃗; tÞ is identified as the expectation
value of the dimension-Δþ operator Oreg dual to ϕ,

hOregðx⃗; tÞi ∼ βðx⃗; tÞ; ð4Þ

while αðx⃗; tÞ is its source. A boundary counterterm of the
form Sct ∼

R
ddx

ffiffiffiffiffiffi
−h

p
ϕ2 renders the action finite and sta-

tionary with these regular boundary conditions.

However, for scalars fields with mass in the range
−d2=4 < m2L2 ≤ −d2=4þ 1, it is possible to make a
different choice, the alternate boundary condition [35].
Adding a different set of boundary terms, the action can be
made finite and stationary for the boundary condition
βðx⃗; tÞ fixed, and then βðx⃗; tÞ acts as a source to an operator
Oaltðx⃗; tÞ with dimension Δ−, whose expectation value is

hOaltðx⃗; tÞi ∼ αðx⃗; tÞ: ð5Þ

We see that a change in boundary conditions (and corre-
spondingly to the boundary action) changes the operator
content of the dual quantum field theory.
More general boundary conditions are also possible, as a

condition like αðx⃗; tÞ ∝ βðx⃗; tÞ is associated to the insertion
into the field theory action of the “double-trace” operator
ΔSCFT ∝

R
ddxOregðx⃗; tÞOregðx⃗; tÞ. In general the addition

of the multitrace operatorW½Oreg� to the field theory gives a
boundary condition of the form αðx⃗; tÞ ∝ δW½β�=δβðx⃗; tÞ
[36–38], see also [39].

B. The 1-form Aμ in AdS5
and its dual global Uð1Þ symmetry

Consider now theMaxwell action for a 1-form field Aμ in
five dimensions (d ¼ 4):

SA ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν

�
; ð6Þ

with Fμν ¼ ∂μAν − ∂νAμ. The bulk equation of motion is

∂μ
ffiffiffiffiffiffi
−g

p
Fμν ¼ 0; ð7Þ

which becomes

ηjk∂jFkr ¼ 0;

�
∂r þ

3

r

�
Fri þ

L4

r4
ηjk∂jFki ¼ 0: ð8Þ

In the gauge Ar ¼ 0, the solution to leading order is

Aiðx⃗; t; rÞ ¼ αiðx⃗; tÞLþ γiðx⃗; tÞ
L5 log r

r2
þ βiðx⃗; tÞ

L5

r2
þ…:

ð9Þ

The functions αiðx⃗; tÞ and βiðx⃗; tÞ are the two independent
modes, with scaling dimensions 1 and 3, respectively.
βiðx⃗; tÞ is constrained by the first equation of motion to
satisfy1

∂iβ
i ¼ 0; ð10Þ

1In our notation naturally four-dimensional quantities like αi
and βi have their indices raised and lowered by the Minkowski
metric ηij.
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while the equations of motion determine γiðx⃗; tÞ
completely as

γi ¼ 1

2
∂jfji; ð11Þ

with fij ≡ ∂iαj − ∂jαi. Residual gauge transformations
of Aμ are r-independent and become transformations of
αiðx⃗; tÞ:

αiðx⃗; tÞ → αiðx⃗; tÞ þ ∂iλðx⃗; tÞ: ð12Þ

Plugging in the solution (9) to the action, the bulk action
vanishes, but we are left with a boundary term. Cutting off
AdS at some large r ¼ R we find

SA ¼ −
L3

2

Z
d4xαi½ð1 − 2 logRÞγi − 2βi�;

¼ L3

Z
d4x

�
αiβ

i þ
�
logR −

1

2

��
−
1

4
fijfij

��
; ð13Þ

where we have dropped terms vanishing in the R → ∞
limit, and in the second line we integrated by parts to
cast the latter term in the form of a Maxwell action
for αi. Furthermore, when we vary the field by δAi ¼
δαiLþ δγi log r=r2 þ δβi=r2 þ � � �, we obtain the variation
of the action as a boundary term,

δSA ¼ −L3

Z
d4xδαi½ð1 − 2 logRÞγi − 2βi�

¼ 2L3

Z
d4x

�
δαiβ

i þ
�
logR −

1

2

��
−
1

4
δfijfij

��
:

ð14Þ

We want both the action and its variation to be finite on
the equations of motion, but so far they are divergent due
to the logR factor. To address this we add a boundary
counterterm,

Sct;A ¼ L
Z

d4x
ffiffiffiffiffiffi
−h

p �
−

1

4e2ðRÞFμνFμν

�
; ð15Þ

where we noted how the coefficient 1=e2ðRÞ may depend
on the value of the cutoff R. For the choice

1

e2ðRÞ ¼
1

2
− logR; ð16Þ

we cancel all γi terms from the action and its variation,
leaving

SA þ Sct;A ¼ L3

Z
d4xαiβi;

δSA þ δSct;A ¼ 2L3

Z
d4xδαiβi: ð17Þ

These are now finite. The total action will be stationary on
the boundary as well as in the bulk if we take δαiðx⃗; tÞ ¼ 0,
which identifies the compatible boundary condition as

αiðx⃗; tÞ ¼ fixed; ð18Þ

and thus αiðx⃗; tÞ should be thought of as the source in the
dual field theory. The operator it is a source for is then

hJiðx⃗; tÞi≡ δStot
δαiðx⃗; tÞ

¼ 2L3βiðx⃗; tÞ: ð19Þ

We have neglected an overall normalization for S involving
the five-dimensional Newton constant, but in principle this
combines with L3 to give a constant proportional to N2,
with N the rank of the field theory gauge group. Thanks to
(10), we see this current is conserved, and thus we identify
the operator dual to Aμ with this boundary condition as a
conserved global Uð1Þ symmetry current Ji ∼ βi, with
nondynamical background gauge field source αi. This is
the regular boundary condition.
Let us make a few comments. We notice that the answer

we get is the same as if we ignored the γi log r=r2 term, and
also ignored the counterterm. However γi will be important
for our comparison to the magnetic dual Bμν field, and we
would like to be careful about what boundary conditions
we are imposing by being specific about our counterterms,
so we have included it.
We also note that while the coefficient of the logR term

in (16) is fixed to cancel the divergence, we can in principle
make the finite part whatever we want. A different choice
for the finite part is equivalent to adding the counterterm

L3

Z
d4x

�
−

1

4e2
fijfij

�
; ð20Þ

involving the background gauge field αi only. This would
preserve the boundary condition αðx⃗; tÞ fixed, but shift
the current,

hJiðx⃗; tÞi → 2L3

�
βiðx⃗; tÞ þ 1

2e2
∂jfji

�
; ð21Þ

which is still conserved; this shift has the form of an
“improvement” term that does not change the total charge.
Adding such a counterterm involving a nondynamical
background field is not something we have need to do,
but as we will see, the corresponding freedom to add
counterterms for the case of Bμν will be more interesting
to us.
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We could also consider an alternate boundary condition
for Aμ, where βiðx⃗; tÞ would be fixed while αiðx⃗; tÞ would
be the fluctuating dynamical degree of freedom, a dimen-
sion 1 field with a standard Abelian gauge invariance: that
is, the dynamical degree of freedom is aUð1Þ gauge field. It
has been noticed before, especially in the context of AdS4,
that alternate boundary conditions for a vector field lead to
a gauged, rather than a global, Uð1Þ symmetry in the dual
theory [26,40–44]. We will not pursue the appropriate
counterterms for this boundary condition directly in the Aμ

language (for further discussion, see [44]), but instead will
show how the dynamics arises as the regular boundary
condition for the magnetic dual 2-form field Bμν.

C. The 2-form Bμν in AdS5 gauges
the global Uð1Þ dual to Aμ

Instead of (6), consider the action for a 2-form field Bμν

in AdS5,

SB ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−

1

12
HμνρHμνρ

�
; ð22Þ

with standard field strength Hμνρ¼∂μBνρþ∂νBρμþ∂ρBμν.
2

The equation of motion is ∂γð ffiffiffiffiffiffi−gp
HαβγÞ ¼ 0, becoming

ηij∂iHjkr ¼ 0;

�
∂r þ

1

r

�
Hrij þ

L4

r4
ηkl∂kHlij ¼ 0:

ð23Þ

Choosing a gauge with Bir ¼ 0, we have the solution

Bijðx⃗; t; rÞ ¼ α̃ijðx⃗; tÞL2 þ β̃ijðx⃗; tÞL2 log rþ…; ð24Þ

where the subleading terms do not contribute to the action
or its variation in the large-r limit. Analogously to the case
of Aμ, α̃ijðx⃗; tÞ inherits the residual gauge invariance of Bμν,

α̃ijðx⃗; tÞ → α̃ijðx⃗; tÞ þ ∂iΛjðx⃗; tÞ − ∂jΛiðx⃗; tÞ; ð25Þ

and the equations of motion require β̃ijðx⃗; tÞ to be
divergence-free,

∂iβ̃
ij ¼ 0: ð26Þ

Scaling tells us that both α̃ij and β̃ij have scaling dimension
2, and the fact that these dimensions coincide leads to the
logarithm distinguishing the independent solutions in (24).
As noted by [21,22], this logarithmic behavior leads to

boundary conditions incompatible with conformal invari-
ance; we will have more to say about this shortly.
The action and variation of the action evaluated on the

solution are

SB ¼ −
L3

4

Z
d4xðα̃ij þ β̃ij logRÞβ̃ij;

δSB ¼ −
L3

2

Z
d4xðδα̃ij þ δβ̃ij logRÞβ̃ij; ð27Þ

which are again divergent, thanks to the logR term. We can
add a counterterm analogous to (15),

Sct;B ¼ L
Z

d4x
ffiffiffiffiffiffi
−h

p �
−

1

12ẽ2ðRÞHμνρHμνρ

�
; ð28Þ

and we obtain

SBþSct;B¼−
L3

4

Z
d4x

�
α̃ijþ

�
1

ẽ2ðRÞþ logR

�
β̃ij

�
β̃ij;

δSBþδSct;B¼−
L3

2

Z
d4x

�
δα̃ijþ

�
1

ẽ2ðRÞþ logR

�
δβ̃ij

�
β̃ij:

ð29Þ

To cancel the divergence, we wish to have

1

ẽ2
¼ 1

ẽ2ðRÞ þ logR; ð30Þ

for some R-independent constant 1=ẽ2. For the choice
1=ẽ2 ¼ 0 we obtain simply the boundary condition

α̃ijðx⃗; tÞ ¼ fixed; ð31Þ

and then α̃ijðx⃗; tÞ is the source, a background 2-form gauge
field for the 2-form current,

hJijðx⃗; tÞi≡ δStot
δα̃ijðx⃗; tÞ

¼ −
L3

2
β̃ijðx⃗; tÞ; ð32Þ

which is conserved thanks to (26). In general we obtain the
family of boundary conditions,

α̃ijðx⃗; tÞ þ
1

ẽ2
β̃ijðx⃗; tÞ ¼ fixed; ð33Þ

while the current (32) does not change. Since this family
includes the case where α̃ijðx⃗; tÞ alone is fixed, but does not
include a case where β̃ijðx⃗; tÞ alone is fixed, we may think
of it as a family of regular boundary conditions for Bμν.
Boundary conditions relating the α and β modes to each

other as in (33) are associated to the addition of multitrace

2Note that a potential Chern-Simons term of the form
R
B ∧ H

is a total derivative in the bulk. Chern-Simons terms containing
two different 2-form fields are relevant in compactification of
type IIB string theory on five-manifolds [45,46] and are also
examined more recently in [22], but are not considered here.
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operators to the theory. Indeed, for 1=ẽ2 ≠ 0, according
to (29) we have added to the theory the boundary term

L3

Z
d4x

�
−

1

4ẽ2
β̃ijβ̃

ij

�
: ð34Þ

Since β̃ij ∼ Jij is a single-trace operator (that is, it is gauge
invariant from the point of view of gauge symmetries of the
field theory), this counterterm corresponds to the addition
of a double-trace operator JJ. This double-trace operator
was noted by [21,22]. We will elaborate on the physics
of this momentarily, after we describe the relationship
between Aμ and Bμν if we think of them electric and
magnetic duals of each other.
If we declare the field strength of Bμν to be dual to a field

strength for Aμ,

Hμνρ ¼
1

2
ϵμνρ

αβFαβ; ð35Þ

and insert the solutions (9) and (24), we find the
correspondence3

β̃ij ¼
1

2
ϵ̃ijklfkl; ð36Þ

f̃ijk ¼ ϵ̃ijkl

�
2βl −

1

2
∂mfml

�
; ð37Þ

where f̃ijk ≡ ∂iα̃jk þ ∂jα̃ki þ ∂kα̃ij. We note that including
the γi term in (9) was essential for matching the log r
term in (24). The relations (36), (37) are gauge invariant
under both gauge invariances (12) and (25), with αi and α̃ij
appearing only through their field strengths. The inverse
formulas are

fij ¼
1

2
ϵ̃ijklβ̃

kl; ð38Þ

βi ¼
1

24
ϵ̃ijklð2f̃jkl þ g̃jklÞ; ð39Þ

with g̃ijk ≡ ∂iβ̃jk þ ∂jβ̃ki þ ∂kβ̃ij.
From this we can see that regular boundary conditions

for one field, by the time they are translated through the
electric/magnetic duality (35), become alternate boundary
conditions for the other field. The regular boundary
conditions we found for Aμ were δαiðx⃗; tÞ ¼ 0, which
through (36) imply δβ̃ijðx⃗; tÞ ¼ 0, which are alternate
boundary conditions for Bμν,

αiðx⃗; tÞ ¼ fixed → β̃ijðx⃗; tÞ ¼ fixed: ð40Þ

Meanwhile, the family of regular boundary conditions for
Bμν (33), which we could always think of as allowing
β̃ijðx⃗; tÞ to fluctuate while α̃ijðx⃗; tÞ is determined, maps to

α̃ijðx⃗; tÞ þ
1

ẽ2
β̃ijðx⃗; tÞ

¼ fixed → 2βiðx⃗; tÞ þ
�
1

ẽ2
−
1

2

�
∂jfjiðx⃗; tÞ ¼ fixed;

ð41Þ

a family of boundary conditions for Aμ that we may think of
as alternate conditions, since they may always be thought
of as αiðx⃗; tÞ being free and βiðx⃗; tÞ being determined;
for the special case ẽ2 ¼ 2 the conditions are precisely
βiðx⃗; tÞ fixed.
It is interesting how choosing between expressing iden-

tical bulk dynamics as Aμ or as Bμν changes the boundary
conditions. Indeed, the duality relation (35) implies

−
1

12
HμνρHμνρ ¼ 1

4
FμνFμν; ð42Þ

and thus up to the overall sign, both the bulk Maxwell action
(6) and the counterterm (15) for the A field are equal to the
bulk action (22) and counterterm (28) for the B field, with
1=e2ðRÞ ↔ 1=ẽ2ðRÞ, and indeed the same choice of diver-
gent part in 1=e2ðRÞ (16) and 1=ẽ2ðRÞ (30) renders both
finite. Yet by the time we expand the fields near the
boundary, the boundary conditions come out different; the
identical choice 1=e2ðRÞ ¼ 1=ẽ2ðRÞ ¼ − logRþ 1=2 leads
to regular boundary conditions δαiðx⃗; tÞ ¼ 0 for Aμ, but
boundary conditions on Bμν that when translated into Aμ

variables are the alternate boundary conditions δβiðx⃗; tÞ ¼ 0.
In some sense, electromagnetic duality does not commute
with the near-boundary limit. This is likely related to the
fact that the gauge invariances for Aμ and Bμν are different,
and while absent the boundary these would be physically
irrelevant redundancies, in the presence of the boundary each
can induce a “long-range gauge symmetry” which is
physical and controls the dual global symmetry [24].
Recall from our earlier remarks that the alternate

boundary condition for Aμ corresponds to a dynamical
Uð1Þ vector field. But we now see this physics of a
dynamical Uð1Þ gauge field should also find realization
in Bμν with the family of regular boundary conditions,
for which the dual dynamical operator is a conserved
2-form current Jij (32). Indeed according to (36), this
operator is nothing more than the dual field strength
associated with αiðx⃗; tÞ:

hJijðx⃗; tÞi ∝ ϵ̃ijklfklðx⃗; tÞ: ð43Þ

3In our conventions the Levi-Civita symbols (with elements
þ1, −1 and 0) are ϵ̃μνρσα and ϵ̃ijkl, with ϵ̃μνρσr ¼ ϵ̃ijkl, and
the corresponding Levi-Civita tensors are as usual ϵμνρσα ¼ffiffiffiffiffiffi−gp

ϵ̃μνρσα and ϵijkl ¼
ffiffiffiffiffiffi
−h

p
ϵ̃ijkl.
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This is entirely natural: given any Uð1Þ vector field αi, the
associated dual field strength is conserved by the Bianchi
identity. Thus in theAμ andBμν perspectives we see the same
physics in two different ways: in the former we see a
dynamical Uð1Þ gauge field itself, while in the latter we see
its associated global 2-form current. One useful thing about
generalized symmetries is that they can describe aspects of a
gauge theory without referring to the gauge field itself, and
the physics of Bμν is a realization of this phenomenon. The
relationships between boundary conditions, electromagnetic
duality and gauging the global symmetry of the field theory
are summarized in Fig. 1.
We can also now understand the physical meaning of the

multitrace operator (34). Translated into Aμ variables, it is
nothing more than a Maxwell kinetic term for the gauge
field αi,

L3

Z
d4x

�
−

1

4ẽ2
fijfij

�
: ð44Þ

This is analogous to (20), except with these boundary
conditions fij is dynamical, instead of a background field.
From (30), we can understand the running of the coupling,
since 1=ẽ2 is cutoff independent,

R
d
dR

�
1

ẽ2ðRÞ þ logR

�
¼ 0 → R

d
dR

1

ẽ2
¼ −1; ð45Þ

and we find an IR-free coupling, as expected for a Uð1Þ
gauge field coupled to electric matter. This is also con-
sistent with the emergence of a linearly dispersing mode at
high energies in the finite-temperature hydrodynamics for
this field studied in [21,22].
Thus the logarithmic behavior of the Bμν field in AdS5

has a simple explanation: the dual 2-form current is just the
magnetic field strength for a dynamical Uð1Þ gauge field in

the dual theory, and the double-trace operator built from the
2-form current is just the gauge field’s Maxwell kinetic
term, with logarithmically running coupling, as in QED.
Passing from Aμ to Bμν has gauged the global Uð1Þ.
Moreover, the fact that any free Bμν can be understood
in this way is the holographic version of the statement that
any conserved 2-form current in a four-dimensional CFT
can be expressed as the dual field strength of a Maxwell
field [2].

D. Electromagnetic duality and generalized
symmetries in general dimension

Before turning to a discussion of the gravity dual to
2-group symmetries in four-dimensional field theories, we
discuss briefly the generalization of the duality between Aμ

and Bμν in AdS5 and its relation to gauging a global
symmetry to a general pair of electric/magnetic dual
p-form fields in AdSdþ1.
For a quantum field theory in d dimensions possessing

a conserved p-form current jp, gauging the symmetry
produces a dynamical p-form gauge field αp. Given the
field strength fpþ1 ¼ dαp, we can always define a new
d − p − 1-form current

Jd−p−1 ≡ �fpþ1; ð46Þ

which is automatically conserved due to the Bianchi
identity (assuming no magnetic sources for αp). The classic
example of this is in d ¼ 3, where an ordinary 1-form
gauge field leads to a 1-form conserved current via
J1 ¼ �f2, or Jμ ¼ ð1=2Þϵμνρfνρ; in this paper so far we
discussed the case p ¼ 1, d ¼ 4.
It is easy to see that for general d and pwe can reproduce

this on the gravity side. Let the p-form current be realized
in the AdSdþ1 gravity theory by the p-form field Ap, with a
Maxwell action. The solution for the gauge where Ap has
no nonzero term with an r index is

Apðx⃗; t; rÞ ¼ αpðx⃗; tÞLp þ � � � þ βpðx⃗; tÞ
L2d−3p

rd−2p
þ…;

ð47Þ

with d � βp ¼ 0, where � is the d-dimensional Hodge star.
With regular boundary conditions, this is dual to a con-
served current hjpðx⃗; tÞi ∝ βpðx⃗; tÞ, with αpðx⃗; tÞ the back-
ground gauge field.
To gauge this symmetry, consider the magnetic dual field

Bd−p−1 in AdSdþ1,

Bd−p−1ðx⃗; t; rÞ ¼ α̃d−p−1ðx⃗; tÞLd−p−1 þ � � �

þ β̃d−p−1ðx⃗; tÞ
L3pþ3−d

r2pþ2−d þ…; ð48Þ

FIG. 1. A flowchart depicting the relationships between electro-
magnetic duality, boundary conditions and gauging described in
this section.
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and we find that electromagnetic duality dBd−p−1 ¼ �dAp

gives us relations of the form

β̃d−p−1 ∝ �fpþ1; f̃d−p ∝ �βp: ð49Þ

Thus once more the regular boundary conditions for Bd−p−1
are the alternate boundary conditions for Ap, with the
dynamical conserved current dual to Bd−p−1 related to the
field strength of the gauged original symmetry as described
above,

hJd−p−1i ∝ β̃d−p−1 ∝ �fpþ1: ð50Þ

Thus for general d and p, the conserved ðd − p − 1Þ-form
current that comes from gauging a global p-form current
can be realized by electric/magnetic duality in the bulk.
The flowchart of Fig. 1 still describes this more general
case. Notice that which bulk field we call electric and
which we call magnetic is a matter of convention, and both
cases in the field theory column of Fig. 1 can be thought of
as containing both a global conserved current and a
dynamical gauge field, where one determines the other
as in (46).
For general d and p the equations (49) are simpler than

their d ¼ 4, p ¼ 1 counterparts (36), (37) due to the
absence of the log in the solution for B; the lack of the
log indicates that the coupling for the double-trace operator
Jd−p−1Jd−p−1 is not marginal. The log will arise for even d
when p ¼ d=2 − 1 and hence d − p − 1 ¼ d=2 (or vice
versa) for which the ranks of A and B differ only by one;
these cases will be analogous to the AdS5 case studied
earlier.

III. GAUGING ’T HOOFT ANOMALIES
AND 2-GROUP SYMMETRIES

We saw in the previous section that to gauge a globalUð1Þ
in the field theory, we switch from regular to alternate
boundary conditions in the dual vector field Aμ, or equiv-
alently replace Aμ with the 2-form Bμν. Thus gauging the
Uð1Þ becomes electromagnetic duality on the gravity side.
We can realize a nice example of this with a simple

model discussed by Córdova, Dumitrescu and Intriligator
[2]. This model starts as a field theory with Uð1Þ ×Uð1Þ
global symmetry, with a mixed ’t Hooft anomaly. Gauging
one of the Uð1Þs introduces a conserved 2-form current,
which combines with the remaining global Uð1Þ into a
symmetry structure called a 2-group. It is known that
the ungauged theory should be modeled in the gravity dual
by a pair of 1-form gauge fields, with a Chern-Simons
coupling capturing the ’t Hooft anomaly. Electromagnetic
duality transforming one gauge field into a 2-form then
produces exactly the correct modified field strength to
generate a dual field theory with 2-group global sym-
metry, as we shall see.

A. The Uð1Þ × Uð1Þ model

Here we briefly review the method presented by Córdova
et al. for obtaining a 2-group symmetry structure from a
mixed ’t Hooft anomaly in [2]. Consider a four-dimensional
quantum field theory manifesting Uð1ÞA ×Uð1ÞC global
symmetry with background 1-form gauge fields A and C,
with field strengths F ¼ dA and G ¼ dC. Further suppose
the theory has a mixed ’t Hooft anomaly represented by the
anomaly polynomial

Ið6Þ ¼ κF ∧ F ∧ G; ð51Þ

where κ is a constant. If Uð1ÞA is gauged, this leads to an
ordinary Adler-Bell-Jackiw anomaly for the global Uð1ÞC,∂μJCμ ∝ κϵμνρσFμνFρσ. Instead, consider the case where we
gauge Uð1ÞC while Uð1ÞA remains global. Respecting
the gauged Uð1ÞC then requires we choose our counter-
terms such that the anomaly descent forms encoded in
Ið6Þ ¼ dIð5Þ, δIð5Þ ¼ dIð4Þ are written as

Ið5Þ ¼ κA ∧ F ∧ G; Ið4Þ ¼ κλAF ∧ G; ð52Þ

where δA ¼ dλA, and thus the variation of the effective
action is

δS ¼
Z

Ið4Þ ¼ κ

Z
λAF ∧ G: ð53Þ

This nontrivial variation ofUð1ÞA does not have the form of
an ordinary anomaly because the right-hand side includes
a dynamical gauge field alongside a background field.
However, the gauging of Uð1ÞC introduces a new 1-form
generalized global symmetry, with 2-form current

Jm ¼ �G: ð54Þ

This couples to a background 2-form gauge field B via

SJ ¼
Z

B ∧ G: ð55Þ

The variation of the action (53) will be canceled if we allow
B to vary under transformations of A in addition to its own
natural transformation:

δB ¼ dΛB − κλAF; δA ¼ dλA; ð56Þ

where ΛB is a 1-form gauge parameter. With this combined
transformation, the effective action as a function of the
background fields S½A;B� is invariant. This is known as a
2-group symmetry, and is denoted

Uð1Þð0ÞA ×κ Uð1Þð1ÞB ; ð57Þ
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where the superscripts indicate that Uð1Þð0ÞA is an ordinary

symmetry with a zero-form parameter λA while Uð1Þð1ÞB is a
generalized symmetry with 1-form parameter ΛB, and
the presence of κ indicates the nontrivial transformation
of B in (56).4 The invariant field strength H for B is
modified by this 2-group symmetry structure:

H ¼ dBþ κA ∧ F: ð58Þ

B. Gravity dual of the global Uð1Þ × Uð1Þ
is a Chern-Simons theory

For the gravity dual of the global Uð1ÞA ×Uð1ÞC field
theory, we introduce two 1-form fields A and C in AdS5,
as described in Sec. II. In addition, the presence of
the ’t Hooft anomaly is well known to be described
by a Chern-Simons term in the gravity theory [20]
whose structure mimics the anomaly polynomial Ið5Þ ¼
κA ∧ F ∧ G. We thus have the bulk action

S ¼
Z �

−
1

2
F ∧ �F −

1

2
G ∧ �Gþ κA ∧ F ∧ G

�

¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

4
GμνGμν

þ κ

4
ϵαμνρσAαFμνGρσ

�
: ð59Þ

The bulk equations of motion are

d � F ¼ 2κF ∧ G; d �G ¼ κF ∧ F; ð60Þ

or equivalently,

∂ν
ffiffiffiffiffiffi
−g

p
Fμν ¼ κ

2
ϵ̃μρσαβFρσGαβ;

∂ν
ffiffiffiffiffiffi
−g

p
Gμν ¼ κ

4
ϵ̃μρσαβFρσFαβ; ð61Þ

while the Bianchi identities are simply

dF ¼ 0; dG ¼ 0: ð62Þ

The solutions to the equations of motion (61) still take the
form (9),

Ai ¼ αA;iðx⃗; tÞLþ � � � þ βA;iðx⃗; tÞ
L5

r2
þ… ð63Þ

Ci ¼ αC;iðx⃗; tÞLþ � � � þ βC;iðx⃗; tÞ
L5

r2
þ…: ð64Þ

We have suppressed the γi terms, but they lead to
divergences canceled by counterterms just as in Sec. II.
The only effect of the nonlinear Chern-Simons terms
in (61) to the leading α and β coefficients is the modifi-
cation of the divergences,

∂iβ
i
A ¼ −

κ

4
ϵ̃ijklfijgkl; ∂iβ

i
C ¼ −

κ

8
ϵ̃ijklfijfkl; ð65Þ

where f ¼ dαA, g ¼ dαC.
Including the counterterms as before, the variation of the

action is now

δS ¼ 2L3

Z
d4x

�
δαA;i

�
βiA þ κ

4
ϵ̃ijklαA;jgkl

�

þ δαC;i

�
βiC þ κ

4
ϵ̃ijklαA;jfkl

��
; ð66Þ

and thus we find the currents

hJiAi ¼ 2L3

�
βiA þ κ

4
ϵ̃ijklαA;jgkl

�
; ð67Þ

hJiCi ¼ 2L3

�
βiC þ κ

4
ϵ̃ijklαA;jfkl

�
: ð68Þ

A Uð1ÞA ×Uð1ÞC transformation can be written

δαA;iðx⃗; tÞ ¼ ∂iλAðx⃗; tÞ; δαC;iðx⃗; tÞ ¼ ∂iλCðx⃗; tÞ; ð69Þ

and then the variation of the action is

δS ¼ −
Z

d4xðλA∂ihJiAi þ λC∂ihJiCiÞ; ð70Þ

where the divergences of the currents evaluate to

∂ihJiAi ¼ −
L3κ

4
ϵ̃ijklfijgkl; ð71Þ

∂ihJiCi ¼ 0: ð72Þ

As expected, the action is invariant under Uð1ÞC but
transforms like (53) under Uð1ÞA, realizing the ’t Hooft
anomaly. At this point, neither Uð1Þ is gauged and there is
no issue with this transformation.
The effects of a ’t Hooft anomaly can be rearranged by

adding local counterterms; to accomplish this in the gravity
theory, we could add boundary counterterms of the formR
A ∧ C ∧ F, equivalent to integrating the Chern-Simons

action by parts. This would leave (65) unchanged but
change (67), (68) and hence reshuffle the right-hand sides
of (71), (72); for example we could remove the divergence
of JiA at the expense of giving JiC an ordinary Adler-Bell-
Jackiw anomaly proportional to ϵ̃ijklfijfkl. However to

4The authors of [2] actually write Uð1Þð0ÞA ×κ̂ Uð1Þð1ÞB where
κ̂ ≡ 2πκ is integer quantized.

GENERALIZED SYMMETRIES AND 2-GROUPS VIA … PHYS. REV. D 103, 026011 (2021)

026011-9



gauge Uð1ÞC, as we will do next, we need its current to
obey (72), so we must leave the action as is.

C. Gravity dual of 2-group structure from
electromagnetic duality

From our previous discussion, we have learned that
replacing a 1-form field in AdS5 with the magnetic dual
2-form is equivalent to gauging the formerly global Uð1Þ
symmetry. Thus, we might expect that by appropriately
dualizing C in the Uð1ÞA ×Uð1ÞC Chern-Simons action
(59) into a 2-form B, we would arrive at a gravity theory
with 2-group symmetry in the field theory dual. Indeed we
show this is the case.
We begin by defining a 3-form field strength H dual to

the 2-form G,

H ≡ �G; ð73Þ

which implies −G ¼ �H, while retaining F ¼ dA as
before. The equations of motion (60) and Bianchi identities
)62 ) of the Chern-Simons theory then become

d � F ¼ −2κF ∧ �H; dH ¼ κF ∧ F; ð74Þ

and

dF ¼ 0; d �H ¼ 0: ð75Þ

To generate this nontrivial Bianchi identity for H, we
assume the modified field strength form

H ≡ dBþ κA ∧ F; ð76Þ

for a new dynamical 2-form potential B. We still have
dF ¼ 0. One can then verify that the action

S ¼
Z �

−
1

2
H ∧ �H −

1

2
F ∧ �F

�
ð77Þ

gives rise to the other two equations in (74), (75) as
equations of motion.
The field strengths H (76) and F are invariant under the

gauge transformations

δB ¼ dΛB − κλAF; δA ¼ dλA; ð78Þ

where ΛB is the natural 1-form gauge parameter for
the 2-form B. This set of transformations is exactly the
gauged version of the 2-group transformation (56), and the
modified field strength (76) is the same form as the 2-group
background field strength (58). Indeed, due to this corre-
spondence Córdova et al. proposed the modified field
strength (76) as the appropriate gravity dual form for a
2-group symmetry [2]. We now see that it arises naturally

from dualizing the Chern-Simons action describing the
ungauged theory via electromagnetic duality.
Let us now verify that the 2-group symmetry arises

in the near-boundary analysis in detail. The equations of
motion in component form are

∂ρ
ffiffiffiffiffiffi
−g

p
Hμνρ ¼ 0; ∂ν

ffiffiffiffiffiffi
−g

p
Fμν ¼ −κ

ffiffiffiffiffiffi
−g

p
HμνρFνρ: ð79Þ

As in Sec. II, we can use gauge freedom to set
Ar ¼ Bir ¼ 0, and the fields then have the form5

Aiðx⃗; t; rÞ ¼ αiðx⃗; tÞLþ � � � þ βiðx⃗; tÞ
L5

r2
þ… ð80Þ

Bijðx⃗; t; rÞ ¼ α̃ijðx⃗; tÞL2 þ β̃ijðx⃗; tÞL2 log rþ…: ð81Þ

The equations of motion (79) with the modified field
strength do not modify the divergence of β̃ij from (26),

∂iβ̃
ij ¼ 0; ð82Þ

and their only modification to the modes appearing in
(80), (81) is a nonzero divergence of βi,

∂iβ
i ¼ κ

2
fijβ̃

ij: ð83Þ

The action and its variation evaluated on these solutions
reduce to divergent boundary expressions that look like the
free cases discussed in Sec. II, with one additional finite
term. Choosing our counterterms as in Sec. II to remove the
divergences as well as extra finite parts, we find for the
variation of the action

δS ¼ L3

Z
d4x

�
−
1

2
δα̃ijβ̃

ij þ δαið2βi − καjβ̃
ijÞ
�
: ð84Þ

From this variation, we find two currents in the dual field
theory:

hJiAi ¼ L3ð2βi − καjβ̃
ijÞ; ð85Þ

hJijBi ¼ −
L3

2
β̃ij: ð86Þ

We note that the 2-form current is conserved by (82), but
the 1-form current is no longer conserved due to the
nonzero divergence of βi (83):

∂ihJiAi ¼
L3κ

2
fijβ̃

ij ¼ −κfijhJijBi; ð87Þ

5Note that in Sec. II, we discussed the fields A and B being
dual to each other; in this section, to match the notation of [2], B
is dual to the field C, while A is independent.
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∂ihJijBi ¼ 0: ð88Þ

The nonzero divergence for JiA is the analog of the ’t Hooft
anomaly (71), with the dynamical hJijBi having replaced the
background field ϵ̃ijklgkl after the field C was gauged.
The conservation of JijB means that ordinary gauge

transformations for the 2-form field δα̃ij¼∂iΛj−∂jΛi

are symmetries of the effective action. Meanwhile if we
perform a gauge transformation δαi ¼ ∂iλA and some
unspecified transformation δα̃ij, we find

δS ¼
Z

d4x

�
−
L3

2
δα̃ijβ̃

ij − λA∂ihJiAi
�

¼ −
L3

2

Z
d4x½δα̃ijβ̃ij þ κλAfijβ̃

ij�:

Thus δαi ¼ ∂iλA, δα̃ij ¼ 0 is not a symmetry of the
effective action, but leads to a variation of the form (53).
Instead the action is invariant under the combined trans-
formation of the 2-group form,

δαi ¼ ∂iλA; δα̃ij ¼ −κλAfij: ð89Þ

Thus the net gauge invariances of αi, α̃ij are precisely that

of the 2-group Uð1Þð0ÞA ×κ Uð1Þð1ÞB ,

δα ¼ dλA;

δα̃ ¼ dΛB − κλAf; ð90Þ

matching the transformations (78) required to keep the
modified field strength tensor invariant. Thus indeed,
we see gauging C in (59) by performing electromagnetic
duality to a 2-form gauge field produces a 2-group

symmetry structure in the field theory dual. Figure 2
summarizes the process used to obtain the 2-group
symmetry.
Let us make a few comments. First, we can only dualize

C into B despite the Chern-Simons term (59) because C
does not appear outside its field strength (while A does).
This is associated to the fact that we are preserving the
Uð1ÞC symmetry from the ’t Hooft anomaly, as discussed
in the last subsection; adding boundary counterterms to
rearrange the bulk Chern-Simons term into a C ∧ F ∧ F
form would cause Uð1ÞC to be violated and be ungauge-
able, while electromagnetic duality on C can no longer
operate since it appears outside its field strength.
Second, for both the Chern-Simons theory (59) and the

2-group theory (77), the nonlinear terms in the equations
of motion did not modify the cancellation of the diver-
gences from the way it worked for the free field case, but
only introduced new finite parts. This makes the identi-
fication of symmetry structures like t’ Hooft anomalies
and 2-group structure in the dual field theory possible
without going through every detail of holographic
renormalization, and is related to the scheme independ-
ence of the symmetries.

Finally, [2] notes that gauging the Uð1Þð1ÞB symmetry
returns us to the original ungauged Uð1ÞA ×Uð1ÞC theory;
this is naturally reflected for us in the fact that a second
electromagnetic duality on B returns us to the original
electric variables.

D. n-group symmetries in AdS=CFT
in general dimension

It is straightforward to generalize the 2-group structure
discussed above. A more general n-group structure can be
associated to background fields Bn, Ap, Cn−p when the
effective action is invariant under the transformations

δAp ¼ dλp−1; δCn−p ¼ dωn−p−1;

δBn ¼ dΛn−1 − κλp−1 ∧ dCn−p; ð91Þ

which respects the invariance of the field strengths

Hnþ1 ¼ dBn þ κAp ∧ Gn−pþ1;

Gn−pþ1 ¼ dCn−p; Fpþ1 ¼ dAp: ð92Þ

It is straightforward to show this more general case can be
implemented in AdS=CFT as well. For a d-dimensional
field theory, consider the (dþ 1)-dimensional gravity
action

S ¼
Z

ddþ1x

�
−
1

2
H ∧ �H −

1

2
G ∧ �G −

1

2
F ∧ �F

�
;

ð93Þ

FIG. 2. A diagram of how electromagnetic duality on a bulk
Chern-Simons theory leads to a theory with 2-group symmetry. In
this case the blue arrows would represent alternate boundary
conditions for the B and C fields, but still regular boundary
conditions for A.
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which leads to equations of motion

d � F ¼ ð−1ÞpκG ∧ �H; d � G ¼ ð−1Þnpþ1κF ∧ �H;

d �H ¼ 0; ð94Þ

implying solutions

Apðx⃗; t; rÞ ¼ αpðx⃗; tÞLp þ � � � þ…βpðx⃗; tÞ
L2d−3p

rd−2p
;

Bnðx⃗; t; rÞ ¼ α̃nðx⃗; tÞLn þ � � � þ…β̃nðx⃗; tÞ
L2d−3n

rd−2n
;

Cn−pðx⃗; t; rÞ ¼ α̂n−pðx⃗; tÞLn−p þ � � �

þ…β̂n−pðx⃗; tÞ
L2dþ3p−3n

rdþ2p−2n ; ð95Þ

obeying the constraints

d � βp ¼ ð−1Þpκ d − 2n
d − 2p

ðdα̂n−p ∧ �β̃nÞ;

d � β̂n−p ¼ ð−1Þnpþ1κ
d − 2n

dþ 2p − 2n
ðdαp ∧ �β̃nÞ;

d � β̃n ¼ 0: ð96Þ

Here we make the simplifying assumption that none of p, n
or n − p equal d=2; otherwise logs would be present, but
the calculation should be similar. We also assume p ≥ 1.
The variation of the action is then

δS ¼
Z

ðδαp ∧ �JA þ δα̃n ∧ �JB þ δα̂n−p ∧ �JCÞ; ð97Þ

where the currents

�JA ≡ ð−1Þdþ1Ld−1ðd − 2pÞð�βpÞ;
�JB ≡ ð−1Þdþ1Ld−1ðd − 2nÞð�β̃nÞ;
�JC ≡ ð−1Þdþ1Ld−1ðd − 2p − 2nÞð�β̂n−pÞ

þ ð−1ÞnpκLd−1ðd − 2nÞðαp ∧ �β̃nÞ; ð98Þ

obey

d � JA ¼ ð−1Þdþpþ1κLd−1ðd − 2nÞðdα̂n−p ∧ �β̃nÞ;
d � JB ¼ 0;

d � JC ¼ 0: ð99Þ

The conservation of JC involves a nontrivial cancellation
between its two terms using the middle term in (96), similar
to the conservation of the current (72) in the Chern-Simons
action. The action is then invariant under

δαp ¼ dλp−1; δα̂n−p ¼ dωn−p−1;

δα̃n ¼ dΛn−1 − κλp−1 ∧ dα̂n−p; ð100Þ

which is indeed the n-group structure (91). For the case
p ¼ n=2 one may let C and A be the same field, as in the
2-group case that was our primary example; the calculation
goes through analogously.

IV. CONCLUSIONS

In this paper, we have discussed how electromagnetic
duality on bulk p-form gauge fields holographically
realizes the fact that gauging any generalized global
symmetry jp in a d-dimensional field theory leads to a
novel generalized global symmetry Jd−p−1 from the dual
field strength of the new gauge field. The transformation of
an ungauged model with a ’t Hooft anomaly to a gauged
model with 2-group symmetry can be captured perfectly by
this electromagnetic duality in the bulk. Special features
like the logarithmic running of a coupling for a double-
trace operator are associated to certain cases where the
gauged symmetry has a classically marginal coupling.
There are a number of interesting directions for future

study. While our primary example involved four-
dimensional quantum field theory, there may be cases in
particular other dimensions, for example six, where the
holographic perspective may lead to new insights. Other
features of theories with n-group symmetries, such as their
spontaneous breaking, renormalization group flows, and
anomalies, may be interesting to investigate in a holographic
context. Finally, the nature of a gauge field in a theory with a
boundary and the associated “long-range gauge symmetry”
is worth further investigation, and the nontrivial interplay
between electromagnetic duality and the near-boundary limit
in AdS=CFT may be able to shed more light on this.
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