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We explore the phenomenology of scalar fields coupled to asymptotically safe quantum gravity, in light
of their potential significance for dark matter, for the inflaton as well as dynamical dark energy, and in the
Higgs sector in and beyond the Standard Model. This work is a step toward delineating the boundaries of
the asymptotically safe swampland by exploiting the constraining power of the asymptotic-safety
paradigm. First, we strengthen indications that quantum gravitational fluctuations could drive scalar
potentials toward flatness, with intriguing potential implications for inflation and dark energy. Second, we
explore how asymptotic safety could rule out large parts of the parameter space in models for scalar dark
matter. Third, we discover hints that at an asymptotically safe fixed point with finite top quark mass, the
nonminimal Higgs-curvature coupling could be constrained. Finally, by combining the constraining power
of asymptotic safety in particle physics and cosmology, we find hints that Higgs inflation lies in the
asymptotically safe swampland. In summary, we strengthen previous indications for the constraining power
of asymptotic safety and the resulting large extent of the asymptotically safe swampland.
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I. MOTIVATION: SCALARS IN PARTICLE
PHYSICS AND COSMOLOGY—IN SEARCH

OF A UV COMPLETION

The experimental discovery of the Higgs particle [1,2]
has shown that at least one fundamental scalar field might
exist in nature. Its production and subsequent decay into
various Standard Model (SM) particles is consistent with
the expected values in the Standard Model [3]. Yet, this
impressive success exposes one of the open problems of the
Standard Model, namely a trans-Planckian Landau pole
that is expected in the Higgs-Yukawa sector. It is expected
to limit the validity of the theory and require new physics.
Given the scale at which it appears, quantum gravity
constitutes a prime candidate for new physics to remedy
this Landau pole.1 Within the asymptotic-safety approach
to quantum gravity, the Higgs field could become a truly

fundamental field, as there are indications for an asymp-
totically safe fixed point in the Higgs sector of the Standard
Model under the impact of quantum-gravity fluctuations,
see, e.g., [10–23] for beyond-SM settings. For earlier work
on gravity-scalar systems, see, e.g., [24–30]. Asymptotic
safety generalizes the success story of asymptotic freedom
from non-Abelian gauge theories to a quantum gravita-
tional setting. It corresponds to a quantum-scale-invariant
fixed-point regime of the renormalization group (RG) flow.
This enables an ultraviolet (UV) completion or extension of
an effective field theory such as the Standard Model.
Requiring the enhancement of the symmetry to quantum
scale symmetry in the UV implies relations between the
couplings of the theory that hold in the infrared (IR). This
results in a potential enhancement of predictive power
and could open the door to observational tests of the
asymptotic-safety paradigm. Beyond the Higgs sector,
fundamental scalar fields could play a variety of roles in
cosmology. In the late universe, they could constitute a part
or all of the dark matter [31–34]. The dark-matter sector
might become asymptotically safe under the impact of
quantum gravitational fluctuations. There are tentative hints
that this could entail an enhancement of predictive power
[18], see also [20,23,35], strongly restricting the parameter
space of the dark matter.
Further, scalars could be relevant to drive the early- and/

or late-time expansion of the universe. The potential
for such scalars is also expected to be subject to con-
straints if coupled to asymptotically safe quantum gravity,
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1This is the reason why the measurement of 125 GeV for the
mass of the Higgs particle is a far-reaching result of the LHC—at
a not too different mass, vacuum instability would imply a much
lower scale of new physics [4–7], as would low-scale Landau
poles if the Higgs particle was somewhat heavier [8,9].
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see, e.g., [24,36–39]. At the same time, observational data
already constrains the form of the potential for a dark-
energy scalar [40–42]. This raises the question whether
cosmological observations, such as, e.g., upcoming surveys
aimed at restricting the dark-energy equation of state
[43–47], could provide insights into the viability of the
asymptotic-safety paradigm. Similarly, Planck constraints
on inflationary potentials [42,48] might enable observa-
tional tests of the paradigm.
Taking these manifold physics applications of funda-

mental scalars within the Standard Model, as dark matter,
dark energy and as the inflaton as our motivation, we
explore the interplay of asymptotically safe gravity with
scalars and Yukawa systems, building on and extending
previous work in [10–21,23–30,35–39].
This paper is structured as follows: In Sec. II we

introduce the method and setup we use. In Sec. III we
study how quantum gravity impacts the potential of a single
scalar and discuss potential implications for inflation and
dark energy. In Sec. IV we extend the purely scalar model
to a Yukawa system representing the Higgs-top sector of
the Standard Model. We study the impact of the non-
minimal coupling on potential bounds on the top mass [13]
and explore the viability of asymptotically safe Higgs
inflation. Section V discusses two Yukawa systems coupled
via a portal coupling, and explores how one of these two
sectors could be a dark sector [35], accounting for dark
matter. We refer readers interested in potential cosmologi-
cal implications to Sec. III B 3 on slow-roll-like parameters
in asymptotic safety; Sec. III C on asymptotically safe
inflation and dark energy, Sec. IV D on the viability of
Higgs inflation in asymptotic safety as well as Sec. V on
potential dark-matter candidates.
Additionally, we refer readers interested in potential

particle-physics implications, to Sec. III B 1 for a discus-
sion of global symmetries under the impact of asymptoti-
cally safe gravity and Sec. IV B on the impact of the non-
minimal coupling on the bound on the top mass [13].
Finally, we highlight that readers interested in formal

aspects of functional renormalization group setups will
find a study of auxiliary background-scalar field depend-
encies in Appendix A.

II. ASYMPTOTIC SAFETY: CONCEPTUAL AND
TECHNICAL FRAMEWORK

...where we first introduce some concepts related to an
asymptotically safe fixed point and then elucidate the
method we use to explore the scale-dependence of quantum
field theories. Finally, we provide specifics (field content
and interaction structure) of the systems we explore.

A. Predictivity and effective asymptotic safety

...where we review how an interacting fixed point
imposes predictivity on a quantum field theory. Further,

we revisit the concept of effective asymptotic safety and
how it can result in predictivity in an effective-field-theory
setup with a finite new-physics scale.
In a quantum field theory (QFT), scale-dependent

couplings encode the effect of quantum fluctuations. By
integrating out quantum fluctuations with momenta larger
than a momentum scale k, one obtains the scale dependence
of a dimensionless coupling giðkÞ, encoded in its beta
function βgi . At a renormalization group (RG) fixed point,
all beta functions of a system vanish, realizing quantum
scale symmetry. If RG trajectories are picked for which the
UV regime is determined by quantum scale symmetry, one
refers to the resulting model as asymptotically safe, and the
fixed point itself as an asymptotically safe fixed point.
Several dynamical mechanisms can be at the heart of such a
fixed point, see [49] for a review. As a consequence, one
can consider the mathematical limit in which the RG scale
is taken to arbitrarily high values, and obtain a path integral
that is well defined in this limit, i.e., a fundamental theory.
First, such a limit is physically challenging to access; and
second, it does not imply that new physics might not exist
at some high scale. In this paper, our main focus will
therefore not be on the UV completeness that follows as a
consequence of asymptotic safety. Instead, we will focus on
the predictivity that it implies—even in settings where new
physics does indeed exist at high scales.
The predictivity of a fixed point is encoded in its critical

exponents. The critical exponents are defined as

θðIÞ ¼ −eig
�∂βgi
∂gj

�����
g⃗¼g⃗�

: ð1Þ

They govern the linearized flow around the fixed point:
Directions in the space of couplings associated to a positive
θ are relevant, i.e., IR repulsive. A tiny deviation from the
fixed-point value continues to grow toward the IR, i.e.,
quantum fluctuations associated to such a direction drive
the system away from scale symmetry. The IR values of the
corresponding couplings are not calculable from the fixed-
point requirement; a range of IR values is compatible with
asymptotic safety in the UV.
Directions associated with negative θ are irrelevant, i.e.,

IR attractive. Deviations from the fixed point decrease
under the RG flow to the IR, i.e., quantum fluctuations
associated to such a direction drive the system toward scale
symmetry. Therefore, the IR values of such couplings are
calculable from the fixed-point requirement. Essentially,
for each θ < 0 there is a relation between the values of
couplings, which also has to hold in the IR for quantum
scale symmetry to be realized in the UV.
Asymptotic safety is typically introduced as an ultra-

violet completion for a quantum field theory (QFT), with its
main interest being the extension of the regime of validity
of the theory up to arbitrarily high energy scales. A more
pragmatic view on asymptotic safety originates in the
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concept of “effective asymptotic safety,” discussed in
[50,51], see also [52]: even if the QFT description of
matter-gravity systems breaks down at a trans-Planckian
momentum scale ΛUV > MPl, the predictivity of an asymp-
totically safe fixed point can continue to play a major role in
determining the IR physics. In this case, the RG flow starts
at initial conditions at ΛUV that depend on the UV
completion. From there, it is attracted by the asymptotically
safe fixed point along all its (infinitely many) irrelevant
directions, and repulsed along the finitely many relevant
ones. Awide range of suitable initial conditions atΛUV thus
results in RG trajectories exhibiting near-scale invariance
close to the fixed point over a wide range of scales. In the
deep IR, they therefore closely resemble “true” fixed-point
trajectories exactly satisfying the relation between couplings
associated to negative critical exponents. Accordingly, pre-
dictions for low-energy physics do not necessarily depend on
asserting that asymptotic safety provides a UV completion
valid “to arbitrarily high scales.”Taking the fixed-point limit,
where RG trajectories are required to emanate exactly out of
the fixed point, can be considered as a mere mathematical
convenience, as it allows to easily make “sharp” statements
about low-energy predictions. In a more general setting with
effective asymptotic safety, the degree of predictivity a fixed
point imposes on IR physics has been quantified in [51].

B. Functional renormalization group

...where we provide an introduction to the functional
renormalization group, focusing on conceptual and tech-
nical challenges specific to the gravitational context.
We work in a Euclidean, Wilsonian framework, where

quantum fluctuations in the path integral are taken into
account in a momentum-shell wise fashion. This allows us
to identify candidates for quantum scale invariant dynamics
in the UV and connect them with physics in the IR, to
derive the predictions that follow from quantum scale
symmetry. Below, we first introduce the setup in momen-
tum space, then discuss the generalization of a momentum
cutoff to the gravitational setting and highlight its
Euclidean nature, before reviewing the functional differ-
ential equation that underlies this formalism.
In the gravitational context, the distinction of high-

momentum and low-momentum modes is more involved
than in QFT on flat space. In general, defining a local
notion of a coarse-graining scale—in other words, a
suitable generalization of a momentum scale—requires a
background geometry. In standard QFT, the flat metric
provides a background such that one can implement a
cutoff in momentum space. In a gravitational setting, one
can use the background-field formalism. To this end, the
full metric gμν is split into a background ḡμν and a
fluctuation hμν,

gμν ¼ ḡμν þ hμν: ð2Þ

This enables a generalization of the notion of momentum,
by considering the background-covariant Laplacian −D̄2,
such that −D̄2 → p2 when one chooses ḡμν ¼ δμν. We
stress that despite the suggestive notation, metric fluctua-
tions hμν need not be small.
The split in Eq. (2) also facilitates the introduction of a

gauge-fixing term for the metric, which is necessary in
order to define the metric propagator. While the gauge-
fixing term breaks the full diffeomorphism symmetry, it can
be chosen to respect an auxiliary invariance with respect to
the background metric, as is standard in the background-
field formalism [53]. This is central for the recovery of
diffeomorphism symmetry in the full effective action
Γ ¼ Γk→0.
The comparison of p2 (or −D̄2) to a momentum scale k2

is a meaningful distinction of UV and IR modes in
Euclidean signature. For QFTs on a flat background, a
Wick rotation or analytic continuation provides a relation of
the Euclidean theory to the Lorentzian one. For quantum
gravity, the analytic continuation of a number of metric
configurations is not straightforward [54] and the configu-
ration spaces of Riemannian and Lorentzian metrics feature
a different topology/connectivity [55]. For these reasons, it
is not expected that a straightforward relation between
Riemannian and Lorentzian quantum gravity exists beyond
the perturbative regime. With this cautionary remark, let us
proceed with the Riemannian calculation, which can be
thought of as exploring the effect of quantum fluctuations
of a four-dimensional space (in contrast to a 3þ 1 dimen-
sional spacetime).
Within the functional renormalization group (FRG), one

introduces an (unphysical) momentum scale k that serves to
distinguish UV modes (with momenta higher than k) from
IR modes (with momenta lower than k). One then intro-
duces a masslike regulator term to implement the idea of
Wilsonian renormalization: The regulator RkðpÞ suppresses
fluctuations with momenta p2 < k2. Fluctuations with
momenta larger than the scale k are integrated out. After
introducing this term in the path integral, one obtains a
generalization of the full effective action Γ to a scale-
dependent action Γk, which contains the effect of quantum
fluctuations above the momentum scale k only, see [56–
58]. The full effective action Γ, encoding the physics, is
recovered by integrating over all k. In the settings we
explore, a main focus is on finding well-defined initial
conditions for this integration, i.e., a microscopic dynamics
Γk→∞ which is defined by an asymptotically safe fixed
point. The physics implications of asymptotic safety are
then explored in a second step by following the RG flow
to k → 0.
The key advantage of introducing a quadratic (i.e.,

masslike) regulator term in the path integral is the resulting
functional differential equation for Γk, which is of an exact
one-loop structure at the formal level [56–58]
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∂tΓk ¼ k∂kΓk ¼
1

2
STrððΓð2Þ

k þ RkÞ−1∂tRkÞ: ð3Þ

Here, t ¼ ln k=k0, with a reference scale k0 and Γð2Þ
k is the

second functional derivative of the effective action with
respect to the fluctuation fields. In our case, it is a matrix in
field space, and the supertrace includes a trace in field
space, in addition to a summation/integration over the
discrete/continuous eigenvalues of the Laplacian −D̄2. To
evaluate the right-hand-side of the flow equation, we sum
over eigenvalues of the appropriate Laplacians, see, e.g.,
[59–64]. We employ the “middle-of-the-staircase” approxi-
mation discussed in [64].
For Grassmann-valued fields, such as, e.g., Faddeev-

Popov ghost fields and fermion fields, the supertrace
includes an additional negative sign. For reviews of the
method see, e.g., [65–68], and [69–72] specifically for the
gravitational context.
The flow equation Eq. (3) shifts the focus away from the

classical/microscopic action S: Instead of postulating a
form for S and starting to integrate out quantum fluctua-
tions in the path integral, where configurations are weighed
by exp½−S�, one can explore the scale-dependence of whole
families of interactions. This enables a search for viable
microscopic dynamics defined by RG fixed points. More
specifically, from Eq. (3), one can obtain the beta function
for any coupling in the effective action. By projecting the
right-hand side of Eq. (3) on the corresponding interaction
monomial, one generates diagrams of a one-loop form
(with the regulator insertion ∂tRk sitting on each one of the
internal propagators in turn). These analytic beta functions
enable a fixed-point search, allowing one to identify
candidates for asymptotically safe dynamics.
The relation of these beta functions to those derived in

different schemes in perturbation theory lies in the agreement
of their universal parts; in particular the one-loop contribu-
tions fromperturbation theory are recovered directly from the
FRG-beta functions. Higher-loop contributions which are
not universal in perturbation theory beyond two loops, are
encoded in contributions coming from higher-order terms in
the dynamics Γk [73]. At the same time, the FRG beta
functions feature nontrivial denominators from Eq. (3),
which result in threshold effects and the automatic decou-
pling of modes once the RG scale k falls below their mass.
This is in contrast to standard perturbative schemes, where
modes typically have to be decoupled by hand.
The scale-dependent effective action Γk in principle

contains all operators compatible with the symmetries of
the system under consideration, including all higher-order
interactions. For practical calculations, one needs to trun-
cate this infinite tower of operators, thereby introducing a
systematic uncertainty.
Within asymptotically safe gravity-matter systems, the

principle used to select the truncation is the conjectured
near-perturbative nature of the fixed point. This is

supported by studies of nontrivial symmetry-identities in
gravity-matter systems [74–76], studies of the scaling
spectrum in extended pure-gravity truncations [77–81] and
critical exponents in matter-gravity systems [24,25,29,
74,82–88], indications for asymptotic safety from one-loop
perturbation theory [89,90], and the conjecture that the
asymptotic-safety mechanism [49] relies on a balance of
canonical scaling and quantum scaling that is operative in
d ¼ 2þ ϵ dimensions [91–96] and can be extended con-
tinuously to d ¼ 4 [53,97]. This implies that residual
interactions shift the critical exponents away from their
canonical value by an Oð1Þ amount. Accordingly, canoni-
cally highly irrelevant operators are expected to remain
irrelevant at the interacting fixed point and can be neglected
to obtain a robust count of the number of relevant directions,
i.e., the free parameters of the theory.
While such a choice of truncation would automatically

be robust at noninteracting fixed points, its self-consistency
needs to be checked a posteriori at an interacting fixed
point. Anticipating the results of our study, the fixed points
we explore exhibit near-canonical scaling, making our
choice of truncation self-consistent.
Further support for such functional RG results can in the

future come from other techniques. Similar to the gravi-
tational case, Gross-Neveu systems are a paradigmatic
example for interacting fixed points. The underlying
mechanism generating scale symmetry is the same as that
conjectured for asymptotically safe quantum gravity. Thus,
a choice of truncation based on canonical power counting
produces reliable results [98–105] in agreement with other
approaches [106–114]. These systems also provide a
blueprint how the confluence of several methods can
provide strong evidence for an interacting fixed point. In
the case of asymptotically safe gravity, a similar degree of
convergence from different techniques has not been
achieved yet, but asymptotic safety is under active inves-
tigation both with lattice techniques [115] as well as
combinatorial tensor models [116]. The causal-set
approach [117] could in the future provide direct access
to a Lorentzian continuum limit, a.k.a. Lorentzian asymp-
totic safety [118], as could spin foam studies [119].

C. Three systems: Single scalar, simple Yukawa, portal
to simple Yukawa dark matter

...where we specify the matter field content of the three
distinct systems we will explore and define the truncation of
the dynamics for each case.
We consider a real scalar field ϕ, featuring a Z2

symmetry, ϕ → −ϕ, with the truncated effective action

Γscalþgrav
k ¼

Z
d4x

ffiffiffi
g

p �
1

2
Zϕgμν∂μϕ∂νϕ

−
�

1

16πGN
þ ξϕ2

�
Rþ Vðϕ2Þ

�
: ð4Þ
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Similar truncations for scalar-gravity system have been
explored, e.g., in [15–18,24,25,28–30]. For work on a
scalar field in the presence of a nonminimal coupling ξ but
without quantum gravitational effects with FRG tech-
niques, see [120]. The potential Vðϕ2Þ includes a cosmo-
logical constant when expanded about ϕ ¼ 0, such that our
truncation includes the Einstein-Hilbert action. We will
typically terminate this expansion at the quartic order,

Vðϕ2Þ ¼ 2Λ̄
16πGN

þ m̄2

2
ϕ2 þ λ4

4
ϕ4; ð5Þ

and always express our results in terms of the dimension-
less couplings

g ¼ GNk2; λ ¼ Λ̄k−2; m2 ¼ m̄2k−2: ð6Þ

Dimensionless couplings are best suited to search for
asymptotic safety in the UV. On the other hand, dimen-
sionful couplings, such as dimensionful masses can be of
interest in the IR. The rescaling Eq. (6) could beg the
question how such dimensionful couplings can be finite in
the IR, where k → 0. For the limit k → 0, we focus on the
case in which every field in the theory comes with a mass
(this includes the massless graviton, where the Planck-scale
serves as the mass-scale for metric fluctuations). In this
situation, quantum fluctuations are suppressed, once k has
fallen below the mass scale. All dimensionful quantities are
then constant, since their dimensionless counterparts scale
according to the canonical dimension. For instance, the beta
function for a dimensionless mass parameter m2 becomes
β2m ¼ −2m2, once k2 < m2, such that all loop contributions
are suppressed. Thus, m2ðkÞ ∼ k−2. Accordingly, the
dimensionful mass m̄2 ¼ m2k2 → const. This extends to
all other couplings.
In part of what follows, the real scalar field ϕ will serve

as a toy model for the SM Higgs field. Both have in
common that there are no massless Goldstone modes after
spontaneous symmetry breaking, making a Z2-symmetric
real scalar a suitable toy model to explore aspects of Higgs
physics in the FRG setup, see [121–123].
As a representative for the top quark we additionally

incorporate a single Dirac fermion in Sec. IV by including
the terms

Γferm
k ¼

Z
d4x

ffiffiffi
g

p ðiψ̄∇ψ þ iyϕψ̄ψÞ ð7Þ

into our truncation for the effective action, where ∇ is the
Dirac operator which contains the spin connection in the
presence of gravity. Earlier work on simple Yukawa
systems coupled to quantum gravity can be found in
[12,26,27,83,85,124].
In Sec. V we first consider two real scalars coupled to

gravity, labeled by v=d for a visible/dark sector. In that
section, we first work with

Γ2−scalþgrav
k ¼

Z
d4

ffiffiffi
g

p �
Zv

2
gμν∂μϕv∂νϕv þ

m̄2
v

2
ϕ2
v

þ λv
8
ϕ4
v − ξvϕ

2
vR −

1

16πGN
ðR − 2Λ̄Þ

þ Zd

2
gμν∂μϕd∂νϕd þ

m̄2
d

2
ϕ2
d

þ λd
8
ϕ4
d − ξdϕ

2
dR

�
: ð8Þ

The two sectors are coupled via a portal coupling

Γportal
k ¼

Z
d4x

ffiffiffi
g

p λHP
4

ϕ2
vϕ

2
d: ð9Þ

In the second part of Sec. V, the visible scalar ϕv and the
dark scalar ϕd are additionally coupled to a visible fermion
ψv and a dark fermion ψd, respectively, by a flowing action
of the type (7). There, we explore the same truncation as put
forward in [35].
While obtaining the beta functions from the effective

action, one encounters technical choices related to the
nonminimal coupling. One can choose both, the gauge
fixing action Sgf as well as the regulator Rk to depend on
the scalar background field. In case of a scalar-background
dependent gauge fixing, one needs to consider an appro-
priately chosen ghost term. We discuss these technical
aspects and give the explicit form of our gauge fixing and
regulator terms in Appendix A. The (artificial) dependence
on various technical choices is relatively mild, and does not
qualitatively alter our results as we investigate in detail in
that Appendix.

III. SINGLE SCALAR

...where we search for asymptotic safety and character-
ize its predictivity in a scalar-gravity system. We tie our
results for the flattening of the scalar potential under the
impact of quantum gravity into discussions of global
symmetries, as well as slow-roll parameters. Finally we
highlight potential phenomenological consequences in a
cosmological context, with a focus on inflation with and
without nonminimal coupling as well as a short discussion
of dynamical dark energy and the cosmological constant in
asymptotic safety.
In this section we concentrate on the pure scalar gravity

system, with its truncated flowing action given by

Γk ¼ Γscalþgrav
k þ Sgf þ Sgh: ð10Þ

A. Fixed-point results

...where we show fixed-point results for the scalar
potential and nonminimal coupling. We compare the case
of the scalar-gravity system to a case with additional,
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purely gravitationally coupled SM-type fields. Finally, we
treat the gravitational couplings as free parameters, to
obtain a comprehensive overview of the predictivity of
asymptotic safety in this context.
Without additional matter degrees of freedom, the only

viable fixed point present in the truncation (10) with the
expansion (5) for the scalar potential lies at

λ� ¼ 0.13; g� ¼ 1.32; m2� ¼ λ4� ¼ ξ� ¼ 0: ð11Þ

There are indications that the inclusion of additional matter
degrees of freedom significantly alters the gravitational
fixed-point values [125]. In fact, within the background-
field approximation we employ here, an increasing number
of fermions shifts the fixed-point values toward negative
microscopic cosmological constant. An effective strength
of gravity can be defined as geff ¼ g�=ð1 − 2λ�Þ#, with
# > 0, as this quantity enters the beta functions for matter
couplings [74,85]. As a function of an increasing number of
fermions, the effective strength of gravity decreases.
Similar results have been found for fluctuation calculations
[74]. Under the impact of the full Standard Model particle
content, one obtains the gravitational fixed-point values

λ� ¼ −9.97; g� ¼ 7.63: ð12Þ

To assess the effect of such a shift in the gravitational
couplings, we study the critical exponents of the couplings
m2, λ4 and ξ at the fixed point m2� ¼ 0, λ4� ¼ 0, ξ� ¼ 0 at
varying values for the gravitational couplings λ�; g�.
Figure 1 shows the number of relevant directions as a
function of the gravitational parameters. For the fixed-point
values in Eq. (11), there are two relevant directions, which
can be associated with the scalar mass and nonminimal
coupling. In contrast, there is only one relevant direction,
associated to the mass parameter, at the fixed point in
Eq. (12). A third region, with no relevant direction, would
also in principle be available. The determination of the
gravitational fixed-point values is subject to systematic
uncertainties. Therefore, we analyze the entire λ–g plane
instead of focusing on fixed-point values in a particular
truncation. We focus on g > 0 throughout the paper, as
g < 0 cannot be connected to a regime with attractive
gravity in the IR.
To understand why the different regions of the λ–g plane

show different degrees of predictivity in terms of number of
relevant directions, wewill first discuss the critical exponents
in a simple approximation, where we assume a diagonal
stability matrix, neglecting the mixing of operators.
Then, the gravitational contribution to the anomalous

dimension for the scalar potential is always toward irrel-
evance. Given the vanishing canonical dimension of λ4,
there is accordingly at least one irrelevant direction every-
where in the λ–g plane. Where geff ¼ g=ð1 − 2λÞ# (with
# > 0) is largest, the gravitational effects can even shift the

mass parameter into irrelevance. In fact, geff is largest for
large g and 0 < λ < 1=2 and decreases, as g and λ are
lowered. Thence, the gravitational contribution to the
scaling of the scalar mass parameter is larger than its
canonical dimension of 2 for

gcrit >
12πð1 − 2λÞ2ð3 − 4λÞ2

159 − 460λþ 352λ − 16λ3
; ð13Þ

see also the analysis in [15,18].
Finally, the gravitational contribution to βξ is toward

irrelevance for λ < −0.17, as follows from an inspection of
βξ at the free matter fixed point (with m2� ¼ 0, λ4� ¼ 0,
ξ� ¼ 0),

βξ ¼ −g
99þ 318λ − 1464λ2 þ 1232λ3 − 96λ4

18πð1 − 2λÞ3ð3 − 4λÞ2 ξ

þ 4g
21 − 8λ

πð3 − 4λÞ2 ξ
2 þ 54g

5 − 8λ

πð3 − 4λÞ2 ξ
3: ð14Þ

The linear coefficient changes sign at sufficiently negative
λ < −0.17. This is associated to a degeneracy of zeros of βξ
(which are not fixed points of the full system, except at the
degenerate point corresponding to the free fixed point.)
These two boundaries, namely λ < −0.17 and g > gcrit,

become deformed once we lift the simple approximation
and consider off-diagonal contributions in the stability
matrix. Nevertheless, a “strong-gravity” island with no
relevant directions (the deformation of the g > gcrit

FIG. 1. Number of relevant directions at the free fixed point as a
function of the gravitational couplings λ� and g� respectively, for
the three scalar couplings ðm2; λ4; ξÞ. The blue triangle/red square
marks the position of the fixed point Eq. (11)/(12). For larger
values of the gravitational coupling the fixed point is fully
irrelevant. For (large) negative values of the cosmological
constant one relevant direction turns irrelevant. The vertical
dashed line highlights a change in the scaling of the λ�
axis at λ� ¼ −2.
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boundary), and a region with only one relevant direction for
sufficiently negative λ (the deformation of the λ < −0.17
line) are still visible in Fig. 1.
If the gravitational coupling values fall in the strong-

gravity regime, then all of the couplings in the scalar sector
are irrelevant at the fixed point. Along the full flow toward
the IR, i.e., at all k, their value is predicted. In particular, the
scalar potential is predicted to remain flat in this scenario.
Outside of the strong-gravity regime, every relevant direc-
tion can start to deviate from its fixed point value at some
finite scale ktr. The corresponding (linear combination of)
coupling(s) can take a range of values in the IR and needs to
be determined by observation. Once all relevant couplings
are fixed the theory becomes fully predictive.

B. Three perspectives on flat scalar potentials
in quantum gravity

...where we interpret the fixed-point results of the
previous subsection in light of the more general question
about global symmetries in quantum gravity, explain how
our results provide a hint for a mechanism of gravitational
flattening of scalar potentials and finally rewrite our scale-
dependent potential in terms of scale-dependent slow-roll-
inspired parameters, in order to provide a more straight-
forward link of our results to cosmological settings.

1. Global symmetries

The fate of global symmetries in quantum gravity is an
intriguing open question. Arguments suggesting the vio-
lation of global symmetries through quantum gravitational
effects have been put forward in [126–129] and substan-
tiated to some extent in the context of the AdS/CFT
conjecture [130,131], in particular in relation to the
weak-gravity conjecture [132], see also [133] for a review.
In several other approaches to quantum gravity, less is
known about this question—in part as a consequence of the
general difficulty to account for matter degrees of freedom
in many approaches to quantum gravity. As one example,
conflicting results on the realization of chiral symmetry in a
fermion sector coupled to loop quantum gravity exist in the
literature [134,135]. In an asymptotically safe context, the
situation is different: many different gravity-matter systems
that feature global symmetries in the matter sector have
been explored, see, e.g., [24,25,82,84–86]. All results in
truncations of the Euclidean RG flow support the con-
clusion that quantum gravitational fluctuations at fixed
topology do not lead to a violation of global symmetries,
see also the discussion in [136]. Let us highlight two
potential caveats of these results: First, Euclidean and
Lorentzian quantum gravity could differ when it comes
to the fate of global symmetries. Second, it could be the
expansion to finite orders in the fluctuation field hμν that
prevents global-symmetry-violating terms to become vis-
ible in the RG flow. Yet, within Euclidean dynamical
triangulations, one also finds that shift-symmetry is left

intact by quantum gravitational fluctuations [137]. This
suggests that the nonviolation of global symmetries in the
FRG setting is not a consequence of truncations to finite
order in the gravitational fluctuation field at fixed topology.
A first result in [138] suggests that the presence of
topological fluctuations might change the picture. Here,
we remain conservative in that topological fluctuations are
not taken into account.
We discuss the fixed point in Eq. (11) from the

perspective of global symmetries: First, the Z2 symmetry
of the scalar field is respected by quantum gravitational
fluctuations. This follows, as the rhs of the flow equation
vanishes when projected onto field monomials with an
uneven power of ϕ. Second, the shift symmetry of the
scalar kinetic term, ϕ → ϕþ a, is respected by the flow.
This is an example of how all global symmetries manifested
in the kinetic term of a matter field are respected by
quantum gravity, see [85]. Hence, the Z2- and shift-
symmetric hypersurface in theory space is a fixed hyper-
surface under the RG flow. This does not automatically
imply that there must be a fixed point in this hypersurface,
as there are derivative-interactions compatible with shift-
symmetry and Z2 symmetry. These are generically nonzero
in the presence of asymptotically safe gravity [28,85]. They
are however not guaranteed to feature a fixed point. Since
these are neglected in our truncation, there must be a fixed
point respecting Z2- and shift symmetry in our truncated
theory space, i.e., a fixed point at vanishing scalar poten-
tial,2 as found in Eq. (11) and previously in [11,12,15,18,
24,25,29,30,39,124]. Beyond, additional fixed points at
nonvanishing potential might in principle also exist, but
turn out to require the presence of additional matter fields,
e.g., fermions coupled through a Yukawa term, see Sec. IV.

2. The gravity-induced flow toward flatness
and predictivity

In our truncation, shift symmetry guarantees the exist-
ence of a fixed point corresponding to a flat potential and
vanishing nonminimal coupling. The subsequent pressing
question is whether combined fluctuations of gravity and
matter drive the system away from this fixed point or
toward it. This information is encoded in the number of
relevant directions, shown as a function of the gravitational
parameters in Fig. 1. Among the three couplingsm2, λ4 and
ξ, at least one combination is always irrelevant. This
implies that flowing from the fixed point toward the IR,
at least one of the three couplings is fixed in terms of the

2The inclusion of derivative-interactions is generically deter-
mined by the following pattern of quantum-gravity induced
interactions: As long as gravitational interactions are sufficiently
weak, there is a real fixed point for such interactions, which is the
shifted Gaußian fixed point, at which they remain irrelevant
[82,85]. At strong enough gravitational interactions, some of the
induced interactions no longer feature a real fixed point, see, e.g.,
[83,85,139].
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others. In fact, under the assumption of a diagonal stability
matrix, the quartic coupling is required to vanish at all
scales, preventing a ϕ4-type deviation from flatness.
Additionally, there are regions in the λ–g plane, where

two or even all three of the couplings m2, λ4 and ξ are
irrelevant, cf. Fig. 1. In these regions, the gravity-induced
flow is toward flatness; all perturbations away from flatness
are irrelevant and therefore excluded. In the regime with no
relevant directions, the “resurgence mechanism” for the
scalar mass becomes applicable, which could provide a
dynamical mechanism for the mass hierarchy between the
electroweak scale and Planck scale [11].
Each irrelevant direction also restricts settings in which

the initial conditions at kUV > MPl are chosen away
from the fixed point as in effective asymptotic safety,
see Sec. II A: flowing towardMPl, an irrelevant direction is
IR-attractive, the RG flow is driven toward the fixed-point
value. The simplest case is that of no relevant directions in
which case the flat potential and vanishing nonminimal
coupling are fully IR attractive: quantum fluctuations drive
the RG flow towardm2ðMPlÞ ≈ 0, λ4ðMPlÞ ≈ 0, ξðMPlÞ ≈ 0.
With increasing ratio kUV=MPl, this prediction becomes
sharper; see [51] for a quantitative measure of predictivity
in such a setting. As an upshot, quantum-gravity fluctua-
tions could drive scalar potentials toward flatness also in
effective asymptotic safety, i.e., in presence of a UV scale
of new physics.

3. Small slow-roll parameters from asymptotic safety

The flattening of scalar potentials could be of relevance
for scalar fields in cosmological settings, such as inflation.
In this context, a description in terms of the slow-roll
parameters is commonly applied. To relate to that, we
reexpress our results in a similar terminology by rewriting
the flow equation for the scalar potential in terms of the
dimensionless quantities

ϵi ¼
1

k4−i
∂iVðϕ2Þ
∂ϕi ; ð15Þ

which are inspired by the standard slow-roll parameters.
Their physical values are those at k ¼ 0, when all quantum
fluctuations are integrated out. At k ≈MPl, quantum
gravitational fluctuations decouple from the flow, and
the remaining evolution is determined by quantum fluctu-
ations of the scalar field, only. We work within the
approximation ξ ¼ 0, which is self-consistent in the vicin-
ity of the fixed point ξ� ¼ 0 and additionally neglect the
scalar anomalous dimension. The scale dependence of the
potential is given in Appendix B and determines the flow of
the ϵi by the appropriate derivatives with respect to the
scalar field. The beta functions for the ϵi are explicitly field
dependent, since they can be understood as the flowing
coefficients of a local Taylor expansion of the potential at
finite values of the field. The flow of ϵi depends on ϵiþ1 and

ϵiþ2. We truncate this hierarchy by setting ϵi ¼ 0∀ i > 2.
As expected, the system exhibits a fixed point with flat
potential, ϵi;� ¼ 0 that can be traced back to the fixed point
(11), and no other fixed points. The critical exponents
encode whether the low-energy limit of this setting has any
free parameters which allow the potential to deviate from
flatness. For ϕ=k ∼Oð1Þ the corresponding RG flows are
shown in Fig. 2. At a fixed point with vanishing Newton
coupling g� ¼ 0, both ϵ1;2 would be relevant, as expected
from their canonical mass dimension. The leading term in g
in all critical exponents is

θðiÞ ¼ −
2ð51 − 144λþ 104λ2Þ
3πð3 − 4λÞ2ð1 − 2λÞ2 g; ð16Þ

which is negative for all λ ∈ ð−∞; 0.5Þ. Hence, as g�
increases, the ϵi one by one become irrelevant and are
thereby required to be small as a consequence of quantum
gravity fluctuations.

C. Outlook on potential phenomenological
consequences

...where we discuss some of the potential implications
our findings might have for inflation and (dynamical) dark
energy in an asymptotically safe context. While these
results are obtained in a truncation of the Euclidean
dynamics, they tentatively hint at the potential con-
straining/predictive power of asymptotic safety in
cosmology.
Scalar fields appear in many cosmological applications

and our results might entail certain features that could arise
in these settings as a consequence of asymptotic safety.
These types of study are relevant for various reasons.
Results of such studies can serve as a theoretical principle
that distinguishes between effective models (e.g., in the
context of dark matter or dark energy) with or without a
quantum-field theoretic UV completion.3 The availability
of such an asymptotically safe UV completion is expected
to come with an enhanced predictive power. On the one
hand, this can connect asymptotically safe gravity to
observations, making observational consistency tests or
even the search for “smoking-gun” signatures possible. On
the other hand, the potential constraining power of a given
UV completion, e.g., asymptotic safety, might provide
guidance for observational searches, as it could (dis)favor
certain regions of the EFT-parameter space.
Let us highlight that, as opposed to an effective-field-

theory setting, trans-Planckian excursions of the inflaton
are not expected to be problematic in an asymptotically
safe context. In particular, trans-Planckian imprints on

3A related idea is being explored within the effective field
theory setting, where, e.g., certain definitions of locality and/or
unitarity are demanded of a viable UV completion and serve to
restrict the effective field theories, see, e.g., [140,141].
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inflationary observables could arise. Asymptotic safety
might therefore not be restricted by the trans-Planckian
censorship conjecture [142–144].

1. Toward asymptotically safe consequences
for the inflaton

...where we use results on the behavior of the derivatives
of the potential from Sec. III B 3 in the context of inflation.
We first focus on the possibility that quantum-gravity
fluctuations might yield a flattened inflaton potential. In
a second step, we explore whether the predictive power of
asymptotic safety might make the observed amplitude of
scalar fluctuations a critical observational test of the
asymptotic-safety scenario for a gravity-inflaton system.
The near-scale-invariance of the spectrum of primordial

scalar perturbations might be interpreted as a hint toward
scale invariance as a guiding principle for inflationary
model building [38,145–154]. Within the quantum-scale
invariant framework of asymptotic safety, the scalar degree
of freedom that arises in fðRÞ theories and is present in
corresponding truncations of the gravitational action, has
been explored as a driver of inflation [155–159]. An RG-
improvement procedure within a toy- model has been used
to calculate inflationary parameters from this setting, see
[160] for a review as well as [72] for a critical discussion of
RG improvement.
Here, we follow an alternative route, and include an

additional scalar as the inflaton. We consider the “vanilla”
model of inflation, a scalar that does not couple to any of
the (B)SM degrees of freedom except for a nonminimal
coupling to gravity. Potential derivative-couplings of the
inflaton to (B)SM fields that are expected in an asymp-
totically safe setting [28,85,86] will be neglected here,
motivated by their canonical irrelevance. Asymptotic safety
fixes several of the parameters determining the inflaton
potential, as well as potentially the nonminimal coupling.
In fact, the nonminimal coupling ξ vanishes at the asymp-
totically safe UV fixed point. We first explore the approxi-
mation that ξ remains negligible at all scales, before
exploring the case with nonvanishing ξ below.
a. Inflation with vanishing nonminimal coupling? From

observations, the deviation from scale-invariance of the
spectrum of primordial scalar fluctuations, ns − 1, the
tensor-to-scalar ratio r and the amplitude of scalar fluctua-
tions As can be inferred or constrained, respectively, see,
e.g., [48] for the most recent results. In turn, these
quantities are calculable in a given inflationary setting,
and depend on the potential as well as its first and second
derivative. For vanishing nonminimal coupling, our study
of the slow-roll-inspired parameters ϵi, see Sec. III B 3, is
applicable. The value of the potential (typically evaluated at
vanishing field) always corresponds to a relevant direction,
i.e., its IR value can be chosen freely, and corresponds to a
cosmological constant. Within our truncation, there are
three regimes to distinguish, cf. Fig. 2, where (a) the first
and second, (b) the second, (c) neither the first nor the
second derivates of the inflaton potential are fixed in the IR
by demanding asymptotic safety in the UV. In regime (a),
where all derivatives of the scalar potential are fixed by

FIG. 2. (top) The flow of ϵ1 and ϵ2 at various values of g�, with
λ� given by the fixed point (11) and ϕ=k ¼ 1. For larger values of
g�, the fixed point exhibits fewer relevant directions. (bottom)
The number of relevant direction as a function of λ� and g�. The
three markers indicate the values for ðλ�; g�Þ represented in the
panels at the top of this figure, and (a)–(c) label the three regions
explained in more detail in the text.
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asymptotic safety, the potential stays completely flat and
inflation does not exit gracefully. In the second regime, (b),
the first derivative of the scalar potential remains a free
parameter, as it corresponds to a relevant direction of the
fixed point. The dimensionless second derivative is pre-
dicted as a function of the first, cf. separatrix in the second
panel of Fig. 2. Interestingly, the second derivative, ϵ2 is
driven to negative values, favoring concave potentials as are
indeed also favored by the data, cf. Fig. 8 in [48]. At this
point, we do not embark on a quantitative comparison with
actual data, due to the systematic limitations of our study,
and simply stress that the predictive power of this setting
could in the future allow for powerful comparison with
data. In addition to an investigation of the flatness of the
potential, the amplitude of the primordial perturbations
provides a further test (see below).
Additionally, the least predictive of the three regimes,

(c), remains, where the fixed point is IR repulsive in both
the first and second derivative of the potential and no
predictions about their IR values can be derived from
asymptotic safety. In this regime, the observed values of r
and ns can potentially be accommodated, leaving us with
the amplitude As. It is fixed by the value of the potential,
measured at the value of the field corresponding to CMB
scales. Within asymptotic safety, this quantity corresponds
to a relevant direction and can therefore be chosen freely.
However, late-time observations can constrain it: In the
absence of an additional scalar field, i.e., dynamical dark
energy, the free parameter has to be chosen such as to
provide the correct value of the cosmological constant.
In the inflationary context, it is particularly worthwhile

to consider the scenario of effective asymptotic safety,
cf. Sec. II A, see, e.g., [50,51], see also [52]: In this
scenario, a finite UV scale of new physics, ΛUV > MPl
exists, beyond which a (non quantum field theoretic) UV
completion is valid. Below ΛUV, the gravity-matter RG
flow provides an effective-field-theory description of the
microphysics. In this case, the initial value of the potential
and its derivatives is specified at ΛUV by the UV com-
pletion. The gravity-matter RG flow then drives the
derivatives of the scalar potential toward smaller values,
when the UV values of the Newton coupling and cosmo-
logical constant fall into the dark gray region in Fig. 2.
While quantitative statements rely on the details of the UV
completion, we conclude that asymptotic safety could
provide a mechanism that drives potentials toward flatness,
and thus potentially toward an agreement with the data.
Therefore, asymptotic safety might provide a mechanism to
lift models out of the string-theoretic swampland into the
string-theoretic landscape, see also [50].
We also point out that this might imply that criteria that

have been proposed as indications for the possibility of
eternal inflation [161] might be realized in an asymptoti-
cally safe context.

b. Inflation with nonvanishing nonminimal coupling?
Going beyond the approximation ξ ¼ 0 in the previous
paragraph, we also explore inflation with a nonzero value
of the nonminimal coupling. In this case, a conformal
transformation from the Jordan frame (which features a
nonminimal ϕ2R term) to the Einstein frame (which is
minimally coupled) is typically made to analyze the
system, and our study of the derivatives of the potential
does not apply since we worked at ξ ¼ 0 in that analysis.
Instead, we now assume that the potential can be para-
metrized fully in terms of ξ, m and λ4, including at large
field values. Within our truncation, the following descrip-
tion then holds. Observationally, the case of a purely
polynomial potential of order two or four without non-
minimal coupling is ruled out by the exceedingly large
tensor-to-scalar ratio [42]. Therefore, a finite value of the
nonminimal coupling is required. We first neglect the scalar
mass, setting m2 ¼ 0. To match the observed amplitude of
primordial scalar fluctuations, one needs to adjust the
magnitude of the Einstein frame potential. In a simple
approximation; we require a ratio of λ4=ξ2 ∼Oð10−9Þ to do
so. As we find no indication for the existence of an
interacting fixed point with finite ξ, the finite value of ξ
would need to be generated along the flow away from the
fixed point (11).
There are two distinct regimes of the RG flow:

(a) trans-Planckian, matter-gravity-driven flow away from
the fixed point,

(b) sub-Planckian, purely matter-driven flow.
For the regime (a), there are two cases to distinguish:
For a sufficiently large fixed-point value of the cosmo-

logical constant λ, the nonminimal coupling has overlapwith
a relevant direction, cf. light blue region in Fig. 1. As the
upper panel inFig. 3 highlights, the fixed-point trajectory that
reaches a finite ξ, does not safisfy the relation λ4=ξ2 ∼ 10−9.
Instead, a linearization of the critical surface around the fixed
point approximately yields λ4=ξ2 ∼Oð−10−2Þ.
For sufficiently negative λ, there are two irrelevant, i.e.,

IR attractive directions that overlap with λ4 and ξ, cf. light
gray region in Fig. 1. In this case, the values of λ4 and ξ
remain at zero, i.e., quantum-gravity fluctuations drive λ4
and ξ back to zero, even if they deviate from it, cf. lower
panel in Fig. 3.
In both cases, this trans-Planckian, matter-gravity-driven

flow is followed by the second regime (b). In this matter-
driven regime, there is a fixed line at finite ξ and vanishing
λ4. It is a consequence of the fact that at vanishing λ4, the
beta function for ξ vanishes identically, as

βξjno gravity ¼
λ4

64π2
ð1þ 12ξÞ: ð17Þ

The fixed line itself does not satisfy the phenomenological
relation λ4 ∼ 10−9ξ2, as it lies at vanishing λ4. The flow
away from this fixed line leads to negative λ4, cf. Fig. 4,
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whereas the fixed line is IR attractive from the regime of
positive λ4. While no conclusions about global stability can
be drawn from a polynomial expansion of the potential
around vanishing field, a destabilization around the origin
is indicated by such a flow.

Overall, we conclude that the phenomenological relation
λ4 ∼ 10−9ξ2 that results in an amplitude of scalar perturba-
tions in agreement with observations appears to be difficult
to reconcile with an asymptotically safe UV completion
with gravity within our truncation. The limitations of our
study, lying mainly in its Euclidean nature and choice of
truncation, should be kept in mind when interpreting this
result.
Having highlighted the potential difficulties with a

potential which features a quartic coupling, let us instead
consider the case of a purely quadratic potential, λ4 ¼ 0.
The two remaining parameters need to take on values m2 ∼
Oð10−11Þ and ξ ∼Oð10−3Þ in order to be compatible with
observations [162]. However, these values are incompatible
within our set of beta functions: the nonvanishing value of ξ
induces a value of λ4 large enough to jeopardize the shape
of the potential, as Fig. 4 highlights that one cannot flow to
finite ξwhile remaining at λ4 ¼ 0, at least in the presence of
quantum-gravity fluctuations.
We tentatively conclude that the situation does not

appear promising for a vanilla model of inflation with a
single scalar field. In general it appears to be challenging to
reconcile the potential predictive power of asymptotic
safety with a given value of the amplitude of primordial
scalar perturbations. This situation might change in two-
field models, and, as emphasized before, our tentative
conclusions should be interpreted within the limitations of
our study. Nevertheless, these results might provide further
motivation to instead focus on inflation driven by the R2

coupling within asymptotic safety [156,158,163–165].

FIG. 3. We show the flow toward the IR in the ξ − λ4 plane at
g ¼ 1 for λ ¼ 0 (upper panel) and λ ¼ −1 (lower panel) and
vanishing scalar mass. The thick green lines in the upper panel
indicate the two fixed-point trajectories which result in negative
λ4 as ξ grows only touch the relation λ4 ∼ 10−9ξ2, indicated in red
dotted, in the fixed point. The green dot in the lower panel
indicates the fixed point, which is IR attractive in the ξ − λ4 plane.
Accordingly, the phenomenological relation λ4 ∼ 10−9ξ2 cannot
be satisfied in this case.

FIG. 4. We show the flow toward the IR in the ξ-λ4 plane at
g ¼ 0 for vanishing scalar mass. On the λ4 ¼ 0 line, the flow
vanishes identically.
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2. Toward asymptotically safe consequences for
dynamical dark energy

...where we explore potential asymptotically safe con-
sequences for dark energy; highlighting the role of the
cosmological constant and emphasizing the possibility that
quantum gravity fluctuations could drive scalar potentials
toward flatness.
A scalar might be responsible for the accelerated

expansion of the late universe, see, e.g., [166,167]. Scale
symmetry is a valuable guiding principle to construct viable
dark-energy models [145–147,150,168–170]. Potential
implications of quantum scale symmetry, i.e., asymptotic
safety, for dynamical dark energy have been explored, e.g.,
in [37,38,171–173]. The notion that different scales in
physics decouple could be taken to suggest that the late-
time acceleration of the observable universe is completely
decoupled from the physics of quantum gravity. Various
quantum-gravity approaches have contested that statement.
For instance, the Everpresent-Lambda proposal [174],
rooted in causal sets [117,175], is a proposal that has been
related to observations [176] and the swampland conjec-
tures, see [133] for a review, in string theory and their
implications for late-time cosmology are a topic of intense
discussions [177–179] with the potential to put observa-
tional pressure [43–46] on the underlying theory [180]. The
swampland conjectures, if realized, would exclude a
cosmological constant by constraining the derivative of
scalar potentials to be larger than an Oð1Þ constant divided
by an appropriate power of the Planck scale [177,178]. This
indicates a preference for steeper potentials.
The situation appears to be somewhat different in

asymptotic safety, judging by results within truncations
of the full RG flow: First, a positive cosmological constant
of the correct size to agree with observations can be reached
along RG trajectories emanating from the asymptotically
safe fixed point in truncations [181,182]. Second, scalar
potentials tend to become flattened under the impact of
asymptotically safe quantum gravity, as discussed above,
see Sec. III B 2. The fixed-point potential for a scalar that is
coupled only to gravity and not to any other fields is flat
within our truncation; furthermore the nonminimal cou-
pling vanishes. The shape of the full effective potential at
k ≈ 0, which encodes the physics of asymptotic safety,
depends on the number of relevant directions associated to
this fixed point: Depending on the strength of the gravi-
tational effects, all couplings associated to the potential as
well as the nonminimal coupling are irrelevant, cf. Fig. 1. In
this region (the dark grey region in Fig. 1), the potential
remains flat at all scales, and the full effective potential is
constant. This would imply a cosmological behavior for the
scalar dominated by a cosmological constant.
In a second region, the light grey region in Fig. 1, which

contains the gravitational fixed point under the impact of

minimally coupled matter [125] in our truncation, only the
scalar mass is relevant, allowing a quadratic effective
potential.
In a third region, the light blue region in Fig. 1, in which

gravitational fixed-point values tend to lie when the impact
of matter is not accounted for, the mass and the nonminimal
coupling are relevant; therefore a quadratic effective
potential together with a nonvanishing nonminimal cou-
pling can be achieved at k ≈ 0.
Therefore we tentatively conclude that the asymptotic-

safety scenario could a priori be compatible with different
effective potentials for dark energy, depending on the
gravitational fixed-point values. In all cases, a flat effective
potential is compatible with the fixed-point scenario within
our truncation, together with a small cosmological con-
stant. Therefore, deviations from w ¼ −1, where w is the
equation-of-state-parameter, can potentially be accommo-
dated by using relevant directions of the fixed point.
Nevertheless, w ¼ −1 appears to be preferred in that a
cosmological constant is always present in asymptotic
safety. In all regions of the gravitational parameter space
in our truncation, deviations from w ¼ −1, linked to
various terms in the scalar effective potential, are actually
constrained due to the predictive power of the asymptoti-
cally safe fixed point. Again, we highlight that these
conclusions regarding phenomenology should be viewed
in light of the Euclidean signature of our studies.
Besides a fixed-point scenario, we can also use our

calculation of the gravitational effects in an effective-field-
theory setting,where a finiteUVcutoffΛUV exists at a trans-
Planckian scale. Such an “effective-asymptotic safety”
scenario, cf. Sec. II A, has been discussed, e.g., in
[50,52]. At ΛUV, the underlying microscopic theory pro-
vides the initial conditions for the RG flow. In the range of
scales between ΛUV and MPl, gravitational fluctuations
drive the flow. Figure 5 showcases how gravitational
fluctuations drive the slow-roll-inspired parameters ϵ1
and ϵ2 (cf. Sec. III B 3) to zero, as soon as the gravitational
couplings g and λ fall into the dark grey region in Fig. 1.
Below the Planck scale, where gravitational fluctuations
decouple dynamically, scalar fluctuations then drive the
flow of ϵ1 and ϵ2 toward larger values again. This part of the
flow is also present in a theory in which ΛUV ¼ MPl, i.e.,
where quantum gravitational fluctuations do not impact the
scalar potential. We observe that the larger the ratio
ΛUV=MPl, the smaller the ϵi at MPl and thus in the IR,
ultimately resulting in a flatter effective potential. Therefore
a scenario as proposed in [50] might have the added
consequence of flattening the potential for dynamical
dark energy coming out of string theory. It would be
interesting to explore this quantitatively and compare the
ratio V 0=V from string theory with and without an inter-
mediate asymptotically safe QFT regime with gravitational
fluctuations.

ASTRID EICHHORN and MARTIN PAULY PHYS. REV. D 103, 026006 (2021)

026006-12



IV. SIMPLE YUKAWA MODEL FOR THE
HIGGS-TOP SYSTEM

...where we focus on a simple Yukawa system as a toy
model for the Higgs-top sector under the impact of
quantum gravity. We investigate the stability of previous
results, indicating a potential mechanism to fix the top-
quark mass from asymptotic safety [13], under the inclu-
sion of the nonminimal coupling. Further, we explore
whether within the present truncation, Higgs inflation
could be compatible with asymptotic safety.
As a step toward a more SM-like scalar sector, we

include a single Dirac fermion that captures the qualitative
effects of the top quark. This amounts to studying the
flowing action

Γk ¼ Γscalþgrav
k þ Γferm

k þ Sgf þ Sgh: ð18Þ

Herein, Γscalþgrav
k stands for the single-scalar-gravity

action in Eq. (4) and Γferm
k is given by Eq. (7). The above

model neglects the chiral SU(2) structure that is present in
the coupling of the top and bottom quark to the Higgs,
resulting in numerical differences of various factors in the
beta functions. Nevertheless, as a precursor to a more
realistic chiral Higgs-top-bottom model as analyzed with
the FRG in [183] and under the impact of quantum gravity
in [13,14,184], the model with a single real scalar and a
Dirac fermion can already provide valuable insights into
potential asymptotic-safety mechanisms.
Various aspects of the interplay of quantum gravity with

fermions have previously been studied in [60,74,82,
84,88,185–188]. Yukawa systems under the impact of

asymptotically safe gravity have been explored in [12–14,
26,27,83,85,124,184,189]. In [85], it was first proposed
that asymptotic safety might allow us to calculate the top
quark mass; the proposal was extended to a chiral top-
bottom system in [14] and to three generations of quarks
with CKM mixing in [184].

A. Effects of fermions

...where we provide additional contributions to beta
functions in the literature arising from the nonminimal
coupling and focus on the number of relevant directions in
the simple Yukawa system. This provides an indication for
the predictivity that quantum gravity generates in this
matter system.
To compute fermion contributions, we apply similar

techniques as before: we evaluate traces either in momen-
tum space or using explicit summation over the spectrum,
depending on our interest in the curvature dependence of
the result. For the relevant expressions regarding the
evaluation with spectral methods we again refer to
[61,64] for the corresponding expressions, while stressing
the importance to use an appropriate cutoff term for the
fermions, as discussed in [60]. In particular, for the
fermionic fluctuations, the regulator is chosen as a function
of the Dirac operator, cf. Eq. (A17).
A closed fermion loop contributes

Δ∂tðVðϕÞ=k4Þ ¼
−1

8π2ð1þ y2ϕ2=k2Þ ; ð19Þ

to the flow of the potential VðϕÞ and a factor

Δ∂t

�
1

16πg
þ ξϕ2=k2

�
¼ −1

48π2ð1þ y2ϕ2=k2Þ ; ð20Þ

to the flow of the prefactor of the Ricci scalar, respectively.
Herein, the notation signifies that the full flow of these
quantities is given by the previous result from the single-
scalar section, plus the contribution (19), or (20), respec-
tively. These results agree with the ones reported in [12,16].
Additionally, the Yukawa coupling contributes to the scalar
anomalous dimension via a fermionic loop, as well as to the
fermion anomalous dimension via a scalar sunset-type
diagram. We adopt the expressions for these universal
contributions from Ref. [85].
In our truncation, the Yukawa beta function at vanishing

scalar mass m2 ¼ 0 takes the form

βy ¼
5

16π2
y3 − fyy; ð21Þ

with fy capturing the effect of gravitational contributions
and

fy ¼ fmin
y þ Δfð1Þy þ Δfð2Þy : ð22Þ

FIG. 5. We show the flow toward the IR for ϵ1, ϵ2 for various
starting values at trans-Planckian scales at ϕ=k ¼ 1. The solid/
dashed/dashed-dotted lines correspond to different initial con-
ditions in the UV. The values of the gravitational couplings
g ¼ 1.5 and λ ¼ 0.13 lie in the dark grey region in Fig. 2, i.e.,
region (a). They are held constant here for simplicity. As long as
gravitational contributions are active, the flow heads toward
flatter scalar potentials. For large ϵi, our truncation of setting
ϵi ¼ 0, i ≥ 3, is expected to break down.
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Herein fmin
y agrees with [85], given by

fmin
y ¼ −

gð96 − 235λþ 103λ2 þ 56λ3Þ
12πð3 − 4λÞ2ð1 − 2λÞ2 : ð23Þ

Additionally, the two diagrams depicted in Fig. 6 contain
parts proportional to the nonminimal coupling. The corre-
sponding contributions to fy read

Δfð1Þy ¼ −g
24ð1 − ηh

8
Þξ

πð3 − 4λÞ2 − g
8ð1 − ηϕ

8
Þξ

πð3 − 4λÞ ; ð24Þ

and

Δfð2Þy ¼ g
108ð1 − ηh

9
Þξ

7πð3 − 4λÞ2 þ g
36ð1 − ηϕ

9
Þξ

7πð3 − 4λÞ

þ g
18ð1 − ηψ

8
Þξ

7πð3 − 4λÞ : ð25Þ

All corresponding expressions including the scalar mass are
lengthier and can be found in Appendix C.
For fy < 0, the only fixed point for the Yukawa coupling

at finite gravitational fixed-point values is the free one,
y� ¼ 0. Indeed, fy < 0 is realized for the values of the
gravitational couplings in the vicinity of the fixed point
(11). Therefore, this fixed point persists in the larger theory
space extended by an additional fermion, and enforces
y� ¼ 0, see also [83]. The gravitational coupling values at
that fixed point are

g� ¼ 3.2 λ� ¼ −0.146: ð26Þ

The critical exponents of the combined system are

θð1Þ ¼ 2.92 θð2Þ ¼ 0.728

θð3=4Þ ¼ 0.0921� 1.58i θð5Þ ¼ −0.524

θð6Þ ¼ −1.94: ð27Þ

The first two critical exponents are associated with the
gravitational couplings, the next two relevant directions

are associated with the mass parameter and the nonminimal
coupling, the last two with the quartic coupling and the
Yukawa coupling. The small changes compared to the values
in (11) arise due to the impact of the additionalDirac fermion.
Varying the gravitational fixed-point values, for moder-

ately negative values of −3.3 < λ� < −0.6 (at g� given by
(12) the Gaußian matter fixed point exhibits one relevant
direction associated with the scalar mass, implying a
vanishing Yukawa coupling at all scales, cf. Fig. 7. This
is challenging to reconcile with the presence of finite
fermion masses, generated through the Higgs mechanism,
in the SM, cf. [83,85,189].
For λ� ≲ −3.3, the gravity-induced anomalous dimen-

sion of the Yukawa coupling becomes positive, fy > 0. The
gravitational fixed-point values incorporating all SM
degrees of freedom (12) fall into this regime in the
truncation studied in [125]. The Gaußian fixed point
features two relevant directions for the matter couplings,
associated with the scalar mass parameter and a relevant
direction in the canonically marginal couplings. The fixed
point has critical exponents

θð1Þ ¼ 3.98 θð2Þ ¼ 1.97

θð3Þ ¼ 1.92 θð4Þ ¼ 0.0107

θð5Þ ¼ −0.0185 θð6Þ ¼ −0.038: ð28Þ

FIG. 6. Diagrams that contain contributions from the non-
minimal coupling, contributing to the Yukawa coupling. Curly
lines represent gravitons, dashed lines represent scalars, and the
crossed circle represents a regulator insertion.

FIG. 7. We show the number of relevant directions in the
y; λ4; m2; ξ-subspace as a function of the gravitational couplings
g; λ at the fixed point with vanishing matter couplings. There are
no relevant directions in the dark gray area, one relevant direction
in the light gray area, and two relevant directions in both light
blue area. In the lighter blue area at negative λ, the Yukawa
coupling is relevant at the GFP, indicating the existence of an
interacting fixed point at which it is irrelevant, as in [13]. The
dashed gray line at λ� ¼ −2 marks a difference in the scaling of
the λ�-axis. The blue triangle/red square indicate the fixed points
(26)/(12), i.e., without/with the effect of minimally coupled SM
fields.
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At the same time, a new fixed point emerges that will be the
focus of the next subsection.

B. Comparison to the case without nonminimal
coupling: Impact on predictions of the fermion mass

...where we investigate the robustness of results from
[13] that indicate that (an upper bound on) the top quark
mass might be calculable from asymptotic safety, and study
the impact of the nonminimal coupling on the fermion-mass
prediction.
For λ� < −3.3 and correspondingly fy > 0, and in the

approximation where the nonminimal coupling is set to
zero, ξ ¼ 0, two fixed points at y� > 0 exist in addition to
the fixed point at y� ¼ 0, see Eq. (28). One of these is
characterized by λ4� < 0, the other by λ4� > 0. For values of
the gravitational couplings given by Eq. (12), the former is
located at

λ4� ¼ −1.15; y� ¼ 0.58; ð29Þ

whereas the latter is located at

λ4� ¼ 0.18; y� ¼ 0.58: ð30Þ

As first observed in [83] and generalized in [13,14,
184,189] to a realistic quark sector, the latter fixed point
is infrared attractive in both these couplings, thus also
generalizing the scenario proposed in [10]. Naturally, the
interacting nature of the fixed point implies a mixing of
couplings in the relevant/irrelevant directions, yet, as the
fixed point is near-perturbative, this mixing is small.
Consequently, initializing the model at the fixed point in
Eq. (30) in the UV, the value of the Yukawa coupling is
fixed at all energy scales and its “sibling” in a top-bottom-
Higgs system allows to calculate the top mass and bottom
mass as a consequence of asymptotic safety [13,14,184].
The difference in the fixed-point values in Eq. (30)
compared to the ones reported in [13] arises, as we work
in a simple Yukawa system here instead of a chiral Yukawa
system, and our fixed-point values of the gravitational
couplings differ. The shift in the gravitational fixed-point
values is due to a different treatment of gravitational
fluctuations; the gravitational beta functions used in [13]
and first computed in [84] are obtained (a) without
decomposing the graviton according to (A3) and (b)

employing a regulator function that features Γð2Þ
k jλ¼0 as

its argument. On the one hand the shift in fixed-point values
highlights the uncertainty in the determination of fixed-
point values, cf. the estimated lower bound on the sys-
tematic uncertainty in [13], emphasizing the need to study
the full gravitational parameter space. On the other hand,
the stability of the qualitative features of the interacting
fixed point is encouraging.
As discussed in the previous Sec. IVA, in addition to the

interacting fixed points, the system also features a fixed

point at which all matter couplings vanish. The interplay of
these fixed points results in an upper bound on the fermion
mass. This upper bound is the value that is reached along
the unique trajectory connected to the interacting fixed
point, see [13].
In the following, we will study the fate of both fixed

points in Eq. (29) and (30) under the inclusion of the
nonminimal coupling ξ.
To qualitatively understand the effect of a nonminimal

coupling on these fixed points, we first solve the
β-functions for the Yukawa and the quartic coupling with
the nonminimal coupling ξ as a free parameter. The gravity-
induced anomalous dimension fy depends on the non-
minimal coupling ξ, and for gravitational coupling values
given by (12), fy is positive only for

ξ ∈ ½−0.06; 0.09�; ð31Þ

for more general values of λ, see Fig. 8.
Let us now compare this interval to the actually realized

fixed-point value for ξ. Crucially, a nonvanishing Yukawa
coupling breaks shift symmetry and therefore causes a
nonvanishing nonminimal coupling. At order OðξÞ, which
suffices for an analysis within the above window, the
β-function of the nonminimal coupling at vanishing mass
parameter, m2 ¼ 0, is given by

βξ ¼
�
ξþ 1

12

��
y2

4π2
þ 3λ4
16π2

�

þ gξ

�
2ð3 − λÞ

3πð3 − 4λÞ2 −
5ð3þ 10λÞ
18πð1 − 2λÞ3

�
: ð32Þ

A nonvanishing Yukawa and quartic coupling generate a
fixed-point value ξ� ¼ −1=12 < −0.06 if g ¼ 0. The direct
gravitational contribution, i.e., the second line in Eq. (32),
is therefore crucial. The Yukawa and the gravitational
contribution compete in shifting the fixed point between

FIG. 8. Region of positive fy marked in green at vanishing
mass m2 ¼ 0. The dashed line marks the conformal fixed point
ξ ¼ −1=12. The region is independent of the value of g.

CONSTRAINING POWER OF ASYMPTOTIC SAFETY FOR … PHYS. REV. D 103, 026006 (2021)

026006-15



the conformal value ξ� ¼ −1=12 and the free fixed point, as
can be seen in Fig. 9. The key question is, whether at the
fixed point (30) the gravitational contributions are suffi-
ciently strong for ξ� to fall into the interval in (31). Only
then can the fixed point from [13,14,184] continue to exist
in the larger truncation we study here.
The gravitational contribution in Eq. (32) is positive for

sufficiently negative λ�. At the fixed point (29) with
negative λ4�, the coefficient of the term ðξþ 1=12Þ is
negative; the resulting would-be fixed point value for ξ is
positive and too large to fall into the interval (31). The
inclusion of ξ hence rules out this previous fixed-point
candidate with negative λ4�.

In contrast, at the fixed point (30) with positive λ4�, the
gravitational effects are strong enough to shift ξ� into the
interval in Eq. (31). This fixed point, the generalization of
which underlies [13,14,184] hence persists under the
inclusion of the nonminimal coupling.
It is rather nontrivial that the region of sufficiently

negative λ� is actually the region which is already selected
by requiring fy > 0. Now, we find that this is the region in
which it appears to be a qualitatively viable approximation
to neglect ξ in the analysis of the fixed-point structure of
Higgs-Yukawa systems.
In our full system of beta-functions, we find a fixed

point at

λ� ¼ −9.49 g� ¼ 7.26

λ4� ¼ 0.139 y� ¼ 0.381

ξ� ¼ −0.04 m2� ¼ 0.00086; ð33Þ

with three relevant directions and critical exponents

θð1Þ ¼ 3.98 θð2Þ ¼ 1.99

θð3Þ ¼ 1.91 θð4Þ ¼ −0.0364

θð5=6Þ ¼ −0.00855� 0.0108i: ð34Þ

In comparison to the fixed point (30), both λ4� as well as y�
are considerably lowered due to the presence of the
nonminimal coupling ξ. This can also be seen in Fig. 10
which shows contours of constant Yukawa coupling in the
gravitational parameter space. Under the inclusion of the
nonminimal coupling, the curves are shifted upwards

FIG. 9. We show the value of ξ�, leaving y� and g� as free
parameters with λ� given by (12). The Yukawa and gravitational
effects compete. For small gravitational effects the fixed-point
value approaches ξ� ¼ −1=12, for large gravitational effects it
approaches the free fixed point.

FIG. 10. Fixed point-value of the Yukawa coupling y� (color) and the quartic coupling λ4� (dashed lines) as a function of the
gravitational fixed-point values without (with) a nonminimal coupling on the left (right). The left plot is obtained setting m2 ¼ 0, the
right one considers the full mass dependence.
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considerably. Assuming that a similar effect will hold in the
full SM, this aids to realize the scenario presented in [13].
Neglecting the nonminimal coupling ξ, in that reference the
Higgs self-coupling fixed-point value was determined to be
λ4� ¼ 0.01 at a point with a roughly realistic top mass,
rendering the Higgs boson slightly too heavy. Our results
indicate that the inclusion of a nonminimal coupling could
reduce this overestimation of the Higgs mass.
As one of the nontrivial results of our paper, we highlight

that the nonminimal coupling, which is canonically mar-
ginal, actually corresponds to an irrelevant coupling at the
asymptotically safe fixed point. Therefore, its value is fixed
at all scales as a unique function of the relevant couplings.
Let us briefly mention that, depending on the value of the

top mass, the Higgs potential in the SM might be
metastable [4–6]. In that case, the presence of a non-
minimal coupling can stabilize or destabilize the Higgs
potential in the early universe, where the background
curvature is large enough, see [190–196]. At present, it
is not clear whether or not the SM Higgs potential remains
stable when coupled to asymptotically safe gravity. To
answer this question, the gauge degrees of freedom of the
SM are important, as they affect the Higgs potential;
therefore we leave the question of vacuum stability, as
well as a comparison with the corresponding cosmological
bounds on ξ, for future work. We highlight that if the fixed-
point properties of the simple Yukawa system persist under
this extension, the nonminimal coupling takes on a
uniquely calculable value. Therefore, there might be a
unique answer to the question whether asymptotic safety
aids or prevents vacuum stability through the nonminimal
coupling in the early universe.

C. Spontaneous symmetry breaking
in the quantum-gravity regime

...where we explore the emergence of a symmetry-broken
fixed-point potential in parts of the gravitational param-
eter space.
Spontaneous symmetry breaking, in our case of the Z2

symmetry that maps ϕ to −ϕ, is signaled by a negative
value for the squared mass parameter, m2. An asymptoti-
cally safe fixed point could a priori lie at any sign of m2,
i.e., in principle spontaneous symmetry breaking might
already occur in the UV. As explained also in [21], in the
presence of a Yukawa coupling, the fixed-point value for
the mass remains positive in the strong-gravity regime—
which lies at λ≳ 0 in our truncation. Therefore, we focus
on the weak-gravity regime, into which the gravitational
fixed-point value is pushed under the impact of the SM
degrees of freedom [125]. In this regime, fixed-point values
for matter couplings become perturbatively small, and we
can focus on a simple approximation of the beta function
for the mass parameter. In the limit λ ≪ 0, it can be
approximated as

βm2 ≈ −2m2 þ 1

4π2
y2 −

3

32π2
λ4 −

18

πð3 − 4λÞ gξ
2

−
6gξ

πð3 − 4λÞ2 −
10gξ

3πð1 − 2λÞ2 −
54gξ2

πð3 − 4λÞ2
þOðm2y;m2λ4; m2ξÞ: ð35Þ

The resulting fixed-point value is

m2� ¼
1

8π2
y2 −

3

64π2
λ4 −

9

πð3 − 4λÞ gξ
2

−
3gξ

πð3 − 4λÞ2 −
5gξ

3πð1 − 2λÞ2 −
27gξ2

πð3 − 4λÞ2 : ð36Þ

In the absence of the nonminimal coupling, this results
in a positive mass at all values of g and λ, since the
λ4-contribution turns out to be subleading compared to
the y2-contribution. In the presence of a finite nonminimal
coupling, the combined pure scalar and trace mode con-
tributions ∼λ4 and ∼ 1

ð3−4λÞ# are negative (at negative λ) and

start to dominate over the positive y2-contribution for
sufficiently negative λ, as shown in Fig. 11. Accordingly,
the fixed point lies in the spontaneously symmetry-broken
regime for λ < −14.9.
We leave the exploration of the resulting phenomenol-

ogy and the investigation of the viability of this region to
future work.

FIG. 11. The leading contributions to βm2 for g ¼ 1, cf.
Eq. (36). The dotted contribution stems from three diagrams
that all include the gravitational trace mode, i.e., the three terms
with ð3 − 4λÞ in the denominator in Eq. (36). The dashed and
dotted contributions appear with a negative sign in the beta
function for the mass. The vertical dashed line marks the onset of
the symmetry-broken regime.
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D. Indications against the viability
of Higgs inflation in asymptotic safety

...where we explore whether a ratio of quartic coupling
to nonminimal coupling as it would be required for Higgs
inflation could be achieved in our toy model. In particular,
we investigate whether the regime of gravitational param-
eter space that appears preferred by Higgs inflation in our
truncation is also the regime that could allow a realistically
large value of the Yukawa coupling to accommodate the
measured top quark mass.
Higgs inflation is an attractive theoretical idea that ties

together particle physics and cosmology and does not
invoke any BSM physics to generate an inflationary regime
[197], see [198] for a review. The standard questions
regarding the status of the initial conditions [199] remain,
but in contrast to inflationary settings with a new scalar
degree of freedom as the inflaton, Higgs-inflation in
principle only has one additional free parameter, namely
the nonminimal coupling of the Higgs field to gravity.
Additional free parameters, linked to higher-order cor-

rections in the Higgs potential, start to play a role if the
Higgs potential is metastable, or close to metastability
[7,200]. In principle, such corrections can be evaluated in
an asymptotically safe setting.
Here, we ask a simpler question, namely, whether the

nonminimal coupling is available as a free parameter in this
setting, and we work under the assumption that higher-
order terms in the potential are negligible. We find that
within our truncation, the nonminimal coupling is predicted
by the asymptotic-safety requirement in that region of
parameter space which could admit a finite Yukawa
coupling in the IR, i.e., a finite top quark mass. In other
words, within our truncation the nonminimal coupling is
only available as a free parameter at the cost of fixing the
top quark mass to zero.
We therefore focus on the region of parameter space with

λ < −3.3. In this region, an upper bound on the fermion
mass exists [13,14,184], in addition to a prediction of the
nonminimal coupling. The presence of the finite Yukawa
coupling distinguishes the scenario considered here from
the one discussed in Sec. III C as well as in [201].
Within our toy model, defined by our choice of degrees

of freedom and our truncation, asymptotic safety does not
appear to be compatible with Higgs inflation. Unless y� is
made very tiny, y� ≲ 10−6, the ratio λ4�=ξ2� at the interacting
fixed point is ofOð1Þ, cf. Fig. 12. As all three couplings are
irrelevant and only flow logarithmically toward the IR, it
appears unlikely that this yields the observed amplitude of
primordial scalar fluctuations, which would require
λ4=ξ2 ∼Oð10−9Þ, cf. Sec. III C. This finding fits with
Ref. [39], that found that based on the fixed point value
for ξ Higgs inflation is unlikely to be realized within
asymptotic safety.
In conclusion, our results indicate that Higgs inflation

might be hard to realize in asymptotic safety as it appears

difficult to obtain the correct amplitude of primordial
fluctuations while accommodating a viable top-quark-
mass. Again, this result holds under an extrapolation from
the Euclidean to the Lorentzian regime.

V. SCALAR PORTAL TO DARK MATTER

...where we focus on settings, where dark matter is
coupled to the SM Higgs through a portal coupling. We
study two coupled scalars as a toy model for the portal
sector and additionally propose a setting with an addi-
tional dark fermion as the simplest dark-matter sector with
an interacting fixed point in the portal coupling. We then
explore to what extent asymptotic safety leads to an
enhancement of the predictivity of the model over the
effective-field-theory approach without gravity.
The ongoing experimental searches for dark matter

have not yielded a clear discovery yet [202–218]. While
these searches have already excluded an impressive number
of models and parameter combinations, an even larger
space lies ahead of them. Novel theoretical ideas could
change this situation. Classically, scale-invariance enhan-
ces the predictivity of Higgs portal models [149,219–231].
Quantum scale invariance [173,232] additionally might
allow to fix marginal couplings that are not constrained by
classical scale invariance, including the portal coupling.

FIG. 12. Fixed-point values for λ4=ξ2 (dashed lines) at the
interacting fixed point as a function of g� and λ�, together with
contours showing the fixed-point value of y. The fixed-point
value for y translates into an upper bound on the fermion mass
compatible with asymptotic safety. In order to achieve fixed-point
values for λ4=ξ2 compatible with those suggested by Higgs
inflation, the lower bound on the Yukawa coupling generically
has to be very small. Assuming that these results carry over to the
SM Higgs-top sector, Higgs inflation would not be compatible
with a viable top mass within asymptotic safety.
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In particular, a single, uncharged dark scalar remains an
attractive model for dark matter, due to its conceptual
simplicity as a thermal relic and due to its experimental
accessibility, see [233] for a review. In [18], it has been
found that quantum-gravity fluctuations drive the Higgs
portal coupling to zero, such that it vanishes at the Planck
scale. If confirmed in extended theoretical studies, this has
important phenomenological consequences, as it leads to
the decoupling of this dark-matter candidate, and requires
an extended dark sector to regenerate the portal coupling at
[35] or below [20,23] the Planck scale.
In the first part of this section, VA, we work with two

scalars coupled to gravity nonminimally and to each other
through a portal coupling, described by the truncation

Γk ¼ Γ2−scalþgrav
k þ Γportal

k þ Sgf þ Sgh: ð37Þ

This provides a model for dark matter coupled to a visible
scalar as a toy model for the SM Higgs, analyzed without
the nonminimal couplings in [18]. We confirm that the
decoupling-result from that paper persists under the inclu-
sion of the nonminimal couplings in Sec. VA. This
motivates an extension of the dark sector in order to
reconcile the asymptotic-safety paradigm with the idea
that dark matter is a thermal relic. In contrast to [20,23],
where new physics is added to regenerate the portal
coupling below the Planck scale, we explore the setting
in which an asymptotically safe fixed point lies at finite
portal coupling, introduced in [35], see Sec. V B.

A. Decoupling of a single dark scalar
in asymptotic safety

...where we confirm that the result that the portal
coupling between two purely scalar sectors vanishes at
an asymptotically safe fixed point is robust under the
inclusion of nonminimal couplings.
Our first key result is that the inclusion of the non-

minimal couplings does not alter the decoupling result from
[18], as λHP� ¼ 0 and λHP corresponds to an irrelevant
direction. The corresponding beta function for the portal
coupling can be found in Appendix C. Including the
additional effect of 45 minimally coupled Weyl fermions,
12 gauge bosons, 3 minimally coupled scalars, as for the
degrees of freedom of the Standard Model, we find a fixed
point at

g� ¼ 9.66; λ� ¼ −12.4; ð38Þ

with all other couplings vanishing. The underlying reason
for the flat scalar potential is shift symmetry in the two
scalar sectors; the kinetic term for both scalars is invariant
under ϕ → ϕþ C, with C a constant. Under the impact of
gravity, that symmetry remains intact, cf. Sec. III B 1. The
critical exponents read

θð1Þ ¼ 3.99 θð2=3Þ ¼ 1.97; θð4Þ ¼ 1.92;

θð5=6Þ ¼ −0.0173; θð7=8=9Þ ¼ −0.0353: ð39Þ

Several of these come in identical pairs due to exchange
symmetry between the visible and the dark scalar. The three
smallest critical exponents show a three-fold degeneracy, as
they are associated with the three quartic couplings.
The Higgs portal coupling is an irrelevant direction, just

as in [18] and is protected by shift symmetry at all scales
once set to zero at high scales. Thus, a departure from
λHP ¼ 0 at low scales is incompatible with the fixed-point
requirement at high scales. Accordingly, the conclusions in
[18] persist under the inclusion of nonminimal couplings;
the dark scalar decouples from the visible one.
Within our truncation, asymptotic safety with gravity is

therefore incompatible with the thermal production of a
single dark scalar in a setting without additional fields in
the dark sector, see [20,23] for proposed extensions.
Whether alternative production mechanisms could be
available, depends on the gravitational parameters: At
the fixed point in Eq. (38), the dark-matter mass remains
associated with a relevant direction and can therefore depart
from its fixed-point value m2

d� ¼ 0 to take any finite value
in the infrared. For a massive, purely gravitationally
coupled particle, gravitational particle production in an
inflating universe might be viable [234], based on the
classic results in [235]. In particular, superheavy stable dark
matter, minimally coupled to gravity, might be produced
in the early universe [236]. The availability of such a
mechanism also depends on the compatibility of the
required inflationary potentials with asymptotic safety,
see also Sec. III C 1.
Additionally, just as for a single scalar [28], one expects

momentum-dependent interactions between the dark scalar
and the Higgs scalar to necessarily be present if an
asymptotically safe fixed point exists, see also [85].
These are present at high RG scales, but suppressed in
the IR due to their canonical dimensionality. As discussed
in [237], such Planckian-interacting massive dark matter
might be produced in the early universe.

B. Portal coupling to a dark Yukawa system

...where we expand on results in [35], tentatively hinting
at a highly predictive model of a scalar-fermion dark sector
under the impact of quantum gravity, coupled through a
portal to the visible Yukawa sector.
The results in the previous section, lending further

support to the decoupling of a simple scalar as dark matter
found in [18], motivate us to ask whether thermal pro-
duction of dark matter could be compatible with asymp-
totically safe gravity once the dark matter sector is
extended. Thus, we investigate a model that illustrates
how to generate a finite Higgs portal coupling at the Planck
scale. As a consequence of asymptotic safety, we will find
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that this model features a very strongly enhanced predictive
power compared to its leading-order effective-field-theory
treatment. In our toy model, the first scalar ϕv again plays
the role of the Higgs. The second scalar ϕd assumes the role
of a dark scalar. To dynamically break shift symmetry in the
dark sector, we additionally include a dark fermion. This
generates a nonvanishing portal, as we discovered in [35].
We hence work with two copies of the action from Sec. IV,
a dark and a visible one. Additionally, we include a portal
coupling in the effective action which reads

Γk ¼Γ2−scalþgrav
k þΓferm;v

k þΓferm;d
k þΓportal

k þSgf þSgh;

ð40Þ

where Γ2−scalþgrav
k is the action for two nonminimally

coupled scalars given in Eq. (8), Γportal
k is the portal

coupling given in Eq. (9), and Γferm;v
k (Γferm;d

k ) are the
fermion action (7) for a visible (dark) fermion ψv (ψd)
coupled to the visible (dark) scalar ϕvðϕdÞ, respectively.
The beta functions for this system are given in Appendix C.

C. Fixed-point structures, predictivity
and near-perturbativity

...where we list all possible fixed-point structures of the
model with a dark and a visible Yukawa sector, explore
their predictivity, and study whether the most predictive
fixed point is near-perturbative in nature.
The action features aZ2 exchange symmetrybetween dark

and visible sector. This exchange symmetry is also reflected
in the fixed-point structure of the system and leads to
degeneracies in the spectrum of critical exponents at the
interacting fixed point that explicitly exhibits this symmetry.
The system features several partially Gaußian fixed

points, as soon as λ� < −3.3. These arise as a consequence
of the fact that under the impact of gravity, Yukawa systems
could feature a free as well as an interacting fixed point
[13,83,85], see Sec. IV. There are four fixed points in the
system cf. Table I. Once the fixed-point value of the
Yukawa coupling is nonvanishing, the resulting explicit
breaking of shift-symmetry results in a nonflat scalar
potential and nonminimal coupling in the corresponding
sector.
Fixed points FP1 and FP2 are connected by the exchange

symmetry between dark and visible sector. This symmetry
entails that fixed points which do not obey the symmetry,
i.e., where, yv� ≠ yd� etc., must come in pairs that map into
each other under the symmetry.
At all four fixed points, both gravitational couplings are

associated to relevant directions, as are the two mass
parameters; in addition various of the marginal couplings
correspond to relevant directions. At the most predictive
fixed point FP3, both sectors are interacting and all
canonically marginal couplings are actually irrelevant,
i.e., predicted. In the following we will concentrate on

this fixed point. This can either be understood as a choice
for the universality class underlying the UV completion, or
can also be interpreted in view of effective asymptotic
safety [51], see Sec. II A: If there is a finite UV cutoff,
beyond which the QFT description for matter-gravity
systems ceases to hold, then the microscopic model
provides the initial conditions for the RG flow. From there,
the flow will be attracted by fixed points along their IR
attractive directions. The fixed point with most irrelevant
directions is therefore most likely to play a role as an
“effective” fixed point, generating trajectories with near-
scale symmetry.
There are only two relevant directions in the matter

sector at FP3, both of which set the mass scale in the
corresponding sector. All matter interactions are predicted
at this fixed point. This is in marked contrast to an effective-
field theory setting, where all of seven canonically marginal
couplings, (λ4v; λ4;d; λHP; ξv; ξd; yv; yd), correspond to free
parameters.
At the fixed point FP3, the Yukawa couplings break the

shift symmetry in both sectors. This induces nonvanishing
fixed-point values for ξvðdÞ via the ξvðdÞ independent terms
in Eq. (32). These in turn induce a nonvanishing fixed-point
value for the portal coupling via the diagrams depicted in
Fig. 13. These diagrams generate λHP independent con-
tributions in the beta function for λHP, which reads

TABLE I. Fixed points and their predictivity in the gravity-
matter system. FP1 and FP2 are symmetric under the exchange of
the dark and the visible sector. Two of the relevant directions
approximately correspond to the gravitational couplings g and λ,
and two approximately correspond to the scalar masses m2

v and
m2

d. There is a total of eleven canonically relevant or marginal
couplings in our truncation.

FP
yv�; ξv�,
m2

v�; λ4;v�
yd�; ξd�,
m2

d�; λ4;d� λHP�
number of relevant

directions

GMFP 0 0 0 6
FP1 ≠ 0 0 0 5
FP2 0 ≠ 0 0 5
FP3 ≠ 0 ≠ 0 ≠ 0 4

FIG. 13. These diagrams induce the Higgs portal coupling. The
crossed circles correspond to regulator insertions, the wiggly
lines represent gravitons, the dashed/dashed-dotted lines re-
present the two scalars. Additionally, the diagrams with regulator
insertions on the other internal propagators contribute.
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βλHP ¼
160g2ξdξv
ð1 − 2λÞ3 þ 27648g2ξ2dξ

2
v

ð3 − 4λÞ2 þ 82944g2ξ2dξ
2
v

ð3 − 4λÞ3

þ 864g2ξdξv
ð3 − 4λÞ3 þ 6912g2ð9 − 4λÞðξdξ2v þ ξ2dξvÞ

5ð3 − 4λÞ3
þOðλHPÞ: ð41Þ

Equation (41) showcases that λHP� ¼ 0 is not available,
once ξvðdÞ� ≠ 0. In summary, the choice of a fixed point at
finite Yukawas breaks shift symmetry in both scalar
sectors, resulting in asymptotic safety at nonvanishing
portal coupling.
We analyze potential physics implications of the fixed

point FP3 with nonvanishing portal coupling as a function
of λ� and g�, see Fig. 14. This completes our analysis
presented in [35], where we focus more particularly on the
fixed-point values obtained in a specific setup with the
gravitational beta functions obtained in [84]. Interestingly,
the fixed point FP3 can lie at negative m2� < 0 for suffici-
ently negative λ�, cf. Fig. 14, where bothZ2 symmetries are
spontaneously broken in the UV.
Further, the portal coupling can become negative at the

fixed point. Nevertheless, a stability analysis around the
origin in field space indicates that the local stability
criterion λ4;v�λ4;d� − λ2HP� > 0 is always satisfied. That
there is a region in parameter space, in which an interacting
fixed point not only exists, but also satisfies local stability
and lies in the symmetric phase, is clearly a nontrivial
result—since both conditions can be violated in corre-
sponding regimes of the parameter space.
The ratio of dark-scalar and dark-fermion mass in a no-

mixing approximation is yðkIRÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4ðkIRÞ

p
, where kIR is a

sufficiently IR scale. We observe that the ratio y�=
ffiffiffiffiffiffi
λ4�

p
is

larger than but of the order one, unless the fixed-point value
λ� becomes smaller than λ� ≈ −10. Both couplings flow
logarithmically toward the IR, therefore the ratio of fixed-
point values contains indirect information about the mass
ratio. Indeed, following the RG flow toward the IR
indicates that, as long as the absolute value of the
gravitational couplings is not too large, the dark (and
visible) fermions are heavier than their scalar counterparts,
making the dark scalar a potential candidate for a stable
dark-matter particle. In all cases that we consider, the ratio
of the two masses remains close to one.
Our choice of truncation relies on assuming a near-

perturbative nature of the fixed point, which needs to be
checked a posteriori.
In particular, FP3 has been obtained in an approximation

of the beta functions which only takes into account the
leading terms in the anomalous dimension and reproduces
the universal one-loop results for marginal couplings, see
also Sec. A 4. Going beyond this approximation, we find
only small quantitative changes: Taking into account the
full dependence on the anomalous dimension ηϕ and ηψ ,
and hence considering nonpolynomial terms in the beta
functions, only alters both, the fixed-point values, as well as
the critical exponents, at the percent level at generic values
of g and λ. The stability of our results under this change is
an indication for the near-perturbative nature of the system.
Additionally, the fixed-point values for g� and λ� lie at

roughly similar values, no matter which of the four fixed-
point structures is chosen in the matter sector. This indicates
that there is no huge “backreaction” from the interactions in
the matter sector in the regime of parameter space of interest
to us, i.e., for λ� < −3.3 and g� not too large.
We use the deviation from canonical scaling as a measure

of (near-)perturbativity, see also [77]. Specifically, we
define

Δθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðReðθðiÞÞ − dḡiÞ2P
i

s
; ð42Þ

where the sum runs over all matter couplings in our
truncation and dḡi denotes the canonical dimension of
the ith coupling. Figure 15 showcases that the matter
system is near-perturbative at the interacting fixed points
induced by its coupling to quantum gravity. This finding is
well in line with previous indications for a near-perturbative
nature of the Reuter fixed point in gravity-matter systems,
e.g., [74–76]. It further supports our choice of truncation,
and finally makes plausible that the Standard Model
(extended by a few extra fields), that remains perturbative
up to the Planck scale, could conceivably be UV extended
by its coupling to asymptotically safe gravity. In particular,
the mechanism that we explore here relies on a finite fixed-
point value of the Yukawa coupling and is therefore not
available in the region of parameter space which is

FIG. 14. Fixed-point value of the portal coupling as a function
of the gravitational fixed-point values. For λ� < −12.6, the fixed
point lies in the symmetry-broken regime. The ratio y�ffiffiffiffiffi

λ4�
p is

indicated by the dashed contours.
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generically tied to larger Δθ, lying at λ� > −3.3. In fact, in
this region, only a fixed point with vanishing matter
couplings exist. Its critical exponents can depart more
significantly from canonical scaling, see Fig. 15. Thus, the
region preferred on phenomenological grounds appears to
coincide with the near-perturbative fixed-point regime.

D. Connection to the IR

...where we connect the UV fixed point to corresponding
predictions for IR values and explore the quantitative
relation between the various coupling parameters of the
dark and visible sectors. In particular, we highlight the
strong enhancement of predictivity, that asymptotic safety
could entail.
To extract physical predictions, one needs to translate the

UV fixed-point values into values at k → 0. Within a
standard EFT treatment that would start at some finite
cutoff scale kUV, all higher-order couplings would take
arbitrary values. In addition, all couplings in our truncation
correspond to canonically relevant or marginal couplings,
and could also be specified freely. Thus, a large parameter-
space of potential dark-matter properties would open up in
the IR. In contrast, an asymptotically safe UV completion
(or extension) could impose a very high degree of pre-
dictivity on the setting. In fact, in our truncation, the two
masses are the only two relevant couplings in the matter
sector. Thus, these correspond to the only two parameters
that can start to deviate from the fixed-point values at an
arbitrary scale, such that their IR values can be adjusted.
Their values at k → 0 are hence the only two free
parameters in the scalar-Yukawa sector of the model in
the asymptotically safe setting. All canonically marginal
couplings are irrelevant at FP3; their IR values are fixed as a
function of the scalar masses.
We break the accidental symmetry between the dark and

visible sector through the RG flow to the IR by choosing

different IR values for the two relevant mass parameters of
the dark/visible scalar, thereby generating a distinction
between the dark and visible sector at low energies. In an
extension of the Standard Model, this exchange symmetry
is broken explicitly due to a different set of degrees of
freedom (four real scalars for the Higgs field), as well as the
contribution of gauge interactions, which couple only to the
visible, but not the dark, scalar and fermion.
To find the IR values corresponding to a fixed point

trajectory, we proceed as follows: (i) We initialize the RG
flow for the model at some scale kUV ≫ MPl by perturbing
the relevant directions of FP3. (ii) We confirm that
our choice of kUV does not influence our results by
reversing the flow, i.e., flowing further “into the UV,”
and confirming that typical initial conditions for the
flow remain at the fixed point for a sufficiently large
range of scales. (iii) We then solve the beta functions
numerically to flow toward small k and extract the
coupling values.
At k ≈MPl, the gravitational degrees of freedom decou-

ple dynamically. Since this decoupling occurs near-instan-
taneously (due to quadratic scaling GN ∼ k−2 below the
Planck scale), we can simplify the numerical flows such
that we only have two instead of four relevant directions:
Instead of solving the full system of flow equations, inclu-
ding the gravitational couplings, we decouple those degrees
of freedom by hand at k ¼ MPl, i.e., we set gðkÞ ¼ g� for
k > MPl and gðkÞ ¼ 0 for k < MPl.
Flowing further into the IR, ϕv or ϕd can undergo a

spontaneous breaking of the Z2 symmetry. We do not study
trajectories for which the fixed-point values already lie in
the symmetry-broken regime, and leave the exploration of
the corresponding phenomenology to future work. In order
to make the spontaneous symmetry breaking in the IR
explicit, it is advantageous to rewrite the potential as a
Taylor expansion around the minimum:

FIG. 15. The measure Δθ, cf. Eq. (42), measuring how close the critical exponents are to the canonical scaling dimension for the fixed
point that is free (interacting) in the matter sector on the left (right). Both are interacting in the gravity sector. Note the different λ�-axes in
the two plots.
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Vðϕv;ϕdÞ ¼
λHP
4

ðϕ2
v − v2vÞðϕ2

d − v2dÞ

þ
X
i¼v;d

λi
8
ðϕ2

i − v2i Þ2: ð43Þ

For the flow in the symmetry-broken regime, we extend
results of [121] in the fermionic sector and perform a
computation around nonvanishing vacuum expectation
value to obtain the additional contributions to beta func-
tions in our system. Once the scale k drops below the mass
of both scalars, the flow freezes out and one obtains the
infrared values for all couplings.
Anticipating the application of our toy model to the full

SM, we focus on the regime where ϕv undergoes sponta-
neous symmetry breaking and fix the vacuum expectation
value for ϕv to match the Higgs vacuum expectation value,
hϕvi≡ vv ≈ 246 GeV. We are then left with a single free
parameter. We emphasize the marked contrast to an EFT
analysis of the same model, which would feature seven
additional canonically marginal couplings as free param-
eters. Depending on the IR value of the dark scalar mass
m2

d, three different scenarios can be distinguished: (i) The
second scalar ϕd could remain in the unbroken regime in
the IR, rendering the corresponding fermion massless. (ii)
The vacuum expectation value of ϕd could be smaller than
the one of ϕv, or (iii) it could be larger. Case (i) results in
the dark scalar being unstable and decaying into the
massless fermion. Due to its relativistic nature, it would
be unlikely to provide a dark-matter candidate in agreement
with constraints from structure formation. This leaves us
with cases ii) and iii). Once ϕd also undergoes spontaneous
symmetry breaking, the physical masses are given by the
eigenvalues of the Hessian of the corresponding symmetry-
broken potential,

M2
V=D ¼ 1

2
ðλvv2v þ λdv2d

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλvv2v − λdv2dÞ2 þ 4λ2HPv

2
vv2d

q
Þ: ð44Þ

Both scalars mix with a mixing angle, see, e.g., [233,238]

tan 2α ¼ −2vvvdλHP
λvv2v − λdv2d

: ð45Þ

ForMD > MV, i.e., scenario (iii), the portal coupling in the
SM to a dark scalar needs to be ∼Oð0.1Þ in order to
thermally produce the correct relic density, see, e.g., [239].
For smaller portal couplings, an excess of dark matter will
be produced. In comparison, the portal coupling λHP in our
toy model is typically very small at the fixed point FP3, cf.
Fig. 14. Assuming that a quantitative comparison between
the toy model and the SM is meaningful, we conclude that
MD > MV is likely disfavored as it might overclose the
universe. Thus, we focus on scenario (ii) with MD < MV .
In Fig. 16, we vary the fixed-point values for g� and λ�,

since these depend on, e.g., the number of additional matter
fields in the system. At a given choice of g�; λ�, a unique
relationship between the portal coupling and the dark scalar
mass emerges. The quantitative relationship also depends
on the relevant parameters in the matter sector of the
system, mv and md. This is a consequence of the curvature
of the critical hypersurface of the fixed point: For a critical
hypersurface that is not curved, each irrelevant coupling
must take one uniquely fixed value in the IR as a
consequence of asymptotic safety in the UV. In contrast,
for a critical hypersurface with curvature, the IR value of an
irrelevant coupling is a function of the values of the relevant
ones, see illustration in Fig. 17. In particular, once the
relevant coupling vvðkIRÞ is fixed by observations, one

FIG. 16. Infrared relation between the dark scalar massMD, the portal coupling λHP, the dark quartic coupling λd and the dark fermion
mass ψd for various fixed-point values of the gravitational couplings. The color coding indicates the mixing angle α, see Eq. (45). The
scales on the right and top are not linear. In addition, the nonminimal coupling is also predicted.

CONSTRAINING POWER OF ASYMPTOTIC SAFETY FOR … PHYS. REV. D 103, 026006 (2021)

026006-23



relevant direction remains in the matter sector, namely vd.
Due to the curvature of the critical hypersurface, the IR
values of all irrelevant couplings depend on the value of this
relevant direction. Translating it into the scalar dark-matter
mass then results in a unique curve in the λHP; λd;Mψd

;
ξd-parameter space. In [35], we kept g� and λ� fixed,
showing just one such curve. Computing the gravitational
fixed-point value with a particular set of beta functions and
assuming a fixed matter content allowed us to obtain a
single quantitative relation. Here, we instead explore the
predictive relationship as a function of g�; λ�, accounting
for systematic uncertainties in the gravitational beta func-
tions. Going beyond the gravitational fixed point consid-
ered in [35], the existence and qualitative nature of the
predictive relation remains unchanged, see Fig. 16.
Quantitatively, it changes upon varying the gravitational
fixed point values. The portal coupling is always of order
jλHPj ∼ 10−3. The existence of a predictive relation beyond
the fixed point considered in [35] illustrates, how asymp-
totic safety might identify interesting regions in the matter
parameter space independent of the particular gravitational
fixed point values.
To connect to existing and upcoming observational

constraints, both from direct searches [202–217], as well
as from cosmological probes [240,241], a crucial next step
is to extend the visible sector to a more realistic repre-
sentation of the SM Higgs sector. In this context it will also
be crucial to extend the understanding of the role of the
dark fermion in the thermal history of the universe.
In summary, our scalar-Yukawa model provides a con-

crete example of a model with a nonvanishing portal
coupling. It illustrates the high degree of predictivity that
can emerge in asymptotically safe dark-matter models.
Beyond our portal model, asymptotic safety allows to
classify dark matter models with regard to whether they
can be UV completed/extended through the existence of an
asymptotically safe gravity-matter fixed point. In doing so,
asymptotic safety could identify models and parameter
regions that are of special interest for experimental dark
matter searches.

VI. CONCLUSIONS AND OUTLOOK

A. Summary of key results

In this paper, we have studied the interplay of scalar
fields with quantum gravity. We have mostly focused on
asymptotically safe gravity, while including some com-
ments from a broader, effective-field-theory perspective.
Scalar fields play a key role in particle physics, constituting
the Higgs sector in and beyond the Standard Model.
Further, they could be relevant in a cosmological context,
driving an early inflationary phase as well as late-time
expansion of the universe. At the interface of particle
physics and cosmology, scalars constitute dark-matter
candidates. In all three contexts, a decoupling argument
is typically invoked to neglect quantum gravity, based on a
separation of the relevant scales from the Planck scale.
Here, we challenge this view, by pointing out that the
interplay of scalar fields with quantum gravity could
strongly constrain scalar systems. In fact, quantum gravity
is non-negligible at the microscopic scales which determine
the fundamental properties of scalar sectors. Hence, while
quantum gravity is not dynamically relevant at the scales at
which we make observations in particle physics and
cosmology today, it may be inherently relevant by fixing
the fundamental parameters of these systems which deter-
mine their observable properties.
Within the asymptotic-safety approach to quantum

gravity, the underlying quantum scale symmetry requires
a balance between the microscopic interaction strength of
quantum gravity with that of the matter fields. This
balance relates various couplings in the system to each
other at the microscopic level. The RG flow maps the
corresponding relations to the values of couplings at
macroscopic scales. Consequences of asymptotic safety
are thereby (in principle) imprinted on the (observable)
macrophysics. Therefore, free parameters of the SM, dark
matter and dark energy as well as the inflationary sector
could become calculable in asymptotic safety, see, e.g.,
[10,11,13–15,17,18,38,242,243] for earlier work along
these lines and [49,244] for reviews and further references
therein. Potentially, even free parameters of the geometry,
such as the spacetime dimensionality, might be con-
strained by asymptotic safety [87].
The leading question for this research is, whether

scenarios in particle physics and/or cosmology could be
excluded based on their incompatibility with asymptoti-
cally safe gravity. For phenomenology and model-building,
this could serve as a powerful guiding principle to
distinguish among different effective theories. For funda-
mental quantum-gravity research, it could provide an
observational test that could rule out asymptotically safe
gravity. To achieve this goal, it is important to identify no-
go examples, i.e., models which cannot be consistently

FIG. 17. Illustration of the critical surface in a coupling space
spanned by three couplings gi. The first coupling g1 is fixed in
terms of g2 and g3. For a flat hypersurface g1 is independent of g2
and g3. If the critical surface is curved it is fixed as a function of
the other couplings.
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embedded into asymptotic safety.4 In this work, we provi-
sionally strengthen previous evidence for such no-go
examples and find tentative indications for new ones.
For instance, we identify Higgs inflation as one such
potential no-go-example. Quite intriguingly, it is the
combination of cosmological considerations and particle-
physics considerations which provide hints against the
viability of asymptotically safe Higgs inflation in agree-
ment with observations. This highlights that the develop-
ment of a useful phenomenology of quantum gravity might
require a broader view that encompasses particle physics
and cosmology, instead of the focus on just one of these
sectors.
In this work, we explore simple models for the matter

sector, starting with a single scalar coupled to quantum
gravity, promoting it to a simple Yukawa system, then two
coupled scalar sectors and finally two coupled Yukawa
systems. These simple systems serve to elucidate the
mechanisms by which asymptotic safety might impose
its predictive power on particle physics and cosmology.
Let us add an important disclaimer: all results hold

within truncations of the Euclidean renormalization group
flow; therefore they are affected by systematic uncertain-
ties, the choice of Euclidean vs Lorentzian signature, and
additionally, our restriction to simple models which
account for a subset of the degrees of freedom of the
Standard Model only. We will discuss these limitations in
more detail after reviewing our results.
It is a main aim of our investigations to provide new and

strengthen existing hints for the potential consequences of
asymptotic safety for IR physics. We mostly do so by
leaving the fixed-point values for the gravitational cou-
plings, the Newton coupling g� and the cosmological
constant λ�, unspecified. In fact, different consequences
for low-energy physics follow from asymptotic safety in
different regions within this parameter space. Note that this
places no restriction on the measured low-energy values of
these gravitational couplings. Exploring the full parameter
space for these two couplings enables us to study which
low-energy physics scenarios could in principle be com-
patible with asymptotic safety. First, this allows us to
identify whether a given scenario is ruled out in the entire
region of the gravitational parameter space that we explore.
Second, the realization of a given scenario could single out
a preferred region in the gravitational parameter space.
Where in this parameter space the fixed point lies, is
computable and depends on the number of matter fields,
see, e.g., [16,30,64,74,84,88,125,245–248]. Thus, within
asymptotic safety, a given matter content (in the dark and
visible sector) is (in principle) connected to a particular set
of low-energy physics consequences, see also [13] for a
discussion in the context of the top-quark mass.

1. Particle physics

We find that the inclusion of the nonminimal coupling
leaves the scenario from [13,83,184] intact, where the
fixed-point structure of gravity-Yukawa systems could
result in a calculation of the top and bottom quark masses.
In our study, adding the nonminimal coupling to the setting,
the physics of simple Yukawa systems is still determined by
the interplay of two fixed points. These result in an upper
bound on the fermion mass compatible with asymptotic
safety. Quite intriguingly, there is only a narrow range of
values for the nonminimal coupling ξ for which this is the
case. The fixed-point value ξ� falls right into this range in our
truncation, constituting a rather nontrivial test of the mecha-
nism proposed in [13,83,184].
Moreover, we find that under the impact of quantum

gravity, the nonminimal coupling could push simpleYukawa
systems into a regime of spontaneous symmetry breaking
already at the UV fixed point, see [21] for related consid-
erations in grand unified theories.Within our approximation,
this gravity-induced spontaneous symmetry breaking occurs
only for sufficiently negative fixed-point values of the
cosmological constant. In order to properly investigate the
resulting low-energy phenomenology, global flows for
the Higgs potential, see, e.g., [249], are called for.
Finally,we find that thevalue of the nonminimal coupling ξ

is a prediction of asymptotic safety within our truncation. If
this property persists for the full SM coupled to quantum
gravity, the prediction for ξ could become highly relevant for
considerations of vacuum stability in the early universe,
see [195].

2. Cosmology

We strengthen previous results indicating that quantum
gravity tends to drive scalar potentials toward flatness, see,
e.g., [11,15,17,18,24,25,29,30]. This occurs in an appropri-
ate part of the gravitational parameter space. This flattening-
mechanism also reduces the number of free parameters in a
scalar potential compared to the canonically relevant and
marginal set. Within a cosmological setting, these results
might play a role both for inflation as well as dynamical dark
energy, and might potentially set asymptotic safety apart
from other proposals for fundamental physics.
We reexpress our result in terms of scale-dependent

slow-roll-inspired parameters which lend themselves to a
study in an inflationary setting. We find that the predictive
power of asymptotic safety could fix the values of these
parameters in an appropriate regime of the gravitational
parameter space. The gravitational flattening-mechanism
appears encouraging in view of the observational indica-
tions for near-scale invariance. Yet, matching the amplitude
of scalar fluctuations within the potentially rather con-
straining setting of asymptotic safety might be a challenge.
The next decade in observational cosmology is expected

to produce exciting novel insights into the value of the
equation-of-state parameter for dark energy [43–47].Within

4One might also call this the “swampland” of asymptotic
safety—in analogy to the swampland of string theory.
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asymptotic safety, realizing a cosmological constant of the
correct magnitude appears possible, since it corresponds to a
relevant coupling. Additionally, scenarios with a very flat
scalar potential also appear viable—and even preferred—
within asymptotic safety in our truncation. Therefore, we
tentatively conclude that an equation-of-state-parameter
w ≈ −1 might be preferred in asymptotic safety.
The degree of predictivity for scalar potentials depends on

the gravitational fixed-point values. The latter in turn depend
on the number of matter degrees of freedom—both dark and
visible ones [16,30,64,74,84,88,125,245–248]. Accordingly,
a given set of matter fields could translate into strong
constraints on inflation and dynamical dark energy.
Conversely, for alternative BSM settings, matter fields might
push the gravitational fixed-point values into a regime, where
fewer theoretical constraints on scalar potentials exist. In the
former case, a confrontation with observational data is more
promising and might even allow to rule out asymptotic safety
with a given matter content in the future.

3. At the interface

To make a beginning step in the investigation of Higgs
inflation, we use a simple Yukawa system as a toy model for
the Higgs-top-sector of the SM. We find that the ratio of
quartic coupling and nonminimal coupling could reach small
enough values to match observational data on the amplitude
of scalar fluctuations for a sufficiently small fixed-point
value g�. Due to the predictive nature of the asymptotically
safe fixed point, this requirement simultaneously fixes the IR
value of the Yukawa coupling in our truncation. Sizable
values of the Yukawa coupling can only be accommodated
at large values of λ4=ξ2. Hence, we conclude that within
our truncation and toy model, a sizable top mass cannot be
reconciled with a realistic amplitude of primordial scalar
fluctuation anywhere in the gravitational parameter space.
These studies clearly call for an extension of the model and
the truncation; an investigation of the value of the Higgs
mass is then also required. Nevertheless, using observations
from particle physics and cosmology concertedly already
provides us with a first tentative hint for the incompatibility
of Higgs inflation with asymptotic safety.
Dark matter is another mystery at the interface of

cosmology and particle physics. Here, we strengthen the
decoupling result from [18] for a single, uncharged scalar
as the only field in the dark sector: Under the impact of
asymptotic safety, the Higgs portal coupling vanishes at all
scales, ruling out the scalar field as a thermal relic, also in
the presence of a nonminimal coupling. This could con-
stitute a compelling example for a dark-matter model in the
asymptotically safe swampland.
We further expand on the dark-matter model we pro-

posed in [35] that consists of two Yukawa sectors. These
represent a dark sector consisting of a dark scalar and a dark
fermion and a toy model for the Higgs-top sector of the
SM. A nonvanishing fixed-point value for both Yukawa

couplings induces finite nonminimal couplings and non-
vanishing portal coupling; therefore the dynamical dark
fermion is instrumental in lifting the decoupling property of
the dark sector.
The resulting fixed point is highly predictive, featuring

only two free parameters in the matter sector within our
truncation: Both Yukawa couplings, all three quartic cou-
plings and both nonminimal coupling are predicted by
asymptotic safety as a function of the two free parameters.
Fixing one of them by requiring to match the vacuum
expectation value of the Higgs field, we remain with just a
single free parameter. This allows us to compute a unique
relation between the dark-matter mass and all canonically
marginal couplings in the infrared that holds in our trunca-
tion and toy model. In contrast, a canonical EFT treatment
features four free parameters in the dark sector only, namely
the dark Yukawa coupling, dark nonminimal coupling, dark
quartic coupling and portal coupling, providing no relation
between them. This exemplifies that asymptotic safety might
be a powerful paradigm to severely constrain the theoreti-
cally viable parameter space for dark-matter searches.
As emphasized previously, these results are subject to

systematic uncertainties which need to be addressed in the
future, and which we will discuss in more detail now.

B. Outlook: Improving on systematic uncertainties

Several sources of systematic uncertainties are affecting
the current state-of-the-art in asymptotic-safety research
and have been discussed extensively in [72], see also [250].
More recently, progress in one of the key open questions,
that of unitarity, has been made in [251–253]. In particular,
a proposal for an asymptotically safe action which satisfies
a perturbative notion of unitarity (tied to the poles of the
graviton propagator about a flat background) has been put
forward.
Here, we will highlight some of the open questions that

are most relevant for our discussion.
(1) Systematic uncertainties: Choice of truncation—

Our results are achieved within a truncation of the
effective dynamics. It follows the assumption that
canonical power counting remains a good guiding
principle at the interacting fixed point, which is
supported by a number of explicit results [74–
80,89,90], see Sec. II B for more details. We find
further evidence in support of the corresponding
near-perturbative nature of asymptotic safety, in that
the critical exponents at the fixed point do typi-
cally not differ from the canonical dimensions by
large amounts. This also constitutes an a posteriori
viability-check of our choice of truncation.
Fixed-point structures in simple Yukawa systems

[13] and a dark sector with portal coupling [18]
remain stable under the inclusion of the nonminimal
coupling, lending further support to an asymptotically
safeUV completion of such systemswith an enhanced
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predictive power. Based on the principle of near-
perturbativity, the addition of R2 and R2

μν to the
gravitational dynamics appears indicated. This has
partially been done in [12,85] for scalar systems and
Yukawa systems coupled to gravity, see also [17] for
the unimodular asymptotic safety case. In short, the
higher-order couplings modify the propagator for
metric fluctuations, which is still proportional to g,
but with a denominator that depends on the higher-
order couplings in addition to the cosmological con-
stant. Accordingly, the parameter space explored, e.g.,
in Fig. 1, 7, 10 and 12 is enlarged by two additional
directions. At finite values of higher-order couplings,
the boundaries in the λ-g plane are deformed. There-
fore, themechanismswe explored here are expected to
persist in this larger parameter space.
In the future, going beyond polynomial truncations

for the scalar potential, e.g., with gridmethods [254] or
spectral methods [249,255], is also indicated, in
particular to properly investigate the stability of the
Higgs potential.

(2) Systematic uncertainties: Lorentzian signature—
Our results are obtained within a fully Euclidean
setting. While the RG flow at momentum scales
below the Planck scale can be analytically contin-
ued, this is not necessarily the case for the trans-
Planckian flow. As long as the gravitational fixed
point is near-perturbative, and the vacuum of the
theory is flat, or at least maximally symmetric, an
analytic continuation might remain feasible even for
the quantum gravity regime. This pressing question
deserves further investigation in the future.

(3) Systematic uncertainties: Missing degrees of free-
dom—Here, we have worked in toy models with few
matter fields. The RG flows of such simplified matter
systems share many characteristics with that of the
Higgs-top-sector of the Standard Model, and are
therefore useful to explore possible structures that
might arise in the Standard Model coupled to quan-
tum gravity. Nevertheless, accounting for themissing
degrees of freedom is an important future task.

In summary, we have strengthened existing and found
novel indications that certain models for dark matter as well
as inflation might lie in the “swampland” of asymptotic
safety, i.e., be incompatible with an asymptotically safe UV
sector. Such negative results are key in order to identify
potential observational routes to ruling out this proposal for
quantum gravity. Conversely, we have also identified
potential phenomenological implications of asymptotic
safety which could be compatible with observations,
identifying matter theories in the “landscape” of asymptotic
safety. In both cases, their source is the predictive power of
asymptotic safety, which conversely implies that asymp-
totic safety could serve as a very strong selection principle

for particle physics, cosmology and at the interface of the
two fields.
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APPENDIX A: FORMAL ASPECTS

...where we specify the gauge-fixing procedure and the
regulator with our focus on an auxiliary background-
scalar field dependence related to the nonminimal cou-
pling, which we then analyze. Further, we study the
anomalous dimension of the scalar as a measure of
robustness of our truncation.
While obtaining the beta functions from the effective

action, one encounters subtleties related to the nonminimal
coupling. We discuss these by focusing on the following
truncation for scalar-gravity for the remainder of this section

Γk ¼ Γscalþgrav
k þ Sgf þ Sgh: ðA1Þ

Here, we use a split of the scalar into

ϕ ¼ ϕ̄þ φ: ðA2Þ
In contrast to the metric, there is actually no need to
introduce this split, since no gauge-fixing is required
and the coarse-graining procedure is based on ḡμν.
Nevertheless, it can be useful to introduce ϕ̄ for calculational
convenience in the gauge-fixing and regularization term for
the metric, see, e.g., [24].

1. Gauge fixing

...where we specify the background-field-dependent
gauge fixing we employ and detail how the scalar back-
ground-field appears in the construction of the gravita-
tional gauge-fixing term.
To invert Γð2Þ

k , it is computationally advantageous to
decompose the metric fluctuation hμν into a transverse-
traceless tensor, a divergence-free vector and two scalar
modes according to theYork decomposition [256], as follows

hμν ¼ hTTμν þ D̄μvTν þ D̄νvTμ þ D̄μD̄νσ − ḡμνD̄2σ −
1

4
ḡμνh:

ðA3Þ
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Herein, D̄μ is the covariant derivative with respect to the
background metric ḡμν. hTTμν is transverse, D̄νhTTμν ¼ 0 and
traceless ḡμνhTTμν ¼ 0, and vTμ is transverse, D̄μvTμ ¼ 0.
Due to the gauge symmetry in the gravitational sector,

Γð2Þ
k contains zero modes, requiring gauge fixing. We

choose a linear, background-covariant gauge fixing

Sgf ¼
1

2α

Z
d4x

ffiffiffī
g

p
ḡμνF μF ν; ðA4Þ

with

F μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

16πGN
þ αGFξϕ̄

2

s �
D̄ρhρμ −

1þ β

4
D̄μh

ρ
ρ

�
: ðA5Þ

For all results reported in the following, we specify to
β ¼ α ¼ 0, see, e.g., [257] for a study of the gauge
dependence in the pure-gravity case. Our choice decouples
one of the two scalar modes and leaves only contributions
from hTTμν and h in the beta functions of matter couplings.
In choosing the gauge fixing (A4), we have introduced a

term dependent on the scalar background field into the
gauge fixing. It is convenient to do so in truncations that
include nonminimal gravity-scalar couplings, as the gauge-
fixed propagator simplifies for this choice [24]. We point
out that it is not consistent to disregard this background-
scalar-field dependence in the Faddeev-Popov determinant

det

�
δF μ

δζλ

�

¼ det

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16πGN
þαGFξϕ̄

2

s
·

·

�
D̄ρḡσμgλσDρþ D̄σ ḡρμgλσDρ−

1þβ

2
D̄μḡρσgλσDρ

��
: ðA6Þ

In the above, ζλ is the parameter describing an infinitesimal
diffeomorphism.
As usual, Faddeev-Popov ghosts can be used to expo-

nentiate the determinant. A redefinition of the ghost
fields absorbing a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGN

p
that is present even

at αGF ¼ 0 allows to normalize the ghost term conveniently.
We write the ghost term in the form

Sgh ¼ −
Z

d4x
ffiffiffī
g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αGFð1 − αghostÞ16πGNξϕ̄

2·
q

· c̄μðD̄ρḡμκgκνDρ þ D̄ρḡμκgρνDκ

−
1þ β

2
D̄μḡρσgρνDσÞcν: ðA7Þ

Here, the parameter αghost is an auxiliary parameter, that we
introduce to track the background-scalar dependence of the
ghost term. Exponentiating the Faddeev-Popov determi-
nant (A6) actually results in αghost ¼ 0. With this choice,

we fully compensate the additional background-scalar
dependence of the gauge fixing term. In contrast, for
αghost ¼ 1 the background-scalar field dependence in the
Faddeev-Popov determinant has been dropped. By compar-
ing αghost ¼ 0 to αghost ¼ 1, we quantify the impact of such
a treatment.

2. Choice of regulator

...where We provide details of the regulator function we
use and discuss how the scalar background field appears in
the construction.
For the regulator, we utilize

RkðD̄Þ ¼ D̄r

�
k2

D̄

�
; ðA8Þ

with the shape function rðxÞ ¼ ðx − 1ÞΘðx − 1Þ, where
ΘðxÞ is the Heaviside distribution [258]. The operator D̄
denotes a generalized background-covariant Laplacian. In
the simplest case of a flat background, it reduces to p2.
More general choices for the argument of the regulator
function in Eq. (A8) are possible and can be advantageous
for practical calculations. There must not be an additional
dependence on the dynamical fields in the regulator, since
this would destroy the one-loop structure of the flow
equation. In contrast, the background-field dependence is
a priori unrestricted with unbroken background gauge
invariance the only strict requirement.
For simplicity, one would like the regulator to entirely

remove the appearance of Laplacians in the denominator of
the flow equation. This strategy has been implemented, e.g.,
in [24]. For a system with higher-order curvature invariants
and/or nonminimal couplings, this strategy entails a choice of
regulator that introduces a scalar background-field depend-
ence in addition to the background-metric dependence
contained in the background Laplacians. In [259], it has
been demonstrated in the context of a nongravitational theory
that such additional background-scalar field dependencies
have to be treated with care within approximations, where
they can lead to deformations of fixed points or even
introduce new zeros of beta functions. Therefore, we will
explore the dependence on the background scalar field that
arises through the choice of regulator as in [24] carefully.We
also refer to [30] for a brief discussion of the same point using
the exponential split.
In order to test the effect of additional background-scalar-

field dependencies we introduce an additional parameter αreg
accompanying the background-scalar-field-dependent part
of the regulator. Specifically, we choose

Rμνρσ
k TT ¼ 1

4

�
1

16πGN
þ ξαregϕ̄

2

�
·

· ðk2 þ ð−D̄2ÞÞΘðk2 þ ð−D̄2ÞÞ1μνρσTT ðA9Þ
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Rμν
kvv ¼

1

2α

�
1

16πGN
þ ξαGFϕ̄

2

�
· ðk2 þ ð−D̄2ÞÞΘðk2 þ ð−D̄2ÞÞ1μνv ðA10Þ

Rkhh ¼ −
3

32

�
1

16πGN
þ ξαregϕ̄

2

�
·

· ðk2 þ ð−D̄2ÞÞΘðk2 þ ð−D̄2ÞÞ ðA11Þ

Rkσσ ¼
3

32α

�ð3 − αÞ
16πGN

− ðααreg − 3αGFÞξϕ̄2

�
·

· ðk2 þ ð−D̄2ÞÞΘðk2 þ ð−D̄2ÞÞ ðA12Þ

Rkϕϕ ¼ 1

2
ðk2 þ ð−D̄2ÞÞZϕΘðk2 þ ð−D̄2ÞÞ ðA13Þ

Rkhσ ¼ −
1

16

�
1

16πGN
þ ξαregϕ̄

2

�
Θðk2 þ ð−D̄2ÞÞ·

·
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k2ð3k2 − R̄
�r

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð−D̄2Þð3ð−D̄2Þ þ R̄Þ

q
Þ ðA14Þ

Rkhϕ ¼ −
3

2
ðk2 þ ð−D̄2ÞÞ ffiffiffiffiffiffiffiffi

αreg
p

ξϕ̄Θðk2 þ ð−D̄2ÞÞ ðA15Þ

Rkσϕ ¼ −
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2ð3k2 − R̄Þ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð−D̄2Þð3ð−D̄2Þ þ R̄Þ

q �
·

·
ffiffiffiffiffiffiffiffi
αreg

p
ξϕ̄Θðk2 þ ð−D̄2ÞÞ; ðA16Þ

with 1TT and 1v the identity in the space of transverse-
traceless tensors and transverse vectors, respectively. The
choice αreg ¼ 1 corresponds to the choice in [24] with a
background-scalar dependent regulator.
The choice αreg ¼ 0 corresponds to a computation with a

background-scalar independent regulator. In the sections IV
and V, where fermions are included, we choose a fermionic
regulator of the form

Rkψ̄ψ ¼ iZψ =̄∇ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=ð−=̄∇Þ2

q
ÞΘðk2 − ð−=̄∇Þ2Þ: ðA17Þ

3. Background field dependence

...where we study quantitatively, whether the auxiliary
background-scalar-field dependence of regulator and
gauge fixing changes key aspects of the results, such as,
e.g., the signs of critical exponents within our truncation.
This can also be interpreted as a study of the robustness of
our approximation.
For clarity, we list the three parameters that track the

background-scalar-field dependence in our calculation:
(i) αGF tracks the background-scalar-field dependence of

the gauge-fixing term, which vanishes for αGF ¼ 0,

(ii) αghost allows to independently vary the background-
scalar-field dependence of the corresponding
Faddeev-Popov ghost term. In principle, one needs
to choose αghost ¼ 0 (if αGF ≠ 0) for consistency.
Here we treat αghost as an independent parameter to
compare to previous work in the literature.

(iii) αreg tracks the background-scalar-field dependence
of the regulator for the metric fluctuations.

Choosing the values αGF ¼ 0 ¼ αreg results in an absence
of the extra background-scalar-field dependence from
these terms.
The fixed-point values are independent of αGF; αreg and

αghost and given by5

λ� ¼ 0.171; g� ¼ 0.843 m2� ¼ λ4� ¼ ξ� ¼ 0: ðA18Þ

In contrast, the critical exponents are affected by these
parameters, as would the fixed-point coordinates be if ξ�
was not equal to zero. Modifying αGF, αghost and αreg can
affect the β-functions for the individual couplings, as can
also be seen in Fig. 18. As an example of the differences
between the background-scalar dependent computation
(αreg ¼ αGF ¼ αghost ¼ 1) and a background-scalar inde-
pendent one (αreg ¼ αGF ¼ 0), the difference for βm2 and βξ
in the transverse traceless sector reads

βdep
m2 − βindep

m2 ¼ 5gð1 − 4λÞξ
2πð1 − 2λÞ2 ; ðA19Þ

FIG. 18. The β-function for the nonminimal coupling ξ as a
function of ξ for varying background-scalar dependence. We set
the quartic coupling to its fixed-point value λ4� ¼ 0.

5Quantitative deviations of this fixed point from (11) arise
due to the differing approximations for the graviton anomalous
dimension ηh.
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βdepξ − βindepξ ¼ −
5gλð3 − 2λÞξ
3πð1 − 2λÞ3 : ðA20Þ

The additional terms arise from the field dependence of the
regulator as well as the gauge fixing term. These changes
under a relatively small change of an unphysical parameter
do not necessarily signify much if they occur in non-
observable quantities like beta functions. At the same time,
critical exponents of a physical fixed point are universal,
i.e., must be independent of such a technical choice. This
statement holds, as long as they are calculated exactly; an
approximation introduces a dependence on such unphysical
parameters. In the following we use this to probe the fixed
point (A18) and test the quality of the approximation.
If we choose αGF ¼ αreg ¼ 0 (with arbitrary αghost) and

our gauge choice β ¼ 0, the beta functions we obtain for
the potential terms at ξ ¼ 0 agree with the beta functions
reported in [18]. For this case, the critical exponents are
given by

θð1=2Þ ¼ 2.72� 1.70i; θð3=4Þ ¼ 0.63� 2.55i;

θð5Þ ¼ −2.26: ðA21Þ
The first two relevant directions overlap with λ and g and
the third and fourth align roughly with m2 and ξ.
Setting αGF ¼ αreg ¼ αghost ¼ 1 and choosing the gauge

β ¼ 1, our β-function for the scalar potential agrees with
the one found in [24]. If we evaluate the traces with heat-
kernel methods, also the β-function for the nonminimal
coupling agrees with that reference. To compare to those
results, let us choose αGF ¼ αreg ¼ αghost ¼ 1 and take into
account the effect of βg and βξ terms on the rhs, cf.
discussion below in Sec. A 4. At the fixed point (A18) the
critical exponents read

θð1=2Þ ¼ 2.36� 2.81i; θð3=4Þ ¼ 0.36� 2.81i;

θð5Þ ¼ −2.26: ðA22Þ
As expected, the characteristic shift of the third and fourth
critical exponent by −2 compared to the leading critical
exponents, first observed in [24], is present in our results as
well. The minor numerical differences with respect to that
reference arise due to a different gauge choice.
We now study the scalar-background dependence by first

varying αGF and αghost continuously and then varying αreg.
First, fixing αreg ¼ 1, we observe that as long as the

background-scalar dependence of the gauge-fixing term is
not fully accounted for by the ghost term (αghost ≠ 0), the
critical exponents vary considerably under changes in αGF,
cf. Fig. 19. This can go as far as changing the number
of relevant directions for αGF ¼ αghost ≈ 5.2. The choice
αGF ¼ αghost ¼ 1 used in [24] could be criticized based on
the extra field-dependence it introduces, but does not yield
qualitatively different results from the case without the
additional field dependence. In fact, the two second-largest

critical exponents are θð3=4Þ ¼ 0.99� 2.06i, once the sca-
lar-background dependence is fully taken into account in
the ghost action (αghost ¼ 0). In this case, the critical
exponents become independent of αGF, as they should.
Second, fixing αghost ¼ 0, such that the dependence on

αGF vanishes, we vary αreg in Fig. 20. For moderate values
of jαregj ≤ 1.5, the critical exponents depend quantitatively
on αreg, with no value for αreg preferred by the principle of

FIG. 19. Real part of the critical exponent θð3Þ as a function of
the parameters αGF and αghost. The red dot marks the point
corresponding to the computation with field dependent regulator
and gauge-fixing term as in [24]. For αghost ¼ 0, the critical
exponent becomes independent of αGF as the contributions from
the ghost term cancel those from the gauge fixing term. The
critical exponent is evaluated at the fixed point (A18). For
different values of the gravitational couplings as well as for
αreg ¼ 0, i.e., a background-scalar independent regulator, the
dependence on αGF and αghost is qualitatively similar.

FIG. 20. Real part of the critical exponents θð3=4Þ as a function
of αreg at αghost ¼ 0. The critical exponent is evaluated at the fixed
point (A18). For smaller λ�, the curve flattens, while the value of
αreg at which θð3=4Þ ¼ 0, shifts to the left.
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minimum sensitivity. For large absolute values of αreg, the
qualitative picture changes: For αreg < −1.8 and αreg > 4.1,
the number of relevant directions decreases. Similarly to the
effect observed in [259], the single-field approximation for
the scalar field can thus change the qualitative picture, and
αreg ¼ 0 appears preferred for this reason. For this choice
one finds the critical exponents in Eq. (A21). As long as
the background-scalar dependence is not too strong, the

number of relevant directions remains stable under tech-
nical modifications of the regulator and gauge-fixing term.
The number of relevant directions as a function of the

gravitational fixed point parameters is shown in Fig. 21.
Here we also display the number of relevant directions for
the Yukawa system considered in Sec. IV. In that system the
number of relevant directions changes at the fixed point
(26) due to differing technical choices, elucidating the
differing results in [124] and [12]. The qualitative change
under a relatively minor technical choice exemplifies why
we consider the full gravitational parameter space.

4. Momentum-dependent interactions

...where we explore the size of the scalar anomalous
dimension and its impact on the fixed-point results as a
measure for the robustness of our truncation.
As a test for the stability of the truncation (5), we compute

the scalar anomalous dimension ηϕ ¼ −∂t lnZϕðk2Þ in the
presence of a nonminimal coupling to explore howmuch this
impacts the fixed-point results. We obtain

FIG. 21. Number of relevant directions at the free fixed point as
a function of the gravitational couplings λ� and g� for αreg ¼
αGF ¼ 0 in the purely scalar (Yukawa) system, for the three (four)
scalar couplings ðm2; λ4; ξð; yÞÞ in the top (bottom) panel. The
thin lines indicate the position of the corresponding areas using a
scalar-background dependent regulator (αreg ¼ αGF ¼ αghost ¼ 1)
and the background field approximation ηh ¼ −2. Reduced
background-field dependence reduces the sensitivity to a change
in gravitational fixed-point values. The vertical dashed line
highlights a change in the scaling of the λ� axis at λ� ¼ −2.
For the Yukawa system the number of relevant directions
changes. The blue triangle corresponds to the fixed point
(A18)/(26), the red square to fixed point (12).

FIG. 22. The anomalous dimension ηϕ for a varying value of
the cosmological constant λ (upper panel) and nonminimal
coupling ξ (lower panel) around the fixed point λ� ¼ 0.171
(ξ� ¼ 0). All other couplings are held constant. The anomalous
dimension varies mildly with varying λ and increases toward the
pole at λ ¼ 1=2. It varies more strongly for varying ξ and is
slightly negative for a very small range of negative ξ.
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ηϕ ¼ g
ð8− ηhÞð1þ 48ðξ− 1

2
m2ÞÞ þ 8ηhm2

16πð3− 4λÞ2ð1þm2Þ

þ g
ð8− ηϕÞð1− 24ξþ 432ξ2 − 144ξm2Þ þ 48ηϕξm2

48πð3− 4λÞð1þm2Þ2

− g
108ðξ− 1

3
m2Þ2

πð3− 4λÞ2ð1þm2Þ2 : ðA23Þ

In the limit ξ → 0 andm2 → 0, this reduces to the result from
[85], as it should.
Calculating the anomalous dimension with the fixed-

point values (A18), one obtains a small value of ηϕ ≈ 0.044.
In Fig. 22 we explore how this result depends on
the particular fixed-point values by studying the value
of the anomalous dimension as a function of the non-
minimal coupling and the cosmological constant treated
as external parameters. Away from the pole λ ¼ 1=2 and
for jξj≲ 0.5, the anomalous dimension remains small,
tentatively indicating that momentum-dependent exten-
sions of the truncation might be subleading. For larger

values of the nonminimal coupling, it appears indicated to
extend the truncation to include higher-order momentum
dependence.
The shift due to the anomalous dimension modifies the

fixed point (A18) at the sub-percent level. The critical
exponents exhibit slightly larger modifications. The third/
fourth critical exponents is shifted to θð3=4Þ ¼ 0.58� 2.55i.
In particular a scenario in which the anomalous dimension
shifts these parameters into the irrelevant region is not
realized. Given that the anomalous dimension is numeri-
cally small in a part of the parameter space, we will neglect
it in some sections; but always indicate clearly whether we
work in the approximation ηϕ ¼ 0.
So far, in line with most of the existing literature, we

employed the background-field approximation, in which
the anomalous dimension for the metric fluctuation field
hμν equals the anomalous dimension for the background
Newton coupling, ηh ¼ ηN ¼ −2. In the main body of the
paper, instead, we set ηh ¼ 0. Indeed, results in the
literature indicate that this is a better approximation than
ηN ¼ −2 [75,125,246,260–263].

APPENDIX B: FLOW OF THE POTENTIAL

The flow of the dimensionless potential in terms of the parameters (15) is given by

∂tv ¼ 1

96π2gð1 − 16πgvÞð3ð1þ ϵ2Þ − 32πgðv − 2ϵ21 þ vϵ2ÞÞ
ð3gð19þ 16ϵ2 − 384π2vð1þ ϵ2ÞÞ

þ 16πg2ð48ϵ21 þ 1920π2v2ð1þ ϵ2Þ − 3vð9þ 512π2ϵ21 þ 4ϵ2ÞÞ
þ 512π2g3vð16ϵ21 − 384π2v2ð1þ ϵ2Þ − vð5 − 768π2ϵ21 þ 8ϵ2ÞÞÞ: ðB1Þ

Taking derivatives of this equation with respect to the field ϕ, one obtains the flow of the ϵi.

APPENDIX C: BETA FUNCTIONS

In the following we report the beta functions for the three couplingsm2; ξ; λ4 in a scalar gravity theory with gauge choice
β ¼ 0 and a background-scalar independent regulator.

βm2 ¼ −ð2 − ηϕÞm2 −
36gξ2ηϕ

5πð3 − 4λÞð1þm2Þ2 þ
4gm2ð12ξ − ηϕðm2 þ 6ξÞÞ

3πð3 − 4λÞð1þm2Þ2 −
3gξð6ξ − ηϕð2m2 þ 3ξÞÞ
πð3 − 4λÞð1þm2Þ2

−
2gm4ð2 − ηϕÞ

πð3 − 4λÞð1þm2Þ2 −
108gξ2ηh

5πð3 − 4λÞ2ð1þm2Þ −
9gξð6ξ − ηhð2m2 þ 3ξÞÞ
πð3 − 4λÞ2ð1þm2Þ −

5gðξð8 − ηhÞ −m2ð6 − ηhÞÞ
12πð1 − 2λÞ2

−
gð3ξð8 − ηhÞ − 2m2ð6 − ηhÞÞ

4πð3 − 4λÞ2 þ 4gm2ð12ξ − ηhðm2 þ 6ξÞÞ
πð3 − 4λÞ2ð1þm2Þ −

6gm4ð2 − ηhÞ
πð3 − 4λÞ2ð1þm2Þ −

λ4ð6 − ηϕÞ
64π2ð1þm2Þ2 ; ðC1Þ
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βλ4 ¼ 2λ4ηϕ −
64g2ð81m2ξ2ð10 − ηϕÞ − 45m4ξð8 − ηϕÞ þ 10m6ð6 − ηϕÞ − 54ξ3ð12 − ηϕÞÞ

15ð3 − 4λÞ2ð1þm2Þ2

þ 512g2ð−756m2ξ3ð12 − ηϕÞ þ 567m4ξ2ð10 − ηϕÞ − 210m6ξð8 − ηϕÞ þ 35m8ð6 − ηϕÞ þ 405ξ4ð14 − ηϕÞÞ
105ð3 − 4λÞ2ð1þm2Þ3

þ 8g2ð−10m2ξð8 − ηhÞ þ 5m4ð6 − ηhÞ þ 6ξ2ð10 − ηhÞÞ
3ð1 − 2λÞ3 −

16g2ð−30m2ξðηh − 8Þ þ 10m4ðηh − 6Þ þ 27ξ2ðηh − 10ÞÞ
5ð3 − 4λÞ3

þ 128g2ð−81m2ξ2ð10 − ηhÞ þ 45m4ξð8 − ηhÞ − 10m6ð6 − ηhÞ þ 54ξ3ð12 − ηhÞÞ
5ð3 − 4λÞ3ð1þm2Þ

þ 512g2ð−756m2ξ3ð12 − ηhÞ þ 567m4ξ2ð10 − ηhÞ − 210m6ξð8 − ηhÞ þ 35m8ð6 − ηhÞ þ 405ξ4ð14 − ηhÞÞ
35ð3 − 4λÞ3ð1þm2Þ2

þ 4gλ4ð−30m2ξð8 − ηϕÞ þ 10m4ð6 − ηϕÞ þ 27ξ2ð10 − ηϕÞÞ
5πð3 − 4λÞð1þm2Þ3 þ 4gλ4ð3ξð8 − ηϕÞ − 2m2ð6 − ηϕÞÞ

3πð3 − 4λÞð1þm2Þ2

þ 6gλ4ð−30m2ξð8 − ηhÞ þ 10m4ð6 − ηhÞ þ 27ξ2ð10 − ηhÞÞ
5πð3 − 4λÞ2ð1þm2Þ2 −

4gλ4ð2m2ð6 − ηhÞ − 3ξð8 − ηhÞÞ
πð3 − 4λÞ2ð1þm2Þ þ 5gλ4ð6 − ηhÞ

12πð1 − 2λÞ2

þ gλ4ð6 − ηhÞ
2πð3 − 4λÞ2 þ

3λ24ð6 − ηϕÞ
32π2ð1þm2Þ3 ; ðC2Þ

βξ ¼ ξηϕ þ
2gð18ξ2ð2− ηhÞ þm6ηh −m4ð12ξ− ηhð1þ 6ξÞÞ− 6m2ξð2þ 3ξð2− ηhÞÞÞ

3πð3− 4λÞ2ð1þm2Þ2

−
5gðξð6þ 20λ− ηhð1þ 2λÞÞ−m2ð15− 6λþ ηhð2λ− 3ÞÞÞ

36πð1− 2λÞ3 þ gð12ξ−m2ð6− ηhÞÞ
12πð3− 4λÞ2 þ 9gξ2ηϕð5m2 þ 32ξþ 5Þ

20πð3− 4λÞð1þm2Þ3

−
gξð−3ξð4þ 18ξþ ηhð1− 9ξÞÞ−m2ð12ξ− ηhð4þ 15ξþ 4m2ÞÞÞ

πð3− 4λÞ2ð1þm2Þ2 þ 27gξ2ηhð5þ 5m2 þ 16ξÞ
20πð3− 4λÞ2ð1þm2Þ2

þ gm2ð2− ηhÞðm2ð1þm2Þ− 6ξÞ
πð3− 4λÞ2ð1þm2Þ2 −

gm2ð2− ηϕÞðm4 þm2ð1þ 6ξÞ− 6ξÞ
3πð4λ− 3Þð1þm2Þ3

þ gξð3ξð4þ 36ξþ ηϕð1− 18ξÞÞ þm2ð12ξ− ηϕð4þ 4m2 þ 33ξÞÞÞ
3πð3− 4λÞð1þm2Þ3

þ 2gð18ξ2ð2− ηϕÞ þm6ηϕ −m4ð12ξ− ηϕð1þ 12ξÞÞ− 6m2ξð2þ 9ξð2− ηϕÞÞÞ
9πð3− 4λÞð1þm2Þ3 þ λ4ð6− ηϕÞð1þm2 þ 12ξÞ

384π2ð1þm2Þ3 : ðC3Þ

The beta function for the Yukawa coupling is

βy ¼ yηψ þ y
ηϕ
2
þ y3

�
5 − ηψ

80π2ð1þm2Þ þ
6 − ηϕ

96π2ð1þm2Þ2
�

−
3yg
16

�
16ð6 − ηψÞ
15πð3 − 4λÞ þ

192ð7 − ηhÞ
35πð3 − 4λÞ2

�
þ 9yg
256

�
32ð7 − ηψÞ
21πð3 − 4λÞ þ

4ð8 − ηhÞ
πð3 − 4λÞ2

�
þ 5ygð6 − ηhÞ
12πð1 − 2λÞ2 þ

ygð6 − ηhÞ
2πð3 − 4λÞ2

−
ygð45ξð8 − ηψ Þ − 28m2ð6 − ηψÞÞ

140πð3 − 4λÞð1þm2Þ þ ygð36m2ð7 − ηϕÞ − 60ξð9 − ηϕÞÞ
105πð3 − 4λÞð1þm2Þ2 þ ygð3ξð8 − ηϕÞ − 2m2ð6 − ηϕÞÞ

3πð3 − 4λÞð1þm2Þ2

−
ygð2ð6 − ηhÞm2 − 3ð8 − ηhÞξÞ

πð3 − 4λÞ2ð1þm2Þ þ ygð36ð7 − ηhÞm2 − 60ð9 − ηhÞξÞ
35πð3 − 4λÞ2ð1þm2Þ ; ðC4Þ

where parts of the Yukawa beta function is taken from [85]. The portal system described in Sec. V consists of two copies of
these beta functions. Additionally, the dark sector contributes

Δβm2
v
¼ −

ð6 − ηϕd
ÞλHP

192π2ð1þm2
dÞ2

; ðC5Þ
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Δβλ4;v ¼
ð6 − ηϕd

Þλ2HP
96π2ð1þm2

dÞ3
; ðC6Þ

Δβξv ¼
ð6 − ηϕd

ÞλHPð1þm2
d þ 12ξdÞ

1152π2ð1þm2
dÞ3

; ðC7Þ

to the beta functions for the visible couplings and vice versa. The beta function for the Higgs portal coupling reads

βλHP ¼ ðηϕd
þ ηϕv

ÞλHP
þ 41472g2ξ2dð14 − ηhÞξ2v

7ð3 − 4λÞ3 þ 16g2ξdð10 − ηhÞξv
ð1 − 2λÞ3 þ 432g2ξdð10 − ηhÞξv

5ð3 − 4λÞ3

þ 6912g2ξ2dξ
2
vð28 − ηϕd

− ηϕv
Þ

7ð3 − 4λÞ2 þ 36gξdλHPξvð20 − ηϕd
− ηϕv

Þ
5πð3 − 4λÞ þ 108gξdð10 − ηhÞλHPξv

5πð3 − 4λÞ2

þ 5gð6 − ηhÞλHP
12πð1 − 2λÞ2 þ gð6 − ηhÞλHP

2πð3 − 4λÞ2

þ 3456g2ξ2vξdð12 − ηhÞ
5ð3 − 4λÞ3 þ 3456g2ξvξ2dð12 − ηhÞ

5ð3 − 4λÞ3 þ 576g2ξdξ2vð12 − ηϕv
Þ

5ð3 − 4λÞ2 þ 576g2ξ2dξvð12 − ηϕd
Þ

5ð3 − 4λÞ2

þ 6gξdð8 − ηhÞλHP
πð3 − 4λÞ2 þ 6gξvð8 − ηhÞλHP

πð3 − 4λÞ2 þ 27gξ2dð10 − ηhÞλHP
5πð3 − 4λÞ2 þ 27gξ2vð10 − ηhÞλHP

5πð3 − 4λÞ2

þ 18gξ2dλHPð10 − ηϕd
Þ

5πð3 − 4λÞ þ 18gλHPξ2vð10 − ηϕv
Þ

5πð3 − 4λÞ þ 2gξdλHPð8 − ηϕd
Þ

πð3 − 4λÞ þ 2gξvλHPð8 − ηϕv
Þ

πð3 − 4λÞ

þ λ2HPð6 − ηϕv
Þ

48π2
þ λ2HPð6 − ηϕd

Þ
48π2

þ λHPλ4vð6 − ηϕv
Þ

32π2
þ λ4dλHPð6 − ηϕd

Þ
32π2

: ðC8Þ

where in the last expression we set the masses to zero for better readability.
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