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We propose the c-function as a new and accurate probe to detect the location of topological quantum
critical points. As a direct application, we consider a holographic model which exhibits a topological
quantum phase transition between a topologically trivial insulating phase and a gapless Weyl semimetal.
The quantum critical point displays a strong Lifshitz-like anisotropy in the spatial directions, and the
quantum phase transition does not follow the standard Landau paradigm. The c-function robustly shows a
global feature at the quantum criticality and distinguishes, with great accuracy, the two separate zero
temperature phases. Taking into account the relation of the c-function with the entanglement entropy, we
conjecture that our proposal is a general feature of quantum phase transitions and that it is applicable
beyond the holographic framework.
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I. INTRODUCTION

Phase transitions are ubiquitous in nature, and they
provide one of the most elegant examples of universality
and a new window into the physics of strongly correlated,
quantum many-body systems [1]. Of exceptional interest
are phase transitions happening at zero temperature—the
quantum phase transitions [2]—which require a shift of
paradigm within the condensed matter lore since they do
not, in general, admit a simple Ginzburg-Landau descrip-
tion [3] and they are often not characterized by any
spontaneous symmetry breaking pattern. A typical case
is that of metal-insulator transitions [4].
Topological quantum phase transitions (TQPT) are a

particularly challenging subclass—the most famous exam-
ple being quantum hall systems, displaying exotic features
such as fractional statistics and topological degeneracy
[5,6]. The search for an “order parameter” or a local
quantity able to pinpoint the location of the TQPT is a
pressing and fundamental open question given the plethora
of topological phases that have been discovered in recent

years and their possible importance for technological
developments such as quantum computing [7].
Recently, several attempts have been made to find an

efficient observable able to locate the TQPT from the nature
of the quasiparticles [8], the (not Ising-like) critical
exponents [9], and the dynamical topological order param-
eter [10] to other quantum information quantities such as
fidelity [11] and topological entanglement entropy [12,13].
In this work, we propose a different and particularly

effective way to detect the critical points of TQPTs by
considering the c-function of the system. We show that
such a quantity displays a neat and narrow signal at the
location of the quantum critical point, and we are therefore
able to identify with precision the separation between the
two topological phases. The c-function perfectly locates the
position of the critical point even when the quantum
transition is of topological nature, as it also does in
continuous and discontinuous phase transitions. We also
show that, independently of the microscopic details of the
system such as the value of its quartic coupling, our c-
function probe is still successful in locating the transition.
The c-function is a natural candidate to detect phase

transitions. The reorganization of the degrees of freedom
(d.o.f.) along a transition is a key feature to understanding
the two different phases involved. In relativistic theories, a
clear measure for the number of effective degrees of
freedom is indeed provided by the c-function, whose
monotonicity along the renormalization group (RG) flow
is guaranteed by c-theorems [14–21]. These theorems
formalize the idea that the number of d.o.f. diminishes
monotonically flowing towards low energy, and their
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validity is tightly connected with the existence of a null
energy condition (NEC) [22]. At any fixed point, the c-
function coincides with the central charge c of the system,
which is again related to the theory’s degrees of freedom.
The proof of the c-theorems relies crucially on Lorentz

invariance, and the monotonicity of the c-function is not
guaranteed if such a set of symmetries is broken [23–26].
Additionally, when the rotational global symmetries are
broken, as it happens in anisotropic Lifshitz-like fixed
points, the c-function needs to be redefined appropriately.
Such a c-function was introduced in [25] and further
studied in [27,28], and it has already passed various
nontrivial tests within the holographic scenario.
Therefore, we will use it here as a probe for the TQPT.
As a concrete scenario, we consider the holographic

Weyl semimetal (WS) model introduced in [29,30] (see
[31] for more details). This setup realizes a quantum phase
transition of topological nature between a Weyl semimetal
and an insulating phase (see Fig. 1). The topological
distinction between the two phases is described by a
topological invariant which has been computed in the
context of probe fermions [32]. There are several holo-
graphic studies [33–41] related to this model.
More broadly, WSs are new 3D materials whose band

structure is characterized by singularity points at which the
two bands touch, producing linearly dispersing cones [42].
The low-energy description at those points displays emer-
gent relativistic symmetry, and it is described by chiral
Weyl spinors always appearing in pairs [43]. WS exhibit
exotic transport properties which are a direct consequence
of quantum field theory anomalies [44]. To comprehend the
fundamental dynamics of WS and the TQPT, it is sufficient
to consider a simple weakly coupled field theory whose
fermionic Lagrangian reads [45]

L ¼ Ψ̄ði∂ − e=A − γ5γ⃗ · b⃗þMÞΨ; ð1Þ

where e is the EM coupling, γi are the Dirac matrices, A is
the electromagnetic potential,M is a mass parameter, and b⃗
is a vector which describes the separation in momentum
space of the two Weyl cones. The system considered
exhibits a spectrum which, as expected, depends on the
dimensionless ratio M=jb⃗j. In the regime M > jb⃗j the
system is gapped, and the effective fermionic excitations
have an effective mass M2

eff ¼ M2 − jb⃗j2; however, in the

opposite scenario, M < jb⃗j, the spectrum is characterized
by band inversion, and the fermions at the crossing points
are massless and separated by the effective parameter
jb⃗eff j2 ¼ b2 −M2. Importantly, the axial anomaly implies
an anomalous Hall conductivity [46]:

σAHE ¼ 1

ð2πÞ2 jb⃗eff j; ð2Þ

which is nonzero only in the topological Weyl semi-
metal phase.
In this work, we examine the holographic Weyl semi-

metal model, and we show that the c-function serves as a
very efficient tool to diagnose the location of the TQPT.
More generally, it is natural to expect that this concept can
apply beyond the realm of holography and could provide a
new and fundamental tool for quantum phase transitions
evading the standard Landau logic.

II. TOPOLOGICAL PHASE TRANSITION

Our holographic model is defined by the following
5-dimensional bulk action [30]:

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12 −

1

4
F2 −

1

4
F2
5 − VðΦÞ

− ðDμΦÞ�ðDμΦÞ þ α

3
ϵμνρστAνðF5

νρF5
στ þ 3FνρFστÞ

�
;

ð3Þ

written in terms of a vector Uð1Þv field Bμ with field
strength F≡ dB, an axial vector field Aμ with field strength
F5 ≡ dA, and a complex scalar field Φ charged under the
gauge symmetry Uð1Þv. Moreover, the covariant derivative
is defined as DμΦ ¼ ∂μ − iqAμΦ, and the scalar potential
is chosen to be VðΦÞ ¼ m2jΦj2 þ λ

2
jΦj4.

We use the following anisotropic, in the x3 direction,
ansatz for the various bulk fields:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ gðrÞðdx21 þ dx22Þ þ hðrÞdx23;

A ¼ A3ðrÞdx3; Φ ¼ ϕðrÞ; ð4Þ

where fðrÞ, gðrÞ, and hðrÞ depend solely on the radial
coordinate r. We consider asymptotically anti-de Sitter

FIG. 1. Sketch of the TQPT considered in this work. For our
choice of parameters, the transition appears at a critical value
M̄c ∼ 0.744 between a topologically trivial gapped state and a
Weyl semimetal phase.
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configurations for which f; g; h ∼ r2 close to the boundary
located at r ¼ ∞. We choosem2 ¼ −3 to fix the dimension
of the scalar operator dual to the bulk fieldΦ to be ΔO ¼ 3.
For this choice, the asymptotics of the gauge field and the
bulk scalar are given by

lim
r→∞

rΦ ¼ M; lim
r→∞

A3 ¼ b; ð5Þ

where M and b are free parameters of the model, which
play the same role as those in Eq. (1). Moreover, without
loss of generality, we choose λ ¼ 1=10 and q ¼ 1.
The theory is therefore characterized by two dimension-

less parameters taken as T̄ ≡ T=b and M̄≡M=b and
exhibits a quantum critical transition at M̄c ∼ 0.74.
At zero temperature, our model admits three types of

solutions: (I) for M̄ > M̄c, an insulating background; (II)
for M̄ ¼ M̄c, a critical background; and (III) for M̄ < M̄c, a
semimetal background.
The full background of the RG flow can be found only

numerically and exhibits different IR fixed points depending
on the dimensionless parameter M̄. The near-horizon geom-
etry of the topologically trivial gapped solution (I) is anAdS5
domain wall with A3ðρÞ ¼ a1ρβ1 ;ϕðρÞ ¼

ffiffiffiffiffiffiffi
3=λ

p þ ϕ1ρ
β2 ,

where the exponents β1;2 are functions of the parameters
ðm; λ; qÞ and ρ a new radial coordinate (different from the r
used at finite T). In regime (I), the near-horizonvalue ofA3 is
always zero and that of ϕ is

ffiffiffiffiffiffiffi
3=λ

p
. At the quantum critical

point (II), the theory displays an anisotropic Lifshitz-like
scaling parametrized by z and induced by the source of the
axial gauge field A3. The background can be expressed as

fðρÞ¼f0ρ2; hðρÞ¼h0ρ2=z; A3ðρÞ¼ρ1=z; ϕðρÞ¼ϕ0;

ð6Þ

where all the parameters are fixed completely by the choice
of ðm; λ; qÞ. In particular, the anisotropic exponent is given
by z ¼ −ðm2 þ λϕ2

0 − 2q2Þ=2q2 and takes a value around
z ≃ 2.46 for our choice of parameters. Null energy con-
ditions, the regularity of the solution, and the thermodynamic
stability generally imply that z ≥ 1 [25,47]. The near-horizon
value of A3 at criticality is always zero, whereas that of ϕ is
finite andequal toϕ0. Finally, by reducing theparameter M̄ to
values lower than the critical one, we enter the semimetal
phase (III) where the near-horizon geometry is simply AdS5
with

A3ðρÞ ¼ a1 þ
c21π
4ρ

e−
2a1
ρ ; ϕðρÞ ¼ ffiffiffi

π
p

ϕ1

�
c1
ρ

�
3=2

e−
a1
ρ ;

ð7Þ

where the various constants depend on the parameters of the
model. In this regime, the near-horizon value of A3 is finite
and equal to a1; however, ϕðρ0Þ vanishes.

To distinguish the two different phases, we consider the
anomalous Hall conductivity depicted in Fig. 2:

σAHE ∼ A3jhorizon: ð8Þ

The conductivity serves as a nonlocal order parameter for
the TQPT, which vanishes in the topologically trivial
insulating phase ðM̄ > M̄c) and becomes finite in the
Weyl semimetal phase. Interestingly, this order parameter
does not obey a mean-field theory description, but rather, it
follows a different scaling:

σAHE ∼ ðM̄c − M̄Þ0.21; ð9Þ

which is shown for our lowest temperature in Fig. 2.
In our scenario, the anisotropy is a characteristic property

of the quantumcritical point defining the corresponding class
of universality,while away fromcriticality, isotropy is always
reemerging. This is a crucial difference with respect to the
confinement or deconfinement phase transitions in Einstein-
dilaton-axion theories [48] which contain a finite degree of
anisotropy that remains invariant along the different phases.

III. C-FUNCTION FOR LIFSHITZ-LIKE SYSTEMS

For the sake of introducing the notion of the anisotropic
c-function, let us temporarily consider an arbitrary dimen-
sional spacetime in which the d-dimensional spatial sub-
space can be decomposed into transverse and parallel sets
with respective dimensions d1, d2, (d1 þ d2 ¼ d), with
different scalings:

½k� ¼ Ln1 ; ½⊥� ¼ Ln2 ; ð10Þ

therefore breaking the rotational SOðdÞ invariance to
SOðd1Þ×SOðd2Þ. The natural proposal for the c-function
of these theories is given by [25]

FIG. 2. Anomalous conductivity at low temperature T̄ ¼ 0.005
as a function of the external parameter M̄. The dashed line indicates
the position of the quantum critical point M̄c ∼ 0.744. The inset
displays the topological band crossing which characterizes the
semimetal phase, and Ef is the Fermi energy of the system.
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ck ≔ βk
l
dk−1
k

Hd1−1
k Hd2⊥

∂Sk
∂ ln lk ; c⊥ ≔ β⊥

ld⊥−1⊥
Hd1

k Hd2−1⊥

∂S⊥
∂ ln l⊥ ;

ð11Þ

where SkðS⊥Þ is the entanglement of the slab geometry with
length lkðl⊥Þ along one of the spatial k; ð⊥Þ dimensions and
H corresponds to the UV cutoffs. The dk and d⊥ are the
effective dimensions,

dk ≔ d1 þ d2
n2
n1

; d⊥ ≔ d1
n1
n2

þ d2; ð12Þ

of the two rotational invariant spatial planes of dimensions
d1 and d2, where the initial isotropy has been broken. The
parameters βk;⊥ are just dimensionless normalization con-
stants. The entangling surface in ðk;⊥Þ directions is
computed holographically with the usual strategy on
anisotropic probes introduced in [49]. When the c-function
is computed at a certain fixed point, the effective dimen-
sions are identified with the corresponding scaling expo-
nents. Importantly, the above definition Eq. (11) reduces to
the conformal and isotropic c-function [17,19,20] when the
symmetries (in this case isotropy) are restored.

IV. UNCOVERING THE QUANTUM
CRITICAL POINT

To uncover the criticality of the theory, we first obtain the
numerical background of Eq. (4) for M̄ ∈ ½0; 4� while
keeping the dimensionless temperature T̄ fixed. We are
primarily interested in zero temperature and extremely low
temperatures (T̄ ≃ 0.005). Nevertheless, we have directly
checked that similar results are obtained for slightly larger
values (T̄ ¼ 0.05, 0.1).
In order to locate the quantum critical point, we compute

the c-function corresponding to an entangling surface with
fixed boundary length that is large enough to extend away
from the boundary into the bulk. This type of entangling
region probes the deep IR and provides good accuracy for
locating the phase transitions. The c-function defined in
(11) has the advantage of being valid and well defined even
for anisotropic IR phases. Exploiting this feature, we are
able to compute it across the full phase diagram ðM̄; T̄Þ.
Notice that this would have been impossible using the
isotropic c-function because the quantum critical point
exhibits a strong anisotropic character.
Practically, the external parameter M̄ is in a range able to

cover the three different phases of the theory: the trivial
insulator (M̄ > 0.744), the critical point (M̄ ∼ 0.744), and
the Weyl semimetal (M̄ < 0.744) (see Figs. 1 and 2). The c-
function develops a clear pattern. As we approach the
quantum critical point, it increases and reaches a maximum
exactly at the quantum critical point with Lifshitz-like
symmetry. In this sense, the c-function acts as a very

accurate probe to locate the topological quantum criti-
cal point.
The T ¼ 0 near-horizon geometry of our background is

an anisotropic Lifshitz-like space-time. The c-function is
computable analytically in these types of exact geometries
that maintain the anisotropy along the RG flow. By a
straightforward application of the formulas of Appendix B
and Eq. (B5), we obtain, for the cutoff independent terms,

S⊥ ≃ −N2H⊥Hk
β⊥−1

l
1þ1

z
x

; ð13Þ

Sk ≃ −N2H2⊥
βk−1

l2zy
; ð14Þ

where β⊥ and βk are constants that depend on the effective
dimensions d⊥ and dk, respectively, through Gamma
functions. Since we focus on surfaces corresponding to
large entangling distances l, we may use Eqs. (13) and (14)
for the purpose of approximately obtaining the analytical
results, and the effective dimensions are specified to the
ones of the IR regime as we show later in our numerical
methods. By extracting the c-function from the entangle-
ment entropy, we obtain c⊥ ¼ β⊥−1ð1þ 1=zÞ and ck ¼
βk−12z with an appropriate normalization. The two func-
tions ck and c⊥ converge for z ¼ 1 to a single value since
also βk ¼ β⊥. Away from the quantum critical point, the
constants reflect the AdS nature of the fixed points for
M̄≷M̄c. At the quantum critical point M̄c, the symmetries
of the system change, resulting in a separation of the c-
functions c⊥ ≠ ck and a discontinuous jump in their values
to new constants, each one depending on the corresponding
effective dimensions ðd⊥; dkÞ ¼ ð2þ 1=z; 1þ 2zÞ intro-
duced in (12) (see Fig. 4). This discontinuity is the
characteristic signal of the quantum phase transition at
zero temperature via the c-function.
The separation of the two c-functions at the critical point

is the signal of a fast spatial reorganization of the degrees of
freedom due to the emergent anisotropy of the system at
criticality, and it is confirmed by our zero temperature
results where thermal effects are negligible.
At finite and low temperatures, within the so-called

quantum critical region depicted in Fig. 1, this discontinu-
ous feature is smoothed out by thermal effects, and the task
of identifying the crossover point with the c-function is
more demanding. We show our main results in Fig. 3. For
large entangling surfaces both c-functions detect, very
accurately, the position of the anisotropic quantum critical
point. Despite the finite temperature effects, the finite
T c-function retains a memory of the T ¼ 0 critical point.
This is a common feature reminiscent of the so-called
quantum critical region which might make the experimental
measurements (which are definitely impossible at zero
temperature) more feasible. A technical question that
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one may ask is, how do we identify effective dimensions
from the numerical data? We isolate the critical exponent
by computing the derivative of the logarithmic ratio g11=g33
at fixed radial distance and by taking into account that we
may always rescale the transverse metric element to have a
known isotropic scaling.
Since our comparison involves shifting the parameter M̄,

there is a question about the way we normalize the rest of
the scales. This is relevant to our computation since, in
principle, we like to probe the theory at a certain energy as
M̄ changes. We notice that most qualitative details of the c-
functions are weakly dependent on the comparison scheme,
while the derivatives of the entanglement are strongly
dependent. A choice of scheme is to keep the length of
the entangling region fixed to a constant value, where the

holographic entangling surface turning point varies with M̄.
Alternatively, we may normalize the length of the entan-
gling surface with respect to the energy scale of the gravity
theory and maintain this dimensionless quantity constant
while the surface’s turning point and length vary with
respect to M̄. Another option is to keep constant the turning
point of the holographic surface versus the proximity of the
black hole horizon as M̄ varies. Irrespective of the
comparison scheme, we obtain a clear signal of the phase
transition for the large entangling surfaces we study in this
paper since they probe the IR deeply. The transverse c-
function always develops a maximum located at the critical
point. The parallel one is more sensitive to the scheme,
especially for small entangling surfaces. It still indicates the
location of the critical point, but it does not always develop
a maximum around it; however, in that case one of its
derivatives still develops a zero value.
At this point, a few comments are in order. The c-

function defined in (11) contains accurate information to
signal the phase transition. In fact, the information of the
phase transition is included in the effective dimensions dk
and d⊥ since the critical point has Lifshitz-scaling
anisotropy, in contrast to the AdS phases. Information
about the phase transition is also included in the entangling
surface itself. We show the behavior of the effective
dimensions and the entanglement entropy (EE) derivatives1

as a function of M̄ in Fig. 5. The first observable over-
estimates the location of the QCP, at least for our chosen
values,2 while the second underestimates it. Interestingly,
the exact combination of the two, which appears in (11), is
the one that pinpoints the precise position of the quantum
critical point with the greatest accuracy.
Moreover, a larger entangling surface implies that the

corresponding surface probes deeper into the IR structure
of the theory. In this regime the saddle points of the
derivatives of the entanglement entropy approach more
closely to the points of the phase transition. For larger
entangling regions at the boundary, the entanglement
entropy received contributions from the thermal entropy.
This is a known statement in thermal theories (e.g., [52]).
We point out that the thermal contributions on the com-
puted entanglement entropy do not affect the ability of the
c-function to locate the probe. In fact, the thermal entropy
or any nonlocal observable would give a hint of the phase
transition in systems of finite temperature. Notice also that
our approach is still valid for smaller entangling surfaces
where the c⊥ always develops a saddle point at the critical
regime, while the ck may develop an anomalous conduc-
tivity-like behavior, similar to the one depicted in Fig. 2; the

FIG. 3. Parallel and transverse c-functions at T̄ ¼ 0.005 as a
function of the external parameter M̄. The dashed line indicates
the position of the quantum critical point, M̄c ∼ 0.744. Both
functions have normalized magnitudes for presentation reasons.

FIG. 4. Normalized values of the c-functions at T ¼ 0 as a
function of M̄. The black lines indicate the AdS value
c=βðdÞ ¼ 2, normalized with β. The red and blue lines display
the value of c⊥=β⊥ðd⊥Þ; ck=βkðdkÞ at the quantum critical point
where the c-function is clearly discontinuous. The normalizations
are for presentation purposes since our main focus is the position
and the existence of a saddle point of the c-function at the phase
transition.

1Different EE derivatives have already been considered in
[50,51] for certain holographic Q-lattice models.

2The parallel effective dimension displays a minimum at the
QCP instead of a maximum. This is similar to the behaviors of the
conductivities, viscosities, and butterfly velocities [39].
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phase transition signal then comes near the peak that its
derivative develops. As we have already stated in this paper,
we work with large entangling surfaces, where both the
c-functions accurately signal the QCP, i.e., as in Fig. 3.
In order to more robustly confirm the ability of the

c-function to detect the quantum critical point, we perform
a more detailed analysis on the theory parameters by
changing the quartic coupling of the model λ. By increasing
it, the critical point M̄c gets larger as shown in Fig. 6. Then,
we compute the saddle points of the c-functions, and in
Fig. 7 we show the comparison between the location of the

critical points for various λ and the positions of the saddle
points of the c-functions. The c-functions are able to locate
the quantum critical point with an error of < 1%. This is
further evidence of the universality of our findings.

V. DISCUSSION

In this work we have considered a holographic model
exhibiting a TQPT. The quantum critical point, which is
related to the transition between a topologically trivial
insulator and a gapless Weyl semimetal, displays a Lifshitz-
like anisotropic critical point and critical scalings not
compatible with the standard Landau paradigm. We have
shown that the anisotropic c-function attains a universal
maximum at the location of the quantum critical point, and
as such, it serves as a very accurate and efficient probe to
detect the TQPT.
Our probe is very successful in locating the critical point

despite its topological nature; nevertheless, given an
unknown phase transition, it is definitely not able to capture
or detect whether it is topological or not. It would be
interesting to investigate more refined probes able to
discern the topological information of the critical point.
A natural possibility would be to consider the so-called
topological entanglement entropy, which has already been
discussed in holography in [53].
Moreover, it is imperative to better understand, beyond the

qualitative argument of the d.o.f. counting, what is the
fundamental origin of the c-function peaks and whether it
is connected to the features of the transport coefficients
discussed in [30,36]. We leave these questions for
future work.

FIG. 5. Effective dimensions dk;⊥ and the EE derivatives
∂Sk;⊥=∂lk;⊥ as a function of the external parameter M̄, around
the QCP. The black dots indicate the position of the saddle points,
while the vertical line is the location of the QCP. Notice that the
effective dimensions overestimate the fixed point, while the
derivatives underestimate it. The c-function saddle point takes
into account both. Note that for low and large M̄ the quantities
converge. The comparison scheme used here is for constant
entangling length as M̄ varies, and the magnitude normalizations
are fixed for presentation purposes.

FIG. 6. Anomalous conductivity at low temperature with
respect to quartic coupling. The dashed lines denote the positions
of the QCP. In the small plot the dots correspond to the QCP with
respect to the quartic couplings.

FIG. 7. The X marks denote QCP computed by the ðc⊥; ckÞ-
functions for a varying quartic coupling. The dots are the QCP of
the system, and the error bars highlight the uncertainty of their
identification due to thermal effects. The error bars are estimated
using the value at which the anomalous Hall conductivity
approaches the benchmark value σAHE ¼ 0.1. The inset high-
lights the difference between the actual location of the QCP and
the estimate of our probe. The c-functions pinpoint the QCP with
great accuracy.
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APPENDIX A: BACKGROUND

Plugging our background ansatz into the bulk action, we
obtain the following equations of motion:

f00 þ h0

2h
f0 − f

�
g00

g
þ g0h0

2gh

�
¼ 0; ðA1Þ

f00

2f
þ g00

g
þ g0f0

gf
−

g02

4g2
−
A02
3

4h
þ 1

2
ϕ02 þm2ϕ2

2f
−
q2A2

3ϕ
2

2hf
þ λϕ4

4f
−
6

f
¼ 0; ðA2Þ

1

2
ϕ02 þ A02

3

4h
−
�

g0

2gf
þ h0

4hf

�
f0 −

g0h0

2gh
−

g02

4g2
−
�
m2 þ q2A2

3

h
þ λϕ2

2

�
ϕ2

2f
þ 6

f
¼ 0; ðA3Þ

ϕ00 þ ϕ0
�
g0

g
þ h0

2h
þ f0

f

�
−
λϕ3

f
−
�
q2A2

3

hf
þm2

f

�
ϕ ¼ 0; ðA4Þ

A00
3 þ A0

3

�
g0

g
−

h0

2h
þ f0

f

�
−
2q2A3ϕ

2

f
¼ 0: ðA5Þ

At the UV boundary (r ¼ ∞) the asymptotic expansion of the bulk fields is given by

f ¼ r2 þ…; g ¼ r2 þ…; h ¼ r2 þ…; A3 ¼ bþ…; ϕ ¼ M
r
þ…: ðA6Þ

Our theory has the following three scaling symmetries:

ðx1; x2Þ → aðx1; x2Þ; g → ga−2; x3 → ax3; h → a−2h; A3 → A3a−1; ðA7Þ

r → ar; ðt; x1; x2; x3Þ → ðt; x1; x2; x3Þ=a; ðf; g; hÞ → a2ðf; g; hÞ; A3 → aA3; ðA8Þ

which are used to rescale the coefficients of the three different metric functions ðf; g; hÞ at the boundary to unity. This is
why the boundary field theory depends only on the parameters T, b, M which can be reorganized into two dimensionless
quantities T̄ ≡ T=b and M̄ ≡M=b.
Approaching the black-brane horizon (rh), the expansion for the bulk fields can be written as

f ≃ 4πTðr − rhÞ þ f2ðr − rhÞ; g ≃ g1 þ g2ðr − rhÞ; h ≃ h1 þ h2ðr − rhÞ;
A3 ≃ A3

ð1Þ þ A3
ð2Þðr − rhÞ; rϕ ≃ ϕ1 þ ϕ2ðr − rhÞ: ðA9Þ

Here, Að1Þ
3 and ϕ1 are the only free parameters, controlled by the boundary data T̄ and M̄. In summary, we can reduce the

number of independent horizon parameters ðT; rh; g1; h1; A3
ð1Þ;ϕ1Þ to ðT; A3

ð1Þ;ϕ1Þ using the above scaling symmetries. At
the conformal boundary, these parameters can be mapped into the triplet ðT;M; bÞ. Following this procedure, we
numerically obtain our background using the shooting method with respect to parameters T̄ and M̄.
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APPENDIX B: SHORT DERIVATION OF THE
ENTANGLEMENT ENTROPY

Let us provide a walk-through for the entanglement
formulas in generality for the anisotropic theories. We
consider a 5-dim holographic spacetime

ds2 ¼ −g00ðuÞdt2 þ g11ðuÞdx21 þ g22ðuÞdx22
þ g33ðuÞdx23 þ grrðuÞdu2; ðB1Þ

with a boundary, say, at u ¼ 0. We consider the subsystem
cut along the x1 direction and of length l1. We follow the
notation of [54], while further details of the effective
dimensions of the entanglement entropy in anisotropic
theories are given in [25]. The minimal surface ending on
the boundary of the subsystem is given by

S ¼ H2H3

Z
l1

0

dσA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ grruðσÞ02

q
; ðB2Þ

where A ≔ ffiffiffiffiffiffiffiffiffiffiffiffi
g22g33

p
and H is the infrared regulator. The

equations of motion read

u02 ¼ g11ðA2g11 − c2Þ
c2grr

; ðB3Þ

where c ¼ Aðu�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11ðu�Þ

p
with u� the turning point. The

length of the entangling region is related to the turning
point of the surface by

l1 ¼ 2

Z
u�

0

du
c2grr

g11ðA2g11 − c2Þ ; ðB4Þ

and the entanglement is given by

S ¼ 2H2H3

Z
u�

0

drA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr

1 − c2

A2g11

s
: ðB5Þ
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