PHYSICAL REVIEW D 103, 026001 (2021)

Schwarzschild-Tangherlini metric from scattering amplitudes
in various dimensions

Stavros Mougiakakos
Institut de Physique Théorique, Université Paris Saclay, CNRS, F-91191 Gif-sur-Yvette, France

Pierre Vanhove

¥

Institut de Physique Théorique, Université Paris Saclay, CNRS, F-91191 Gif-sur-Yvette, France
and National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, Moscow 101000, Russia,
and Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland

® (Received 1 November 2020; accepted 7 December 2020; published 4 January 2021)

We derive the static Schwarzschild-Tangherlini metric by extracting the classical contributions from the
multiloop vertex functions of a graviton emitted from a massive scalar field. At each loop order the classical
contribution is proportional to a unique master integral given by the massless sunset integral. By computing
the scattering amplitudes up to three-loop order in general dimension, we explicitly derive the expansion of

the metric up to the fourth post-Minkowskian order O(G%) in four, five and six dimensions. There are
ultraviolet divergences that are cancelled with the introduction of higher-derivative nonminimal couplings.
The standard Schwarzschild-Tangherlini is recovered by absorbing their effects by an appropriate
coordinate transformation induced from the de Donder gauge condition.
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I. INTRODUCTION

General relativity is a theory for the action of gra-
vity in space and time. The dynamics of the gravita-
tional field is constrained by the FEinstein’s classical
field equations. They are tensorial nonlinear equations,
because of the self-interaction of the gravitational field,
notoriously difficult to solve. It is therefore important to
develop efficient methods for studying gravity in various
regimes.

General relativity can be embedded in quantum theory
where the gravitational force results from the exchange of a
quantized massless spin-2 graviton field [1-5]. One can
then consider the Einstein-Hilbert term as the first term of a
low-energy effective action containing an infinite number
of higher derivative operators [6].

The classical limit 7 — 0 has been studied by Duff
in [7] where he showed how to reproduce the classical
Schwarzschild metric in four dimensions from quantum
tree graphs up to the second order O(G%) in Newton’s
constant.
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The relation between the quantum theory of gravity
and the classical Einstein’s theory of general relativity
has received a new interpretation with the understanding
[8—13] that an appropriate (and subtle) 7 — O limit of
quantum multiloop scattering gravitational amplitudes
lead to higher Gy-order classical gravity contributions.
Considering the importance of such approach for the eva-
luation of the post-Minkowskian expansion for the
gravitational two-body scattering [14-20], we use the
procedure given in [12] for extracting the classical
contributions from the multiloop vertex function of a
graviton emission from a massive scalar field to recover
the Schwarzschild-Tangherlini metric in various dimen-
sions. The scattering amplitude approach works in gen-
eral dimensions [21-24] and gives the opportunity to
explore general relativity in higher-dimensions [25,26].
At tree-level and one-loop our results agree with the
general dimension results in [21,24]. We show how to
reconstruct the metric up to the fourth order O(Gy) in
Newton’s constant by evaluating the scattering amplitudes
up to three-loop orders.

Using the procedure designed in [12] we argue, in
Sec. I A, that the classical contribution at /-loop order is
given by the two-point /-loop massless sunset graphs. We
verify this explicitly evaluating the classical limit of the
quantum scattering amplitudes up to three-loop order.

The scattering amplitudes develop ultraviolet divergen-
ces. In Sec. IV, we show how to recover the finite static
Schwarzschild-Tangherlini metric by the addition of

Published by the American Physical Society
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nonminimal couplings given schematically by (see (88) for
a precise expression)

2n

SIS ~ (Gym)is / dtx/=gV* DR oo . (1)

In four dimensions the nonminimal couplings 5(1) S have
been introduced in [27] for the analysis up to the third post-
Minkowskian order in the context of the world-line
formalism. The relation between the world-line formalism
and the amplitude approach is detailed in [20]. Higher-
derivative couplings with n > 2 would be needed in four
dimensions from the fifth post-Minkowskian order, but
they appear at lowest order in higher dimensions. Indeed,
we show that in five dimensions one needs to consider
higher dimensional of nonminimal couplings 5>/ at the
third post-Minkowskian order and 53 S°" at the fourth post-
Minkowskian. Interestingly, the metric components are
finite in space-time dimensions greater or equal to six,
although the stress-tensor develops ultraviolet divergences
from one-loop order in odd dimensions and from two-loop
order in even dimensions. These divergences are cancelled
by the nonminimal couplings 5" S, Actually, we expect
that an all order computation in perturbation will require an
infinite set of such nonminimal couplings.

We show that the effects of the nonminimal couplings
can be reabsorbed by a coordinate transformation, and they
do not affect the Schwarzschild-Tangherlini space-time
geometry. Since we work in the fixed gauge de Donder
gauge, we give the coordinate transformation for extracting
the classical space-time metric from the scattering ampli-
tudes in that gauge. Although general relativity is coor-
dinate system invariant, our analysis shows that there is a
preferred coordinate system when extracting the classical
geometry from scattering amplitudes in the de Donder
gauge. The lowest-order n = 1 nonminimal couplings have
been shown to arise from the gauge fixing in [20,24,28].
We will not address the question of the gauge dependence,
but we remark that the choice of coordinate system (or
gauge) can be critical for finding solution to Einstein’s
equations [29].

Since “black hole formation is a robust prediction of the
general theory of relativity” [30], it is satisfying to be able
to embed such classical solutions in the new understanding
of the relation between general relativity and the quantum
theory of gravity.

The paper is organized as follows. In Sec. II we setup the
connection between the perturbation expansion vertex
function for the emission a graviton from a massive scalar
field and the post-Minkowskian expansion of the static
metric in d + 1 dimensions. In Sec. I A we show that the
classical contribution from the multiloop amplitudes is
given by the massless sunset multiloop integrals in d
dimensions. In Sec. II B we evaluate the master integrals.
In section III we derive the metric component up to the

order O(G%,) by computing the relevant amplitudes up to
three-loop order in d + 1 dimensions. In Sec. IV we
compute the nonminimal couplings required for canceling
the ultraviolet divergences in the amplitude computation. In
Sec. V we solve the Einstein’s equations in four (d = 3),
five (d = 4), and six (d = 5) dimensions in the de Donder
gauge, and we show in Sec. VI how these results match the
results derived from the amplitude computations. In
Sec. VII we give an interpretation of the results in this
paper. The Appendix A contains formulas for the Fourier
transforms used in the text, and Appendix B the vertices for
the scattering amplitude computations.

II. THE SCHWARZSCHILD-TANGHERLINI
METRIC FROM SCALAR FIELD AMPLITUDES

The Schwarzschild metric is obtained by the gravita-
tional scattering of a scalar field of mass m

R 1 1
S= /dd“x,/—g(mﬂGN + zg’“’aﬂgbaygb - §m2¢2>.

(2)

For further reference Newton’s constant has length dimen-
sions [Gy] = (length)?!, the scalar field has dimension
[¢] = (length)'~¢ and the mass [m] = (length)~'. We work
with the mostly negative signature (+, —, - - -, —) metric.
The graviton emission from a scalar particle of mass
p? = p5 = m? is given by the three-point vertex function

D2

MB(pb q) = . (3)

P

At each loop order we extract the [-loop contribution
to the transition density of the stress-energy tensor

(T () = X iso(Ti(¢%)

WY (10 (@))e,, (@)

iMP(pr.q) = -
where € is the polarization of the graviton with momen-
tum g = p; — p, is the momentum transfer.
The scattering amplitude computation is not done in the
harmonic gauge coordinates ¢**I*,(g) = 0 but in the de
Donder gauge coordinate system [2,19,21,24,27]

dg dg g
HUT A — U AP PH Py [ac
7T (9) = " g" < o T o ax,,) 0. (5)
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the metric perturbations g,, = 17, + > _,5 h,(,",,) satisfyl

9 w10
2 OxY

5l h" =0, (6)

The de Donder gauge relation between the metric pertur-
bation and the stress-energy tensor reads

I+1) > d'g igx L
hfu,ﬂ)(x) = —167TGN/W€ 4 ?
(D\class ( 2 1 (I)\class (2
X\ (Tw) (%) = m— 1 (TV) (%) ).

d—1
(7)

In this relation enters the classical contribution at [ loop
order (T'))e15(4?) defined by the classical limit of the
quantum scattering amplitude [10,12,13]. From now, we
are dropping the super-script class and just use the notation

<T,(fb)>(q2) for the classical contribution.

A. The classical contribution of the amplitude

In this section we derive the generic form of the classical
contribution of the gravity amplitudes (3) in the static limit
where g = (0,4) and > < m?. The classical limit is
obtained by taking 72 — 0 with the momentum transfer
q/h held fixed [13].

At the [-loop order we have to consider the graphs

The classical contribution emerges as a particular 7 — 0
limit of the amplitude in [8,10-13]. The classical limit
results in cutting the massive lines, projecting on the
contribution from localized sources at different positions
in space [12,31,32], pictorially represented by shaded blobs

MY (py, q) =

)

leading ¢2

©)

In this process one keeps only the leading ¢ contribu-
tion from the multigraviton tree-level amplitudes. The
quantum tree-level graphs that were considered in [7] arise
from the classical limit of the scattering amplitude up to
two-loop order. In the rest of this section, we derive the
generic features of the classical limit to all orders in
perturbation. We then explicitly evaluate the classical limit
up to three-loop order in perturbation.

The quantum amplitude in (8) is an /+ 2 gravitons
amplitude with [+ 1 gravitons attached to the massive
scalar line

RAAAAANANANA,
EHl”lA,--~>Ml+lVl+1 (p17p27 ‘617 s 7€l+1) = NAARAAAARAAS
) q RN
MS (phq) = ) (8)
< (10)
J
_ (—iv 87[GN)I+1T/4]U] (Pl,Pl - fl)fﬂzyz(l?lfl, pi—t - fz) T (Pl =0 ==l Pz) (11)
1 ((pr =200, €))7 = m? + de) ’

with the momentum conservation condition £ 4 --- 4+ ¢, = g = p; — p, and the vertex for emitting a graviton from a

scalar field’

1
™ (p1, p2) = Pips + piph + =10 (p1 — pa)*. (12)

This line is attached to an [ + 2 tree-level graviton amplitude

2

'"The harmonic gauge linearized at the first order in perturbation gives (6) with n = 1. The higher-order expansions of the harmonic

gauge differ from these conditions.

*The vertices are given in Appendix B. We have stripped of a factor i\/87Gy from their normalization.
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MMlVla---7Ml+1Vl+1 (gla s 7£l+17 q) = : (13)

We have to sum over all the permutation of the graviton lines attached to the scalar lines. Because the gravity amplitude is
invariant under the action of the permutation of the graviton lines we have

l
iMP(py.q) = ddﬂf Sz ( ¢ £onn)
3 P19 \/4E—E2 ety Vi) P15 P25 Tg(1)5 o+ Ug(i41)

€S,

1+1
IP”IU! plo-l
X H bﬂ2 +je P161 ----- ﬂl+l°’l+l<f1’ ""le’q) (14)

where ©,, is the group of permutation of / + 1 elements. In the static limit the vertex (12) becomes
T/w(pl’pl —f)2—2m26258, (15)
therefore the scalar line approximates to

HiV/322Gym?8). 8

L(p1s P2y Cipr) = ‘ —.
b . 1 ((pr = }:1fj)2_m2+l€)

(16)

In the static limit (p, — L)? — m? + ie = L> = 2p, - L + ie = L3 — L* — 2mLg + ie. In the limit where the mass m is large
compared to the graviton loop momenta |L| < m we have

L2—[* —2mLg + ie = <L0—m—\/zz—|—m2—i€)(Lo—m—l—\/zz—i—mz—ie)

L L’
~ <L0—2m—2m+i€) <L0+2’n—l€> z—Zm(LO—ie). (17)
Therefore we have
) 12\/277:(; m505
’C(pl?PZsfl’---’le)zl\/32”GNm252,H Vi H N—l€ (18)

Using momentum conservation ¢ + - -+ + ¢;,; = p; — p, and that in the static limit p(l) — pg ~ (0 we have

I+1
—2\/2 G 50
2ml€H ! ﬂ Nm

—le

ﬁ(plvp27£1’-~'7fl+l (19)

Using the identity3

*This was proven in the Appendlx of [33]. We give here an alternative proof using recursion. For /=1 we have

2(2) = m + m chz Assuming that (22) is true at the order /, then at the order / + 1 we have
I+1 Ll
TR o) ) (o RPNy | R )
€@, i=1 Jj= 1 +1 7= 1 0€@©, i=1
where o(n + 1) =i and the {%,....,%;} = {x,...,x1 }\{x;}. By recursion hypothesis we can use the expression for (/)
1 1 1l
2(l+1):4 o xll=-=11— (21)
x;+- +x1+1;,1:[1x1 “'+xl+1; Ex,» ,-Hxi
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[+1 I+1

> s =11 @)

€@, i=1 i=1"

In the limit € — O the expression vanishes unless some of the f? vanish at the same time. This means that one needs to pick
the residues at fo ie for j =1, ..., to have a nonvanishing answer. This implies that the amplitude (14) reduces to

ddf I+1 PO0.pio;
=gl

l+1
lM (plv )— (2 277"GNWL / l+1 f2—|—l€)Mp]61 ..... /)H,IO'H,[(fl’""fl+l’q)|f?=0 (23)

nl

with £ +--- + 7, = q. We recall that

PO
PO — i~ . (24)
The amplitude (23) corresponds to the graph where the scalar line has been collapsed to a point
(25)
In the static with ¢ = (0, g),
I+1 [
H 7)00 plglMp,a, ..... Pl4101+1 (I/ﬁl’ cee fl-&—l ’ Q) & GN qZ’ (26)

n=1

and higher powers of g> contribute to higher powers of 7 and are subleading quantum corrections (see Sec. III A for more
about this).
Therefore, the classical contribution to the stress-tensor in (4) is given by4

(T} = x(Gym)'m (c&”(d)ézég ) ("q—" - mw))qu), (27)

—

f[ d“l; (28)
(2m)d”

@)= ot = f .20

B. The master integrals for the classical limit

The master integrals (28) can be evaluated straightforwardly with the parametric representation of the n-loop sunset in D
dimensions (see [36])

n(d-2)

- (> = nd / 1 1 e dx;
Jn 2\ T +1-— — 4 —+1 29
(@) (47:)%] ! 2 ) Juz0 \X1 Xn i=1 x;g- 2

*We have checked this explicitly to three-loop order using the Litered code [34,35].
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since the first

(L

Symanzik polynomial is U, | =
)T x;) and the second Symanzik polynomial
is Foop = —q%x, -+ X1 = §°X; -+ X,;,. Changing vari-
ables to y; = 1/x; we have

n(d-2)

~\"L d
(@) @t " 2

n
(n+1)(2—d) dy<

X (yl++yn+1) 2 H 4—111'

vi=0 i=1y;

the master integral is readily evaluated to be

. n(d-2) F + 1 _nd F d=2\n+1
sty = T T L2 (3
(4r) (=—5=)

The master integrals develop ultraviolet poles at loop
orders, inducing divergences in the stress-energy tensor.
We will show in Sec. IV how to renormalize these
divergences with the introduction of higher-derivative
couplings.

III. THE METRIC PERTURBATION FROM
GRAVITON EMISSION

Using the relation (7) between the metric perturbation
and using the expression (27) for the stress-energy tensor in
d-dimension in the static limit we have

W (G) = -8 (c§’><d><26258 )

+cP(a) <2 q:‘jf“ +(d- 2)%) >

G I—HJ =2

The static space-time components are obtained by comput-
ing the Fourier transform in d dimensions

Q0
=1

I+1) /> 1+1 = ig-
W@ = [ @e (34)

Using the Fourier transformations given in Appendix A,
and setting r = |x|, the Fourier transform of the master
integrals are given by

= d= =2 I+1
/ J(l)(q )eiq.; d‘q _ (F< 5 ) 1 ) (35)
Rd

7 (2z)? 4t r?

which is finite to all loop orders. The ultraviolet divergen-
ces in the momentum space representation in (32) has been
cancelled by the Fourier transform.’

The tensorial Fourier transform

g a2 dz
/ qi4; J(l)(q )eiq.} d q
Rd

T 7 (27)

I3 1\ 1
:< 4 r“) 2-1(d-2)
XX
r

! ) . (36)

diverges for / = 1 and d = 4 and for / = 2 and d = 3, and
are otherwise finite.

By spherical symmetry we parameterise the metric in
d + 1 dimensions

x (—5,-j+ (1+1)(d-2)

(3 - di)?

ds* = ho(r.d)dt* — hy(r,d)dX* — hy(r,d)~——=;
X

, (37)
so that

ni(3) = b + 3" (), (38)

>1

with A” =1, 1, 0 for i = 0, 1, 2, the post-Minkowskian
expansion of the metric components

hé””(nd)z—16<<d—2>c§”<d>+c§’><d>>(”(”’d))

d—1 1
)= (- (14 52y ) @)
" PW”)’“
) ,
(1+1) o (d=2)(1+1) p(r.d)\ !
Al (r,d)_16mczz (d)< - ) (39)

We have introduced the radial parameter

'(%2) Gym
p(r.d) =—2—15, (40)
T2 r

which is our post-Minkowskian expansion parameter.
Recall that in d 4+ 1 dimensions the length dimension of
[Gym] = (length)?2 and p(r,d) is dimensionless.

The metric component present poles in four dimensions
(d =3) from two-loop order and in five dimensions

>This fact had been noticed by L. Planté in his PhD thesis [31].
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(d =4) from one-loop order. Such divergences will be
removed by the contribution from the nonminimal coupling
contributions in section IV.

A. Tree-level amplitude

At tree-level, the only contributing diagram is

D2

Mi(),O)(pDQ) - ) (41)

b1

is the emission of a graviton from the scattering of two
massive scalars of momenta p; and p, and p? = p3 = m?
with momentum transfert ¢ = p; — p,. The scattering
amplitude is given by the 2-scalar-1-graviton vertex
(p1, p2) in (B2)

iV327Gy , iv/327Gy

MO (py,q) = =EZEON
iM(p1.a) 2/AEE, 2
xeﬂy(plﬂp2y+p2ﬂplu_n/ll/(p] - py —m?)).
(42)
Using that P = (p, + p,)/2 and ¢ = p, — p, we have that
.4 (0 i/322Gy 1
lMg)(th)_ 2\/4E—E{Z € 2PP Z(Qﬂqy—nﬂqu) .

(43)
|

D2

ZEzﬁm and

In the static limit ¢ = p; — p» ~ (0, q), E,

|g| << m we have

q.9; ,; 1 ~
<T,(,(,),)(q2)> ~ m525,(,) + (2 J 11,5 517#,/> g% (44)
q

The g? term in this expression is the contact term which has
a higher power of 7 and does not contribute to the classical
limit [12,37]. The coefficients of the classical contribution
to the stress-tensor at tree-level are given by

(45)

From this we deduce the metric components in d + 1
dimensions using (39)

| d-2
h(() )(r, d) = _4_d — 1p(r, d),
(1
hy'(r.d) = -1’ p(r,d),
hY(r,d) =0, (46)

where p(r,d) is defined in (40). This reproduces the
expression given in [21,24].

B. One-loop amplitude

At one-loop the only contributing diagram to the
classical limit is

i\/ 327TGN

iMP (1. ) = = DION T g2, @)
P1
from which we extract the one-loop contribution to the stress-energy tensor in d + 1 dimensions
T (g2) — 870w a4 (i L+ POty el )T (P2 L+ py) 48)
VAR ] x) (P ie)(1+ P +ie) I+ p1)? —mP+ie)’

where f’g) ap .(P1. p2) is the three graviton vertex and 7**(p;, p) the vertex for the emission of a graviton from two scalars

with momenta p; and p,. We refer to appendix B for definitions and normalization of our vertices.

026001-7



STAVROS MOUGIAKAKOS and PIERRE VANHOVE PHYS. REV. D 103, 026001 (2021)

In the static limit, g> < m?, the classical contribution coming from the two scalars to one-graviton vertex is
~ 277250 SO
Top 22805, (49)
using that p? = p3 = m?. This gives for the stress-energy tensor

d] 30000l @)
2m)P (P +ie)((1+ q)* +ie) (I + p1)* — m* + ie)

T (g?) = i16aGym? / (50)

At this point, we want to focus on the computation of the classical contribution at the static limit. Thus, we will employ a
trick, which will prove useful for higher loops. We symmetrize the diagram

d*t T’<l3y)00,oo(l’ q) 8 [ 1 N 1
Qm)P (P +ie)((I+q)* +ie)  [(I+p1)?—-m*+ie (

T (g?) = i8ﬂGNm3/ ] (51)

[—py)*—m?+ie

-

In the approximation 2 < m2 we have (I + p;)2 —m> =P +21-p, = P+ 20yE—1-G =~ I3 + 2ml, and the amplitude
reduces at leading order

'l “30000(5> ) [ 1 1 ] . (52)

TWw(g?) ~ 872G 3/
(@)= BRGNP+ ie) (1 + a7 +ie) |G+ 2mlg 1 e = 2mly + ic

It is obvious that at O(€°) order we get a zero contribution at leading order in 1/m, since [, < m. Thus, we can compute the
leading contribution of the integral over [, via Cauchy’s theorem, by taking the residue 2ml, = ie and closing the contour
of integration in the upper half—plane6

dl T500.00(1 @)
TR (g) = 42Gym? / o , (53)
2m)* (P = ie)((I + §)* = ie)l1y=0
with
P — 1 2 ujv u v "V 3 uv 72
(3)00.00(1"1)—m (d=2)| 'l + (I +q)'(I+q)" + ¢"q +§77 q
- - N ’7/’”’ o
~2(a= 2007 + G+ 77 (305 = ) - 20a- 3700 ). (54)

The component of the stress-tensor are proportional to the one-loop master integral J ;) (g*) as expected from the general
discussion of Sec. II B

1 1 1 44y
(112 = s (@ + (@) (252 = ) o P (55)
with the master integral

r(“;dr(ﬁ)Z

(@) =—2 2 ()%, 56

) = Sy @) (56)
and the coefficients
2
(1)) — _2(4d —15d 4+ 10)
c ( ) (d _ 1)2 ’
)y _2d=2)(3d=2) 5
®One could have taken the residue at 2ml, = —ie and closing the contour in the lower half-plane with the same result.
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1. The one-loop contribution to the metric components

Using (39) we get for the metric components in d + 1
dimensions

W (r.d) = —S((j ).
hé”(r,d):“g"_ i(ffj’l)f)p(r ENED

where p(r,d) is defined in (40).
@ _ :;:/%\’\,;/\/"\@Q/V\r\
T(a) = W’

Qv _
T = %

This reproduces the expression given in [21] and the
expression in [[24] Eq. (22)] for a = 0.

C. Two-loop amplitude
The diagrams contributing to the classical corrections at

third post-Minkowskian order of the metric at the two-loop
graphs

M (pr.q) = —\/322GN TP, (59)

there are four contributions

pr _ ‘\/\/\/\/\’\JW\
T(b) = W)

(Q)MV_m\M/\/\
T(d) = ;;WVVVV".

1. The diagrams (a), (b), (c)

The sum of the contributions from the diagrams (a), (b), (c¢) after appropriate labeling of the momenta, can be

expressed as

ZTZ

_16G} 7 [ Frd’t,
/ (271)2‘15(114_12_'—134_6])

n=1

2 (p1, Ly + p)t (L + pr.—bL + p1)7(L

— P2.—P2)7(3 ),gg,( bL.li+q) - Py

: Tg)a/j,y(s(ll + 4, Q)

X

REG(L + q)?

1

1 1
X
<(l1 + 1) =m* (L= py)?—m

1 1
+ .
(4 p1)* = m* (I, — p2)* — m2>

+
(I 4 p1)* —m? (1) — py)* — m?

(60)

Using the approximate form of the two scalars one graviton vertex in (49) and (/; + p;)* — m?* ~2ml? and taking the
residue 2ml? = ie, since for the rest of the residues we get a zero contribution at order (9(60), we get

dd+ l T” aﬁoo(ll +4q. Q) P(ﬁ){

)00 ool li +q)

- Qe _ 202
T" =32zn Gym? / , (61)
Z: w (27)* (ll) (lz) (13) (11 +4)° §=19=0
with
v 3 .
Mool + 4 @) = (M = (14 gV (1+ q)" = ¢"q") =50 (" = (d = 1)3,5)
p R S—d = -
+ T (0 = (4 3) =252 (0 + (1 +3)°). (62)
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and

, 1 1,2
00t (g0l + 4-4) = <(d =3)((I+g)(I+q)" +¢"¢") + (d = 1) <l’fl? — 5 (305 - n””))

H IS8 -5+ Ga- 1)+ 7). (63)

and
v 1 v H v MV 3 Uy 72
zJ(%)oo,oo(lﬂf)zﬁ (d=2)| '+ (I+ @) (1 +q)" + q"q +51"q
- - - 1/]}”'/ N
-2(d - 2)(112 + (1l +3)%) <5”05”0 - T) —2(d- 3)425555)- (64)

Using the LiteRed code [34,35] in d dimensions, we find that all the contributions are proportional to the master integral as
expected from the general discussion of Sec. II B

/ s 7
(2” 12:1 E(h + 1+ §)*

= m = (=3 +7g — log(4n) +log(*))§* + O(d = 3), (65)

where yp = 0.57721... is the Euler-Mascheroni constant [38].
We find for the 00-component

Z 720 32712G,2\,m3 6d° — 45d* + 134d — 160

J 2 (3), 66
and for the trace part
S ow, _ 322°Gym’ 10d® — 63d* +123d -86 _,
; T(,) Nw = 3 (d _ 1)2 J(Z)(q ) (67)
2. The diagrams (d)
The diagram (d) after symmetrization over the massive scalar legs reads
Fow _ 326Gy / T, 6l + b+ 1+ q) < ! !
@) 3m 5 (2m) e (i + p1)? = m? + ie (l, = py)* = m* + ie
n 1 1 n 1 1 )
(Is + p1)> = m? +ie (I — py)? — m® + ie (13 +p1)? = m? +ie(l — py)* — m® + ie
x(pi. Ly + p1)e (L 4 pr. =l + p1)7(L - Pz)T‘(J Do\ @111 1), (68)
and leads to the contribution
T _ _64ﬂ2G,2vm3/ 2 A, T000000(@: D o=l = 1 — q) (69)
“ 3 o Q0 PG+ L +§)? g

with the vertex
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v L (5%
Tay00.00.00(4: 11- a2 13) = d—1) ( ’ 3

(7d> — 45d +70) — G

v
2

5 (d=2)(6d - 23)

+(d-2)((9-2d)g"q" + (7T =2d) ([ I¥ + 515 + 1Y)

d—

Evaluating these integral we find, for the 00-component

3272°G3m® (4 — d)(6 — d)
@ = 3 (d-1)?

Joy(@).  (71)

and for the trace part

 64n2GEm? 3d® — 20d% + 41d - 30
@ Mo =73 d—1)

J2)(G%).

(72)

3. The two-loop contribution to the
metric components

Summing up all the contributions the two-loop stress-
tensor is given by

2 2 2 mnep
(12) = G (@t + L) (24 - )
X I (@) 73)

with the coefficients given by

@4 — 32
& =3uTnE=y
% (9d* — 70d° + 203d?> — 254d + 104),
O(gy =922 op 132 4 250-10
D=3z aa—iy * )
(74)
and the expression for the master integral
L _TB-dT(F) ),
Jo)(@*) = 2= (g*)" 2. (75)

(@S

2 ey my =
+T(ll2 + L7+ 157) (8464 (7d — 23) — i (2d — 9))). (70)

From which we extract the metric components using the
relations (39) [using the definition of p(r, d) in (40)]

8(3d—7)(d—-2)3

! rd) =~ d=aya-1 "
3)  8(7d* - 63d° +214d* - 334d +212)
h(rd) = 3(d=3)(d—4)(d—1)3 plr.d)’.
8(d—2)2(2d® = 13d> +25d - 10
=" (253)(61—4)(;-1)3 oty
(76)

D. Three-loop amplitude

The diagrams contributing to the classical corrections at
third post-Minkowskian order of the metric at the two-loop
graphs

iMP (py,q) = —/322Gy T, (77)

where the three-loop stress-tensor is given by five distinct
diagrams

w M oo W\,\,\’\’\,\,—\,\
T(a) = W7 T(b) — W\N7

Y _%\Mﬂ
T(

uu_%
T(C)_W’ = ;;;\:gﬁﬁ/\nnr\,’

/"”_M
T(e) _%’m,

As before, we permute the internal momenta such that by
taking the residue at 2ml? = ie from the massive propa-
gators, we extract the nonanalytic terms which contribute to
the classical metric in the static limit. After taking the
residues and including the symmetry factors
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2 — 6477,’3G3 m / l Tﬂvﬂpar( + ) )( llv ll + 12) ‘(7;)(—13, l3 + l4>
(a> N d - - = = 5 ,
(l)( )(l)(4) (ll‘f'lz) (+1y) R=8=8=0
T( Juv 256H3G3 m4/ : d l Tﬂ 0100(1 +q Q) 7(T3P( l3al% + l4) ( )OOﬂp( lz,l] + C])
_ 25676, B |
" S O (A (A AL A A A AL
7w _ _W/ > dll, el +4.9)7 (4)000000(11 +q. 1,13, 1)
“ 3 o @)’ T2 (202 + 32 .

d’l, 7( ( I3, +l4)r””/50000(q, Lol Iy + 1)
e (2m) (L2 (L) (L) (1) (I + 1,)?
7O _ 256713G13Vm /H di, TM 00000000(‘17 b, 13, 1)
()2 (B)2 (1) (I)?

’

— —25673Gym* /
l“ [0 lO =0

D=19=1"=0
with the five-graviton vertex contribution

TW 5)00.00 00,00 K15 ko ks, Ky, ks)

= T’w S)ap.yd.en, K/1<k1’ k2 k'% k4’ kS)POgP ngPSé

1

5
= =Ty (45259 <4(2d3 — 184> + 57d = 61)k} + (d = 2) (8> - 47d +79) > k%)
i=2

5
—(d=2)n, ((29d2 — 191d + 362)k} + (7d* — 61d + 142) > k%)
i=2
+2(d=2)((11d*> = 73d + 150)k;,ky, + (7d* — 53d + 102) (ko koy + kayks, + kay ks, + k5ﬂk5y))>. (79)
where the vertex 1” S)ap.ysen (k1. ky, ks, ky, ks) has been derived using the results of [39].

The integral reductlon is done using the LiteRed code [34,35] in d dimensions. In agreement with the general analysis of
Sec. II B, we find that the classical contribution is proportional to the single master integral

d'l,d?l,a, 7
I3 () = / e . 80
®(@) Q) IPLEENL 4 L+ I+ §)? (50

1. The p=v=0 component

F00 __ 3w Gym* 3% — 169d° + 1378d° —4592d° + 7256d ~ 4752 @
@ = 3 (d—472(d—1) GRE ),
70 _ 128723 Gaym* 68d° — 1003d° + 6211d* — 20820d° + 40020d> — 41584d + 17824J @)
() = 3 (d—4)(d—3)(3d—4)(d— 1) O
00 _ 647 Glm* 37d° - 502d* + 2731d° — 74864° + 10164d - 5256 @
@ ~ 3 (d=3)(3d—4)(d— 1) To\d):
00 _ 327 Gyym* S3d* — 615d° + 2690d° - 5572d + 4840 | @
@ ~7 3 (d—4)(d-1) SN
6—d)(d—Td+14)
T = 64’ Gyym* (6-a)( T )J(3)(q2). (81)

(d-1)
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2. Contraction with 1,

B 32723Gaym* 85d° — 11264° + 6307d* — 19114d° + 32944d* — 30472d + 11952]

€2 =
T - ’
(a) 77;41/ 3 (d—4)2(d— 1)3 (’3)(q )
3) 12873 G3,m* 168d° — 2231d° + 12319d* — 35796d° + 57396d> — 48304d + 16736 -
T, N T3)(@),
(b) 3 (d—4)(3d-4)(d-1)
3) v 6473 Gym* 147d° — 1801d° + 8727d* — 21555d° + 28942d* — 20148d + 5688 -
T N = = - J3)(4),
3 (3d—4)(d-1)
3) 3223Gym* 179d° — 2146d* + 10305d° — 24614d> + 28972d — 13704 -
"y, = - > J3)(3%).
(a) ww 3 (d=4)(d-1)?
3033 490 4 3 2
Gy 64m°Gym™*29d* — 274d° + 973d”° — 1484d + 852 -
3. The classical three-loop contribution to the stress-tensor
Summing up all the contributions we get for the three-loop stress-tensor
3 3 3 94y
(112) = Gt (@020 + <(0) (%55 = ) o ) (83)

with the master integral

P4
J 2y — - 2 2 = 3(d—2)’ 84
®(4) ST 2(d —2)) 4 (84)

and the three-loop coefficients are given by

gy = — 64 56d" — 889d° + 58685
¢ (d) 3(d—3)(d—4)2(d—1)4x( +
—20907d* + 4343443 — 524984> + 338884 — 8760),
(3) _ 64 7 6 5
d) = — 45d7 — 670d° + 4167d
¢z (d) 3(d—3)(d—4)2(d—1)4x( +

— 14016d* + 27430d° — 309164d* + 18104d — 3952). (85)

Using the relations (39) we obtained the three-loop contribution to the metric from the classical stress-tensor in (126) [using
the notation for p in (40)]

16(d —2)3(14d® — 854 + 165d — 106)

4) _
ho (. d) = 3(d—-3)(d—4)(d—-1)*

p(r.d)*,

@ 8(39d” — 691d° + 5155d° — 21077d* + 51216d° — 74346d* + 60168d — 21208)
hy’(r,d) =— (r.d)*
1 ) 2 4 ﬂ ) )
3(d-3)(d—4)*(d—1)*(3d - 8)
16(d — 2)?(45d° — 580d° 7d* — 8002d> + 11426d% — 8064d + 197
WO, d) = 6(d —2)*(45d° — 580d° + 3007d* — 8002d° + 114264> — 8064d + 19 6)p(r’ o), (86)

3(d—3)(d—4)2(d—1)*(3d - 8)

IV. NONMINIMAL COUPLINGS AND RENORMALIZED METRIC

The stress-tensor and the metric components have ultraviolet divergences. These divergences can be removed by the
addition of the nonminimal couplings made from the powers of the covariant derivative V,, acting on a single power of the
Riemann tensor and its contractions. The Bianchi identity on the Riemann tensor V,R,,;; + V,R ;) +V,R,,;; =0,
implies that
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1
ViRl p = VoRy = ViRyg VR, =SV,R. (87)

pod —

The counter-terms are powers of covariant derivative acting
on a single power of the Ricci tensor and Ricci scalar.
Therefore the counterterms are given by the following
nonminimal couplings

S = (Gum) [ a5y =gla () (7 RO, 904

+ (8, (A)V,V,(V2) 2R
+ A" (d) (V)R $0* ). (88)

where a")(d), ﬁo ( ) and ﬁg")(d) are dimensionless
coefficients depending on the space-time dimension. The
power of Gym is determined by dimensional analysis, and
give the correct order of Gy in all dimensions. The first
nonminimal coupling with n = 1 is given by

SIS — (Gym) / 1, /=G(a) (d)RD,p"
+ B (d)R 3,0, ). (89)

This non-minimal coupling has been introduced in [27] in
four dimensions and [24] in five dimensions. We will see
that up to three-loop order the renormalization of the
static metric component only require the counter-term

(1)R8”¢8”¢, whereas both couplings are needed for the
cancellation of the stress-tensor divergences. This coupling
is induced by harmonic gauge condition [20,24] and the
value of its coefficient depends on the choice of gauge. In
our gauge, the de Donder gauge this corresponds to a = 0
in the work of [24] and & = 1n the work of [20]. Since we
are working in fixed gauge we will not discuss further the
gauge dependence of the higher-order nonminimal cou-
pling coefficients, but we expect that the gauge dependence
of these coefficients will be an extension of the discussion
in [[24] Appendix B].

The power of the Newton constant in (89) is an integer
only in four dimensions with d = 3 and five dimensions
d = 4. Therefore this counterterm will not appear in
dimensions D > 6.

In four dimensions, from five-loop order, or the sixth
post-Minkowskian order O(GY,), one expects that higher
derivative nonminimal couplings will be needed to get
finite stress-tensor components. In dimensions five and six,
the higher-derivative nonminimal couplings arise at lower
loop order.

In five dimensions one needs to consider higher-deriva-
tive nonminimal couplings 8" S with n > 2 for removing
the divergences in the stress-tensor. The nonminimal
coupling at this order is then given by

5055t (Gym)7 / 1 x/Z5(a® (d) IR, $0"4
+(BY )V, V,R+ B (d)OR,,) 09 $).  (90)

We will need the nonminimal coupling

50158 = (Gym)ds / 1 ¢, /=G(a (d)(V2)2RO, ¥ ¢

+ (B @)V, V, V2R + BV (d) (V2)2R,,) ).
(91)

for removing the two-loop divergence in the stress-tensor in
six (d = 5) dimensions and the three-loop divergence in
five (d = 4) dimensions. In five dimensions (d = 4) the
metric, up to G4, is renormalized using only the n = 1 and
the metric is finite to all order in six dimensions (d = 5).

The higher-order non-minimal couplings 8 S with
n > 2 will not contribute to the classical limit when inserted
into graphs with loops, because they contribute to higher
powers in the momentum transfer g, and are subleading
with respect to the classical contributions. Their tree-level
insertions will contribute to the renormalization of the
stress-tensor but thanks to the properties of the Fourier
transform they will not contribute to the metric
components.

A. Tree-level insertions
We give the contribution of the insertions of the non-

minimal counterterms with n = 1 in (89), with n = 2 in
(90) and with n = 3 in (91) in the tree-level graph.

1. Insertion of VSt

The insertion of the nonminimal couplings 6" S in (89)
into the tree-level diagram

P2

s A© (p1,q) = , (92)

y41

leads to the stress-tensor contribution in d + 1 dimensions

)

(93)

ST = =3 (Gym)Ezm

« <—ﬁ<1>(d)5252 + 24 (d) (qgf”
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and using (7) this contributes to the metric components

5(1)h(()1)(r, d) =0, (94)
(1) d LN\ d
0 ()~ + R (LG
T r
32 d+2 N
SO, d) = - 22T )<(GNm)i ) . (95)
T r

Thanks to the properties of the Fourier transformation (see
Appendix A) only the coefficient a(d) contributes to static
metric perturbation.

2. Insertion of 5S¢t

The insertion of the nonminimal couplings 6% S in (90)
into the tree-level diagram

b2

FOMO(p, q) = (96)

b1

leads to the stress-tensor condition in d + 1 dimensions

53(T0) = (a1 (Gym)m (—m”(d)azas

w2(aa)+ 30 @) (- ) )

(97)

Because of the vanishing of the Fourier transforms

d—>
[arer s lmo. [ Shgper Sl o
w! M ) wla? 7"
99

this extra contribution to the stress-tensor does not affect
the metric components

SO (r.d) =0, (99)

(100)

3. Insertion of 6 8¢t

The insertion of the nonminimal couplings )5 in (91)
into the tree-level diagram

P2
5(3)./\/1(0)(1)1,(]) — ’ (101)
41

leads to the stress-tensor condition in six dimensions
(d=5)

69 (1) = —[GI°(Gym)sm (—ﬁ§3><d>526°

#2430 @) (4 - ) )

(102)

Because of the vanishing of the Fourier transforms

-z dq 4.4, d'g
=14 ig-X :0’ J 4 ,ig-x :0’
Aﬂ"' TEY / g e o
(103)

this extra contribution to the stress-tensor does not affect
the metric components

20 (r, d) =0, (104)
sOnV (r.d) =0,
sOn (r.d) =0 (105)

B. One-loop insertions

We give the contribution of the insertions of the counter-
terms (88) with n =1 in (89) in the one-loop graph.

1. Insertion of 61V S¢t

The insertion of the nonminimal coupling in (89) in the
one-loop graph
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b2 P2

W MWD (py,q) = + : (106)

P1 P1

leads to the stress-tensor contribution

ddi T’w (l, q),})ooaﬂlyla 1 1
SOTDY Z 32500 (@) 1(Grym)i 2/ 10 af 76
(Tw') ia'(d)m(Gym)==m (2n)? (1 + q)? (l+p1)2—m2—|—i€+(l—pz)z—mz—i-ie
4y d=2 (e -
= 870 (&) (Gum)EmP <d5252 H - %)J(])(Clz)- (107)
where we used that
I’ - -
M o005 @)U = > (@ + (L +3)?=1"), (108)
and
0 Titono (1) = 55 (@ =208 + (d =20+ P ((h + 9 - 28 - 1Y’
—(d=3)1* (1 +3* + ). (109)
Using the Fourier transforms
o me dd TEP
Ty(g*)e'™ e 7T
Rd (27) 27 p2d=1)
= d=2\1(d
qi9; S0\ iR ddq . F(T)F<§) XiX;
/d 62 J(l)( )eq (zﬂ)d_ 47Tdr2(d—1) 51/—2(61—1)7 . (110)

and the relation between the stress-tensor and the metric components in (7) we obtain the following contribution to the
metric components

d—1)n?2 r
T2 ((Gym)a=) >
SR (r.d) = —64aV)(d 2 N
i (r.d) a ()(d—l)ﬂ'd_2 - )
F(L_i)Q (G m)ﬁ 2(d-1)
SO (r.d) = 1282 (d 2 N . 111
2 (r ) o ( )(d—1>ﬂ'd_2 r ( )
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2. Two insertions of 6V 8¢t and the metric contributions

Two insertions of the nonminimal coupling §")S° in
(89) in the one-loop graph

(8")2hy) (r,d) = 0,

b2 ol ’ ’ :
q o7 = S () (2
GOPMD (py q) = » (112) iy 044 —ﬂzd)_(za<1>(d))2r<%l>2 <(7

P

leads to the stress-tensor contribution

C. Two-loop insertions

For the insertion of the nonminimal coupling §(/) S in

(8")(TW) =

a2,
2(aV(d))*(Gym)T2amg* (5258 —(d=-2) (89) in the two-loop graph one needs to sum over all the

d—1 contributions in Table 1. The classical limit of the sum of all
9,9, ., these graphs lead to the following contribution to the stress-
X ( 7 _’7ﬂv>>1<1)(q ) (113)  tensor

1287%(d — 2)a'V(d)
3(d—4)(3d—4)(d-1)?

24-)

(Gym)= mg <(3d3 — 194* 4 284 — 10)8)5)

sN(T) = -

44 -
+ (3d® —15d* + 18d — 4) ( 22” - nW))J(z) (%).
which leads to the following contributions to the metric components

TABLE 1. Insertion of the non-minimal coupling in the two-loop graph.

(115)

ww’ [z 1

W

W%m] ]M

) ) )
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512D (d) T'(%)3
5(1)/’1(()3>(V,d) — _ a ( ) (2)

(Gym)™=

256a()(d)(3d® —

d—1 -2 (

L\ 3d—4
r ) ’

SORY (r, d) =
(d—4)
9, g — _ 256al)

23d2 4 46d — 28) T(9)* ((Gym)7=\ >
—2)(d-1)*(3d~4) pl 2)( ; > :

D. The renormalized metric in four dimensions

The metric components have ultraviolet poles in four
dimensions from two-loop order. We show how the
addition of the nonminimal couplings leads to finite
renormalized metric components.

1. The two-loop renormalization

The two-loop metric components in (76) have a diver-
gence in four dimensions (d = 3)

he(r.d) = O(1),
o) o
W (r d) :d—f3<G’:m)3+0(1>. (117)

This divergence is cancelled by adding the metric con-
tribution from the non-minimal coupling in (94)

RS d) = 0V (rd) + OBV (r.d),  i=0,1,2
(118)
and setting the a(!)(d) coefficient to be
dV(d) = — 4 a3y =182 | 543
12(d - 3) 6 '
(119)

The resulting renormalized two-loop metric reads

3
GN’"> +0(d-3),

hf)enor (3>(I", d) _ 2<
r

renor 4 1
K (7, d) = 3 (—5 +6a)(3)

+log (éi;)) (G’:m)s +0(d-3),

renor (3) 1 (1) rCg Gym 3
—4(-- —1
hy (r,d) (3 6a'')(3) og< » .
+0(d=-3). (120)

(d
(d)(3d° = 154> +18d = 4) T($) ((Gym)7z\**~*
(d—4)(d-2)(d - < ) .

(116)

1)? od=2) r

where we have introduced the following combination of the
Euler-Mascheroni constant [38] and 7z

Cp = /zer.

The divergence in the two-loop stress-tensor in (73)

2223
@, _ Gyg'm 0co o [ 9udy
T2y = 25089 — N 0(1),
<”>6w—$<” +<f W)>+()
(122)

(121)

is canceled by adding the contribution in (93) from the

nonminimal coupling with the following choice of A1) (d)
coefficient

pY(d) = - +0(1). (123)

3(d—-3)

Notice that this computation does not determine the finite
part of the a!)(d) and (") (d). They are free scales in the
logarithms. We will show in Sec. VI that this freedom is
totally reabsorbed in the change of coordinate and the
Schwarzschild-Tangherlini metric does not have any
ambiguity.

2. The three-loop renormalization

The three-loop metric components in (86) have a
divergence in four dimensions (d = 3) given by

W (rd) = - - 25 (2m) o,
W (r.d) =3 d ) (GNm> (1),
WP (r, d) —3(d_3) <Gﬁm) ro(l),.  (124)

Adding to this contribution the (111) from the insertion of
the nonminimal couplings at one-loop, and using the value
of a'!)(d) determined in (119), we obtain the renormalized
three-loop metric
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renorm(d), [ 32 0 4 rCg Gym\*
h =(-—4+8 3)+=1
0 (r) < 3 +8a( )+3 8 Gym r

+0(d-3),
4 rC Gym\*

hrenorm(4) —(10= (1) ~ E N
)= (10-8a00(3)-Jtog (2 ) ) (2

+LO0(d-3),
renorm(4) o _% (1) § rCg Gym 4
h, (r)—< 34—1661 (3)+3log Gom .

+O(d-3). (125)

The classical three-loop contribution to the stress-tensor
has an ultraviolet divergence
nﬂy))

7Gym*| g2 9.4

= IR (35050 4 (Tudy

18(d—-3) T\ Tp
+0(1),

this divergence is canceled by the addition of the contri-

bution in (107) from the nonminimal coupling and the

choice of a’)(d) in (119).

(T3)(2))

(126)

E. The renormalized metric in five dimensions

The metric components have ultraviolet divergences in
five dimensions from one-loop order. We show how the
addition of the nonminimal couplings leads to finite
renormalized metric components.

1. The one-loop renormalization

The metric components in (58) have a divergence in five
dimension (d = 4) given by

h (r.d) = O(1),

WP (r.d) = —% (G”N—r;n>2 +0(1),
W2 (r,d) = % (i’v—f)z +0(1). (127)

The divergences in the metric components (127) are
canceled for the choice

5
W(d) =—————+aD(5)+0(d-4), (128
so that the renormalized metric components
KD d) = hP (r,d) + 6OR (r.d),  i=0,1.2,
(129)

have a finite expansion near d = 4

renor (2) 32 GNm 2
h d) == O(d—4),
) = (25) + ot -4)
20 (14 364" (5)x rC2
hrenor(Z) d) === 1 E
v nd =gt (g
2
x (GN’Z"> +0(d-4),
r

=
)

renor (2) 80 (/7 3661“)(5)77; FZC%
= —— | — R A 1
(r.d) 5 <30+ s +log G

GNm 2
o(d—4).
X(nr2> +0( )

(130)

where Cy, is defined in (121).

Thanks to the properties of the Fourier transform, only
the coefficient al!)(d) enters the counterterm contribution
to the metric component. To determine as well the
coefficient p()(d) in (89) one needs to look at the
divergences of the stress-tensor

C;Nl’)’lza>2 9.4y
= OV (5050 4 qo( D _ o1
18n(d—4) /o0 H10{= 5" = ) |+ O1)

(T4))
(131)

The cancellation of the pole fixes the pole part of V) (d)
near five dimensions

7

p(d) = —m+0(1). (132)

2. The two-loop renormalization

The two-loop metric components in (76) have a diver-
gence in five dimensions (d = 4)

320 (Gym\>
h$ (r, d) = - N 1
o (r.d) 27(d—4)(7rr2 +00),
) 160 (Gym\3
W (r.d) = o(1),
v (rd) 27(d—4)<7rr2 +o()
320 (Gym\?
) (r,d) = — N 1). 1
D) = (D) o, a3)

The divergences in the metric components (76) are can-
celled for the choice made at one-loop in (128), so that the
renormalized metric components

hr.enor(3)(r’ d) — hl(3)(r’ d) + 5<1)hl(»2)(r, d),

1

i=0,1,2,
(134)

have a finite expansion near d = 4

026001-19



STAVROS MOUGIAKAKOS and PIERRE VANHOVE PHYS. REV. D 103, 026001 (2021)

160 /2  36aM(5 22 G 3
hy (3)(r,d)— < +a—()ﬂ+log(r E>>( NT) +0(d-4),

~ 27 \US 5

GNm r
80(7  36aV(S)x (PCE\) (Gym)?
hrenor (3) d) =2 (L 1 3 v Old -4
] (r.a) 27 15+ 5 +log Gym J) +O( )
renor (3) 160 1 3661(1)(5)” VZC% GNm 3
" d)=—\—5t——5 ! O(d—4). 135
2 (r.d) 27 < 15+ 5 + log G 2 +0( ) (135)

The two-loop stress-tensor in (73) is not finite in d = 4 as it diverges like

2 3714 2,374 -2
(2) SGNm |C]| 9u4y 5G°m |q| q 183
Ty = DONTIL (5050 - AL (4108 (L) 1 dyp — 22 ) 5080
Ti) = Tea(a—ap \ 0% 4= = | Tiga g —ay \\ #1084 ) T2 =50 )bl

() - 3)(3-) o

The addition of the counterterm in (107) from the nonminimal couplings in (89) is not enough for making the stress-tensor
finite in d = 4

2 3714
2) Wy _ __SGym’|g] v _
T,)) +6WN(T,)) = 45089 )
< H >+ < H > 162ﬂ2(d—4)2 U + qz ’7/4
5G*m?|g|* 1447a)(5) 109
S L (4log (Gym) — ——0 220 2 ) 5050
622 (d-4) << og (Gym) 5 60) WOv
17 36 4y
- ((1og (Gam) + g5 -2 7a9)) (24 -,) ) ) + o) (137)
q

We need to consider the addition of the counterterm from the insertion of §2) St evaluated in Sec. IV A 2 with the values of
the coefficient near d = 4

M5
) d :i 10 109 + 17287%a () 2)(5 O(d—4
Prld) =5 (81(d—4)2+ oaa@—a T4 B)+od-4)),
1 1 5 4327a)(5) — 17
@(d) + =P (d) = - — b (5)+ O(d -4 138
@d) + 345 d) 2722 \162(d — 4)? 1944(d — 4) +HUG)+0(d-4) ). (138)
plugged in (97) cancel the divergences in (137)
(Ti2)) + 60(T)) + 52Ty = 0(1). (139)

3. The three-loop renormalization

The three-loop metric components in (86) have a divergence in five dimensions (d = 4)

1280 G 4
1 (r.d) ( ”’”) Lo,

:27(d—4) ar?
400 20(101 + 1201og (r*C%))\ [Gym\*
B (r d) = _ E o(1),
D) = gy 243(d — 4) g BRO)
3200 160(187 — 1201og (2C%))\ [Gym\*
mY (r.d) = E o(1). 140
2 (rd) (81(d—4)2+ 243 ) ToW (140)

The divergences in the metric components (86) are cancelled for the choice made at one-loop in (128), so that the
renormalized metric components
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KO (r,d) = 1 (r,d) + 8O0 (r, d) + (8Y)20 (r,d),  i=0,1,2,

have a finite expansion near d = 4

He" W (r, d) = ;ii (23 +324a)(5)x + 45 log (g}f};)) (iﬁ ;")4 +0(d-4),

B ) o ol
N

= (D) (o)

| 2381 GNm
—4).
900) (%) +ou-s

The three-loop stress-tensor in (83) is not finite in d = 4 as it diverges like

(3) 25Gm*|g|° 1 4,4,
7y = 29w ldl (1 s0s -
() = 5530, (d—4)? topg

2%

25G3m*|q|® 1 g 41
_2Gymlql” (100 () 4, — 4 s050
T 3g88r (a—4) \ "2\ O8\ag) TTET G o
=2
q 17\ (4,9,
1 S I 7
- (rs(5) + o m)( "ﬂv))
225G3,m|g|° 70939 7 41
- 2 _18(1 -
839808 (d — 4) 2 450 °8\4z) T1ET G

4769 g 17 9,9,
- - 18(1 - LA 1).
+<450 >+ 8<og< >+yE 10>)<q2 Nw | | +0O(1)

Ay

f

2

(141)

(142)

(143)

The addition of the counterterms in (5')? ( ) in (113), and 8)(T, TS )> in (115) from the non-minimal couplings in (89) is

not enough for making the stress-tensor ﬁmte ind=4
(1)) + (8)2(T) + 80(Ty)
25Gym*|g|° 9ud
_ _2Gymlal (1o Gud _
583273 (d — 4 \ 200 Tz Tl
25G3m*|q|°® < 1 (25 36

388 (d— 47 \ 2 1z+5a“><5>ﬂ—log<cNm>)5gag

1 36 9,4 25Gam*|q|°
— 4+ =aM(3\z =1oe (G v _ i\ bl = 4
* <60+ 5@ O —log(Gum) (= 5" =M | | = 550500 - 2y

27487 288 log (Gym) 72
(1) = aM e \INTH (1) 0
. <<486oo+ (5)= (1 +53 (5),,) . 2+log(GNm) Ta)r) )

( 6749 64V (5)x

2

19 72 9.9y
600" % (1—|—144a<1)(5)7t)—log(GNm)<%+log(GNm)—?a“)(S)ﬂ))< L —;1,”))

+0(1).

(144)

We need to consider the addition of the counterterm from the insertion of §(3) St evaluated in Sec. IV A 3 with the values of

the coefficient near d = 4
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3) 25

5(432zaV) (5) + 125)

d) =
1166473 (d — 4)3

933127%(d — 4)?

N 559872(za'")(5))? + 486000za'l) (5) + 27487
67184647 (d — 4)

2160zaV(5) + 5

25

+ 0(1),

1
O(d) +-pP(d) =
@(d)+ b5 ) 1166477 (d — 43

9331273 (d — 4)2

N 559872(za'")(5))? + 38887al) (5) — 6749

plugged in (97) cancel the divergences in (137)

(Ta)) + 60Ty + (8M(T3a)) + 80113y = 0(1).

0o(1), 145
67184647 (d — 4) +o() (143)
d-2
dS%Chw = <1 - 4ﬁp(}’, d)) dtz - d.;CQ
4%p(7" d) ()_fd)_é)z (150)

(146)

F. The renormalized stress-tensor
in six dimensions

In six dimensions, the metric component are finite to all
order in perturbation but the two-loop stress-tensor in (73)
presents an ultraviolet divergence in six dimensions (d = 5)

2 3716
2) Gym’|q| 050 9,4,
T2y = - UNMAT (495050 1 15 -
i) = = 4032022 (d = 5) \ %% + 15072~
+o(1), (147)

which is canceled by the addition of the insertion of the
nonminimal coupling 5G) St at tree-level in (102) with the
choice of the coefficients

1 15
A (d) = N Lo (1)

©403207%(d - 5)

V. THE SCHWARZSCHILD-TANGHERLINI
METRIC IN de DONDER GAUGE IN FOUR,
FIVE, AND SIX DIMENSIONS

The Schwarzschild-Tangherlini [40] space-time metric in
d + 1 dimensions is given by the Tangherlini solution,
using p(r,d) defined in (40),

"In spherical coordinate the metric reads

U dr?
dS2 = <1 —E)dtz - 1 _%— rded_l (149)
d
with y = (jﬁ'ﬁ("’zdml and Q,_, = % is the area of the unit (d — 1)-
- 2

sphere.

1-49=2p(r.d) 1

As explained in Sec. II the amplitude computa-
tion selects the de Donder gauge in (5). We make the
coordinate transformation (#,X) — (¢, f(r)X) so that the
Schwarzschild metric reads

ds*> = hy(r)dt> — hy(r)dx* — hy(r) (* ':2&)2 . (151)
with r = |X| and
1 _24-2p(r.d)
h0<r) =1 4d_1f(r)d—2’
hi(r) = f(r)*,
_ L () +r
halr) = =0 = § ) S e (1)
The de Donder gauge condition (5) then reads
d
2(d = 1)hy(r) = ”E(ho(r) + (d = 2)h(r) = hy(r)).
(153)

We will be solving the de Donder gauge condition (5)
in four dimensions (d = 3), five dimensions (d = 4), and
six dimensions (d =5), using the post-Minkowskian
expansion

fr) =14 fu(r)p(r.a) (154)
n>1
with the condition at each order that
lim f,(r)/r* =0. (155)

r—>+o0
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A. The metric in the de Donder gauge limf(r) = 1. (157)
in four dimensions r—00

The de Donder gauge condition (5) in d = 3 reads
J This differential equation implies either that f(r) =
4hy(r) = r— (ho(r) + hy(r) = hy(r)), (156) C/r, which does not satisfy the boundary condition
dr (157), or f(r) satisfies the differential equation, with
supplemented with the asymptotic boundary condition x=Gym/r
|

2= 1) L 1 o (L)

dx
df (x)

+2f(x)* (f(x) = 3x) i 3(F(0))* +8(f(x))*x + (f(x))* — 4f (x)x + 4x> = 0. (158)

We solve the Eq. (158) using a series expansion in Gym using (154) and the boundary condition (155). The result to the
order (Gym) is given by

2 3
Py =1+ Gym N 2(GNm> +glog< rC; > (GNm>
r r 3 GNm r
2 4 rCs Gym\* 21 32 rCs Gym\’
+<3 30g(GNm>>< r ) T m) )\ F
112 28 [ rCy )\ [(Gym)\®
+ ( ==——-—=log
75 15 S\Gym)\_ r
50023 1139 [ rCy\ 2. [ rC3\2\ [(Gym\
: 51 —= %)- 15
+ (34300jL 2205 ¢ <GNm> t7l08 <GNm> —) T0(GY) (159)

This solution is finite and has log(r) terms from the order Gj,. The solution has a single constant of integration C3 associated
with the scale of the logarithm.

1. The metric perturbation

In d = 3 we derive components of the metric in perturbation by plugging the expression for f(r) in (159) in (152).
We obtain for the time component

G G 2 G 3 4 C G 4
hiP(r) = 1 =220 o (ZN)T 4 o (I (Do (223 ) _g ) (222
r r r 3 Gym r
16 rCs 10\ /Gym\> 124 rCs 424\ (Gym\©
| - | il
+< 30g<GNm>+3)<r>+ 15 %%\Gym) T35 )/
8 rCs\2 16, [ rCy\ 674\ (Gym\’
——1 - —1 - O(G%)), 160
+< 90g<GNm> 15 Og(GNm> 75)( . ) TON) (160)
and for the spatial components
G G 2 4 C G 3
hP(r) = 142227 5 (V) (Zhog( =2 ) 44 ) (22
r r 3 Gym r
4 rCs 16\ (Gym\* 64 rCs 26\ (Gym\>
-7 : e M _
+< 3Og<GNm>+3>( r > 5%\ Gym) "75) s

4 rCs\2 24 [ rCy\ 298\ /Gym\S
Tog [L53) —Zog [ L53) £ 222 0(G7)). 161
+ (9 8 (GNm> 5 °g<GNm> 75 )( . ) TOlN) (161)

and
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Gym\?2 rC 38\ [Gym\?3 8 rC 58\ [Gym\*
th =7 L — (41 3 e N b 3 _2° N
2(r) ( r ) ( o8 (GNm * 3 r + 308 Gym 3 r
16 rC3 32 GNm 5
3 Gym 3 r
4 rC; \2 508 rCs 7378\ (Gym\°©
-1 lo ). 162
+ (3 o8 (GNm) T (GNm o5 )\ 7)) TGN (162)
Notice the appearance of the log(r)? at the sixth post-Minkowskian order, G, in the spatial components of the metric. This

is one order less than the appearance in the time component. The same phenomenon happens for the log(r) contribution
which appears one order earlier in the spatial component than in the time component.

B. The metric in the de Donder gauge in five dimensions
The de Donder gauge condition (5) in d = 4 reads

d
Ohy(r) = r—(ho(r) + 2hi(r) = ha(r)), (163)
supplemented with the asymptotic boundary condition

lim £(r) = 1. (164)

Fr—o0

This differential equation implies either that f(r) = C/r, which does not satisfy the boundary condition (164), or f(r)
satisfies the differential equation, setting x = Gym/(zr?)

2 X
xf(6)* (8x = 3f(x)*) — 5= f( L (ot 2<dfi )> + () (3f(x)? = 16x) dj;i)

128x2
9

—4f(x)6+(16x+2)f(x)4—%xf(x)z—}- =0. (165)

We solve the equation (165) using a series expansion in Gym using (154) and the boundary condition (155). The result to
the order (Gym)’ is given by

2Gym 10 r’Cy\ (Gym\2 4 r*C, Gym\?
=1+= —1 -8 +451o
/(1) 327 Og(GNm> ( ar? ) 81 +>log Gym nr?

67 + 37801 4 32963 + 156420 log(=C2) — 43200 log (252>
Lo og(£E )(GNm> ~ + 0g(52) — 0g (G2 <GNm>5

972 ar? 21870 )
409303 + 1620270 log (52) — 1087200 log (52)* /Gym\ 6
+ 131220 ( ar >
11148022313 + 37508666370 log (552) — 64367301600 log (52)° /G ym\ 7
B 2362944150 ( nr >
2 3 7
e (Gym) () + 0000 (169

Again there is a single constant of integration C, arising as the scale of the log(r) arising from the G%, order.

1. The metric perturbation

In d = 4 we derive components of the metric in perturbation by plugging the expression for f(r) in (166) in (152).
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We obtain for the time component

th(r) =1 "3 a2 + 9 \ zr?

640(=2 4 910g(5%)) /G ym\ 4
( 03 (G, ))< len) +0(GY), (167)

r2C,
8Gym 32 (Gym\2 32(=3+510g(52)) (Gym\?
27 r

r

and for the spatial components

}’2 2 r2 2
W) — 1 4 10w 4(1+510g(52)) (Gym)\2 | (64-240 10g(G:2)) (Gym\3
r) = _
: 3 ar? 9 ar? 81 ar?
2 2
(323 + 2340log(5-2) + 600l0g? (52)) (G ym\ *
- X 0(Gy). 168
+ 486 ( zr? ) +0(Gy) (168)
and
r’C r’C
o - 200 = 208ES)) (Gun2 32+ S108ER) Gy
r) =
2 9 ar? 27 ar’
8(~31 — 1260log(5%) +3001og (52)*) /G ym) *
Nm N 5 . 1
+ 243 ( ! ) +0(GR) (169)
C. The metric in the de Donder gauge in six dimensions
The de Donder gauge condition (5) in d = 5 reads
d
8hy(r) = 1 (ho(r) + 3hi(r) = ha(r)), (170)
supplemented with the asymptotic boundary condition
lim f(r) = 1. (171)

Fr—o0

This differential equation implies either that f(r) = C/r, which does not satisfy the boundary condition (171), or f(r)
satisfies the differential equation with x = Gym/(zr?)

xf(x) (63 = 4f(x)°) dzj; ) 4 9f(xyen <%§f)>2 +f) @ £ - 10x> )

2
—%f()c)g—|—f(x)f’+4xf(x)5—3)cf()c)3 +9T:O' (172)

We solve the Eq. (172) using a series expansion in G using (154) and the boundary condition (155). Asking for an expression
with only integer powers of Gy, the result to the order G}, is given by

-1 _2 < _
SO =145 78 < 7 ) "3\ %) "T13aa\ 27 ) 537600 \ i

15194099 <GNm)6 4421000509 (GNm

r r

7
- 8
10483200 1878589440 ) +0(Gy). (173)

The expression is uniquely determined and finite.
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1. The metric perturbation

In d =5 we derive components of the metric in perturbation by plugging the expression for f(r) in (173) in (152).

We obtain for the metric components

=1~

27 8\ 7’

Gym 19 (Gym\2 49
th -1 N _ N
() + 2z 16 ( zr

3Gym 9 (GNm>2 27
*3 )

nr 6_4 71’7'3

G 3 387 /G 4
”T) + ( Nm) +0(G3),

48

G 3577 /(G 4
)7 (5) o

1344\ 7

zr

117 (Gym\2 45 (Gym)\?
th N _ N
> (r) 16 < zr ) 16 < zr

VI. RECOVERING THE SCHWARZSCHILD-
TANGHERLINI METRIC FROM THE
AMPLITUDE COMPUTATIONS

In this section we show how the amplitude computations
match the Schwarzschild-Tangherlini metric in four, five
and six dimensions in the de Donder gauge of the previous
section.

A. The Schwarzschild metric in four dimensions

1. The first post-Minkowskian contribution O(Gy)

Setting d = 3 in the expressions for the metric pertur-
bation from the tree-level amplitude in (46) matches the de
Donder gauge first post-Minkowskian order in four dimen-
sion (d = 3) in (160)-(162).

2. The second post-Minkowskian contribution O(G?)

At the order G%, setting d = 3 in the metric perturbation
from the one-loop amplitude in (58) matches the metric in
the de Donder gauge in four dimensions (d = 3) in
(160)-(162).

3. The third post-Minkowskian contributions O(Gy,)

At this order the components of the metric in the de
Donder gauge in four dimensions (d = 3) from (160)—
(162) match the metric components from the renormalized
two-loop amplitude computation in (120) for the value of
the constant of integration

log C3 = log CE—%+6a<1)(3), (175)
where Cg is given in (121).

With this identification we recover the results of [27] for
the renormalization of the metric divergences and the
coordinate change from the de Donder gauge to the
harmonic gauge from the world-line approach.

Substituting this value of C; in the solution (159)
completely determines the solution to the de Donder gauge
in four dimensions and the coordinate change in (159)
to the Schwarzschild metric in (151) in four dimensions.

1599 /Gy *
99< Nm> +O(GY).

(174)

112 \ =3

The parameter a'')(3) is a free parameter, which corre-
sponds to the running coupling in [27].

4. The fourth post-Minkowskian contribution O(G?)

At the fourth post-Minkowskian order, we get again a
diverging metric from the amplitude computation.

This finite component metric in the de Donder gauge
in four dimensions (d =3) in (160)-(162) using the
value of the constant of integration C; determined in
(175) give

32 4 rC Gym\*4
th(4) _(_ 8 (1) 3 M E N ’
0 3 F8a703) +3log( Zo r
4 rC Gym\*4
th(4) —(10= (1) - E N
| 0—8a')(3) 3 og Grm . ,

36 8 ¢ Gym*
(i 1)) )

(176)

This matches exactly the renormalized metric components
from the three-loop amplitude computation obtained in
(125) with d = 3.

B. The Schwarzschild-Tangherlini metric
in five dimensions

1. The first post-Minkowskian contribution O(Gy)

Setting d = 4 in the expressions for the metric pertur-
bation from the tree-level amplitude in (46) matches the de
Donder gauge first post-Minkowskian order in five dimen-
sions (d = 4) in (167)—(169).

2. The second post-Minkowskian contribution O(G%,)
The renormalized one-loop computation in (130)
matches the expression at order O(G%) from the de
Donder gauge in (167)—(169) for the choice of the constant
of integration

11 36
logCZZB—l-ZlogCE—F?ﬂa(l)(S). (177)
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Again there is a free parameter a'!)(5) which can be associated with a running coupling constant.

3. The third post-Minkowskian contributions O(Gy,)

At the third post-Minkowskian order, we get again a diverging metric from the amplitude computation.

At this order in perturbation, the two-loop amplitude computation had divergences that had to be renormalized to
give the in (135). This matches exactly the finite component metric in the de Donder gauge in five dimensions (d = 4) in
(167)—(169), using the value of the constant of integration C, determined in (177), given by

ap3) _ 160 (2 36a")(5)n
o= <15+ 5
e _ 807 36aV(S)x
! 27 \ 15 5

o) _ 160 (1 36aV(5)x
: 27

15+ 5

r2C? Gym\3
1 E N o(d-4),
+oo(5 o) ) () +ota-9
r2C2 Gym\3
1 E N
+oe(G00)) ()

r2C2 Gym)3
1 E N o(d —4).
riog(on) ) () + 0=

(178)

4. The fourth post-Minkowskian contribution O(GY,)

At the fourth post-Minkowskian order, we get again a diverging metric from the amplitude computation.

The three-loop amplitude computation diverges and the finite metric component at the fourth post-Minkowskian
order was obtained after normalisation in (142). This matches exactly, the finite component metric in the de Donder
gauge in five dimensions (d = 4) in (167)—(169), using the value of the constant of integration C, determined in (177),

given by
dD(4) 128 2C2 GNm
hg" Y =~ 505 (23 43240V (S)m + 45 log +0(d-4),
7085 + 695527a'V)(5) + 93312(7m ( )? 10 r’C?
RiPE = 161 + 43274V (5))1 E
! 1458 g3 (161 +4327a10(5)) log | &0

100 (2C2\2\ (Gym\*
0 g(GNm> )(ﬂ) L O(d—4),

D) _ (—19048 — 1416967a'")(5)373248(za') (5))?
P
729

800 rPC2N\2\ (Gym\*
e (o)) (D) + ot

C. The Schwarzschild-Tangherlini metric
in six dimensions

The metric components in six dimensions (d = 5) are
finite. They are given up to the order O(G%,) in (174) and
are reproduced by the sum of the contributions of the
tree-level amplitude in (46), one-loop amplitude in (58),
two-loop amplitude in (76) and three-loop amplitude in
(86) and setting d = 5 in these expressions.

VII. DISCUSSION

General relativity can be considered in space-times of
various dimensions. It is therefore important to validate our

60 r2C?
— (—41 +2167aM) (5)) 1 E
a3 (TH + 2167 (5) log | G

(179)

current understanding of the connection between scattering
amplitudes and classical general relativity in general
dimensions [22,23].

We have shown how to reconstruct the classical
Schwarzschild-Tangherlini metric from scattering ampli-
tudes in four, five and six dimensions. We have extracted
the classical contribution as defined in [12] from the vertex
function for the emission of a graviton from a massive
scalar field. For such a static metric, the classical contri-
bution is obtained by taking appropriate residues on the
time components of the loop momenta. These residues
project the quantum scattering amplitude on contribution
similar to the quantum tree graphs considered in [7], by
cutting the massive propagators.
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The amplitudes develop ultraviolet divergences
which are renormalized by introducing higher-derivative
nonminimal couplings in (88). The nonminimal coupling
removes the ultraviolet divergences in the stress-tensor
and the metric components. For the static solution the
higher n > 2 nonminimal coupling only contribute from
insertions in tree-level graphs. Interestingly, in six dimen-
sions the metric components are finite but the stress-
tensor has ultraviolet divergences. These divergences are
removed by adding counterterms from nonminimal cou-
plings. These counterterms do not induce any contribu-
tion to the metric components. From the presence of
ultraviolet poles in the master integrals J;(g*) in (32),
we conclude that in all dimensions one needs to
introduce an infinite set of higher-derivative nonminimal
operators for removing the ultraviolet divergences from
the scattering amplitude. These counterterms do not affect
the space-time geometry because their effect is reab-
sorbed by the change of coordinate from the de Donder
coordinate system to the Schwarzschild-Tangherlini coor-
dinate system.

The scattering amplitude approach presented in this
work can be applied to any effective field theory of
gravity coupled to matter fields. The amplitudes compu-
tations, being performed in general dimensions, lead to
results that have an analytic dependence on the space-
time dimensions. As black-hole solutions develop non-
trivial properties in general dimensions [25,26], it is
interesting to apply the method of this paper to other
black-hole metrics. The Kerr-Newman and Reissner-
Nordstrom metric in four dimensions have been obtained
in [9,41-47] by considering tree-level and one-loop
vertex function of the emission of the graviton from a
massive particle of spin s. The higher order post-
Minkowskian contributions should be obtained from
higher-loop amplitudes in a direct application of the
methods used in this work.
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APPENDIX A: FOURIER TRANSFORMS

Here we collect the Fourier integrals used to calculate the
long range corrections to the energy momentum tensor and
the metric.

The Fourier transform form momentum space to direct
space

. A4 T d—a d—a
Fla.d) = L g dqd: 1 7 (2)(%> :
relql” (2n) (4x): T(5) \Ix]

(A1)
Using that

xi.xj'

0,0, (¥*)* = 2a(x?)*! (5,-j +2(a—-1) = ) (A2)

we have that

q dz
idj Gz d’q
‘a+2

]:,-j(a, d) =

Rt |G

1 oa—dxx;

We have in particular that

F(0.d) =0,

INE) XiX;
F(0,d) =—2— (6, —d-=L).
1]( ) 2ﬂ§|)_é|d < ij ¥2 )

(A4)

APPENDIX B: VERTICES AND
PROPAGATORS

We will here list the Feynman rules which are employed
in our calculation. For the derivation of these forms, see
[3-5.,9,48-50]. Our convention differs from these work by
having all incoming momenta. We have stripped off factors
of i\/87Gy from the vertices and made them explicit in the
amplitudes.

(i) The massive scalar propagator is m

(i) The graviton propagator in de Donder gauge can

be written in the form 52r where P¥7% is

q*+ie
defined by

1
uv.pe . P VO MO Up
& 2 (’7 (A A Y

n"”n””) (BI)

(i) The 2-scalar-1-graviton vertex 7)"(p, ps) is
uv Hoov v M 1 iz 2
#¥(p1.p2) = Pips + Piph + 51" (py = p2)*
(B2)

(i) The three-graviton vertex has been derived in [49],
where k + g + 7 =0,
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T3)apys (K. @) = (Paﬂyé [k"k” +'nt + g - %n"”qz
+ 20346 [Tap™ 6" + Ls™ L og™ = Log"Ls"* = 1" 15"
+ 220" Maplys™* + M5l as™) + 016" Naply6 + Myl op™)
— @ (Mapl 5" + Myl ™) — 1" Q@i (Napl 5™ + M50 05"")]
+ 29,(Ip" Lo 7 + Lig" L' n° + Ls™ Lps" K + 1,515, MK
+ ¢ (Lopo! g™ + 105" L") + 1" 0o (Las™ Ls," + Ls" 1op,”)]

1
+ {(kz + ﬂz) |:Paﬂﬂ67)y6,ay + Pyélwpaﬁ,au - 5 nﬂu(P(xﬂ,yﬁ - 7705/3’7]/5)
+ (,Pyéﬂyﬂaﬁﬂz + P(xﬁﬂynyﬁkz) }) ’ (B3)

where 5.5 := Pog s + %naﬁnyé. These vertices are equivalent to the ones computed with the vertices given by De
Witt [3-5] and Sannan [50]. We remark that the expression for 75 is simpler than the three-graviton vertex in these
references.

We notice that the three-graviton vertex satisfies the identity

T/g) np,m'(l’ CI)PZ T/w 3) ap, yﬁ(l q) (B4)

that will be used to simplify the expression of the amplitude.
(iii) The four-graviton vertex with k; + k, + k3 + k4, = 0 is given in [31,50]

1
16 (KK P 1,.)

1 1
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we introduce the short hand notation

T/(Z/) ]/(S,()’T,l()(kl ’ k2’ k3’ k4) T#U (kl ) k21 k37 k4)7)aﬂ73 (B6)
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