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We use holographic correspondence to study transport of the conformal plasma in R2;1 in a phase with a
spontaneously broken global Z2 symmetry. The dual black branes in a Poincare patch of asymptotically
AdS4 have “hair”—a condensate of the order parameter for the broken symmetry. This hair affects both the
hydrodynamic and the nonhydrodynamic quasinormal modes of the black branes. Nonetheless, the shear
viscosity of the conformal order is universal, the bulk viscosity vanishes and the speed of the sound waves
is c2s ¼ 1

2
. We compute the low-lying spectrum of the nonhydrodynamic modes. We identify a quasinormal

mode associated with the fluctuations of the Z2 order parameter with the positive imaginary part. The
presence of this mode in the spectrum renders the holographic conformal order perturbatively unstable.
Correspondingly, the dual black branes violate the correlated stability conjecture.

DOI: 10.1103/PhysRevD.103.026008

I. INTRODUCTION AND SUMMARY

Following the general suggestion of [1], we proposed
in [2]1 a holographic model for a conformal order2: a
thermal phase of a conformal gauge theory in R2;1 with a
nonzero expectation value of an irrelevant, dimension
Δ ¼ 4 operator O, spontaneously breaking the global Z2

symmetry. Specifically, for a model SCFTψ
3

in [2] two
distinct thermal phases were identified:

F̂
ðπTÞ3 ≡

384

c
F

ðπTÞ3 ¼ −
64

27

×

�
1; hOi ¼ 0 ⇒ Z2 is unbroken;

κðbÞ; hOðbÞi ≠ 0 ⇒ Z2 is broken;
ð1Þ

where F is the free energy density, T is the temperature,
and c is the central charge. The constant 0 ≤ κ ≤ 1 and the
thermal expectation value of O (in the symmetry breaking
phase) depends on the parameter b of the dual gravitational
action3:

S ¼ c
384

Z
dx4

ffiffiffiffiffiffi
−γ

p �
Rþ 6 −

1

2
ð∇χÞ2 − 2χ2 − bχ4

�
: ð2Þ

The symmetry broken phase exists only b < bcrit;0 ≡ − 3
2
.

Note that since the specific heat density cv is

cv ≡ −T
�∂2F
∂T2

�
v
¼ cπ3T2

27

×

�
1; Z2 is unbroken;

κðbÞ ≥ 0; Z2 is broken;
ð3Þ

it is positive, irrespectively whether or not the global
symmetry Z2 is broken.
In this paper we continue the study of the model (2).

First, we point out that there are multiple branches, indexed
by i ¼ 0; 1;…, of the “hair”—the thermal expectation
values of O. In the holographic dual, the index is related
to the number of zeros in the radial profile of the holo-
graphic bulk scalar χ. For two branches with i < j,

κiðbÞ > κjðbÞ; b ∈ ð−∞; bcrit;j < bcrit;i�; ð4Þ

i.e., the branches with the higher index are increasingly less
thermodynamically favored—all the symmetry breaking
phases have a higher free energy density than that of the
Z2-symmetric phase. We find that the thermodynamics of
all the symmetry broken phases resemble that of the
symmetric phase in the limit b → −∞,

ð1 − κiðbÞÞ ∝ þ 1

ð−bÞ ; hOii ∝
1ffiffiffiffiffiffi
−b

p : ð5Þ
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1See also [3].
2See [4] for related nonconformal models.
3We set the radius of an asymptotic AdS4 geometry to unity.
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Notice that the gravitational potential for χ

V ≡ 2χ2 þ bχ4 ð6Þ

is unbounded from below as b < 0, (naively) implying that
the exotic features of the model (2) are due to this
“sickness.” This is not the case: given (5), it is clear that
a simple deformation of the scalar potential, i.e.,

V → Vg ¼ V þ gχ6; g > 0; ð7Þ

makes it bounded, while not affecting the thermodynamics
of the model, at least as b → −∞:

V ∝
1

b
; V − Vg ¼ gχ6 ∝

1

b3
: ð8Þ

We explicitly demonstrate that the symmetry breaking
phases at finite b are robust against the deformation (7),
for small enough g > 0.
We study the coupled metric-scalar fluctuations in the

symmetry broken phases of (2) and compute the spectrum
of the quasinormal modes (QNMs) of the black branes dual
to the conformal order on the lowest branch.4 As expected
from the conformal theory, irrespectively of the symmetry
breaking, we find

c2s ¼
1

2
; ζ ¼ 0; ð9Þ

for the speed of the sound waves cs and the bulk viscosity ζ
correspondingly. From the dispersion relation of the hydro-
dynamic mode in the shear channel [5] we recover the
universal result [6–8] for the ratio of the shear viscosity η to
the entropy density s

η

s
¼ 1

4π
: ð10Þ

Besides the sound wave—a hydrodynamic QNM in the
scalar channel [5]—there are two branches of the non-
hydrodynamic modes coming from the mixing of the
helicity zero metric fluctuations in the equilibrium black
brane geometry and the gravitational bulk scalar field,
whose boundary values determine the order parameter for
theZ2 symmetry breaking. There are two purely dissipative
nonhydrodynamic modes5:

Re½w� ¼ 0; Im½w� ≠ 0: ð11Þ

One of these QNMs, wuðqÞ, at least when the spatial
momentum q is below some critical value qc ¼ qcðbÞ, has a
positive imaginary part, i.e.,

Re½wuðqÞ� ¼ 0; Im½wuðqÞ� ¼
�≥0; q ≤ qc;

< 0; q > qc:
ð12Þ

We further show that

Im½wuðq ¼ 0Þ� > 0; as b ∈ ð−∞; bcrit;0Þ; ð13Þ

approaching zero in the limit b → bcrit;0. The presence of
this mode in the spectrum implies that the translational
invariant horizon of the black brane dual to a conformal
order is perturbatively unstable to clumping. We expect6

that the dynamical evolution of the perturbed conformal
order will result in a destruction of the ordered phase, with
the Z2 symmetric equilibrium phase being the attractor. We
show that the unstable QNM is present on the higher
branches of the conformal order as well.
Note that the perturbative instability of the holographic

conformal order proposed in [2] implies that the correlated
stability conjecture of [9,10] for the dual black branes is
violated: while these black branes have positive specific
heat, they are dynamically unstable.7 We stress that the
positive specific heat is not the same as the thermodynamic
stability, tacitly assumed in [9]—the latter concept typically
applies to the thermodynamically dominant phases (having
the minimal free energy density in the canonical ensemble),
which is not necessarily the case. Indeed, unlike the ordered
thermodynamically stable phases discovered in [1], the
holographic conformal ordered phases in [2] are metasta-
ble, see (1).
A challenge remains to find an example of a stable

holographic thermal conformal order—a phase of the black
branes which is both the dominant one in the canonical
ensemble, and is perturbatively stable with respect to the
linearized fluctuations.

II. HOLOGRAPHIC THERMAL
CONFORMAL ORDER

In this section we review the construction of the holo-
graphic conformal order proposed in [2] and discuss two
generalizations:

(i) we show that there are multiple branches of the
conformal order;

(ii) we show that the effective scalar potential in the
gravitational dual can be made bounded, without
affecting the existence of the ordered phases.4We expect that the conclusions apply for the i > 0 branches of

the conformal order as well.
5We take the space-time dependence of the QNM fluctuations

to be ∝ e−iωtþik⃗ x⃗ and introduce w ¼ ω
4πT and q ¼ jk⃗j

4πT.

6Work in progress.
7See [11,12] for other examples of the CSC violation.

ALEX BUCHEL PHYS. REV. D 103, 026008 (2021)

026008-2



A. Branches of the conformal order

The starting point is the effective action (2). The thermal
ordered states are dual to black brane solutions

ds24 ¼ −c21dt2 þ c22½dx21 þ dx22� þ c23dr
2; ð14Þ

where all the metric warp factors ci as well as the bulk
scalar χ are functions of the radial coordinate r,

r ∈ ½r0;þ∞Þ; ð15Þ

where r0 is a location of a regular Schwarzschild
horizon, and r → þ∞ is the asymptotic AdS4 boundary.
Introducing a new radial coordinate

x≡ r0
r
; x ∈ ð0; 1�; ð16Þ

and denoting

c1 ¼ r

�
1−

r30
r3

�
1=2

a1; c2 ¼ r; c3 ¼
1

r

�
1−

r30
r3

�−1=2
a3;

ð17Þ

we obtain the following system of ODEs (in a radial
coordinate x, 0 ¼ d

dx):

0 ¼ a01 −
3a1ða23 − 1Þ
2xðx3 − 1Þ þ 1

8
xa1ðχ0Þ2 þ

a23a1V
4xðx3 − 1Þ ; ð18Þ

0 ¼ a03 þ
1

8
xa3ðχ0Þ2 þ

3a3ða23 − 1Þ
2xðx3 − 1Þ −

a33V
4xðx3 − 1Þ ; ð19Þ

0 ¼ χ00 þ
�
a01
a1

−
a03
a3

þ x3 þ 2

xðx3 − 1Þ
�
χ0 þ ∂Va23

ðx3 − 1Þx2 ; ð20Þ

where the scalar potential V is given by (6), and ∂V ≡ δV
δχ .

Notice that r0 is completely scaled out from all the
equations of motion. Equations (18)–(20) have to be solved
subject to the following asymptotics:

(i) in the UV, i.e., as x → 0þ,

a1 ¼ 1þ a1;3x3 þOðx6Þ;
a3 ¼ 1 − a1;3x3 þOðx6Þ;
χ ¼ χ4x4 þOðx7Þ; ð21Þ

(ii) in the IR, i.e., as y≡ 1 − x → 0þ,

a1 ¼ ah1;0 þOðyÞ; a3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

6 − Vðch0Þ

s
þOðyÞ;

χ ¼ ch0 þOðyÞ; ð22Þ

where Vðch0Þ implies that the scalar potential (6) is
evaluated on the horizon value of the bulk scalar χ.

In total, given b, the asymptotic expansions are specified
by four parameters

fa1;3; χ4; ah1;0; ch0g; ð23Þ

which is the correct number of parameters necessary to
provide a solution to a system of a single second-order and
two first-order equations, 1 × 2þ 2 × 1 ¼ 4. It is straight-
forward to extract the thermodynamics of the resulting
black brane:

F ¼ −
c

192
ðπTÞ3κ; E ¼ −2F ;

hOi
cT4

∝ hÔi ¼ χ4;

T ¼ r0
8π

ah1;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − 6Vðch0Þ

q
; κ ¼ 36

ðah1;0Þ2ð36 − 6Vðch0ÞÞ
;

ð24Þ

for the free energy density F, the energy density E, the
temperature T, and the thermal expectation value of the
conformal order hÔi. We explicitly indicated the r0
dependence—all the parameters in (23), as well as κ and
Vðch0Þ depend only on b.
From (24), the speed of the sound waves in the holo-

graphic conformal order plasma is

c2s ¼ −
∂F
∂E ¼ 1

2
: ð25Þ

Additionally, since that temperature T depends on r0, and
the horizon value of the scalar is r0 independent,

d
dT

ðχðxÞjx→1−
Þ ¼ d

dT
ðch0Þ ¼ 0; ð26Þ

implying that the bulk viscosity of the corresponding
plasma must vanish8 [15]

ζ

T2
¼ 0: ð27Þ

In Sec. III Awe reproduce (25) and (27) from the dispersion
relation of the hydrodynamic QNMs.
Note that the “disordered phase” corresponds to identical

vanishing of the bulk scalar field, in this case

χ4 ¼ ch0 ¼ 0; ah1;0 ¼ 1 ⇒ κdisordered ¼ 1; hÔi ¼ 0:

ð28Þ

8Eling-Oz formula implies that the holographic plasma bulk
viscosity is proportional to the square of the derivative of the bulk
scalar field(s) evaluated at the horizon with respect to the
temperature, keeping all the mass parameters fixed [13,14].
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To understand the ordered phases it is the easiest to
consider the b → −∞ limit. From (18)–(20) it is straight-
forward to see that

χðxÞ ¼
X∞
n¼1

f½2n−1�ðxÞ
ð−bÞn−1=2 ; a1ðxÞ ¼ 1þ

X∞
n¼1

a1;½n�ðxÞ
ð−bÞn ;

a3ðxÞ ¼ 1þ
X∞
n¼1

a3;½n�ðxÞ
ð−bÞn ; ð29Þ

and correspondingly [from (21) a1;3 ≡ −a3;3]

a3;3 ¼
X∞
n¼1

a3;½n�;3
ð−bÞn ; χ4 ¼

X∞
n¼1

f½2n−1�;4
ð−bÞn−1=2 ;

ch0 ¼
X∞
n¼1

fh½2n−1�;0
ð−bÞn−1=2 ; ah1;0 ¼ 1þ

X∞
n¼1

ah
1;½n�;0

ð−bÞn ; ð30Þ

i.e., in this limit the “hairy” black branes approach the
standard AdS4-Schwarzschild solution.9 To leading order,
i.e., n ¼ 1, we have

0 ¼ f00½1� þ
x3 þ 2

xðx3 − 1Þ f
0
½1� −

4ðf2½1� − 1Þf½1�
x2ðx3 − 1Þ ; ð31Þ

0 ¼ a0
3;½1� þ

3a3;½1�
xðx3 − 1Þ þ

x
8
ðf0½1�Þ2 þ

f2½1�ðf2½1� − 2Þ
4xðx3 − 1Þ ; ð32Þ

0 ¼ a0
1;½1� −

3a3;½1�
xðx3 − 1Þ þ

x
8
ðf0½1�Þ2 −

f2½1�ðf2½1� − 2Þ
4xðx3 − 1Þ : ð33Þ

There is a discrete set of solutions of (31) subject to the
boundary conditions inherited from (21) and (22), charac-
terized by the number of zeroes in the function f½1�. In the
left panel of Fig. 1 we present

f½1�ðxÞ≡ lim
b→−∞

ð−bÞ1=2χðxÞ; ð34Þ

with i ¼ 0, 1, 2 (green, orange, brown curves correspond-
ingly) zeros. The discrete set of solutions for (31) leads to
discrete sets of a3;½1� and a1;½1�. We just constructed the
lowest10 (i ¼ 0) and the higher (i ¼ 1, 2) overtones of the
holographic conformal order:

Number of zeroes f1;½4� fh½1�;0 a3;½1�;3 ah
1;½1�;0

0 �0.914 �3.114 0.644 −4.928
1 �7.875 ∓ 6.789 6.899 −155.534
2 �30.546 �11.233 27.835 −1249.88

where � for the parameters specifying f½1� reflects the
spontaneously broken global Z2 symmetry. To leading
order as b → −∞ [see (24)]

κ ¼ 1þ
2ah

1;½1�;0� þ 1
6
ðfh½1�;0Þ4 − 1

3
ðfh½1�;0Þ2Þ

b
þO

�
1

b2

�
;

ð35Þ

which is represented by the dashed green/orange/brown
(for i ¼ 0, 1, 2 correspondingly) curves in the right panel of

FIG. 1. Left: branches (“overtones”) of the holographic conformal order are characterized by the number of zeros of the gravitational
scalar dual to the order parameter. We plot the scalar profiles as b → −∞. The green/orange/brown profiles correspond to an index
i ¼ 0, 1, 2 branch/overtone. Right: κðbÞ characterizing the thermodynamics of the ordered phases [see Eq. (1)] for i ¼ 0, 1, 2 (solid blue/
red/black curves correspondingly). The dashed green/orange/brown curves represent the leading order b → −∞ approximation,
see Eq. (35).

9As we will see in Sec. III B, this is not the case for the
spectrum of the nonhydrodynamic QNMs: some of the QNMs of
the hairy black branes remain distinct from the AdS4-Schwarzs-
child black brane QNMs in the limit b → −∞. 10Only this overtone was discussed in [2].
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Fig. 1. Once the overtones of the conformal order are
constructed in the limit b → −∞, it is straightforward to
solve Eqs. (18)–(20) and extend the results for κi to finite
values of b. This is shown with the solid blue/red/black (for
i ¼ 0, 1, 2 correspondingly) curves in the right panel. For
each overtone of the conformal order there is a critical value
of b, i.e., bcrit;i, beyond which the overtone disappears from
the spectrum11:

i ¼ number of zeroes 0 1 2

bcrit;i −1.5 −11.258 −39.295

Note that

lim
b→bcrit;i

κiðbÞ ¼ 0; ð36Þ

and for each i < j,

1 > κiðbÞ > κjðbÞ and bcrit;i < bcrit;j: ð37Þ

Thus, all the ordered phases are subdominant (have the
higher free energy density) compared to the Z2-symmetric
phase, see (28). Additionally, the free energy density of the
conformal order overtones increases (at fixed b) with
its index.
Equilibrium thermal phases with or without the global

Z2 symmetry have positive specific heat. There is a latent
heat ΔE associated with the transitions between the
symmetry broken phases i < j, and the transitions to the
Z2 symmetric phase,

ΔEj→i ∝ þðκi − κjÞT3; ΔEi→disordered ∝ þð1 − κiÞT3;

ð38Þ

typically indicative of the first-order phase transition.
Rather, as we show in Sec. III B, each of the ordered
phases suffers the perturbative instability for any value of b
it exists. A natural guess is that the end point of the
dynamical evolution will bring us from the ordered phase to
a disordered, Z2-symmetric, phases. However, to confirm
this, a numerical simulation is necessary.12

B. Holographic conformal order with the
bounded gravitational potential

The gravitational potential for a scalar field dual to a
conformal order parameter is unbounded from below; see
(6) and note that the existence of the conformal order
requires b < − 3

2
. We used simple scaling arguments in

Sec. I to suggest that the conformal order exists once the
scalar potential is made bounded as in (7), at least for
sufficiently small g and in the limit b → −∞.
What happens at finite b? First, note that all the analyses

in Sec. II allow for a simple generalization as V is replaced
with Vg of (7)—see Eqs. (18)–(20) and (24). In the left
panel of Fig. 2 we show the results for the parameter κ
characterizing the thermodynamics of the lowest branch of
the conformal order [see (1)] evaluated at b ¼ −10 as a
function of g > 0. We find that the holographic conformal
order persists for

g ∈ ½0; gcritÞ; gcritjb¼−10 ≈ 4.2: ð39Þ

As g → gcrit, the order parameter jhÔij diverges, see the
right panel of Fig. 2.
It is clear that the conformal order constructed in Sec. II

is robust against the deformation of the bulk scalar potential
as in (7) for 0 ≤ g < gcritðbÞ since the basic equations
determining it, i.e., Eqs. (18)–(20) and (24), are analytic in
the limit g → 0þ.

FIG. 2. Left: κ parameter of the lowest branch of the conformal order at b ¼ −10 as a function of g, a deformation parameter bounding
the potential of the bulk scalar dual to the order parameter, see Eq. (7). Holographic conformal order persists for 0 ≤ g < gcrit ≈ 4.2.
Right: the corresponding dependence of the thermal order parameter hÔi. Note that the order parameter diverges as g → gcrtit.

11In all cases as b → bcrit;i the order parameter hÔii diverges,
see also [2].

12Another possibility is the evolution to a naked singularity in
a dual gravitational description, see [16,17].
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III. QNMS OF THE CONFORMAL ORDER

In this section we study the spectrum of the linearized
fluctuations about hairy black branes, dual to the conformal
order—the spectrum of the quasinormal modes [5]:

(i) In Sec. III A we consider the hydrodynamic modes,
i.e., QNMs such that wðqÞ → as q → 0. We confirm
the conformal speed of the sound waves (25), the
vanishing of the bulk viscosity (27), and the uni-
versality of the ratio of the shear viscosity to the
entropy density [6–8].

(ii) In Sec. III B we consider the spectrum of the
nonhydrodynamic modes. We discuss different
branches of the spectra and exhibit the QNM with
Im½w� > 0, for q ≤ qc, see Eq. (12). This mode
makes holographic conformal order of [2] perturba-
tively unstable. Its existence is yet another counter-
example of the correlated stability conjecture [9,10].

For the most part we focus on the QNM spectra of the
lowest branch of the conformal order with a dual gravi-
tational action (2). We discuss however the instability of the
higher overtones of the conformal order.
Consider fluctuations of the background geometry (14)

gμν → gμν þ hμν; χ → χ þ f: ð40Þ

For convenience, we partially fix the gauge by requiring

htr ¼ hxir ¼ hrr ¼ 0: ð41Þ
We orient the coordinate system in such a way that the x2
axis is directed along the spatial momentum, and assume
that all the fluctuations depend only on ðt; x2; rÞ, i.e., we
have aZ2 parity symmetry along the x1 axis. At a linearized
level, the following sets of fluctuations decouple from each
other

Z2 − even∶ fhtt; htx2 ; hx1x1 ; hx2x2 ; fg;
Z2 − odd∶ fhtx1 ; hx1x2g: ð42Þ

Let

htt ¼−e−iωtþikx2c1ðrÞ2Htt; hxixi ¼ e−iωtþikx2c2ðrÞ2Hxixi ;

htxi ¼ e−iωtþikx2c2ðrÞ2Htxi ; hx1x2 ¼ e−iωtþikx2c2ðrÞ2Hx1x2 ;

f¼ e−iωtþikx2F; ð43Þ

where fHtt;Htxi ; Hxixi ; Hx1x2 ; Fg are functions of the radial
coordinate only and ciðrÞ are defined in (17). Following
[5,18], we introduce fluctuations invariant under the
residual diffeomorphisms preserving (41):

(i) Z2-even, the sound channel,

ZH ≡ 4
k
ω
Htx2 þ 2Hx2x2 − 2Hx1x1

�
1 −

k2

ω2

ðc21Þ0
ðc22Þ0

�
− 2

k2

ω2

c21
c22

Htt;

ZF ≡ f −
χ0

ðln c22Þ0
Hx1x1 ; ð44Þ

(ii) Z2-odd, the shear channel,

Zs ≡ kHtx1 þ ωHx1x2 : ð45Þ

Using the radial coordinate (16), we find the following equations of motion: for the sound channel,

0 ¼ Z00
H þAHZ0

H þ BHZH þ CHZF; ð46Þ

0 ¼ Z00
F þAFZ0

F þ BFZ0
H þ CFZF þDFZH; ð47Þ

with

AH ¼ ða21ðαqÞ2x4ðx3 − 1Þ2ðχ0Þ4 þ a21ðαqÞ2x2ðx3 − 1Þða23Ṽ þ 6ð1 − x3ÞÞðχ0Þ2
− 2a43a

2
1ðαqÞ2Ṽ2 þ 8a23ða21ðαqÞ2ðx3 − 1Þ − 2ðαwÞ2ÞṼ − 8ðx3 − 1Þð5a21ðαqÞ2ðx3 − 1Þ

− 4ðαwÞ2ÞÞð2xðx3 − 1Þða21ðαqÞ2x2ðx3 − 1Þðχ0Þ2 þ 2a23a
2
1ðαqÞ2Ṽ þ 4ða21ðαqÞ2ðx3 − 1Þ

þ 4ðαwÞ2ÞÞÞ−1; ð48Þ
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BH ¼ ðαwÞ2ða41ðαqÞ2x6ðx3 − 1Þ3ðχ0Þ6 þ 4a41ðαqÞ2x4ðx3 − 1Þ2ða23Ṽ þ 5ð1 − x3ÞÞðχ0Þ4
þ 4a21ðαqÞ2x2ðx3 − 1Þða43a21Ṽ2 − 8a23a

2
1ðx3 − 1ÞṼ þ 4a23ðαwÞ2x2 þ 4a21ðx3 − 1Þða23ðαqÞ2

× x2 þ 3ðx3 − 1ÞÞÞðχ0Þ2 þ 16a43a
4
1ðαqÞ2ðx3 − 1ÞṼ2 þ 32a23a

2
1ðαqÞ2ða21ðx3 − 1Þða23ðαqÞ2x2

þ 6ð1 − x3ÞÞ þ a23ðαwÞ2x2ÞṼ þ 64a41ðαqÞ2ðx3 − 1Þ2ða23ðαqÞ2x2 þ 9ðx3 − 1ÞÞ
þ 320a21ðαqÞ2x2a23ðx3 − 1ÞðαwÞ2 þ 256a23ðαwÞ4x2Þð16a21ðx3 − 1Þ2ða21ðαqÞ2ðαwÞ2x4
× ðx3 − 1Þðχ0Þ2 þ 2x2ðαwÞ2ðαqÞ2a21a23Ṽ þ 4x2ðαwÞ2ða21ðαqÞ2ðx3 − 1Þ þ 4ðαwÞ2ÞÞÞ−1; ð49Þ

CH ¼ a21ðαqÞ2ððχ0Þ2x2ðx3 − 1Þ þ 2a23Ṽ þ 12ð1 − x3ÞÞððαwÞ2x3ðx3 − 1Þðχ0Þ3

þ 1

4
a21ðαqÞ2x2a23ðx3 − 1Þ∂Ṽðχ0Þ2 − 2ðx3 − 1Þð6xðαwÞ2 þ a23a

2
1ðαqÞ2xṼÞχ0 þ a23ða21ðαqÞ2

× ðx3 − 1Þ þ 4ðαwÞ2Þ∂Ṽ þ 1

2
a43a

2
1ðαqÞ2Ṽ∂ṼÞððx3 − 1Þx2ðαwÞ2ða21ðαqÞ2x2ðx3 − 1Þ

× ðχ0Þ2 þ 2a23a
2
1ðαqÞ2Ṽ þ 4a21ðαqÞ2ðx3 − 1Þ þ 16ðαwÞ2ÞÞ−1; ð50Þ

AF ¼ −
a23Ṽ þ 2ð1 − x3Þ

2ðx3 − 1Þx ; ð51Þ

BF ¼ 2a23ðαwÞ2ðχ0xṼ − 2∂ṼÞððx3 − 1Þxða21ðαqÞ2x2ðx3 − 1Þðχ0Þ2 þ 2a23a
2
1ðαqÞ2Ṽ

þ 4a21ðαqÞ2ðx3 − 1Þ þ 16ðαwÞ2ÞÞ−1; ð52Þ

CF ¼ −a23

�
1

2
a41ðαqÞ2x3ðx3 − 1Þ2∂Ṽðχ0Þ3 þ ð−4a21x2ðx3 − 1Þða21ðαqÞ2ðx3 − 1Þ þ ðαwÞ2Þ

× Ṽ − a41ðαqÞ2x2ðx3 − 1Þ2∂2Ṽ − a21ðαqÞ2x2ðx3 − 1Þða21ðx3 − 1ÞððαqÞ2x2 þ 4Þ
þ ðαwÞ2x2ÞÞðχ0Þ2 þ a21xðx3 − 1Þ∂Ṽða23a21ðαqÞ2Ṽ þ 10a21ðαqÞ2ðx3 − 1Þ þ 16ðαwÞ2Þχ0
− 2ða21ðx3 − 1Þ∂2Ṽ þ a21ðx3 − 1ÞððαqÞ2x2 þ 4Þ þ ðαwÞ2x2Þða23a21ðαqÞ2Ṽ þ 2a21ðαqÞ2

× ðx3 − 1Þ þ 8ðαwÞ2Þ
�
ððx3 − 1Þ2a21x2ða21ðαqÞ2x2ðx3 − 1Þðχ0Þ2 þ 2a23a

2
1ðαqÞ2Ṽ þ 4a21

× ðαqÞ2ðx3 − 1Þ þ 16ðαwÞ2ÞÞ−1; ð53Þ

DF ¼ a23ðαwÞ2ðxṼχ0 − 2∂ṼÞððχ0Þ2x2ðx3 − 1Þ þ 2a23Ṽ þ 12ð1 − x3ÞÞð4ðx3 − 1Þ2x2
× ða21ðαqÞ2x2ðx3 − 1Þðχ0Þ2 þ 2a23a

2
1ðαqÞ2Ṽ þ 4a21ðαqÞ2ðx3 − 1Þ þ 16ðαwÞ2ÞÞ−1; ð54Þ

where we introduced

Ṽ ¼ V − 6; ∂Ṽ ¼ δṼ
δχ

; ∂2Ṽ ¼ δ2Ṽ
δχ2

;

q ¼ k
4πT

¼ k
r0

1

α
; w ¼ ω

4πT
¼ ω

r0

1

α
; α ¼ ah1;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

3

2
Vðch0Þ

r
; ð55Þ

with V being the scalar potential (6); and for the shear channel,

0 ¼ Z00
s þAsZ0

s þ BsZs; ð56Þ

with

As ¼ ða21ðαqÞ2x2ðx3 − 1Þ2ðχ0Þ2 − 2a23ðαwÞ2Ṽ − ð4ðx3 − 1ÞÞð2a21ðαqÞ2ðx3 − 1Þ
− ðαwÞ2ÞÞð4xðx3 − 1Þða21ðαqÞ2ðx3 − 1Þ þ ðαwÞ2ÞÞ−1; ð57Þ
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Bs ¼
a23ða21ðαqÞ2ðx3 − 1Þ þ ðαwÞ2Þ

ðx3 − 1Þ2a21
: ð58Þ

A. Hydrodynamic modes and the transport

We begin with the q → 0 limit of the dispersion relation
for the shear and the sound channels QNM modes. From
the former, we extract the shear viscosity, and from the
latter, the speed of the sound waves and the bulk viscosity
of the holographic conformal order. We discuss the
dispersion relation w ¼ wðqÞ for the sound waves in
Sec. III A 3 for different values of b.

1. The shear viscosity

The shear mode dispersion relation in the limit q → 0
takes the form

w ¼ −i
4πη

s
q2 þOðq4Þ: ð59Þ

We now evaluate (59) in the holographic conformal order.
To this end, we set

Zs ¼ x3ð1 − xÞ−iwðZs;0 þ q2Zs;2 þOðq4ÞÞ;
w ¼ −iβq2 þOðq4Þ: ð60Þ

Using (56), we find

0 ¼ Z00
s;0 þ

x2ðχ0Þ2 þ 16

4x
Zs;0

0 þ 3

4
ðχ0Þ2Zs;0;

0 ¼ Z00
s;2 þ

x2ðχ0Þ2 þ 16

4x
Zs;2

0 þ 3

4
ðχ0Þ2Zs;2 þ Js;2; ð61Þ

where

Js;2 ¼ β

�
xβðχ0Þ2

4a21ðx3 − 1Þ þ
βa23Ṽ

2xðx3 − 1Þ2a21
−

3β

a21ðx3 − 1Þx −
2

x − 1

�
Zs;0

0 −
�
ðχ0Þ2

×
βða21xðx2 þ xþ 1Þ − 3βÞ

4ðx3 − 1Þa21
−

a23α
2

x3 − 1
þ ð3x − 4Þβ

xðx − 1Þ2 −
ð3a23Ṽ − 18ðx3 − 1ÞÞβ2

2ðx3 − 1Þ2a21x2
�
Zs;0: ð62Þ

Equations (61) have to be solved subject to the following boundary conditions:
In the UV, i.e., as x → 0þ,

Zs;0 ¼ 1þOðx8Þ; Zs;2 ¼ −βxþOðx2Þ: ð63Þ
In the IR, i.e., as y≡ 1 − x → 0þ,

Zs;0 ¼ zh0;0 þ zh0;1yþOðy2Þ; Zs;2 ¼ zh2;0 þ zh2;1yþOðy2Þ: ð64Þ

Given (60), these asymptotes reflect the incoming boundary conditions as the horizon, and the Dirichlet boundary
conditions at the asymptotic boundary [5].
Ultimately, we need to extract β ¼ βðbÞ. First, we need to solve numerically the first equation in (61), producing the

datasets fzh0;0ðbÞ; zh0;1ðbÞg. Remarkably, we do not need to solve for Zs;2: direct series expansion of the second equation in
(61) in the IR leads to

0 ¼ ð3ðah1;0Þ2zh0;0 − 3βzh0;0 þ βzh0;1Þβ
3ðah1;0Þ2

1

y2
þ 1

y

3ðah1;0Þ2zh0;0 − 3βzh0;0 þ βzh0;1
3ðch0Þ2Ṽðch0Þ2ðah1;0Þ2

ð16βððch0Þ2 − 6Þððch0Þ2 − 6 − 2Ṽðch0ÞÞ

− ð3ðah1;0Þ2ðch0Þ2 − βðch0Þ2 − 16βÞṼðch0Þ2Þ þOðy0Þ; ð65Þ
with the parameters of the asymptotic expansion of Zs;2 [see (64)] entering only in OðyÞ. Thus, we find

β ¼ 3ðah1;0Þ2zh0;0
3zh0;0 − zh0;1

: ð66Þ

In the disordered phase, see Eq. (28), the equation for Zs;0 is very simple:

χðxÞjdisordered ≡ 0 ⇒ Zs;0jdisordered ≡ 1 ⇒ βjdisordered ¼ 1; ð67Þ
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leading to the universal result for the ratio of the shear
viscosity to the entropy density [6]. In the symmetry broken
phase, from the perspective of the shear channel QNM
discussed here, we do not have a general proof why β must
be unity as well. In Fig. 3 we present β − 1 of (66), from the
numerical solution of the equation for Zs;0.
We would like to stress that we already know from [6]

that13 β ¼ 1; the analysis presented here should be viewed
as a highly nontrivial check on the QNM equations and our
numerical construction of the holographic order parameter.

2. The speed of the sound waves and the bulk viscosity

The sound mode dispersion relation in the limit q → 0
takes the form

w ¼ csq −
i
2

4πη

s

�
1þ ζ

η

�
q2 þOðq3Þ: ð68Þ

We now evaluate (68) in the holographic conformal order.
To this end, we set

ZH ¼ ð1 − xÞ−iwðZH;0 þ iqZH;1 þOðq2ÞÞ;
ZF ¼ ð1 − xÞ−iwðZF;0 þ iqZF;1 þOðq2ÞÞ;

w ¼ vffiffiffi
2

p q −
i
2
Γq2 þOðq3Þ: ð69Þ

It is straightforward to derive the corresponding equations
of motion from (46) and (47)—they are too long to be
presented here. We explain the boundary conditions only:
In the UV, i.e., as x → 0þ,

ZH;0 ¼ x3 þOðx6Þ; ZF;0 ¼ zf;0;0x4 þOðx7Þ;
ZH;1 ¼ −

vffiffiffi
2

p x4 þOðx5Þ; ZF;1 ¼ zf;1;0x4 þOðx5Þ:

ð70Þ

In the IR, i.e., as y≡ 1 − x → 0þ,

ZH;0 ¼ zhh;0;0 þOðyÞ; ZF;0 ¼ zhf;0;0 þOðyÞ;
ZH;1 ¼ zhh;1;0 þOðyÞ; ZF;1 ¼ zhf;1;0 þOðyÞ: ð71Þ

Given (69), these asymptotes reflect the incoming boun-
dary conditions as the horizon, and the Dirichlet boundary
conditions at the asymptotic boundary [5].
Numerically solving the equations for fZH;0; ZF;0;

ZH;1; ZF;1g, subject to the boundary conditions (70) and
(71), we extract

1 − 2c2s ¼ 1 − v2 and
ζ

η
¼ Γ − 1; ð72Þ

where we used the universal result for the ratio of the shear
viscosity to the entropy density [6]. These results are
presented in Fig. 4. As expected, the transport in the
ordered phase is conformal.

3. Dispersion of the sound waves in holographic
conformal order

We now present results for the dispersion relation of the
sound waves at finite q in holographic conformal order.
We set

wðqÞ ¼ wrðqÞ þ iwiðqÞ; with lim
q→0

wðqÞ ¼ 0;

ZH ¼ ð1 − xÞ−iwðZH;r þ iZH;iÞ;
ZF ¼ ð1 − xÞ−iwðZF;r þ iZF;iÞ; ð73Þ

and obtain from (46) and (47) equations14 for
fZH;r; ZH;i; ZF;r; ZF;ig. These equations have to be solved
subject to the boundary conditions:
In the UV, i.e., as x → 0þ,

ZH;r ¼ x3 þOðx4Þ; ZH;i ¼ −wrx4 þOðx5Þ;
ZF;r ¼ zf;r;0x4 þOðx5Þ; ZF;i ¼ zf;i;0x4 þOðx5Þ:

ð74Þ

In the IR, i.e., as y≡ 1 − x → 0þ,

ZH;r ¼ zhh;r;0 þOðyÞ; ZH;i ¼ zhh;i;0 þOðyÞ;
ZF;r ¼ zhf;r;0 þOðyÞ; ZF;i ¼ zhf;i;0 þOðyÞ: ð75Þ

Given (73), these asymptotes reflect the incoming boun-
dary conditions as the horizon and the Dirichlet boundary
conditions at the asymptotic boundary [5].
In Figs. 5 and 6 we present results for wr ≡ Re½w� and

wi ≡ Im½w� of the sound mode in holographic conformal

FIG. 3. The ratio of the shear viscosity to the entropy density in
the holographic conformal order as a function of b obtained from
the analysis of the shear channel QNMs.

13The universality of the shear viscosity in the holographic
plasma was never proven from the perspective of the shear
channel QNMs dispersion relation. 14The equations are too long to be presented here.
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order at b ¼ f−10;−5;−4;−3;−2g [solid (grey, blue,
magenta, green, orange) curves correspondingly]. The
dashed red curve represents the dispersion relation for
the disordered phase, also in the limit b → −∞; see
Sec. II A. The dashed black lines represent the hydro-
dynamic approximation

lim
q→0

wrðqÞ
q

¼ 1ffiffiffi
2

p ; lim
q→0

wiðqÞ
q2

¼ −
1

2
;

and the large q limit,

lim
q→∞

wrðqÞ
q

¼ 1:

FIG. 5. Re½w� of the sound waves dispersion relation in the disordered (dashed red curve) and ordered phases (solid curves) for select
values of b; see text. The dashed black lines indicate the hydrodynamic q → 0 and the q → ∞ limits.

FIG. 4. The speed of the sound waves (left) and the bulk viscosity (right) of the holographic conformal order as a function of b
obtained from the analysis of the sound channel QNMs.

FIG. 6. Im½w� of the sound waves dispersion relation in the disordered (dashed red curve) and ordered phases (solid curves) for select
values of b; see text. The dashed black line indicates the hydrodynamic q → 0 limit.
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There is a noticeable deviation in the sound QNM mode
dispersion between the ordered and the disordered phases
for b≳ −5; this is a reflection of the fact that in this regime
some nonhydrodynamic modes become light; see Fig. 9.

B. Nonhydrodynamic QNMs and the instability

In this section we discuss the spectrum of low-lying
nonhydrodynamic QNMs. We consider only the nonhy-
drodynamic modes in the sound channel. We identify the
QNMwith Im½wu� > 0, see (12), rendering the holographic
conformal order discussed in this paper unstable. This
mode is present in the spectrum for all values of b,
whenever the conformal order is present. We explain
why this mode is present in the ordered phases in the
limit15 b → −∞, and is absent in the disordered phase.

To begin, we set q ¼ 0. There are two distinct branches
of the sound channel QNMs: we call them BRmetric
and BRhair.
BRmetric branch of the sound channel QNMs.—Notice

that, see (50),

CHjq¼0 ¼ 0; ð76Þ

which decouples ZH and ZF fluctuations. On this branch,
the spectrum is completely determined by the equation
for ZH fluctuations, even though ZF fluctuations are
sourced by the former ones: BF ≠ 0 and DF ≠ 0
in (47). Using the decomposition as in (73), but for
limq→0wðqÞ ≠ 0, we find

0 ¼ Z00
H;r þ

2ðx2 þ xþ 1Þð2wixþ x − 1Þ − a23Ṽ
2ðx3 − 1Þx Z0

H;r þ
2wr

x − 1
Z0
H;i −

1

2xa21ðx3 − 1Þ2
× ð2a23xðw2

i −w2
rÞα2 þ a21ðx2 þ xþ 1Þða23Ṽwi − 2ðx2 þ xþ 1Þððw2

i −w2
rÞx −wiÞÞÞ

× ZH;r −
wr

2xa21ðx3 − 1Þ2 ða
2
3a

2
1ðx2 þ xþ 1ÞṼ þ 4a23wixα2 − 2a21ðx2 þ xþ 1Þ2ð2wix

− 1ÞÞZH;i; ð77Þ

0 ¼ Z00
H;i −

a23Ṽ − 2ðx2 þ xþ 1Þð2wixþ x − 1Þ
2ðx3 − 1Þx Z0

H;i −
2wr

x − 1
Z0
H;r −

1

2xa21ðx3 − 1Þ2
× ða21a23wiðx2 þ xþ 1ÞṼ þ 2a23xðw2

i −w2
rÞα2 − 2a21ðx2 þ xþ 1Þ2ððw2

i −w2
rÞx −wiÞÞ

× ZH;i þ
wr

2xa21ðx3 − 1Þ2 ða
2
1a

2
3ðx2 þ xþ 1ÞṼ þ 4a23wixα2 − 2a21ðx2 þ xþ 1Þ2ð2wix − 1ÞÞZH;r: ð78Þ

The boundary conditions are as in the first lines of Eqs. (74)
and (75). Note that the limit b → −∞ is trivial here [see
(55) and (29)]:

Ṽ → −6; a1 → 1; a3 → 1; α → 3; ð79Þ

precisely reproducing the equations for the q ¼ 0 non-
hydrodynamic QNMs of the AdS4 Schwarzschild black
brane—there is no distinction between the ordered and the
disordered QNMs in this limit. We present the spectrum of
the quasinormal modes on this branch for b ¼ −4 as blue
dots in Fig. 7.
BRhair branch of the sound channel QNMs.—Setting

identically ZH ≡ 0, in addition to q ¼ 0, we satisfy the
QNM equation (46). Using the decomposition as in (73)
we find

FIG. 7. Spectrum of low-lying QNMs in the ordered phase at
b ¼ −4. There are two branches BRmetric (blue dots) and BRhair
(black dots). The QNMs on the former branch reproduce the
QNMs of the AdS4-Schwarzschild black brane in the limit
b → −∞, while those on the BRhair branch remain distinct in
the limit. QNMs on the BRIm

hair sub-branch of the BRhair branch
are nonpropagating: Re½w� ¼ 0. There is a single dissipative
mode (a green dot) and the unstable mode (the red dot).

15Recall that in this limit there is no distinction between the
ordered and the disordered phases thermodynamics.
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0 ¼ Z00
F;r −

a23Ṽ − 2ðx2 þ xþ 1Þð2wixþ x − 1Þ
2ðx3 − 1Þx Z0

F;r þ
2wr

x − 1
Z0
F;i þ

1

4a21x
2ðx3 − 1Þ2

× ð4a23a21ðx3 − 1Þ∂2Ṽ − 4χ0a23a
2
1xðx3 − 1Þ∂Ṽ þ a23a

2
1xðx2 þ xþ 1Þððχ0Þ2xðx − 1Þ

− 2wiÞṼ − 4a23x
2ðw2

i −w2
rÞα2 þ 4a21ðx2 þ xþ 1Þð4a23ðx − 1Þ þ xðx2 þ xþ 1Þ

× ððw2
i −w2

rÞx −wiÞÞÞZF;r −
wr

2xa21ðx3 − 1Þ2 ða
2
1a

2
3ðx2 þ xþ 1ÞṼ þ 4a23wixα2

− 2a21ðx2 þ xþ 1Þ2ð2wix − 1ÞÞZF;i; ð80Þ

0 ¼Z00
F;i −

a23Ṽ − 2ðx2 þ xþ 1Þð2wixþ x − 1Þ
2xðx3 − 1Þ Z0

F;i −
2wr

x − 1
Z0
F;r þ

1

4a21x
2ðx3 − 1Þ2

× ð4a23a21ðx3 − 1Þ∂2Ṽ − 4χ0a23a
2
1xðx3 − 1Þ∂Ṽ − 4a23x

2ðw2
i −w2

rÞα2 þ a21ðx2 þ xþ 1Þ
× ða23Ṽxðχ0Þ2xðx − 1Þ − 2wiÞ þ 16a23ðx − 1Þ þ 4xðx2 þ xþ 1Þððw2

i −w2
rÞx −wiÞÞZF;i

þ wr

2xa21ðx3 − 1Þ2 ða
2
1a

2
3ðx2 þ xþ 1ÞṼ þ 4a23wixα2 − 2a21ðx2 þ xþ 1Þ2ð2wix − 1ÞÞZF;r: ð81Þ

The boundary conditions are

ZF;r ¼ x4 þOðx5Þ; ZF;i ¼ −wrx5 þOðx6Þ; ð82Þ

as x → 0þ, and

ZF;r ¼ zhf;r;0 þOðyÞ; ZF;i ¼ zhf;i;0 þOðyÞ; ð83Þ

as y≡ 1 − x → 0þ. Now, there is a clear distinction between the ordered and the disordered phases, even in the limit b → −∞.
Indeed, the QNM equations (80) and (81) contain ∂2Ṽ (set in bold), and

lim
b→−∞

∂2Ṽ ¼ lim
b→−∞

ð4þ 12bχ2Þ ¼ 4 − 12ðf½1�ðxÞÞ2; ð84Þ

where we used (29). In the ordered phase f½1�ðxÞ is a nontrivial function, see Fig. 1, while in the disordered phase it vanishes
identically. We present the spectrum of the quasinormal modes on this branch for b ¼ −4 as black dots in Fig. 7.
There is a nonpropagating subbranch of the BRhair branch; we call it BRIm

hair. The QNM equation of motion on this
subbranch is a consistent truncation of Eqs. (80) and (81) with

wr ¼ 0; ZF;i ≡ 0; ð85Þ

resulting in

0 ¼ Z00
F;r −

a23Ṽ − 2ðx2 þ xþ 1Þð2wixþ x − 1Þ
2ðx3 − 1Þx Z0

F;r þ
2wr

x − 1
Z0
F;i þ

1

4a21x
2ðx3 − 1Þ2

× ð4a23a21ðx3 − 1Þ∂2Ṽ − 4χ0a23a
2
1xðx3 − 1Þ∂Ṽ þ a23a

2
1xðx2 þ xþ 1Þððχ0Þ2xðx − 1Þ

− 2wiÞṼ − 4a23x
2ðw2

i −w2
rÞα2 þ 4a21ðx2 þ xþ 1Þð4a23ðx − 1Þ þ xðx2 þ xþ 1Þ

× ððw2
i −w2

rÞx −wiÞÞÞZF;r −
wr

2xa21ðx3 − 1Þ2 ða
2
1a

2
3ðx2 þ xþ 1ÞṼ þ 4a23wixα2

− 2a21ðx2 þ xþ 1Þ2ð2wix − 1ÞÞZF;i: ð86Þ

Solving (86) with the boundary conditions for ZF;r as in (82) and (83), we find two quasinormal modes: one with
wi ¼ Im½w� < 0 and the other one with wi ¼ Im½w� > 0—these are (correspondingly) the green and the red dots presented
for b ¼ −4 in Fig. 7. The red dot QNM is what we called wu in Sec. I; it is signaling perturbative instability of the hairy
black brane horizon, dual to a holographic conformal order.
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In the rest of this section we focus on the BRIm
hair branch. First, we identify the BRIm

hair branch at q ≠ 0. Using the
decomposition (73), we find that the truncation

wr ¼ 0; ZF;i ≡ 0; ZHi
≡ 0 ð87Þ

is a consistent one, even for q ≠ 0:

0 ¼ Z00
F;r þAIm

F Z0
F;r þ BIm

F Z0
H;r þ CImF ZF;r þDIm

F ZH;r;

0 ¼ Z00
H;r þAIm

H Z0
H;r þ BIm

H ZH;r þ CImH ZF;r; ð88Þ

with

AIm
F ¼ −

a23Ṽ − 2ðx2 þ xþ 1Þð2wixþ x − 1Þ
2ðx3 − 1Þx ; ð89Þ

BIm
F ¼ −

2a23w
2
i ðχ0xṼ − 2∂ṼÞ

ða21q2x2ðχ0Þ2ðx3 − 1Þ þ 2a21q
2ða23Ṽ þ 2x3 − 2Þ − 16w2

i Þðx3 − 1Þx ; ð90Þ

CImF ¼ −
1

2
ða23a41∂Ṽq2x3ðx3 − 1Þ2ðχ0Þ3 þ a21x

2ðx3 − 1Þð−2a23a21q2ðx3 − 1Þ∂2Ṽ þ a23ða21q2

× ðx2 þ xþ 1Þðwix − 8xþ 8Þ þ 8w2
i ÞṼ − 2q2a23x

2ða21q2ðx3 − 1Þ −w2
i Þα2 − 2a21q

2

× ðx2 þ xþ 1Þðxwiðx2 þ xþ 1Þðwix − 1Þ þ 4a23ðx − 1ÞÞÞðχ0Þ2 þ 2a23a
2
1∂Ṽxðx3 − 1Þ

× ða21q2ða23Ṽ þ 10x3 − 10Þ − 16w2
i Þχ0 − 4a23a

2
1ðx3 − 1Þða21q2ða23Ṽ þ 2x3 − 2Þ − 8w2

i Þ
× ∂2Ṽ − 4a23x

2ða21q2ðx3 − 1Þ −w2
i Þða21q2ða23Ṽ þ 2x3 − 2Þ − 8w2

i Þα2 − 4a21a
2
3

× ðx2 þ xþ 1Þða21q2ðx2wiðx2 þ xþ 1Þðwi − 1Þ þ 4a23ðx − 1ÞÞ þ 4w3
i xÞṼ þ 2a41a

4
3q

2wi

× xðx2 þ xþ 1ÞṼ2 − 8a21ðx2 þ xþ 1Þðxwiðx2 þ xþ 1Þðwix − 1Þ þ 4a23ðx − 1ÞÞða21q2
× ðx3 − 1Þ − 4w2

i ÞÞða21x2ðx3 − 1Þ2ða21q2x2ðχ0Þ2ðx3 − 1Þ þ 2a21q
2ða23Ṽ þ 2x3 − 2Þ − 16w2

i ÞÞ−1; ð91Þ

DIm
F ¼ 1

4
ððχ0Þ2x2ðx3 − 1Þ þ 2a23Ṽ þ 4ðx2 þ xþ 1Þð2wix − 3xþ 3ÞÞð2∂Ṽ − χ0xṼÞ

× w2
i a

2
3ðða21q2x2ðχ0Þ2ðx3 − 1Þ þ 2a21q

2ða23Ṽ þ 2x3 − 2Þ − 16w2
i Þðx3 − 1Þ2x2Þ−1; ð92Þ

AIm
H ¼ −

1

2
ð−a21q2x4ðx3 − 1Þ2ðχ0Þ4 − a21q

2x2ðx3 − 1Þða23Ṽ þ 2ðx2 þ xþ 1Þð2wix − 3x

þ 3ÞÞðχ0Þ2 − 16w2
i ða23Ṽ − 2ðx2 þ xþ 1Þð2wixþ x − 1ÞÞ þ 2a21ða43Ṽ2 − 4Ṽðx2 þ xþ 1Þ

× ðwixþ x − 1Þa23 − 4ðx − 1Þðx2 þ xþ 1Þ2ð2wix − 5xþ 5ÞÞq2Þðða21q2x2ðχ0Þ2ðx3 − 1Þ
þ 2a21q

2ða23Ṽ þ 2x3 − 2Þ − 16w2
i Þðx3 − 1ÞxÞ−1; ð93Þ

BIm
H ¼ 1

16
ða41q2x6ðx3 − 1Þ3ðχ0Þ6 þ 4a41q

2x4ðx3 − 1Þ2ða23Ṽ þ ðx2 þ xþ 1Þð2wix − 5x

þ 5ÞÞðχ0Þ4 þ 4a21q
2x2ðx3 − 1Þða43a21Ṽ2 þ 2a23a

2
1ðx2 þ xþ 1Þðwix − 4xþ 4ÞṼ þ 4a23x

2

× ða21q2ðx3 − 1Þ −w2
i Þα2 þ 4a21ðx2 þ xþ 1Þ2ðw2

i x
2 − 4wix2 þ 3wixþ 3x2 − 6xþ 3ÞÞ

× ðχ0Þ2 þ 32a23x
2ða21q2ðx3 − 1Þ −w2

i Þða21q2ða23Ṽ þ 2x3 − 2Þ − 8w2
i Þα2 − 16a21ðx2 þ x

þ 1Þða43a21q2ðwix − xþ 1ÞṼ2 − 2a23ða21q2ðx2 þ xþ 1Þðw2
i x

2 þwix2 − 2wix − 6x2 þ 12x

− 6Þ þ 4w3
i xÞṼ − 4ðx2 þ xþ 1Þða21q2ðx3 − 1Þðw2

i x
2 − 6wix2 þ 5wixþ 9x2 − 18xþ 9Þ

þ 4w3
i x − 4w4

i x
2ÞÞÞða21x2ðx3 − 1Þ2ða21q2x2ðχ0Þ2ðx3 − 1Þ þ 2a21q

2ða23Ṽ þ 2x3 − 2Þ − 16w2
i ÞÞ; ð94Þ
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CImH ¼ −
1

4
a21q

2ððχ0Þ2x2ðx3 − 1Þ þ 2a23Ṽ − 12x3 þ 12Þð−4w2
i x

3ðx3 − 1Þðχ0Þ3 þ a23a
2
1∂Ṽ

× q2x2ðx3 − 1Þðχ0Þ2 − 8xðx3 − 1Þða23a21q2Ṽ − 6w2
i Þχ0 þ 2a23∂Ṽða21q2ða23Ṽ þ 2x3 − 2Þ

− 8w2
i ÞÞðða21q2x2ðχ0Þ2ðx3 − 1Þ þ 2a21q

2ða23Ṽ þ 2x3 − 2Þ − 16w2
i Þðx3 − 1Þx2w2

i Þ: ð95Þ

Equations (88) have to be solved subject to the following
boundary conditions:
In the UV, i.e., as x → 0þ,

ZF;r ¼ x4 þOðx5Þ; ZH;r ¼ zh;r;0x3 þOðx4Þ: ð96Þ

In the IR, i.e., as y≡ 1 − x → 0þ,

ZF;r ¼ zhf;r;0 þOðyÞ; ZH;r ¼ zhh;r;0 þOðyÞ: ð97Þ

In Fig. 8 we present wuðqÞ—the dispersion relation of
the unstable QNM in the ordered phase at b ¼ −4; this is
the q dependence of the red dot in Fig. 7. Note the existence
of the critical momenta

qcjb¼−4 ¼ 1.548; ð98Þ

represented by a vertical dashed line, such that for

q > qc ⇒ Im½wðqÞ� < 0; ð99Þ

i.e., this QNM becomes stable.
In Fig. 9 we present results for wðq ¼ 0Þ as a function of

b for the QNMs on the BRIm
hair branch. There is always an

instability in the holographic conformal order, irrespective
of the value of b (the solid red curve). The solid green curve
represents the stable QNM. Both QNMs become light in
the limit b → bcrit;0 ¼ − 3

2
, strongly affecting the sound

waves dispersion; see Sec. III A 3. The dashed horizontal
lines represent the b → −∞ limit of w,

lim
b→−∞

�
Im½wð0Þ� ¼ 0.461; unstable QNM ðredÞ;
Im½wð0Þ� ¼ −0.577; stable QNM ðgreenÞ:

ð100Þ

The spectral results (100) are obtained solving Eq. (86)
in the limit b → −∞. Taking

ZF;r ¼ ZF;0 þO
�
1

b

�
; wi ¼ wi;0 þO

�
1

b

�
; ð101Þ

and using (29) we find the limiting QNM equation

0 ¼ Z00
F;0 þ

4wi;0xðx2 þ xþ 1Þ − 12þ 18x3

2xðx3 − 1Þ Z0
F;0

−
1

2x2ðx3 − 1Þ2 ð24ðx
3 − 1Þf2½1� − 2x

× ðx − 1Þðxðxþ 2Þðx2 þ xþ 4Þw2
i;0

þ ðx2 þ xþ 1Þðð8x2 þ 7xþ 6Þwi;0 þ 16x2ÞÞÞZF;0;

ð102Þ

where we set in bold again the crucial difference between
the ordered and the disordered phases:

FIG. 9. wðq ¼ 0Þ of the nonpropagating (Re½w� ¼ 0) QNMs
on the BRIm

hair branch as a function of b in the ordered phase.
The dashed horizontal lines represent the limit as b → −∞;
see Eq. (100). As b → bcrit;0 ¼ − 3

2
, these QNMs become light,

strongly affecting the dispersion of the sound waves; see
Figs. 5–6.

FIG. 8. The dispersion relation wuðqÞ of the unstable QNM in
the ordered phase at b ¼ −4. For this mode Re½wu� ¼ 0. As
typical for the Gregory-Laflamme instability [19], this mode is
stabilized for q > qc [here represented by a vertical dashed line,
see Eq. (98)].
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f½1�ðxÞ ¼
�≡0; in the disordered phase;

nontrivial; given by Eq: ð31Þ; in the ordered phase:
ð103Þ

The asymptotic representation (102) explains why the
ordered phase is always unstable, while the disordered
phase is not. Indeed, introducing a new radial coordinate u
with

du
dx

¼ 1

1 − x3
; ð104Þ

and rescaling

ZF;0 ¼
1

x3ð1 − xÞwi;0
ΨF; ð105Þ

we obtain a Schrödinger-like equation for ΨF:

�
−

d2

du2
þU

�
ΨF ¼ EΨF; ð106Þ

where the effective 1d potential U is

UðxÞ ¼ 1 − x3

x2
ðx3 þ 6 − 12ðf½1�Þ2Þ; x ∈ ð0; 1Þ; ð107Þ

and

E ¼ −9w2
i;0: ð108Þ

For an unstable QNM, i.e., for wi;0 > 0, the boundary
conditions for ZF;0, i.e., ZF;0 ∝ x4 as x → 0þ and ZF;0

∝
ð1 − xÞ0 as y ¼ 1 − x → 0þ, imply that given the definition
(106),

ΨF → 0; both as x → 0þ and x → 1−: ð109Þ

The potential UðxÞ of (107) is divergent as x → 0þ,
automatically enforcing the first of the boundary conditions
in (109); it is vanishing as x → 1−, so to enforce the second
boundary condition in (109) we put an infinite domain wall
at x ¼ 1. Phrased in the language of the effective 1d
Schrödinger problem with (106) and (108), the presence
of the unstable QNM in the spectrum is equivalent to the
existence of the bound state in the effective potential (107)
with with E < 0. In Fig. 10 we plot the potential (107) for
the ordered phase, i.e., with f½1�ðxÞ ≠ 0 (the left panel) and
for the disordered phase, i.e., with f½1�ðxÞ≡ 0 (the right
panel). In the former case the potential dips below zero,
allowing for the bound states [represented by the dashed
horizontal lines for the QNM frequencies (100)], while in
the latter case the potential is always non-negative for
x ∈ ð0; 1�, thus excluding the instability.
We demonstrated above that there is a perturbative

instability on an index 0 ordered phase branch/overtone
for any value of b ∈ ð−∞;− 3

2
Þ. In fact, there is an

instability on the excited branches/overtones of the con-
formal order. In Fig. 11 we present the spectrum of the
QNMs on the BRIm

hair branch for the index i ¼ 0, 1, 2
background phase overtones in the limit b → −∞. These
results are obtained solving (102) with the bulk scalar
profile function f½1� corresponding to the overtone index
i ¼ 0, 1, 2; see the left panel of Fig. 1. Note that the higher
branches of the conformal order are more unstable as the
value of Im½wu� increases with the overtone index (the
red dots).

FIG. 10. Existence of the unstable QNM as b → −∞ is equivalent to the existence of the bound state in an effective one-dimensional
potential (107) with E < 0. We present this potential, U0ðxÞ, for the ordered phase of the overtone 0 (left). The horizontal dashed lines
indicate the effective energies of the QNMs (100). In the right panel we present the effective potential in the disordered phase,Udis. Since
UdisðxÞ ≥ 0 for x ∈ ð0; 1�, there cannot be any unstable QNM.

FATE OF THE CONFORMAL ORDER PHYS. REV. D 103, 026008 (2021)

026008-15



IV. NUMERICAL TESTS

Results reported in this paper involve numerical com-
putation of the QNMs. While some of the conclusions are
robust and can be understood in the semianalytic fashion,
e.g., the existence of the unstable QNM in each conformal
order phase in the limit b → −∞ from the effective 1d
Schrödinger problem, the bulk of the computations
involves the heavy numerics. It is thus important to address
the question of the numerical tests. We summarize here the
implicit and the explicit tests.

(i) Thermal equilibrium phases of the holographic
model (2) are conformal. This fact alone predicts
the hydrodynamic transport, i.e., the speed of the
sound waves cs and the bulk viscosity both in the
symmetric and the symmetry broken phases. In
Fig. 4 we presented deviations of these quantities,
obtained from the QNM computations, from
the expected values dictated by the conformal
symmetry (9).

(ii) The universality theorem of [6] implies that the shear
viscosity of the holographic conformal order is
s=ð4πÞ. This result was obtained evaluating the
retarded two-point correlation function of the boun-
dary stress-energy tensor in a generic holographic
model. In Fig. 3 we presented the deviation of the
shear viscosity from the universal result obtained
from the dispersion relation of the QNMs in the
shear channel.

(iii) In [2] the holographic conformal order was con-
structed using the background metric ansatz

ds24 ¼
α2aðx̂Þ2

ð2x̂ − x̂2Þ2=3 ð−ð1 − x̂Þ2dt2 þ ½dx21 þ dx22�Þ

þ gx̂ x̂dx̂2; ð110Þ

where we denoted a radial coordinate as x̂ to
distinguish it from the radial coordinate x used here,
see (16). The two radial coordinates are related as

x ¼ ð2x̂ − x̂2Þ1=3: ð111Þ

Of course, the results should not depend whether we
usex or x̂ as a radial coordinate.We emphasize though
that the two computational frameworks are very
different; this is particularly profound in the compu-
tation of the spectrum of the QNMs. Indeed, while the
incoming-wave boundary condition for a typical
gauge-invariant fluctuation Z is ZðxÞ ∝ ð1 − xÞ−iw,
the same boundary condition takes the form

Zðx̂Þ ∝ ð1 − x̂Þ−2iw: ð112Þ

Since generically the dispersion relations wðqÞ are
complex, the Re − Im part splits as in (73) are
different for the same normalizations of the wave
functions [as in (74)]:

FIG. 12. Comparison of the sound waves dispersion in the ordered phase at b ¼ −5 extracted using the x radial coordinate (solid
curves) and the x̂ radial coordinate, see (111) (the dots).

FIG. 11. The spectrum of the QNMs on the BRIm
hair branch at

q ¼ 0 and in the limit b → −∞ for index i ¼ 0, 1, 2 overtones of
the holographic conformal order; see Fig. 1. The higher overtones
are more unstable as the value of Im½wu� grows with index
(red dots).
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Re½ZðxÞ� ≠ Re½Zðx̂Þ�; Im½ZðxÞ� ≠ Im½Zðx̂Þ�:
ð113Þ

Of course, ultimately, this should not affect the
computed spectrum wðqÞ. In Figs. 12 and 13 we
compare the spectra of the sound waves computed
using the x radial coordinate (solid curves) and using
the x̂ radial coordinate (dots) in the holographic
conformal order at b ¼ −5 and b ¼ −3 correspond-
ingly. There is an excellent agreement.

(iv) In fact, almost all computations presented in this
paper were duplicated in x and x̂ radial coordinates.

For example, the fractional difference of the unstable
QNM, the red dot in Fig. 7, evaluated in two
schemes is ∝ 10−9.
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