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We numerically study the topologically twisted index of several three-dimensional supersymmetric field
theories on a genus g Riemann surface times a circle, Σg × S1. We show that for a large class of theories

with leading term of the order N3=2, where N is generically the rank of the gauge group, there is a universal
logarithmic correction of the form g−1

2
logN. We explain how this logarithmic subleading correction can be

obtained as a one-loop effect on the dual supergravity theory for magnetically charged, asymptotically
AdS4 ×M7 black holes for a large class of Sasaki-Einstein manifolds,M7. The matching of the logarithmic
correction relies on a generic cohomological property ofM7 and it is independent of the black hole charges.
We argue that our supergravity results apply also to rotating, electrically charged asymptotically AdS4 ×
M7 black holes. We present explicitly the quiver gauge theories and the gravity side corresponding to
M7 ¼ N0;1;0; V5;2 and Q1;1;1.
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I. INTRODUCTION

One remarkable recent result in the context of the
AdS=CFT correspondence is the microscopic understanding
of the Bekenstein-Hawking entropy of a class of asymptoti-
cally AdS4 black holes. Benini, Hristov and Zaffaroni
demonstrated in [1] that the topologically twisted index of
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory
reproduces the entropy of the dual magnetically charged,
asymptotically AdS4 × S7 black holes.
Similar microscopic foundations via the topologically

twisted index were provided for the corresponding macro-
scopic black hole entropy in different situations, including:
dyonic black holes [2], black holes with hyperbolic
horizons [3] and asymptotically AdS4 black holes in
massive IIA supergravity [4,5]. Some interesting progress
has also been reported in the higher dimensional context
[6–10] and for AdS4 black holes embeddable in certain
universal sectors of M2 [11] and M5 backgrounds [12,13]
(see [14,15] for reviews and a complete list of references for

those developments). An analogous microscopic descrip-
tion, rooted in the superconformal index, has recently been
presented for rotating, electrically charged AdS4 black
holes [16,17], including in a universal sector arising from
wrapped M5 branes [18,19].
The robust agreement at the leading order inspired

attempts to understand the topologically twisted index
beyond the large N limit with focus on the logarithmic
corrections to the entropy on both sides of the correspon-
dence [20,21]. The initial conclusion, however, was that
more work was required and that Sen’s quantum entropy
formalism in its current formulation needed to be amended
to also account for hair degrees of freedom away from the
near-horizon region. Ultimately, precise agreement was
found in [22] whose computation focused on the asymp-
totically AdS4 region of the black hole solution. Further
successful matches of the logarithmic contributions were
provided in the case of universally embedded black holes
[13,19]. This subleading agreement motivates us to embark
on a systematic exploration of a large class of models with
the aim of demonstrating that the logarithmic correction is,
indeed, quite universal. This is precisely one of the main
results of this paper: an expression for the logarithmic
corrections of the topologically twisted index for a large
class of field theories on Σg × S1, which we find to
be g−1

2
logN.

Let us describe two important previous results that make
the journey to a universal logarithmic correction plausible.
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The first precedent pointing to the fact that the coefficient
of logN in the topologically twisted index could be
universal comes from a subleading analysis of the free
energy of a large class of 3d field theories. The exact
partition function for a large class of Chern-Simons matter
theories on S3 can be computed using field theory
localization and certain matrix model techniques, the
answer can be succinctly written in terms of an Airy
function [23]. In some cases the supergravity dual is
known to be a background of M-theory on AdS4 ×M7,
where M7 is a Sasaki-Einstein seven-dimensional mani-
fold. The universality of the logarithmic term in the free
energy on S3 established in [23] was beautifully elucidated
from the dual supergravity point of view in [24] and
shown to depend on some mild cohomological properties
of the seven-dimensional manifold M7. Some of our
arguments in this manuscript mimic that analysis closely.
The other important source of inspiration for us is a group
of works that established a leading order in N relationship
between the free energy on S3 and the topologically
twisted index on S2 × S1 presented and developed in
[25,26]. There is a formal background that arguably
provides a rigorous basis for relations among the free
energy on S3 and the topologically twisted index in Σg ×
S1 [12,27–29] but we were particularly inspired by the two
developments mentioned above. In this manuscript we
effectively ask the questions of whether there is a relation-
ship between the free energy on S3 and the topologically
twisted index in Σg × S1 beyond the leading order in N
and, in particular, whether we can establish the univer-
sality of the logarithmic in N correction. We are not able
to answer the broader question of the relationship between
the free energy on S3 and the topologically twisted index
beyond the large N limit but we present strong numerical
evidence in favor of a universal logarithmic correction in
the topologically twisted index very similar to the uni-
versality of the logarithmic term for the free energy.
The rest of the manuscript is organized as follows. We

start in Sec. II by briefly reviewing the topologically
twisted index in general and its form for the ABJM theory.
Sections III, IV and V are devoted to extensive numerical
evaluations of the topologically twisted index for the 3d
Chern-Simons matter theories dual to M-theory on AdS4 ×
M7 for M7 ¼ N0;1;0; V5;2; Q1;1;1, respectively. We discuss
the one-loop gravity computation dual to the universal
result in Sec. VI. We conclude in Sec. VII where we also
point to a number of interesting, in our opinion, open
problems.

II. THE TOPOLOGICALLY TWISTED INDEX
FOR GENERIC N = 2 THEORIES

In this section wewill briefly review the construction and
structure of the topologically twisted index for 3d N ¼ 2
supersymmetric theories. The topologically twisted index

for three dimensional N ¼ 2 field theories was defined in
[30] (see other related works [25,26,31–33]) by evaluating
the supersymmetric partition function on S1 × S2 with a
topological twist on S2. One considers a 3d theory, usually
containing Yang-Mills, LYM, and Chern-Simons, LCS,
interactions on S2 × S1 with metric and background field
given as

ds2 ¼ R2ðdθ2 þ sin2θdϕ2Þ þ β2dt2; AR ¼ 1

2
cos θdϕ:

ð2:1Þ

There is typically a set of flavor symmetries characterized
by Cartan-valued magnetic fluxes:

Jf ¼ 1

2π

Z
S2
Ff ¼ n: ð2:2Þ

With these magnetic fluxes one associates flavor fugacities
y ¼ exp ½iðAf

t þ iβσfÞ�, where the constant potential Af
t is a

flat connection for the flavor symmetry and σf is a real
mass for the three-dimensional field theory. Similarly the
fugacities for the dynamical fields are x ¼ exp ½iðAtþ
iβσÞ�, where At runs over the maximal torus of the gauge
group and σ over the corresponding Cartan subalgebra.
The topologically twisted index generically takes the

from

Zðn; yÞ ¼ 1

jWj
X
m∈Γh

I
C
Zintðx; y;m;nÞ: ð2:3Þ

There is an algorithmic way of constructing Zint depending
on the field content of the theory. Let us define the building
blocks that go into Zint. For a chiral multiplet

Zchiral
1-loop ¼

Y
ρ∈R

�
xρ=2yρf=2

1 − xρyρf

�
ρðmÞþρfðnÞ−qþ1

; ð2:4Þ

where R is the representation of the gauge group G, ρ
denote the corresponding weights, q is the R-charge of the
field and ρf is the weight of the multiplet under the flavor
symmetry group. For the gauge multiplet one has

Zgauge
1-loop ¼

Y
α∈G

ð1 − xαÞðiduÞr; ð2:5Þ

where r is the rank of the gauge group and α donate the
roots of G. We also use u ¼ At þ iβσ which lives on the
complexified Cartan subalgebra, essentially, x ¼ eiu.
The only classical contribution to Zint comes from the

Chern-Simons term and takes the form
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ZCS
class ¼ xkm; ð2:6Þ

where k is the Chern-Simons level and m is the magnetic
flux taking values in the co-root latice Γh of the gauge
group. There is also the contribution of a Uð1Þ topological
symmetry with holonomy ξ ¼ eiz and flux t:

Ztop
class ¼ xtξm: ð2:7Þ

With these ingredients one has that the index takes the
general form

Zðn; yÞ ¼ 1

jWj
X
m∈Γh

I
C

Y
Cartan

�
dx
2πix

xkm
�Y

α∈G
ð1 − xαÞ

×
Y
I

Y
ρI∈RI

�
xρI=2y1=2I

1 − xρI yI

�ρIðmÞ−nIþ1

; ð2:8Þ

where α are the roots of G, ρI are the weights of the
representation RI and m are gauge magnetic fluxes living
in the co-root lattice Γh.
The index depends on a choice of fugacities yI for the

flavor group and a choice of integer magnetic charges nI
for the R-symmetry of the theory. Both yI and nI are
parameterized by the global symmetries of the theory.
Each monomial term W in the superpotential imposes a
constraint:

Y
I∈W

yI ¼ 1;
Y
I∈W

nI ¼ 2; ð2:9Þ

where the product and sum are restricted to the fields
entering in W. These constraints are called the marginality
conditions of the superpotential.
After summing over the magnetic fluxes,m, in Eq. (2.8),

one obtains an expression for the index whose poles are
located at positions determined by the following Bethe-
Ansatz like expression

exp ðisignðkaÞBðaÞ
i Þ ¼ 1: ð2:10Þ

For the class of theories we are interested in this
manuscript it is convenient to consider some representa-
tions explicitly. The ingredients in the topologically twisted
index that we will require are

(i) The Vandermonde determinant contributes to the
logarithm of the index as

log
Y
i≠j

�
1 −

xðaÞi

xðaÞj

�

¼ log
Y
i<j

�
1 −

xðaÞj

xðaÞi

�2�
−
xðaÞi

xðaÞj

�

¼ i
XN
i<j

ðuðaÞi − uðaÞj þ πÞ − 2
XN
i<j

Li1ðeiðu
ðaÞ
j −uðaÞi ÞÞ:

ð2:11Þ
(ii) The topological symmetry contributes as

i
XN
i¼1

uðaÞi ta; ð2:12Þ

where ta is the flux of the Uð1Þa topological
symmetry.

(iii) A bifundamental chiral multiplet transforming in
ðN̄;NÞ of UðNÞa ×UðNÞb with magnetic flux nðb;aÞ
and chemical potential Δðb;aÞ contributes asYN
i¼1

�
xðaÞi

xðbÞi

�1
2
ðnðb;aÞ−1Þ�

1 − yðb;aÞ
xðbÞi

xðaÞi

�
nðb;aÞ−1

×
YN
i<j

ð−1Þnðb;aÞ−1
�
xðaÞi xðbÞi

xðaÞj xðbÞj

�1
2
ðnðb;aÞ−1Þ

×

�
1 − yðb;aÞ

xðbÞj

xðaÞi

�
nðb;aÞ−1

�
1 − y−1ðb;aÞ

xðaÞj

xðbÞi

�
nðb;aÞ−1

:

ð2:13Þ
(iv) Fundamental and antifundamental fields contribute as

log
YN
i¼1

Y
anti-fundamental

a

ðxðaÞi Þ12ðña−1Þ½1 − ỹaðxðaÞi Þ−1�ña−1

×
Y

fundamental
a

ðxðaÞi Þ12ðna−1Þ½1 − y−1a ðxðaÞi Þ−1�na−1:

ð2:14Þ
(v) As anticipated above, the contour integration is best

expressed in terms of the position of the poles, given
by the BA equation in terms of Bi. In taking the
residues from one set of variables xi to another Bi,
we incur a Jacobian denoted by B:

B ¼ ∂ðeiBðaÞ
j ; eiB

ðbÞ
j Þ

∂ðlog xðaÞl ; log xðbÞl Þ

¼

0B@ xðaÞl
e
iB
ðaÞ
j

∂xðaÞl

xðbÞl
e
iB
ðaÞ
j

∂xðbÞl

xðaÞl
e
iB
ðbÞ
j

∂xðaÞl

xðbÞl
e
iB
ðbÞ
j

∂xðbÞl

1CA
2N×2N

; ð2:15Þ
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where

exp ðisignðkaÞBðaÞ
i Þ ¼ ðξðaÞÞsignðkaÞðxðaÞi Þka

Y
bifundamentals
ðb;aÞ and ða;bÞ

YN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi

xðbÞj

yða;bÞ

r
1 − xðaÞi

xðbÞj

yða;bÞ

1 −
xðbÞj

xðaÞi

yðb;aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðbÞj

xðaÞi

yðb;aÞ

r

×
Y

fundamentals
a

ffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi ya

q
1 − xðaÞi ya

Y
antifundamentals

a

1 − 1

xðaÞi

ỹaffiffiffiffiffiffiffiffiffiffiffi
1

xðaÞi

ỹa
q : ð2:16Þ

A. The topologically twisted index

Explicitly, the general expression of the index is

Z ¼ 1

ðN!ÞjGj
X

fm;m∈ZNg

Z
C

YjGj
a¼1

�YN
i¼1

dxðaÞi

2πixðaÞi

ðxðaÞi Þkam
ðaÞ
i þtðaÞ ðξðaÞÞsignðkaÞmðaÞ

i ×
YN
i≠j

�
1 −

xðaÞi

xðaÞj

��

×
YN
i;j¼1

26664 Y
bifundamentals
ðb;aÞ and ða;bÞ

0BBB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi

xðbÞj

yða;bÞ

r
1 − xðaÞi

xðbÞj

yða;bÞ

1CCCA
mðaÞ

i −mðbÞ
j −nða;bÞþ10BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðbÞj

xðaÞi

yðb;aÞ

r
1 −

xðbÞj

xðaÞi

yðb;aÞ

1CCCA
mðbÞ

j −mðaÞ
i −nðb;aÞþ1

×
Y
adjoints
ða;aÞ

0BBB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi

xðaÞj

yða;aÞ

r
1 − xðaÞi

xðaÞj

yða;aÞ

1CCCA
mðaÞ

i −1
2
nða;aÞþ1

2
0BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞj

xðaÞi

yða;aÞ

r
1 −

xðaÞj

xðaÞi

yða;aÞ

1CCCA
−mðaÞ

i −1
2
nða;aÞþ1

2
37775

×
YN
i¼1

" Y
fundamentals

a

 ffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi ya

q
1 − xðaÞi ya

!
mðaÞ

i −naþ1 Y
antifundamentals

a

 ffiffiffiffiffiffiffiffiffiffiffi
1

xðaÞi

ỹa
q
1 − 1

xðaÞi

ỹa

!−mðaÞ
i −ñaþ1

#
: ð2:17Þ

The sum over magnetic fluxes is effectively a geometric sum introducing a large cutoff M and the index takes the form

Z ¼ 1

ðN!ÞjGj
Z
C

YjGj
a¼1

�YN
i¼1

dxðaÞi

2πixðaÞi

ðxðaÞi ÞtðaÞ ×
YN
i≠j

�
1 −

xðaÞi

xðaÞj

�
×
YN
i¼1

ðeiBðaÞ
i ÞM

eiB
ðaÞ
i − 1

�

×
YN
i;j¼1

26664 Y
bifundamentals
ðb;aÞ and ða;bÞ

0BBB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi

xðbÞj

yða;bÞ

r
1 − xðaÞi

xðbÞj

yða;bÞ

1CCCA
1−nða;bÞ

0BBB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðbÞj

xðaÞi

yðb;aÞ

r
1 −

xðbÞj

xðaÞi

yðb;aÞ

1CCCA
1−nðb;aÞ

×
Y
adjoints
ða;aÞ

 ffiffiffiffiffiffiffiffiffiffiyða;aÞ
p

1 −
xðaÞj

xðaÞi

yða;aÞ

!
1−nða;aÞ

375

×
YN
i¼1

" Y
fundamentals

a

 ffiffiffiffiffiffiffiffiffiffiffiffi
xðaÞi ya

q
1 − xðaÞi ya

!ð1−naÞ Y
antifundamentals

a

 ffiffiffiffiffiffiffiffiffiffiffi
1

xðaÞi

ỹa
q
1 − 1

xðaÞi

ỹa

!ð1−ñaÞ#
: ð2:18Þ

This is precisely the main expression we will consider.
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B. Bethe Ansatz potential

An alternative way to package the information in the
index is to consider the so-called Bethe-Ansatz potential, V.
The Bethe-Ansatz potential succinctly summarizes the
Bethe-Ansatz equations. For the representations we will
consider in this manuscript it is possible to write

V ¼ VCS þ Vbi-fund þ Vadjoint þ Vðanti-Þfund: ð2:19Þ

Introducing chemical potentials:

yI ¼ eiΔI ; ξðaÞ ¼ eiΔ
ðaÞ
m ; ð2:20Þ

the Bethe potential is given by

VCS ¼
XN
i¼1

�
−
ka
2
ðuðaÞi Þ2 − signðkaÞΔðaÞ

m uðaÞi

�
; ð2:21Þ

Vbi-fund ¼
XQ

bifundamentalsðb;aÞ and ða;bÞ

XN
i;j¼1

½Li2ðeiðu
ðbÞ
j −uðaÞi þΔðb;aÞÞÞ − Li2ðeiðu

ðbÞ
j −uðaÞi −Δða;bÞÞÞ�

þ Arg

�
exp

�
i

�
−
1

2
Arg

�
exp

�
i
X

bifundamentals
ðb;aÞ and ða;bÞ

ðΔðb;aÞ þ Δða;bÞÞ
��

þ
X

bifundamentals
ðb;aÞ and ða;bÞ

π

���XN
i;j¼1

ðuðbÞj − uðaÞi Þ; ð2:22Þ

and

Vðanti-Þfund ¼
XN
i¼1

� X
antifundamental

a

Li2ðeið−u
ðaÞ
i þΔ̃aÞÞ −

X
fundamental

a

Li2ðeið−u
ðaÞ
i −ΔaÞÞ

�

þ 1

2

XN
i¼1

� X
antifundamental

a

ðΔ̃a − πÞuðaÞi þ
X

fundamental
a

ðΔa − πÞuðaÞi

�

−
1

4

XN
i¼1

� X
antifundamental

a

ðuðaÞi Þ2 −
X

fundamental
a

ðuðaÞi Þ2
�
: ð2:23Þ

Adjoint fields are treated as a special case of bifundamentals
with Δðb;aÞ ¼ Δða;bÞ ¼ Δða;aÞ and an explicit factor of 1=2.
The second term in the bifundamental potential Eq. (2.22) is a
little different from (A.10) in [25] for consistency with the
potential in the ABJM theory in [1]. This difference will only
translate all of the eigenvalues along the real axis by a constant
depending on N, which has no effect on the final result of
Re logZ. Under the choice of the second term in Eq. (2.22),
the eigenvalues for different values of N will be concentrated
without any translation along the real axis.

C. The topologically twisted index of ABJM
beyond the large N limit

As a way of giving the above general description of the
topologically twisted index some concrete context, let us
consider the ABJM theory [34] which is a three-dimensional
supersymmetric Chern-Simons-matter theory with gauge
group UðNÞk ×UðNÞ−k (the subscripts denote the Chern-

Simons levels) andmatter in bifundamental representations.A
simple representation of the theory is via standard N ¼ 2
notation in terms of the quiver diagram below:

ð2:24Þ

The superpotential of the theory is

W ¼ Tr½A1B1A2B2 − A1B2A2B1�: ð2:25Þ
There are a total of fourUð1Þ gauge fields from the Cartan

of the SOð8Þ R-symmetry, with corresponding charges na
satisfying the supersymmetry constraint

P
na ¼ 2. The

expression for the topologically twisted index, before sum-
ming over the magnetic fluxes m takes the form
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Z ¼ 1

ðN!Þ2
X

m;m̃∈ZN

Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

xkmiþt
i x̃−km̃iþt̃

i ξmi ξ̃−m̃i ×
YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
mi−m̃j−naþ1 Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
m̃j−mi−nbþ1

: ð2:26Þ

Performing the summation over magnetic fluxes introducing a large cutoff M we get

Z ¼ 1

ðN!Þ2
Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�
×
YN
i;j¼1

Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
1−na Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
1−nb

×
YN
i¼1

ðeiBiÞM
eiBi − 1

YN
j¼1

ðeiB̃jÞM
eiB̃j − 1

: ð2:27Þ

The topologically twisted index for ABJM theory was worked out in [1], and reduces to the evaluation of the partition
function

Zðya;naÞ ¼
Y4
a¼1

y
−1
2
N2na

a

X
I∈BAE

1

detB

Q
N
i¼1 x

N
i x̃

N
i

Q
i≠jð1 − xi

xj
Þð1 − x̃i

x̃j
ÞQ

N
i;j¼1

Q
a¼1;2ðx̃j − yaxiÞ1−na

Q
a¼3;4ðxi − yax̃jÞ1−na

; ð2:28Þ

where ya are the corresponding fugacities. The summation
is over all solutions I of the “Bethe Ansatz equations”
(BAE) eiBi ¼ eiB̃i ¼ 1 modulo permutations, where

eiBi ¼ xki
YN
j¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
;

eiB̃j ¼ x̃kj
YN
i¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
: ð2:29Þ

Here k is the Chern-Simons level, and the two sets of
variables fxig and fx̃jg arise from the UðNÞk ×UðNÞ−k
structure of ABJM theory. Finally, the 2N × 2N matrix B is
the Jacobian relating the fxi; x̃jg variables to the feiBi ; eiB̃jg
variables

B ¼
 
xl

∂eiBj
∂xl x̃l

∂eiBj
∂x̃l

xl ∂e
iB̃j

∂xl x̃l ∂e
iB̃j

∂x̃l

!
: ð2:30Þ

It is convenient to introduce the chemical potentials Δa

according to ya ¼ eiΔa and furthermore perform a change
of variables xi ¼ eiui , x̃j ¼ eiũj . In this case, the BAE
become

0 ¼ kui − i
XN
j¼1

�X
a¼3;4

logð1 − eiðũj−uiþΔaÞÞ

−
X
a¼1;2

logð1 − eiðũj−ui−ΔaÞÞ
�
− 2πni;

0 ¼ kũj − i
XN
i¼1

�X
a¼3;4

logð1 − eiðũj−uiþΔaÞÞ

−
X
a¼1;2

logð1 − eiðũj−ui−ΔaÞÞ
�
− 2πñj: ð2:31Þ

The topologically twisted index is evaluated by first solving
these equations for fui; ũjg, and then inserting the resulting
solution into the partition function Eq. (2.28). This pro-
cedure was carried out in [1] in the large N limit with k ¼ 1
by introducing the parametrization:

ui ¼ iN1=2ti þ π −
1

2
δvðtiÞ;

ũi ¼ iN1=2ti þ π þ 1

2
δvðtiÞ; ð2:32Þ

where we have further made use of reflection symmetry
about π along the real axis. In the large N limit, the
eigenvalue distribution becomes continuous, and the set
ftig may be described by an eigenvalue density ρðtÞ.
The leading order solution for ρðtÞ and δvðtÞwas worked

out in [1], and the resulting partition function exhibits the
expected N3=2 scaling of ABJM theory:
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Re logZ0 ¼ −
N3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ1Δ2Δ3Δ4

p X
a

na

Δa
: ð2:33Þ

D. Evaluation of the index beyond
the leading order in N

Given that the BA approach provides the exact answer in
N a numerical study of this topologically twisted index was
performed in [20] and established that presence of a
logarithmic correction of the form − 1

2
logN. In this manu-

script we take [20] as a blueprint and extend that analysis to
a number of models with the goal of determining whether
this logarithmic contribution is universal; we find that,
indeed, it is. Let us thus briefly review the main result and
some of the techniques of [20].
In the ABJM context, one expects the subleading

behavior of the index to have the form

Re logZ ¼ Re logZ0 þ f1ðΔa;naÞN1=2

þ f2ðΔa;naÞ logN þ f3ðΔa;naÞ þOðN−1=2Þ;
ð2:34Þ

where the functions f1, f2 and f3 are linear in the magnetic
fluxes na.
Let us quote some results from [20] where the numerical

solution for the eigenvalues ui and ũi for Δa ¼ f0.4;
0.5; 0.7; 2π − 1.6g and N ¼ 60 is shown in Figure 1
quoted from [20]. The corresponding eigenvalue density
ρðtÞ and function δvðtÞ are shown in Figure 2 quoted
from [20].
Once the eigenvalues are obtained, it is then simply a

matter of numerically evaluating the index Eq. (2.28) on the
solution to the BAE. For a given set of chemical potentials
Δa, we compute logZ for a range of N. We then subtract
out the leading behavior Eq. (2.33) and decompose the
residuals into a sum of four independent terms:

Re logZ ¼ Re logZ0 þ Aþ B1n1 þ B2n2 þ B3n3;

ð2:35Þ

where we have used the condition
P

a na ¼ 2. At this
stage, we then perform a linear least-squares fit of A and Ba
to the function

fðNÞ ¼ f1N1=2 þ f2 logN þ f3 þ f4N−1=2

þ f5N−1 þ f6N−3=2: ð2:36Þ

The results of the numerical fit are presented in Table I
quoted from [20] whose main result is that the numerical
evidence points to the coefficient of the logN term being
exactly −1=2. We thus have

Re logZ ¼ −
N3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ1Δ2Δ3Δ4

p X
a

na

Δa

þ N1=2f1ðΔa;naÞ −
1

2
logN

þ f3ðΔa;naÞ þOðN−1=2Þ; ð2:37Þ

where f1 and f3 remain to be determined.

FIG. 1. The solution to the BAE for Δa ¼ f0.4; 0.5; 0.7; 2π −
1.6g and N ¼ 60. The solid lines correspond to the leading order
expression obtained in [1].

FIG. 2. The eigenvalue density ρðtÞ and the function δvðtÞ for Δa ¼ f0.4; 0.5; 0.7; 2π − 1.6g and N ¼ 60, compared with the leading
order expression.
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III. THE TOPOLOGICALLY TWISTED
INDEX OF N0;1;0

In this section we study the Chern-Simons matter theory
whose holographic dual is described by M-theory on
AdS4 × N0;1;0=Zk [35–37]. The space N0;1;0 is a homo-
geneous Sasaki-Einstein manifold of dimension seven and
defined as the coset SUð3Þ=Uð1Þ. The manifold has the
isometry SUð3Þ × SUð2Þ; the latter SUð2Þ is identified
with the R-symmetry.
The field theory was discussed in [38–40] and shown to

be described by the following quiver diagram:

ð3:1Þ

The superpotential is

W ¼ Tr

�
A1ϕ2B2 − B2ϕ1A1 − A2ϕ2B1 þ B1ϕ1A2

þ k
2
ϕ2
1 −

k
2
ϕ2
2 þ q̃ϕ1q

�
: ð3:2Þ

The free energy on S3 has been shown to match the
gravity computation [38]; a discussion of the superconfor-
mal index was presented in [39,40]. In the context of the
topologically twisted index, this theory was recently
considered by Hosseini and Mekareeya in [26] from which
we borrow much, including the notation and the leading
order analysis.

A. Numerical solutions to the system of BAEs

The topologically twisted index can be algorithmically
assembled from the field theory content and the result is

Z ¼ 1

ðN!Þ2
X

m;m̃∈ZN

Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

xkmi
i x̃−km̃i

i ×
YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
mi−m̃j−naþ1 Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
m̃j−mi−nbþ1

×
YN
i¼1

� ffiffiffiffiffiffiffiffiffixiyq
p
1 − xiyq

�
rðmi−nqþ1Þ

0B@
ffiffiffiffiffiffiffiffi
1
xi
yq̃

q
1 − 1

xi
yq̃

1CA
rð−mi−nq̃þ1Þ

: ð3:3Þ

TABLE I. (ABJM) Numerical fit for Re logZ ¼ Re logZ0 þ f1N1=2 þ f2 logN þ f3 þ � � �. The values of N used
in the fit range from 50 to Nmax in steps of 10 where Nmax ¼ 290, 150, 190, 120 for the four cases, respectively. We
made use of the fact that the index is independent of the magnetic fluxes when performing the fit for the special case
(Δa ¼ fπ=2; π=2; π=2; π=2g).
Δ1 Δ2 Δ3 f1 f2 f3

π=2 π=2 π=2 þ3.0545 −0.4999 −3.0466
π=4 π=2 π=4 þ4.2215 − 0.0491n1

−0.1473n2 − 0.0491n3

−0.4996þ 0.0000n1

þ0.0000n2 þ 0.0000n3

−4.1710 − 0.2943n1

þ0.0645n2 − 0.2943n3

0.3 0.4 0.5 þ7.9855 − 0.2597n1

−0.5833n2 − 0.6411n3

−0.4994 − 0.0061n1

−0.0020n2 − 0.0007n3

−9.8404 − 0.9312n1

−0.0293n2 þ 0.3739n3

0.4 0.5 0.7 þ6.6696 − 0.1904n1

−0.4166n2 − 0.4915n3

−0.4986 − 0.0016n1

−0.0008n2 − 0.0001n3

−7.5313 − 0.6893n1

−0.1581n2 þ 0.2767n3
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Performing the summation over magnetic fluxes by introducing a large cutoff M we get

Z ¼ 1

ðN!Þ2
Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�
×
YN
i;j¼1

Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
1−na Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
1−nb

×
YN
i¼1

� ffiffiffiffiffiffiffiffiffixiyq
p
1 − xiyq

�
rð1−nqÞ

0B@
ffiffiffiffiffiffiffiffi
1
xi
yq̃

q
1 − 1

xi
yq̃

1CA
rð1−nq̃Þ

×
YN
i¼1

ðeiBiÞM
eiBi − 1

YN
j¼1

ðeiB̃jÞM
eiB̃j − 1

; ð3:4Þ

where the Bethe Ansatz equations are

1 ¼ eiBi ¼ xki
YN
j¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
×

� ffiffiffiffiffiffiffiffiffixiyq
p
1 − xiyq

�
r

0B@
ffiffiffiffiffiffiffiffi
1
xi
yq̃

q
1 − 1

xi
yq̃

1CA
−r

;

1 ¼ eiB̃j ¼ x̃kj
YN
i¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
: ð3:5Þ

The compact expression for the index in terms of solutions to the Bethe-Ansatz equations Eq. (3.5) takes the form

Zðya;naÞ ¼ ð−1ÞNr
2 y

−1
2
Nrnq

q y
−1
2
Nrnq̃

q̃

Y4
a¼1

y
−1
2
N2na

a ×
X
I∈BAE

�
1

detB

Q
N
i¼1 x

N
i x̃

N
i

Q
i≠jð1 − xi

xj
Þð1 − x̃i

x̃j
ÞQ

N
i;j¼1

Q
a¼1;2 ðx̃j − yaxiÞ1−na

Q
a¼3;4ðxi − yax̃jÞ1−na

×
YN
i¼1

x
1
2
r
i

ð1 − xiyqÞrð1−nqÞðxi − yq̃Þrð1−nq̃Þ

�
: ð3:6Þ

The transformation matrix B describing the change in integration variables from xi to Bi is

BjBAEs ¼

0B@ δjl
h
k −

P
N
m¼1 Gjm þ rxj

�
1

xj−yq̃
− 1

xj−y−1q

�i
Gjl

−Glj δjl
h
kþPN

m¼1Gmj

i
1CA; ð3:7Þ

where

DðzÞ ¼ ð1 − zy3Þð1 − zy4Þ
ð1 − zy−11 Þð1 − zy−12 Þ ; Gij ¼

∂ logDðzÞ
∂ log z

				
z¼x̃j=xi

: ð3:8Þ

The Bethe-Ansatz equations Eq. (3.5) can be obtained from the potential which takes the form

V ¼
XN
i¼1

�
k
2
ðũ2i − u2i Þ − 2πðñiũi − niuiÞ

�
þ
XN
i;j¼1

�X
a¼3;4

Li2ðeiðũj−uiþΔaÞÞ −
X
a¼1;2

Li2ðeiðũj−ui−ΔaÞÞ
�

þ r
XN
i¼1

½Li2ðeið−uiþΔq̃ÞÞ − Li2ðeið−ui−ΔqÞÞ� þ r
2

XN
i¼1

½ðΔq̃ þ Δq − 2πÞui�; ð3:9Þ

where

XN
i¼1

½−2πðñiũi − niuiÞ� ¼
�
4π −

X4
a¼1

Δa

�XN
i>j

ðũj − uiÞ ¼ 2π
XN
i>j

ðũj − uiÞ: ð3:10Þ
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(a)

(c) (d)

(b)

FIG. 3. Eigenvalues for the special case Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for N ¼ 50 (blue) and 200 (orange) with the same other parameters.

(a)

(c) (d)

(b)

FIG. 4. Eigenvalues for the special caseΔa ¼ fπ
2
; π
2
; π
2
; π
2
g for r ¼ 1 (blue), 2 (orange) and 3 (green) with other parameters kept the same.
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We use the leading order solution to the system of BAEs
in [26] as a seed for the exact numerical solution to the
BAE’s in Eq. (3.5). We will assume, as in [25], that 0 <
vðtÞ þ Δq < 2π and 0 < −vðtÞ þ Δq̃ < 2π, then we have

−Δq < vðtÞ < Δq̃; ð3:11Þ

thus we set the initial real part axis to be

vðtÞ þ ṽðtÞ
2

¼ Δq̃ − Δq

2
: ð3:12Þ

The marginality condition on the superpotential requires
that Δq þ Δq̃ ¼ π. For comparison, recall that in the ABJM
theory, the real part axis defined above is π when k ¼ 1,
thus we assume the range of the real part axis here should
be near to π to match with the ABJM theory when r ¼ 0.
If we set ðΔq̃ − ΔqÞ=2 ¼ π we will get fΔq;Δq̃g ¼
f−π=2; 3π=2g. We will see the effects of the values of
fΔq;Δq̃g in the numerical solutions.
Before entering the details of the numerical analysis, let

us remark that, as compared to ABJM, the system has three
new parameters which are r—the number of flavors of
fundamental hypermultiplets, and the fugacities fΔq;Δq̃g
discussed above. Our goal is to explore the space of new
parameters as well as those parameters already present in

ABJM, namely N—the rank of the gauge group and
Δa ¼ fΔ1;Δ2;Δ3;Δ4g—the fugacities of the bifundamen-
tal matter.
The numerical solutions to the BAEs can be obtained

using FindRoot inMathematica as implemented in [20,41].
In the following we focus on the case k ¼ 1. The numerical
solutions for different values of N, r, fΔq;Δq̃g and Δa are
shown in Figs. 3–6. The black lines are the analytical
results in [26].
The numerical solutions show that the eigenvalues are

not reflectively symmetric about π alone the real axis as the
ABJM theory. Furthermore, the imaginary part of ui is not
exactly the same as ũi so that there are two numerical
results of the eigenvalue density ρðtÞ, the real part differ-
ence δvðtÞ and the real part axis ðvðtÞ þ ṽðtÞÞ=2, though it
is not obvious in the last two because of overlapping.
In Fig. 3 we describe the eigenvalues as exact numerical

solutions of the BAE Eq. (3.5). The plots show that the
imaginary part of the eigenvalues scales as N1=2. The
eigenvalue densities are very well described by the leading
analytical result of [26] except for some deviations at the
edges of the intervals.
Figure 4 explores the nature of the eigenvalues as one

changes the number of fundamental flavors r, the most
prominent change is accurately captured by the slope in the
eigenvalue density. In Fig. 5 we explore the effects of

(a)

(c) (d)

(b)

FIG. 5. Eigenvalues for the special case Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for fΔq;Δq̃g ¼ f− π

2
; 3π
2
g (blue), f0; πg (orange) and f−1 − π

2
; 1þ 3π

2
g

(green) with the same other parameters.

UNIVERSAL LOGARITHMIC BEHAVIOR IN MICROSTATE … PHYS. REV. D 103, 026003 (2021)

026003-11



changing the fugacities fΔq;Δq̃g. The main effect is in the
real part axis ðvðtÞ þ ṽðtÞÞ=2.
Finally, in Fig. 6 we explore the eigenvalues away from

the symmetric point of the bifundamental fugacities. As in
the ABJM case [20], this is numerically challenging as one
needs confront numerically, various numerical singularities
due to branch points in the polylogarithmic functions.

B. The subleading term of the index at large N

Having achieved control of the eigenvalues we can
proceed to analyze the index. As the ABJM theory, we
expand the index beyond the leading order in N and we
expect the subleading behavior of the index to have the
form

Re logZ ¼ f1ðk; r;Δ;nÞN3=2 þ f2ðk; r;Δ;nÞN1=2

þ f3ðk; r;Δ;nÞ logN þ f4ðk; r;Δ;nÞ
þOðN−1=2Þ; ð3:13Þ

where the functions f1, f2, f3 and f4 are linear in the
magnetic fluxes n.
For k ¼ 1 and a given set of Δa, r and fΔq;Δq̃g, we can

compute the index Eq. (3.6) and Re logZ for a range of N

using the numerical solutions obtained in Sec. III A. Then
we decompose Re logZ into a sum of four independent
terms

Re logZ ¼ Aþ B1n3 þ B2n4 þ B3nq; ð3:14Þ

where we have used the marginality condition on the super-
potential n1 þ n4 ¼ 1, n2 þ n3 ¼ 1 and nq þ nq̃ ¼ 1.
Then we perform a linear least-squares fit for A and Ba
to the function

fðNÞ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4

þ
Xpc

p¼1

fpþ4Nð1−2pÞ=2; ð3:15Þ

where pc is the cutoff needed for the numerical fitting.
Notice that the inverse powers of N should be Nð1−2pÞ=2,
instead of Np=2, for a integer p as before, because of the
stability which has been checked numerically.
The results of the numerical fit for Re logZ with N are

presented in Table II. The error between the analytical
leading term computed by the index theorem in [26] and the
numerical leading term f1N3=2 is negligible. More

(a)

(c) (d)

(b)

FIG. 6. Eigenvalues for the special case Δa ¼ fπ
2
; π
2
; π
2
; π
2
g (blue), and the general cases Δa ¼ fπ

3
; 3π
5
; 2π
5
; 2π
3
g (orange) and Δa ¼

f1
2
; 1;−1þ π;− 1

2
þ πg (green) with the same other parameters.
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TABLE II. (N0;1;0) Numerical fit for Re logZ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4 þ
Ppc¼5

p¼1 Nð1−2pÞ=2. The s in
the bracket of N is the step of N.

(a) k ¼ 1; fΔ1;Δ2;Δ3;Δ4g ¼ fπ
2
; π
2
; π
2
; π
2
g

r Δq Δq̃ NðsÞ f1 f2 f3 f4

1 − π
2

3π
2

100 ∼ 300ð10Þ −2.41840 þ2.11612 −0.50066 −2.29495
0 π 100 ∼ 300ð10Þ −2.41840 þ1.73825 −0.50056 −2.29565

þ0.15115n3

þ0.15115n4

þ0.45345nq

− π
2
− 1 3π

2
þ 1 100 ∼ 300ð10Þ −2.41840 þ2.35669 −0.50080 −2.29412

−0.09623n3

−0.09623n4

−0.28868nq

2 − π
2

3π
2

100 ∼ 300ð10Þ −3.14159 þ2.08351 −0.50065 −2.49377

3 − π
2

3π
2

100 ∼ 300ð10Þ −3.74657 þ2.38846 −0.50068 −3.10991

(b) k ¼ 1; fΔ1;Δ2;Δ3;Δ4g ¼ fπ
3
; 3π
5
; 2π
5
; 2π
3
g

r Δq Δq̃ NðsÞ f1 f2 f3 f4

1 − π
2

3π
2

100 ∼ 200ð5Þ −2.45347 þ2.16951 −0.50086 −2.37003
−0.37599n3 −0.00208n3 −0.00002n3 −0.00489n3

þ0.44419n4 þ0.01685n4 þ0.00002n4 þ0.00569n4

þ0.01959nq

0 π 85 ∼ 105ð1Þ −2.45347 þ1.81164 −0.50107 −2.36898
−0.37599n3 þ0.16898n3 −0.00007n3 −0.00460n3

þ0.44419n4 þ0.13521n4 þ0.00008n4 þ0.00537n4

þ0.46029nq −0.00002nq þ0.00012nq

− π
2
− 1 3π

2
þ 1 100 ∼ 200ð5Þ −2.45347 þ2.40631 −0.50082 −2.37028

−0.37599n3 −0.08786n3 −0.00001n3 −0.00493n3

þ0.44419n4 −0.08581n4 þ0.00003n4 þ0.00566n4

−0.26097nq

2 − π
2

3π
2

90 ∼ 110ð1Þ −3.16053 þ2.13744 −0.50098 −2.59551
−0.46062n3 þ0.19592n3 þ0.00024n3 −0.12623n3

þ0.49512n4 −0.16992n4 −0.00043n4 þ0.12251n4

þ0.02533nq −0.00007nq þ0.00039nq

3 − π
2

3π
2

80 ∼ 100ð1Þ −3.75949 þ2.47949 −0.50119 −3.29270
−0.53656n3 þ0.46309n3 þ0.00691n3 −0.37592n3

þ0.55794n4 −0.43345n4 −0.00646n4 þ0.36784n4

þ0.02703nq þ0.00146nq −0.00802nq

(c) k ¼ 1; fΔ1;Δ2;Δ3;Δ4g ¼ f1
2
; 1; π − 1; π − 1

2
g

r Δq Δq̃ NðsÞ f1 f2 f3 f4

1 − π
2

3π
2

100 ∼ 140ð2Þ −2.69204 þ2.10645 −0.50101 −2.42730
þ0.02322n3 þ0.05070n3 −0.00001n3 þ0.00051n3

þ0.51870n4 þ0.05726n4 þ0.01181n4

þ0.15070nq þ0.00005nq

0 π 100 ∼ 120ð1Þ −2.69204 þ1.79254 −0.50079 −2.42886
þ0.02322n3 þ0.19251n3 −0.00008n3 þ0.00089n3

þ0.51870n4 þ0.14797n4 −0.00002nq þ0.01185n4

þ0.58329nq þ0.00010nq

− π
2
− 1 3π

2
þ 1 100 ∼ 120ð1Þ −2.69204 þ2.33490 −0.50108 −2.42691

þ0.02322n3 −0.04105n3 þ0.00002n3 þ0.00031n3

þ0.51870n4 −0.03333n4 −0.00005n4 þ0.01213n4

−0.12470nq −0.00003nq

(Table continued)
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precisely, the analytic leading order and the numerical
result match to number of significant digits present in
the table. The leading term is, indeed, independent of
fΔq;Δq̃g. The numerical results indicate that the coeffi-
cient f3 of the logN term is precisely −1=2.
The main result of this section is the numerical evidence

pointing to the presence of a correction of the form
− 1

2
logN in the topologically twisted index.

IV. THE TOPOLOGICALLY TWISTED
INDEX OF V5;2

One particularly interesting model is the field theory dual
to AdS4 × V5;2=Zk because the manifold V5;2 is nontoric.
A simple way to visualize this seven-dimensional manifold
is as a homogeneous space V5;2 ¼ SOð5Þ=SOð3Þ. There
are two models for the dual field theory. Following the
literature, we call model I, the proposal of Martelli and
Sparks [42] and model II the proposal of Jafferis [43].
The free energy on S3 of the field theories was discussed in
[44–46] and perfect agreement at leading order was found

with the dual supergravity solutions. The topologically
twisted index for both models was studied at leading large
N order in [26] where the authors established the equiv-
alence of both models. Here we go beyond the leading
order in N and demonstrate the equivalence of both models
at the level of the topologically twisted index up to, and
including, logarithmic in N terms.

A. Model I

Model I was originally proposed in [42] with the
following quiver diagram:

ð4:1Þ

The superpotential accompanying the quiver diagram is

W ¼ Tr½ϕ3
1 þ ϕ3

2 þ ϕ1ðA1B2 þ A2B1Þ þ ϕ2ðB2A1 þ B1A2Þ�: ð4:2Þ

1. Numerical solutions to the system of BAEs

Collecting all the relevant building blocks following from the quiver diagram we have

Z ¼ 1

ðN!Þ2
X

m;m̃∈ZN

Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

xkmi
i x̃−km̃i

i ×
YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

264Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
mi−m̃j−naþ1 Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
m̃j−mi−nbþ1

×

0B@
ffiffiffiffiffiffiffiffiffiffi
xi
xj
yϕ1

q
1 − xi

xj
yϕ1

1CA
mi−1

2
nϕ1

þ1
2

0B@
ffiffiffiffiffiffiffiffiffiffi
xj
xi
yϕ1

q
1 − xj

xi
yϕ1

1CA
−mi−1

2
nϕ1

þ1
2

×

0B@
ffiffiffiffiffiffiffiffiffiffi
x̃i
x̃j
yϕ2

q
1 − x̃i

x̃j
yϕ2

1CA
−m̃j−1

2
nϕ2

þ1
2

0B@
ffiffiffiffiffiffiffiffiffiffi
x̃j
x̃i
yϕ2

q
1 − x̃j

x̃i
yϕ2

1CA
m̃j−1

2
nϕ2

þ1
2

375: ð4:3Þ

TABLE II. (Continued)

(c) k ¼ 1; fΔ1;Δ2;Δ3;Δ4g ¼ f1
2
; 1; π − 1; π − 1

2
g

r Δq Δq̃ NðsÞ f1 f2 f3 f4

2 − π
2

3π
2

80 ∼ 180ð5Þ −3.28009 þ1.91465 −0.50031 −2.52837
−0.14052n3 þ0.19945n3 −0.00026n3 −0.07857n3

þ0.41670n4 −0.00011n4 −0.00042n4 þ0.04734n4

þ0.20126nq −0.00040nq þ0.00239nq

3 − π
2

3π
2

100 ∼ 140ð2Þ −3.83240 þ2.18910 −0.50565 −3.11766
−0.23232n3 þ0.36535n3 þ0.00191n3 −0.20891n3

þ0.40375n4 −0.13462n4 þ0.00215n4 þ0.14117n4

þ0.21699nq þ0.00343nq −0.01975nq
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Performing the summation over magnetic fluxes, as in previous cases, by introducing a large cutoff M we get

Z ¼ 1

ðN!Þ2
Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

264Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
1−na Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
1−nb

×

� ffiffiffiffiffiffiffiyϕ1

p
1 − xj

xi
yϕ1

�
1−nϕ1

� ffiffiffiffiffiffiffiyϕ2

p
1 − x̃i

x̃j
yϕ2

�
1−nϕ2

375 ×
YN
i¼1

ðeiBiÞM
eiBi − 1

YN
j¼1

ðeiB̃jÞM
eiB̃j − 1

; ð4:4Þ

where the Bethe Ansatz equations are

1 ¼ eiBi ¼ xki
YN
j¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3y4
p

��
xi − xjyϕ1

xj − xiyϕ1

�
;

1 ¼ eiB̃j ¼ x̃kj
YN
i¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3y4
p

��
x̃i − x̃jyϕ2

x̃j − x̃iyϕ2

�
: ð4:5Þ

We highlight the ambiguity of selecting a branch as discussed around Eq. (2.22) by explicitly keeping the productffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3y4

p
in the above expression.

The compact expression for the index, once the solutions to the BAE are known, is

Zðya;naÞ ¼
�Y4

a¼1

y
−1
2
N2na

a

�
y
−1
2
N2nϕ1

ϕ1
y
−1
2
N2nϕ2

ϕ2

×
X
I∈BAE

�
1

detB

Q
N
i¼1 x

1
2
Nð6−

P
4

a¼1
na−2nϕ1

Þ
i x̃

1
2
Nð6−

P
4

a¼1
na−2nϕ2

Þ
iQ

N
i;j¼1

Q
a¼1;2 ðx̃j − yaxiÞ1−na

Q
a¼3;4ðxi − yax̃jÞ1−na

×

Q
i≠jð1 − xi

xj
Þð1 − x̃i

x̃j
ÞQ

N
i;j¼1 ðxi − xjyϕ1

Þ1−nϕ1 ðx̃j − x̃iyϕ2
Þ1−nϕ2

�
: ð4:6Þ

The transformation matrix B is given by

BjBAEs ¼
� Bjl Gjl

−Glj B̃jl

�
; ð4:7Þ

where

Bjl ¼ δjl

�
k −

XN
m¼1

Gjm þ xj
XN
m¼1

�
1 − δjmyϕ1

xj − xmyϕ1

−
δjm − yϕ1

xm − xjyϕ1

��
− δjl

�
yϕ1

þ 1

yϕ1
− 1

�
þ xl

�
1

xl − xjy−1ϕ1

−
1

xl − xjyϕ1

�
; ð4:8Þ

B̃jl ¼ δjl

�
kþ

XN
m¼1

Gmj þ x̃j
XN
m¼1

�
δjm − yϕ2

x̃m − x̃jyϕ2

−
1 − δjmyϕ2

x̃j − x̃myϕ2

��
− δjl

�
1þ yϕ2

1 − yϕ2

�
þ x̃l

�
1

x̃l − x̃jyϕ2

−
1

x̃l − x̃jy−1ϕ2

�
: ð4:9Þ
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The Bethe potential is

V ¼
XN
i¼1

�
k
2
ðũ2i − u2i Þ − 2πðñiũi − niuiÞ

�

þ
XN
i;j¼1

�X
a¼3;4

Li2ðeiðũj−uiþΔaÞÞ −
X
a¼1;2

Li2ðeiðũj−ui−ΔaÞÞ − 1

2

�X4
a¼1

Δa − 2π

�
ðũj − uiÞ

�

þ
XN
i;j¼1

1

2
½Li2ðeiðuj−uiþΔϕ1

ÞÞ − Li2ðeiðuj−ui−Δϕ1
ÞÞ� þ

XN
i;j¼1

1

2
½Li2ðeiðũj−ũiþΔϕ2

ÞÞ − Li2ðeiðũj−ũi−Δϕ2
ÞÞ�; ð4:10Þ

where

XN
i¼1

½−2πðñiũi − niuiÞ� ¼
�
6π −

X4
a¼1

Δa − 2Δϕ2

�XN
i>j

ũj −
�
6π −

X4
a¼1

Δa − 2Δϕ1

�XN
i>j

ui

¼ 2π
XN
i>j

ðũj − uiÞ: ð4:11Þ

We focus on the case k ¼ 1 and set the initial real
part axis to be π. The numerical solutions for different
values of N and Δa ¼ fΔ1;Δ2;Δ3;Δ4g are shown in
Figs. 7 and 8. The main new ingredients, as compared
to the ABJM case, are the fugacities fΔϕ1

;Δϕ2
g ¼

f2π
3
; 2π
3
g.

Figure 7 displays the eigenvalues and their imaginary
and real part densities as a function of N. The choice of
N ¼ 50 and N ¼ 200 is meant to indicate clearly that the
imaginary part of the eigenvalues scales as N1=2 in the large
N limit; this can be easily noted by glancing at the axes in
panel (a) of Figure 7.

(a)

(c) (d)

(b)

FIG. 7. Eigenvalues for the special case Δa ¼ f2π
3
; 2π
3
; 2π
3
; 2π
3
g for N ¼ 50 (blue) and 200 (orange) with the same other parameters.
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Figure 8 explores the dependence of the eigenvalues on
the choice of fugacities fΔag. As expected from the ABJM
construction, and more general configuration of tails in the
distribution of the eigenvalues emerges. The agreement
with the leading order large N distribution is maintained
with deviations registered mostly along the piece-wise
discontinuous slopes.

2. The subleading term of the index at large N

The index should take the form

Re logZ ¼ f1ðk;Δ;nÞN3=2 þ f2ðk;Δ;nÞN1=2

þ f3ðk;Δ;nÞ logN þ f4ðk;Δ;nÞ þOðN−1=2Þ;
ð4:12Þ

where the functions f1, f2, f3 and f4 are linear in the
magnetic fluxes n.
The index Eq. (4.6) and Re logZ can be computed using

the numerical solutions. Under the similar decomposition

Re logZ ¼ Aþ B1n3 þ B2n4; ð4:13Þ

where we have used the marginality condition on
the superpotential n1 þ n4 ¼ 4=3, n2 þ n3 ¼ 4=3 and

nϕ1
¼ nϕ2

¼ 2=3. Then we perform a linear least-square
fit for A and Ba to the function

fðNÞ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4

þ
Xpc

p¼1

fpþ4Nð1−2pÞ=2: ð4:14Þ

The results of the numerical fit for Re logZ with N are
presented in Table III. The analytical leading term com-
puted by the index theorem in [26] and the numerical
leading term f1N3=2 match to number of significant digits
present in the table. The numerical results indicate that the
coefficient f3 of the logN term is precisely −1=2.

B. Model II

Model II was originally proposed in [43] with the
following quiver diagram:

ð4:15Þ

The superpotential is taken to be

(a)

(c) (d)

(b)

FIG. 8. Eigenvalues for the special case Δa ¼ f2π
3
; 2π
3
; 2π
3
; 2π
3
g (blue), and the general case Δa ¼ fπ

3
; 5π
6
; π
2
; πg (orange) and Δa ¼

f1
3
þ 2π

3
; 5
3
þ 2π

3
;− 5

3
þ 2π

3
;− 1

3
þ 2π

3
g (green) with the same other parameters.
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W ¼ Tr



φ3½φ1;φ2� þ

Xk
j¼1

qjðφ2
1 þ φ2

2 þ φ2
3Þq̃j

�
: ð4:16Þ

The SOð5Þ symmetry of V5;2 can be made manifest by
using the variables

X1¼
1ffiffiffi
2

p ðφ1þ iφ2Þ; X2¼
1ffiffiffi
2

p ðφ1− iφ2Þ; X3¼ iφ3:

ð4:17Þ

In terms of these new variables, the superpotential can be
rewritten as

W ¼ Tr



X3½X1; X2� þ

Xk
j¼1

qjðX1X2 þ X2X1 − X2
3Þq̃j

�
:

ð4:18Þ

1. Numerical solutions to the system of BAEs

The above matter content implies that the topologically
twisted index takes the general form

Z¼ 1

N!

X
m∈ZN

Z
C

YN
i¼1

dxi
2πixi

xtiξ
mi ×

YN
i≠j

�
1−

xi
xj

�

×
YN
i;j¼1

Y3
a¼1

0B@
ffiffiffiffiffiffiffiffiffiffi
xi
xj
yXa

q
1− xi

xj
yXa

1CA
mi−1

2
nXaþ1

2

0B@
ffiffiffiffiffiffiffiffiffiffi
xj
xi
yXa

q
1− xj

xi
yXa

1CA
−mi−1

2
nXaþ1

2

×
YN
i¼1

Yk
j¼1

� ffiffiffiffiffiffiffiffiffiffixiyqj
p
1−xiyqj

�
mi−nqj

þ1

0B@
ffiffiffiffiffiffiffiffiffi
1
xi
ỹqj

q
1− 1

xi
ỹqj

1CA
−mi−ñqj

þ1

:

ð4:19Þ

Performing the summation over magnetic fluxes by
introducing a large cutoff M we get

Z ¼ 1

N!

X
m∈ZN

Z
C

YN
i¼1

dxi
2πixi

xti ×
YN
i≠j

�
1 −

xi
xj

� YN
i;j¼1

Y3
a¼1

� ffiffiffiffiffiffiffiyXa

p
1 − xj

xi
yXa

�
1−nXa

×
YN
i¼1

Yk
j¼1

� ffiffiffiffiffiffiffiffiffiffixiyqj
p
1 − xiyqj

�
1−nqj

0B@
ffiffiffiffiffiffiffiffiffiffi
1
xi
ỹqj

q
1 − 1

xi
ỹqj

1CA
1−ñqj YN

i¼1

ðeiBiÞM
eiBi − 1

; ð4:20Þ

where the Bethe Ansatz equations are

1 ¼ eiBi ¼ ξ
Y3
a¼1

YN
j¼1

�
xi − xjyXa

xj − xiyXa

�Yk
j¼1

� ffiffiffiffiffiffiffiffiffiffixiyqj
p
1 − xiyqj

�0B@
ffiffiffiffiffiffiffiffiffiffi
1
xi
ỹqj

q
1 − 1

xi
ỹqj

1CA
−1

: ð4:21Þ

TABLE III. (V5;2 Model I) Numerical fit for RelogZ¼f1N3=2þf2N1=2þf3 logNþf4þ
Ppc¼5

p¼1 fpþ4Nð1−2pÞ=2.

(a) k ¼ 1; fΔ1;Δ2;Δ3;Δ4g ¼ f2π
3
; 2π
3
; 2π
3
; 2π
3
g; fΔϕ1

;Δϕ2
g ¼ f2π

3
; 2π
3
g

NðsÞ f1 f2 f3 f4

100 ∼ 300ð10Þ −1.86168 þ3.02526 −0.50066 −2.75740

(b) k ¼ 1;fΔ1;Δ2;Δ3;Δ4g ¼ fπ
3
; 5π
6
; π
2
; πg; fΔϕ1

;Δϕ2
g ¼ f2π

3
; 2π
3
g

NðsÞ f1 f2 f3 f4

100 ∼ 300ð10Þ −2.18550 þ3.56708 −0.50082 −3.39532
−0.31221n3 þ0.00781n3 −0.02821n3

þ0.78053n4 −0.17562n4 þ0.19180n4

(c) k ¼ 1; fΔ1;Δ2;Δ3;Δ4g ¼ f2π
3
þ 1

3
; 2π
3
þ 5

3
; 2π
3
− 5

3
; 2π
3
− 1

3
g; fΔϕ1

;Δϕ2
g ¼ f2π

3
; 2π
3
g

NðsÞ f1 f2 f3 f4

100 ∼ 200ð5Þ −0.79002 þ4.27652 −0.50167 −4.51009
−1.81136n3 þ1.38166n3 −0.00005n3 −1.91182n3

−0.13631n4 −0.06990n4 −0.00001n4 þ0.01935n4
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The compact expression for the index once the BA solutions are known is

Zðya;naÞ ¼ ei
π
3
Nk
Y3
a¼1

y
−1
2
N2nXa

Xa

Yk
j¼1

y
−1
2
Nnqj

qj ỹ
−1
2
Nñqj

qj

×
X
I∈BAE

�
1

detB

Q
N
i¼1 x

Nþt
i

Q
i≠jð1 − xi

xj
ÞQ

N
i;j¼1

Q
3
a¼1 ðxi − xjyXa

Þ1−nXa

YN
i¼1

x
2
3
k
iQ

k
j¼1 ð1 − xiyqjÞð1−nqj

Þðxi − ỹqjÞð1−ñqj
Þ

�
: ð4:22Þ

The matrix B is

BjBAEs ¼ ðBjl Þ; ð4:23Þ
where

Bjl ¼ δjl

�
xj
X3
a¼1

XN
m¼1

�
1 − δjmyXa

xj − xmyXa

−
δjm − yXa

xm − xjyXa

�
þ xj

Xk
i¼1

�
1

xj − ỹqi
−

1

xj − y−1qi

��

− δjl

�X3
a¼1

yXa
þ 1

yXa
− 1

�
þ xl

X3
a¼1

�
1

xl − xjy−1Xa

−
1

xl − xjyXa

�
: ð4:24Þ

The Bethe potential is

V ¼
XN
i¼1

½−Δmui þ 2πniui� þ
1

2

X3
a¼1

XN
i;j¼1

½Li2ðeiðuj−uiþΔXa ÞÞ − Li2ðeiðuj−ui−ΔXa ÞÞ�

þ
XN
i¼1

Xk
j¼1

½Li2ðeið−uiþΔ̃qj
ÞÞ − Li2ðeið−ui−Δqj

ÞÞ� þ 1

2

XN
i¼1

Xk
j¼1

½ðΔ̃qj þ Δqj − 2πÞui�; ð4:25Þ

where

XN
i¼1

2πniui ¼
�
3π −

X3
a¼1

ΔXa

�XN
i>j

ðuj − uiÞ ¼ π
XN
i>j

ðuj − uiÞ: ð4:26Þ

Notice that for even N we are left with a common factor
π
P

N
i¼1 ui which can be reabsorbed in the definition of the

topological fugacity ξ [25].
For simplicity we set Δqj ¼ Δq and Δ̃qj ¼ Δ̃q for all j.

Since there is only one gauge group we directly set the
initial real part to be

vðtÞ ¼ Δ̃q − Δq

2
: ð4:27Þ

The quiver described in quiver diagram (4.15) is quite
different from the ABJM quiver, in particular, it has
only one node. We have only one set of eigenvalues to
consider. The set of fugacities involved yXa

, yqj and ỹqj are

(a) (b)

FIG. 9. Eigenvalues for the special case ΔX ¼ f2π
3
; 2π
3
; 2π
3
g for N ¼ 50 (orange) and 200 (blue) with the same other parameters.
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quite different as well, in the sense that there is no particular
subset that one would naturally identify with the ya of the
ABJM model.
The numerical solutions for different values of N, k,

fΔq; Δ̃qg and Δm;ΔX ¼ fΔX1
;ΔX2

;ΔX3
g are shown in

Figs. 9–12. We find the value of the real parts of the exact
eigenvalues is the same as our initial value.
Figure 9 shows that the real part of the eigenvalues is a

constant. It is harder to spot the scaling from panel (a) but it
is still N1=2.

(b)(a)

FIG. 10. Eigenvalues for the special case ΔX ¼ f2π
3
; 2π
3
; 2π
3
g for k ¼ 1 (blue), 2 (orange) and 3 (green) with the same other parameters.

(a) (b)

FIG. 11. Eigenvalues for the special case ΔX ¼ f2π
3
; 2π
3
; 2π
3
g for fΔq; Δ̃qg ¼ f− 2π

3
; 4π
3
g (blue), fπ

3
; π
3
g (orange) and f2π

3
; 0g (green) with

the same other parameters.

(a) (b)

FIG. 12. Eigenvalues for the special case Δm ¼ 0;ΔX ¼ f2π
3
; 2π
3
; 2π
3
g (blue), and for the general cases Δm ¼ − π

3
;ΔX ¼ fπ

2
; 5π
6
; 2π
3
g

(orange) and Δm ¼ 1
3
;ΔX ¼ f− 5

3
þ 2π

3
; 5
3
þ 2π

3
; 2π
3
g (green) with the same other parameters.
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In Fig. 10 we consider the effect of changing the number
of flavors k. As expected from the leading order solution
[26], changing k mostly affects the slope in the eigenvalue
distribution ρðtÞ which increases proportional to k.
Figure 11 demonstrates that the role of the chemical

potentials fΔq; Δ̃qg display the real part of the eigenvalues
ui and have, otherwise no effect on the imaginary eigen-
value density ρðtÞ.
Finally, we display the dependence of the eigenvalues ui

on the choice of the chemical potential ΔX in Fig. 12
keeping the same real parts.

2. The subleading term of the index at large N

The index should take the form

Re logZ ¼ f1ðk;Δ;n; tÞN3=2 þ f2ðk;Δ;n; tÞN1=2

þ f3ðk;Δ;n; tÞ logN
þ f4ðk;Δ;n; tÞ þOðN−1=2Þ; ð4:28Þ

where the functions f1, f2, f3 and f4 are linear in the
magnetic fluxes n and t.

TABLE IV. (V5;2 Model II) Numerical fit for Re logZ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4 þ
Pgc¼5

g¼1 Nð1−2gÞ=2.

(a) Δm ¼ 0; fΔX1
;ΔX2

;ΔX3
g ¼ f2π

3
; 2π
3
; 2π
3
g

k Δq Δ̃q NðsÞ f1 f2 f3 f4

1
− 2π

3
4π
3

100 ∼ 300ð10Þ −1.86168 þ3.02526 −0.50066 −2.75740
π
3

π
3

100 ∼ 300ð10Þ −1.86168 þ3.02526 −0.50066 −2.75740
2π
3

0 100 ∼ 300ð10Þ −1.86168 þ3.02526 −0.50066 −2.75740
2 − 2π

3
4π
3

100 ∼ 200ð5Þ −2.63282 þ3.37334 −0.50090 −3.26096
3 − 2π

3
4π
3

100 ∼ 200ð5Þ −3.22453 þ4.43378 −0.50115 −4.75453

(b) Δm ¼ − π
3
; fΔX1

;ΔX2
;ΔX3

g ¼ fπ
2
; 5π
6
; 2π
3
g

k Δq Δ̃q NðsÞ f1 f2 f3 f4

1 − 2π
3

4π
3

100 ∼ 300ð10Þ −1.66514 þ3.44999 −0.50082 −3.26746
−0.31221nX1

þ0.00781nX1
−0.02821nX1

þ0.78053t −0.17562t þ0.19180t
π
3

π
3

100 ∼ 300ð10Þ −1.66514 þ3.44999 −0.50082 −3.26746
−0.31221nX1

þ0.00781nX1
−0.02821nX1

þ0.78053t −0.17562t þ0.19180t
2π
3

0 100 ∼ 300ð10Þ −1.66514 þ3.44999 −0.50082 −3.26746
−0.31221nX1

þ0.00781nX1
−0.02821nX1

þ0.78053t −0.17562t þ0.19180t

2 − 2π
3

4π
3

100 ∼ 200ð5Þ −2.30372 þ3.19233 −0.50098 −3.22095
−0.49365nX1

þ0.41961nX1
−0.34133nX1

þ0.24683t þ0.08639t −0.06902t

3 − 2π
3

4π
3

100 ∼ 200ð5Þ −2.81460 þ3.99013 −0.50123
− 0.00006nX1

þ 0.00003t

−4.52640
−0.61569nX1

þ0.89056nX1
−0.83862nX1

þ0.13193t þ0.09188t −0.08196t

(c) Δm ¼ 1
3
; fΔX1

;ΔX2
;ΔX3

g ¼ f2π
3
− 5

3
; 2π
3
þ 5

3
; 2π
3
g

k Δq Δ̃q NðsÞ f1 f2 f3 f4

1 − 2π
3

4π
3

100 ∼ 200ð5Þ −0.88090 þ4.22992 −0.50168 −4.49720
−1.81136nX1

þ1.38166nX1
−0.00005nX1

−1.91182nX1

−0.13631t −0.06990t −0.00001t þ0.01935t

2 − 2π
3

4π
3

100 ∼ 200ð5Þ −1.24227 þ3.87599 −0.50409 −5.28616
−2.58650nX1

þ5.44770nX1
þ0.00620nX1

−8.41742nX1

−0.04773t −0.07670t þ0.00063t þ0.05162t

3 − 2π
3

4π
3

100 ∼ 200ð5Þ −1.52070 þ4.40337 −0.49827 −7.73447
−3.17340nX1

þ10.53032nX1
−0.05617nX1

−18.79411nX1

−0.02594t −0.06618t −0.00672t þ0.09834t
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The index Eq. (4.22) and Re logZ can be computed
using the numerical solutions. For simplicity we set nqj ¼
nq and ñqj ¼ ñq for all j. Under the similar decomposition

Re logZ ¼ Aþ B1nX1
þ B2nq þ B3t; ð4:29Þ

where we have used the marginality condition on the super-
potential nX1

þnX2
¼ 4=3, nX3

¼ 2=3 and nq þ ñq ¼ 2=3.
Then we perform a linear least-squares fit for A and Ba to
the function

fðNÞ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4

þ
Xpc

p¼1

fpþ4Nð1−2pÞ=2: ð4:30Þ

The results of the numerical fit for Re logZ with N are
presented in Table IV. The analytical leading term com-
puted by the index theorem in [26] and the numerical
leading term f1N3=2 match to number of significant digits
present in the table. And the numerical results are also
independent of fΔq; Δ̃qg. The numerical results indicate
that the coefficient f3 of the logN term is precisely −1=2.
Furthermore, from the numerical results it is shown that

by taking

ΔX1
¼ Δ3;Δm ¼ k

�
2π

3
− Δ4

�
;

nX1
¼ n3; t ¼ −k

�
2

3
ð1 − gÞ − n4

�
; ð4:31Þ

where g is the genus and g ¼ 0 for this case, Model I
matches exactly with Model II for every term, including to
logarithmic terms which are equal as they are independent
of the chemical potentials of the magnetic charges.

V. THE TOPOLOGICALLY TWISTED
INDEX OF Q1;1;1

The field theory dual to M-theory of AdS4 ×Q1;1;1=Zk
was originally discussed in [43,47], see also [48]. The quiver
diagram is a particular flavored type of the ABJM quiver:

ð5:1Þ

with the superpotential

W ¼ TrðA1B1A2B2 − A1B2A2B1Þ

þ Tr

�Xna1
j¼1

qð1Þj A1q̃
ð1Þ
j þ

Xna2
j¼1

qð2Þj A2q̃
ð2Þ
j þ

Xnb1
j¼1

Qð1Þ
j B1Q̃

ð1Þ
j þ

Xnb2
j¼1

Qð2Þ
j B2Q̃

ð2Þ
j

�
: ð5:2Þ

The free energy of the field theory on S3 was shown to match the gravity side in [44,46]. Aspects of the superconformal
index have been discussed in [39,40]. The large N analysis of the topologically twisted index was presented in [26] whose
notation and leading order analysis we follow very closely.

A. Numerical solutions to the system of BAEs

From the ingredients of the quiver diagram (5.1) one constructs the topologically twisted index as

Z ¼ 1

ðN!Þ2
X

m;m̃∈ZN

Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

xti x̃
t̃
iξ

mi ξ̃−m̃i ×
YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
mi−m̃j−naþ1 Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
m̃j−mi−nbþ1

×
YN
i¼1

Y
k¼1;2

0B@
ffiffiffiffiffiffiffiffiffiffi
1
xi
ỹak

q
1 − 1

xi
ỹak

1CA
nð−mi−ñakþ1Þ

×
YN
j¼1

Y
k¼1;2

� ffiffiffiffiffiffiffiffiffiffiffi
x̃jyak

p
1 − x̃jyak

�
nðm̃j−nakþ1Þ

: ð5:3Þ
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Performing the summation over magnetic fluxes introducing a large cutoff M.

Z ¼ 1

ðN!Þ2
X

m;m̃∈ZN

Z
C

YN
i¼1

dxi
2πixi

dx̃i
2πix̃i

xti x̃
t̃
i ×
YN
i≠j

�
1 −

xi
xj

��
1 −

x̃i
x̃j

�

×
YN
i;j¼1

Y
a¼1;2

0B@
ffiffiffiffiffiffiffiffiffi
xi
x̃j
ya

q
1 − xi

x̃j
ya

1CA
1−na Y

b¼3;4

0B@
ffiffiffiffiffiffiffiffiffi
x̃j
xi
yb

q
1 − x̃j

xi
yb

1CA
1−nb

×
YN
i¼1

Y
k¼1;2

0B@
ffiffiffiffiffiffiffiffiffiffi
1
xi
ỹak

q
1 − 1

xi
ỹak

1CA
nð1−ñakÞ

×
YN
j¼1

Y
k¼1;2

� ffiffiffiffiffiffiffiffiffiffiffi
x̃jyak

p
1 − x̃jyak

�
nð1−nakÞYN

i¼1

ðeiBiÞM
eiBi − 1

YN
j¼1

ðeiB̃jÞM
eiB̃j − 1

; ð5:4Þ

where the Bethe Ansatz equations are

1 ¼ eiBi ¼ ξ
YN
j¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
×
Y
k¼1;2

0B@
ffiffiffiffiffiffiffiffiffiffi
1
xi
ỹak

q
1 − 1

xi
ỹak

1CA
−n

;

1 ¼ eiB̃j ¼ ξ̃
YN
i¼1

ð1 − y3
x̃j
xi
Þð1 − y4

x̃j
xi
Þ

ð1 − y−11
x̃j
xi
Þð1 − y−12

x̃j
xi
Þ
×
Y
k¼1;2

� ffiffiffiffiffiffiffiffiffiffiffi
x̃jyak

p
1 − x̃jyak

�
−n
: ð5:5Þ

The compact expression is

Zðya;naÞ ¼
Y
k¼1;2

½ỹak12Nnð1−ñakÞy
1
2
Nnð1−nakÞ
ak � ×

Y4
a¼1

y
−1
2
N2na

a

×
X
I∈BAE

�
1

detB

Q
N
i¼1 x

Nþt
i x̃Nþt̃

i

Q
i≠jð1 − xi

xj
Þð1 − x̃i

x̃j
ÞQ

N
i;j¼1

Q
a¼1;2 ðx̃j − yaxiÞ1−na

Q
a¼3;4ðxi − yax̃jÞ1−na

×
YN
i¼1

Y
k¼1;2

x
1
2
nð1−ñakÞ
i x̃

1
2
nð1−nakÞ
i

ðxi − ỹakÞnð1−ñakÞð1 − x̃iyakÞnð1−nakÞ

�
: ð5:6Þ

The matrix B is

BjBAEs ¼

0B@ δjl
h
−
P

N
m¼1Gjm þ P

k¼1;2

nxj
xj−ỹak

− n
i

Gjl

−Glj δjl
hP

N
m¼1Gmj þ

P
k¼1;2

nx̃j
x̃j−y−1ak

− n
i
1CA: ð5:7Þ
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The Bethe potential is

V ¼
XN
i¼1

½−Δð1Þ
m ui þ Δð2Þ

m ũi − 2πðñiũi − niuiÞ� þ
XN
i;j¼1

�X
a¼3;4

Li2ðeiðũj−uiþΔaÞÞ −
X
a¼1;2

Li2ðeiðũj−ui−ΔaÞÞ
�

þ n
XN
i¼1

X
k¼1;2

½Li2ðeið−uiþΔ̃akÞÞ − Li2ðeið−ũi−ΔakÞÞ�

þ n
2

XN
i¼1

X
k¼1;2

½ðΔ̃ak − πÞui þ ðΔak − πÞũi� −
n
2

XN
i¼1

½u2i − ũ2i �; ð5:8Þ

where

XN
i¼1

½−2πðñiũi − niuiÞ� ¼
�
4π −

X4
a¼1

Δa

�XN
i>j

ðũj − uiÞ ¼ 2π
XN
i>j

ðũj − uiÞ: ð5:9Þ

It is assumed that 0 < −vðtÞ þ Δ̃a1 < 2π, 0 < −vðtÞþ
Δ̃a2 < 2π, 0 < ṽðtÞ þ Δa1 < 2π and 0 < ṽðtÞ þ Δa2 < 2π.
Using Δ1 ¼ Δ2 ¼ π − Δ3 ¼ π − Δ4 ¼ Δ and the margin-
ality condition from the superpotential Δ1 þ Δa1þ
Δ̃a1 ¼ 2π, Δ2 þ Δa2 þ Δ̃a2 ¼ 2π we get

vðtÞ þ ṽðtÞ
2

∈

8>><>>:
�
−Δ−2Δa1

2
; þΔþ2Δ̃a2

2

�
; Δa1 < Δa2�

−Δ−2Δa2
2

; þΔþ2Δ̃a1
2

�
; Δa1 ≥ Δa2

;

ð5:10Þ

(a)

(c) (d)

(b)

FIG. 13. Eigenvalues for Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for N ¼ 50 (blue) and 200 (orange) with the same other parameters.
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(a) (b)

(c) (d)

FIG. 14. Eigenvalues for Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for n ¼ 1 (blue), 2 (orange) and 3 (green) with the same other parameters.

(a) (b)

(c) (d)

FIG. 15. Eigenvalues for Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for fΔð1Þ

m ;Δð2Þ
m g ¼ f0; 0g (blue), fπ

2
; π
2
g (orange) and fπ; πg (green) keeping the same

Δm ¼ 0 with the same other parameters.
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(a) (b)

(c) (d)

FIG. 16. Eigenvalues for Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for Δm ¼ 0; fΔð1Þ

m ;Δð2Þ
m g ¼ f0; 0g (blue), Δm ¼ − π

3
; fΔð1Þ

m ;Δð2Þ
m g ¼ f− π

6
; π
6
g (orange) and

Δm ¼ 2; fΔð1Þ
m ;Δð2Þ

m g ¼ f1;−1g (green) with the same other parameters.

(a) (b)

(c) (d)

FIG. 17. Eigenvalues for Δa ¼ fπ
2
; π
2
; π
2
; π
2
g for fΔa1;Δa2; Δ̃a1; Δ̃a2g ¼ f3π

4
; 3π
4
; 3π
4
; 3π
4
g (blue), f− π

3
;− π

6
; 11π

6
; 5π
3
g (orange) and

fπ
4
;− π

12
; 5π
4
; 19π
12
g (green) with the same other parameters.
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Thus we set the initial real part axis to be

vðtÞ þ ṽðtÞ
2

¼ 2π − Δ − Δa1 − Δa2

2
: ð5:11Þ

Note that we have specialized from the general flavored
ABJM quiver (5.1) to the particular case corresponding to
the dual of AdS4 ×Q1;1;1=Zn which in the notation we
have introduced implies: k ¼ 0; na1 ¼ na2 ¼ n; nb1 ¼
nb2 ¼ 0 where the subindex bi corresponds to the fields
Q and Q̃. Our goal is thus, to explore the numerical
behavior of the index as a function of N and Δa just as in

the ABJM case but also as functions of fΔð1Þ
m ;Δð2Þ

m g, n
and fΔa1;Δa2; Δ̃a1; Δ̃a2g.
We set Δm ¼ Δð2Þ

m − Δð1Þ
m . The numerical solutions for

different values of N, n, fΔð1Þ
m ;Δð2Þ

m g, Δm, fΔa1;Δa2;
Δ̃a1; Δ̃a2g and Δa ¼ fΔ1;Δ2;Δ3;Δ4gðΔÞ are shown in
Figs. 13–18.
Let us briefly summarize the salient features of the exact

eigenvalues that we find. Similar to the index of N0;1;0

in section III A, the eigenvalues are not reflectively sym-
metric about a particular real axis, except for the case that

ðΔð1Þ
m þ Δð2Þ

m Þ=2 ¼ π. Furthermore, the imaginary part of ui
is not exactly the same as ũi so that there are two numerical
results of the eigenvalue density ρðtÞ, the real part

difference δvðtÞ and the real part axis ðvðtÞ þ ṽðtÞÞ=2. In
addition, Figs. 15 and 17 show that the values of

fΔð1Þ
m ;Δð2Þ

m g keeping the same Δm and the values of
fΔa1;Δa2; Δ̃a1; Δ̃a2g have effects only on the real part
axis ðvðtÞ þ ṽðtÞÞ=2.

B. The subleading term of the index at large N

The index should take the form

Re logZ ¼ f1ðn;Δ;n; tÞN3=2 þ f2ðn;Δ;n; tÞN1=2

þ f3ðn;Δ;n; tÞ logN þ f4ðn;Δ;n; tÞ
þOðN−1=2Þ; ð5:12Þ

where here Δ represents all of the chemical potentials as
above and the functions f1, f2, f3 and f4 are linear in the
magnetic fluxes n and t.
The index Eq. (5.6) and Re logZ can be computed using

the numerical solutions. Under the similar decomposition

Re logZ ¼ Aþ B1n1 þ B2n2 þ B3n3 þ B4na1

þ B5na2 þ B6tþ B7t̃; ð5:13Þ
where we have used the marginality condition on the
superpotential

P
4
a¼1 na ¼ 2, n1 þ na1 þ ña1 ¼ 2 and

n2 þ na2 þ ña2 ¼ 2. Then we perform a linear least-
squares fit for A and Ba to the function

(a) (b)

(c) (d)

FIG. 18. Eigenvalues for Δa¼fπ
2
;π
2
;π
2
;π
2
g;fΔa1;Δa2;Δ̃a1;Δ̃a2g¼f3π

4
;3π
4
;3π
4
;3π
4
g (blue), Δa ¼ fπ

4
; π
4
; 3π
4
; 3π
4
g; fΔa1;Δa2; Δ̃a1; Δ̃a2g ¼

f7π
8
; 7π
8
; 7π
8
; 7π
8
g (orange) and Δa ¼ f2; 2; π − 2; π − 2g; fΔa1;Δa2; Δ̃a1; Δ̃a2g ¼ fπ − 1; π − 1; π − 1; π − 1g (green) with the same

other parameters.
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TABLE V. (Q1;1;1) Numerical fit for Re logZ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4 þ
Ppc¼5

p¼1 fpþ4Nð1−2pÞ=2 and N ranges from 100 to

200 in steps of 5 except for four cases. For numerical stability and accuracy, in the cases Δ ¼ π
2
;Δm ¼ 2; fΔð1Þ

m ;Δð2Þ
m g ¼ f−1;þ1g and

fΔð1Þ
m ;Δð2Þ

m g ¼ fπ − 1; π þ 1g, N ranges from 100 to 200 in steps of 5 but pc ¼ 15. In the case

Δ ¼ π
4
;Δm ¼ − 3π

2
; fΔð1Þ

m ;Δð2Þ
m g ¼ f3π

2
; 0g; n ¼ 3, N ranges from 100 to 300 in steps of 5 and pc ¼ 30. And in the case

Δ ¼ 2;Δm ¼ 4π
3
; fΔð1Þ

m ;Δð2Þ
m g ¼ fπ

3
; 5π
3
g; n ¼ 2, N ranges from 200 to 400 in steps of 5 and pc ¼ 30.

(a) k ¼ 0; Δa ¼ fπ
2
; π
2
; π
2
; π
2
gðΔ ¼ π

2
Þ

Δð1Þ
m Δð2Þ

m
Δm n Δa1 Δa2 f1 f2 f3 f4

0 0 0 1 3π
4

3π
4

−2.41840 þ1.81381 −0.50033 −2.13933
þ0.60460t
−0.60460t̃

0 0 0 2 3π
4

3π
4

−3.42013 þ1.28258 −0.50064 −2.03420
þ0.42752t þ0.00004t
−0.42752t̃ −0.00004t̃

0 0 0 3 3π
4

3π
4

−4.18879 þ1.04723 −0.50087 −2.23075
þ0.34907t −0.00005t þ0.00030t
−0.34907t̃ þ0.00005t̃ −0.00030t̃

π π 0 1 3π
4

3π
4

−2.41840 þ1.81384 −0.50098 −2.13483
π π 0 2 3π

4
3π
4

−3.42013 þ1.28259 −0.50097 −2.03192
π π 0 3 3π

4
3π
4

−4.18879 þ1.04725 −0.50117 −2.22872
π
2

π
2

0 1 3π
4

3π
4

−2.41840 þ1.81383 −0.50082 −2.13596
þ0.30230t
−0.30230t̃

π
6

− π
6

− π
3

1 3π
4

3π
4

−2.42234 þ2.04473 −0.50044 −2.30777
−0.69511t þ0.69572t −0.00015t −0.01877t
−0.69511t̃ −0.44172t̃ −0.00014t̃ −0.01878t̃

7π
6

5π
6

− π
3

1 3π
4

3π
4

−2.42234 þ1.96819 −0.50101 −2.30374
−0.69511t −0.10269t þ0.00008t −0.02007t
−0.69511t̃ −0.10269t̃ þ0.00008t̃ −0.02007t̃

−1 þ1 2 1 3π
4

3π
4

−2.47964 þ3.10442 −0.49893 −3.26833
þ1.46576t þ0.02602t −0.00314t þ0.29060t
þ1.46576t̃ −0.86801t̃ −0.00336t̃ þ0.29211t̃

π − 1 π þ 1 2 1 3π
4

3π
4

−2.47964 þ2.70455 −0.49839 −3.26854
þ1.46576t þ0.20706t −0.00226t þ0.27889t
þ1.46576t̃ þ0.20706t̃ −0.00226t̃ þ0.27889t̃

0 0 0 1 − π
3

− π
6

−2.41840 þ1.81381 −0.50031 −2.13942
−0.07557n1

þ0.07557n2

−0.15115na1
þ0.15115na2
þ0.60460t
−0.60460t̃

0 0 0 1 π
4

− π
12

−2.41840 þ1.81381 −0.50027 −2.13970
þ0.15115n1

−0.15115n2

þ0.30230na1
−0.30230na2
þ0.60460t
−0.60460t̃

(b) k ¼ 0; Δa ¼ fπ
4
; π
4
; 3π
4
; 3π
4
gðΔ ¼ π

4
Þ.

Δð1Þ
m Δð2Þ

m
Δm n Δa1 Δa2 f1 f2 f3 f4

0 0 0 1 7π
8

7π
8

−2.41840 þ1.81381 −0.50033 −2.13933
þ0.60460t
−0.60460t̃

(Table continued)
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fðNÞ ¼ f1N3=2 þ f2N1=2 þ f3 logN þ f4

þ
Xpc

p¼1

fpþ4Nð1−2pÞ=2: ð5:14Þ

The results of the numerical fit for Re logZ with N are
presented in Table V. The analytical leading term computed
by the index theorem in [26] and the numerical leading term
f1N3=2 match to number of significant digits present in
the table. And the leading term is indeed independent of

fΔð1Þ
m ;Δð2Þ

m g keeping the same Δm, and fΔa1;Δa2; Δ̃a1;
Δ̃a2g. The numerical results indicate that the coefficient f3
of the logN term is precisely −1=2.

VI. ONE-LOOP ENTROPY IN ELEVEN
DIMENSIONAL SUPERGRAVITY

Inspired by the seminal work of ABJM [34] who estab-
lished the now prototypical dual pair of (AdS4 × S7=
Zk)/CFT3 where CFT3 stands for the particular Chern-
Simons matter theory discussed in Sec. II, a plethora of
similar examples was constructed. A natural way to establish
new dual pairs is to consider, on the gravity side, appropriate
manifolds that could replace the seven-sphere, S7. The
starting point are Freund-Rubin type solutions of the
form AdS4 ×M7 for a certain list of seven-dimensional
Sasaki-Einstein spaces,M7 [49]. A fairly complete descrip-
tion of solutions of seven dimensional manifolds, providing

TABLE V. (Continued)

(b) k ¼ 0; Δa ¼ fπ
4
; π
4
; 3π
4
; 3π
4
gðΔ ¼ π

4
Þ.

Δð1Þ
m Δð2Þ

m
Δm n Δa1 Δa2 f1 f2 f3 f4

−π − π
4

3π
4

2 − π
4

0 − 3.42919
þ0.55815t
þ0.55815t̃

þ1.47608 −0.49693 −2.08016
−0.34209n1 −0.00524n1 þ0.03162n1

þ0.34209n2 þ0.00524n2 −0.03162n2

−0.56442na1 −0.00103na1 þ0.00615na1
þ0.56442na2 þ0.00103na2 −0.00615na2
þ0.61625t −0.00517t −0.08824t
−0.66691t̃ −0.00581t̃ −0.08445t̃

3π
2

0 − 3π
2

3 3π
2

3π
4

−4.22590 þ1.26660 −0.49950 −1.95975
−0.62974t þ1.34234n1 þ0.00018n1 −0.00141n1

−0.62974t̃ −1.34234n2 −0.00018n2 þ0.00141n2

þ2.76857na1 þ0.00056na1 −0.00445na1
−2.76857na2 −0.00056na2 þ0.00445na2
þ0.02775t þ0.00088t þ0.25498t
−0.12140t̃ þ0.00085t̃ þ0.25520t̃

(c) k ¼ 0; Δa ¼ f2; 2; π − 2; π − 2gðΔ ¼ 2Þ
Δð1Þ

m Δð2Þ
m

Δm n Δa1 Δa2 f1 f2 f3 f4

0 0 0 1 π − 1 π − 1 −2.41840 þ1.81381 −0.50033 −2.13933
þ0.60460t
−060460t

π
3

5π
3

4π
3

2 − 1
2

− 3
2

−3.52661 þ1.58880 −0.49533 −0.49533
þ1.10095t þ0.24574n1 þ0.00005n1 þ0.00005n1

þ1.10095t̃ −0.24574n2 −0.00005n2 −0.00005n2

þ0.49147na1 þ0.00009na1 þ0.00009na1
−0.49147na2 −0.00009na2 −0.00009na2
þ0.40646t −0.00387t −0.00387t
þ0.40646t̃ −0.00387t̃ −0.00387t̃

2 −1 −3 3 4π − 12 6 − 2π −4.19444 þ0.94252 −0.50128 −2.10032
−0.38206t þ0.54645n1 þ0.00333n1 −0.01903n1

−0.38206t̃ −0.54645n2 −0.00333n2 þ0.01903n2

þ1.16441na1 þ0.01182na1 −0.07214na1
−1.16441na2 −0.01182na2 þ0.07214na2
þ0.06507t þ0.00218t þ0.15335t
−0.49034t̃ þ0.00163t̃ þ0.15687t̃
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Freund-Ruben solutions to 11d supergravity, was cataloged
by Duff, Nilsson and Pope in [50] (see a previous discus-
sion in [51]). The list includes further specification about
those which are supersymmetric and states what fraction
of the supersymmetry is preserved. An exhaustive list of
Sasaki-Einstein seven-dimensional manifolds is presented
in [52]. Some prominent cases in the list include M7 ¼
fS7; Q1;1;1;M1;1;1; V5;2; N0;1;0g and their quotients by Zk.
The typical structure of those manifolds is that of toric
Sasaki-Einstein manifolds and can be written as a Uð1Þ
bundled over a Kaehler-Einstein base. For example,M1;1;1 is
geometrically aUð1Þ bundle overCP2 × S2, the dual quiver
Chern-Simonsmatter theory was discussed in [53,54];Q1;1;1

is geometrically a Uð1Þ bundle over S2 × S2 × S2, the dual
theory is an N ¼ 2 supersymmetric Chern-Simons matter
quiver gauge theory [43,44,47,47,48,55]. The one nontoric
case in the list AdS4 × V5;2 was addressed in [42,44]. For all
these dual pairs the free energy of the field theory on S3 was
shown to agree with the regularized on-shell action on the
gravity side largely using techniques presented in [56] (see
also [57] for recent applications). More recently, the topo-
logically twisted index of a number of these field theories has
been computed [25,26,58,59].
Our goal in this section is to compute the logarithmic

correction to the entropy of the magnetically charged black
holes dual to the field theory computations presented in the
previous sections and establish that it coincides with the
result of the field theory side. To compute such logarithmic
corrections one requires only low energy data, that is, only
the spectrum of massless fields which in this case would be
eleven-dimensional supergravity with background asymp-
toting to the Freund-Rubin spaces mentioned above plus
magnetic flux components. These IR corrections provide a
litmus test for the would-be UV complete description of
gravity which in our case are simply the Chern-Simons
matter field theories discussed in the previous sections.
Such powerful IR window into UV physics was studied by
Ashoke Sen and collaborators in the case of asymptotically
flat string theory black holes [60,61]; in this case string
theory provides the UV complete result and the IR results
are, again, furnished by supergravity theories. In the
context of the AdS=CFT correspondence, there have been
some developments in matching the gravity computation
to the coefficient of logN term on the field theory side
[13,20–22,41,62–65]. For the cases of AdS=CFT pairs
arising from M5 branes wrapping hyperbolic three-mani-
folds, the field theory results were obtained analytically and
shown to match the gravity result in [13,19]. We are,
nevertheless, quite confident in the numerical results
presented here and in previous works [20,41,63].
In this section we compute the one-loop logarithmic

correction from the gravity side and confront them with the
field-theoretic (UV) results. Let us start by recalling a
number of important facts regarding the one-loop effective
actions of supergravity backgrounds. Our setup is 11d
supergravity where we assume there is an embedding of the

solutions describing magnetically charged asymptotically
AdS4 ×M7 black holes.
We make the assumption that the whole contribution to

the one-loop effective action comes from the asymptotic
AdS4 region as was the case in [24] for the AdS4 solution
and in [22], for the magnetically charged asymptotically
AdS4 black hole case and for black holes described by M5
branes wrapping hyperbolic 3-manifolds in [13,19].
On very general grounds of diffeomorphism invariance,

it can be argued that in odd-dimensional spacetimes, the top
Seeley-De Witt coefficient ad=2 vanishes [66]. Therefore,
the only contribution to the heat kernel comes from the zero
modes. Applied to our case, the one-loop contribution due
to 11d supergravity comes from the analysis of zero modes.
As in previous cases [13,19,22,24], the gravity computation
performed in 11d sugra is essentially reduced to the
contribution of a two-form zero mode in the asymptotically
AdS4 ×M7 region.
More explicitly, given that there is a two-form zero mode

in AdS4 we need to make sure that there are possible zero
modes in M7 that could contribute. In the spectrum of
quantum eleven-dimensional supergravity we can have
contribution coming from one-form zero modes (ghost),
two-form zero modes (ghost) and three-form zero modes
(C3). Other than the two-form zero modes discussed
already in [22], there is another potential source of zero
modes which could arise if M7 admits a harmonic one-
form. This one-form zero mode could contribute to the
ghost one-form or it could contribute to the harmonic three-
form on AdS4 ×M7 by taking the wedge product of a
harmonic two-form on AdS4 times a harmonic one-form on
M7. It is worth pointing that, given the magnetic charges,
the space is not really a direct product but there is a fibering
ofM7 over AdS4. This fibering was studied in detail in [20]
and shown to not affect the counting of two-form zero
modes relevant in this section.
We will not reproduce all the details of the computation

here, the interested reader is referred to [13,19,22] for
details. We briefly sketch the derivation of the one-loop
effective action. Given that the only zero mode in AdS4 is a
2-form and assuming that the solution is asymptotically of
the form AdS4 ×M7 we need to decompose the kinetic
operator along these two subspaces. For the 2-form zero
mode of AdS4 to survivewe need to have the corresponding
part of the kinetic Laplace-like operator also vanishing.
When integrating over zero modes there is a factor of

L�βA for each zero mode in the path integral. The total
contribution to the partition function from the zero modes is

L�βA n0A ; ð6:1Þ

where n0A is the number of zero modes of the kinetic
operator A and the sign depends on whether the operator is
fermionic or bosonic. Typically, zero modes are associated
with certain asymptotic symmetries. For example, with
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gauge transformations that do not vanish at infinity. The
key idea in determining βA is to find the right variables of
integrations and to count the powers of L that such
integration measure contributes. The scaling exponent
for p-forms is easily computed [24], yielding βp ¼ ðd −
2pÞ=2 in terms of the total dimension d of spacetime. For
the case at hand of a 2-form in eleven dimensions, we
have β2 ¼ ð11 − 4Þ=2 ¼ 7=2.
Having determined β2, the computation of the one-loop

effective action reduces to counting the number of 2-form
zero modes, n02. A simple way to determine the number of

2-form zero modes is by computing the Euler characteristic
of the black hole. In [13,22] it was argued that n02 ¼
2ð1 − gÞ for a black hole of horizon given by a genus g
Riemann surface. Note that this number is computed using
the non-extremal branch of the solution and that it is
independent of the charges of the black holes. Therefore, be
it for the magnetically charged or the electrically charged
black holes we obtain the same result.
The full contribution to the logarithmic terms of the one-

loop effective action is thus given only by the 2-form zero
modes and we have:

logZ1-loop ¼ ð2 − β2Þn02 logL ¼ ð2 − 7=2Þ2ð1 − gÞ logL ¼ 1

2
ðg − 1Þ logN; ð6:2Þ

where according to the AdS=CFT dictionary we have used
that for M2 branes backgrounds we have L6 ∼ N. When
restricting to spherically symmetric horizons (g ¼ 0) we
find perfect agreement with the numerical field theory
results in previous sections. The topologically twisted
index result in the previous sections assume g ¼ 0 but it
is easily generalized to arbitrary g and the agreement with
Eq. (6.2) remains robust.
There is a generalization of the above result, obtained in

[13] and [19], for the case whereM7 has nonvanishing first
Betti number, b1. The generalization takes the form

logZ1-loop ¼
1

2
ðg − 1Þð1 − b1Þ logN; ð6:3Þ

and was shown to match the field theory result for certain
M7 constructed as 4-sphere fibration over a hyperbolic
3-manifold [19]. The extra contribution proportional to b1
arises from the supergravity 3-form potential as one can
construct a zero mode by combining the 2-form zero mode
in AdS4 and a 1-form zero mode in the hyperbolic
3-manifold.
For complete agreement between gravity and field

theory, we need to show the vanishing of the first Betti
number for the M7 we considered in this manuscript. This
can be shown as follows. Every seven-dimensional, com-
pact Einstein manifold of positive curvature has vanishing
first Betti number (see, for example, [50]). This can be seen
from the Hodge-de Rham operator acting on one-forms:

Δ1Ym ¼ □Ym þ Rm
nYn: ð6:4Þ

Recall that the Hodge-de Rham operator is defined as

Δ ¼ dδþ δd; ð6:5Þ

where d is the exterior differentiation mapping p-forms to
(pþ 1)-forms and δ ¼ ð−1Þp � d� is its adjoint where � is

the Hodge dual operation. Let us assume that the Einstein
manifold M7 has natural normalization, Rmn ¼ 6m2gmn.
Considering the eigenvalues

Δ1Vm ¼ λVm; ð6:6Þ

it follows immediately that Δ1 ≥ 6m2. For one-forms that
are coclosed ∇mVm ¼ 0 one can prove an even stronger
bound. Therefore, for the class of Sasaki-Einstein seven-
manifolds relevant for our analysis we have vanishing first
Betti number and, subsequently perfect agreement of the
logarithmic term in Eq. (6.2) with the field theory results in
the previous sections.
Let us finish this section with one important remark.

The analysis performed in this section relied only on the
asymptotic form of the black hole background. The explicit
construction of such black hole backgrounds is, however,
a highly nontrivial problem. In the case of S7 many results
exists in the literature for very general black holes. The
case of Q1;1;1 has been widely discussed with relatively
modest results about the near-horizon region presented in
[11,67–69].

VII. CONCLUSIONS

In this manuscript we have numerically studied the
topologically twisted index of various Chern-Simons mat-
ter quiver gauge theories on the product of a genus g
Riemann surface and the circle, Σg × S1 and determined
that, in all cases, there is a logarithmic contribution of the
from g−1

2
logN. We are able to explicitly track the con-

tributions to the logarithmic terms coming from different
elements of the index including the precise cancellation of
N logN contributions between the vector multiplet and the
Jacobian contribution to the topologically twisted index.
We have also provided the dual computation of one-loop
quantum supergravity which perfectly matches the field
theory result. This gravity computation is quite universal
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and requires a mild cohomological property (vanishing of
first Betti number, b1 ¼ 0) on the dual seven-dimensional
manifold M7 which is satisfied for most of the examples
discussed in this manuscript.
The universality of our result for the topologically

twisted index of 3d theories was inspired by the universality
of the free energy on S3 discussed in [23,24]. This
universality also interestingly resonates with a recent
analogous study in four dimensions which analytically
showed that there is a universal logarithmic contribution to
the superconformal index of a large class of 4d N ¼ 1
supersymmetric field theories [70]. Perhaps similar uni-
versal results exist in other dimensions.
We expect that our supergravity analysis extends to

rotating electrically charged asymptotically AdS4 ×M7

black holes beause the result is independent of the black
hole charges and depends only on the dictionary entry
relating Newton’s contanst, GN , to the rank of the gauge
group, N, and the horizon topology. For the case of theories
obtained from M5 branes wrapping three-dimensional
hyperbolic manifolds, the logarithmic counting for mag-
netically charged black holes was presented in [13]; the
case of rotating, electrically charged black holes was
analyzed in [19]. In both cases the logarithmic term in
the field theory side was known analytically and the
supergravity analysis was essentially the same and the
result was independent of the black hole charges. Indeed, it
is clear that the logarithmic computation as presented here
and in previous works is independent of the charges. Thus,
we claim that our analysis here is also valid for all
asymptotically AdS4 ×M7 black holes whether magneti-
cally charged or rotating, electrically charged ones. It
would be interesting to directly verify this claim by
analyzing the logarithmic term in the superconformal index
of these theories.
It would be interesting to understand our results from a

more analytic point of view. A natural starting point could
be by pursuing the relation between the Bethe potential V
and the expectation value of the free energy on S3 as
pointed out in [25] but beyond the leading order. There are
other more formal arguments establishing a relation
between the topologically twisted index in S2 × S1 and
the free energy on S3 pointed out in [27]. Namely, the
leading inN relations between the free energy on S3 and the
topologically twisted index has been well documented
[25,26] by explicit computations. Quite remarkably, certain
universality of the logarithmic terms in the free energy on
S3 of a large class of Chern-Simons matter theories was
established in [23], that is, a universal contribution of the
form − 1

4
logN; the dual supergravity side was elucidated

in [24] and found to be in perfect agreement. Our result in
this manuscript—the universality of − 1

2
logN, is mostly

numerical. It would be interesting to develop a matrix
model intuition into some of the crucial subleading in N

relations between the free energy on S3 and the topologi-
cally twisted index on Σg × S1 for this large class of field
theories. It will also be quite natural to include aspects of
the superconformal index as presented in [16,17,71] in this
universality analysis. We hope to report on these efforts.
We have studied various theories that have M-theory

duals. It would be interesting to extend our result to field
theories admitting massive IIA duals where the growth of
the microstates goes as N5=3. On the field theory side one
focuses on the topologically twisted index of SUðNÞ
Chern-Simons matter theory at level k whose leading term,
of order N5=3, coincides with the entropy of magnetically
charged, asymptotically AdS4 × S6 black holes in massive
type IIA theory [4,5]. The black holes in question were
presented in [72] as a payoff of the arduous work of
obtaining AdS4 gauged supergravity from the reduction of
massive type IIA theory [73–76]. The log term in this
Chern-Simons matter theory was computed in [63] using a
combination of analytical and numerical techniques, it
would be interesting to extend those results to a larger
class of theories where a similar universality might be
established. The gravity computation of the logarithmic
contribution, it merits to say, is quite more complicated due
to the dual theory living in an even-dimensional space
leading to a more general type of contributions to the
logarithmic term.
Another potentially fruitful avenue would be to explore

the ’t Hooft limit where N → ∞ with λ ¼ N=k kept fixed.
To the best of our knowledge, there are no results about this
limit for the topologically twisted index other than the
analysis of [41]. Even for the free energy on S3 we are not
aware of systematic numerical explorations beyond the
large N leading term. It is worth noticing that in this limit
one expects a re-arrangement of the degrees of freedoms as
guided by the scaling of the free energy. On the gravity
side, subleading corrections are also quite different as the
one-loop quantum supergravity computations now depend
on more dynamical aspects of the background given that
the dual gravity leaves in ten-dimensional type IIA
supergravity.
We have not addressed in any detail the subleading N1=2

behavior which corresponds to higher curvature corrections
on the gravity side. For the case of the ABJM theory, the
N1=2 was determine in a combination of numerical and
analytical approaches in [20]. A number of interesting
bottom-up observations regarding the structure of higher
curvature corrections in similar classes of theories were
made recently in [77] and it would be interesting to pursue
this entry in the AdS=CFT dictionary more precisely in this
context. We hope to report on some explorations along
these lines.
Finally, there is a glaring open challenge to the super-

gravity community—the problem of missing black holes.
There are some approaches that allow one to determine the
entropy of the supergravity dual black holes to certain
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quiver Chern-Simons matter theory (see, for example,
[78–80]). Some progress has also been reported in
[11,81,82]. Our discussion in Sec. VI assumes the existence
of such black holes and demonstrate that the logarithmic
corrections to the entropy precisely matches the field
theory results using general aspects of the would-be black
hole solution. All these impressive tests are performed in
the backdrop where the explicit construction of the black
holes is lacking. It remains a very interesting question
to explicitly find those black holes and compute their
Bekenstein-Hawking entropy and demonstrate that it

agrees with the microscopic prediction of the topologically
twisted index.
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