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On an n-dimensional, massless, topological black hole with hyperbolic sections, we construct the two-
point function both of a ground state and of a thermal state for a real, massive, free scalar field arbitrarily
coupled to scalar curvature and endowed with Robin boundary conditions at conformal infinity. These
states are used to compute the response of an Unruh-DeWitt detector coupled to them for an infinite proper
time interval along static trajectories. As an application, we focus on the massless conformally coupled
case, and we show, numerically, that the anti-Hawking effect, which is manifest on the three-dimensional
case, does not occur if we consider a four-dimensional massless hyperbolic black hole. On the one hand, we
argue that this result is compatible with what happens in the three- and four-dimensional Minkowski
spacetime, while, on the other hand, we stress that it generalizes existing results concerning the anti-
Hawking effect on black hole spacetimes.
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I. INTRODUCTION

We investigate the behavior of an Unruh-DeWitt detector
following static trajectories and interacting, for an infinite
proper time interval, either with a ground state or with a
Kubo-Martin-Schwinger (KMS) state of a real, massive
scalar field on a massless hyperbolic black hole. The
detector is modeled as a two-level system such that the
interaction with the underlying quantum state is codified by
a monopole-type Hamiltonian operator. We are interested
in the amplitudes of excitation and deexcitation of the
detector within first-order perturbation theory. Such ampli-
tudes are characterized by the transition rate, which is
nothing but the Fourier transform of the pullback along the
detector trajectory of the underlying two-point function of
the quantum field.
The main reason of our interest towards this quantity is

that the transition amplitudes are strongly interconnected
with the so-called anti-Hawking effect [1–3]. This is a
phenomenon which can be understood as follows. Suppose
that an Unruh-DeWitt detector thermalizes with a quantum
field at a given temperature, see e.g., [4–7]. In general, such
temperature is proportional to the proper acceleration of the

detector and, when its response rate decreases while the
temperature increases, we refer to it as an anti-Hawking
effect, or as an anti-Unruh effect if one works on a flat
spacetime. Such phenomenon has attracted lately a lot of
attention and it turns out that, on Minkowski spacetime, for
a detector interacting with the vacuum state of a massless
scalar field theory, the anti-Unruh effect is manifest in the
amplitude of deexcitations in the three-dimensional case,
but it does not occur at all in the four-dimensional
Minkowski spacetime, see Sec. VI A. On a Bañados-
Teitelboim-Zanelli (BTZ) black hole, the anti-Hawking
effect is instead manifest for a detector interacting either
with the state constructed from restricting the global anti–
de Sitter (AdS) ground state to Rindler trajectories [3], or
with the intrinsic ground state constructed from the BTZ
metric [8]. In this work we show that, similarly to [8], also
on massless hyperbolic black holes, the anti-Hawking
effect is manifest only in three dimensions and if one
considers a ground state. On the contrary, it does not occur
if one works with a thermal state or for both states in four
dimensions.
To enter more into the details of our work, we stress that

massless hyperbolic black holes are static n-dimensional
solutions of Einstein equations in vacuum with negative
cosmological constant that have constant, negative sec-
tional curvature. They can be seen as higher-dimensional
generalizations of a static BTZ black hole [9–11]. These
solutions enjoy several notable properties such as being
classically stable under scalar perturbations [12]. In addi-
tion they do possess a timelike conformal boundary at
infinity. This is of particular relevance since we will be
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considering on top of these backgrounds a real, massive
scalar field with an arbitrary coupling to scalar curvature.
Since the underlying spacetime is not globally hyperbolic,
the dynamics of matter fields is not specified only by initial
data, but one needs also to assign suitable boundary
conditions at conformal infinity. As first advocated in
[13], when considering a scalar field, a natural choice lies
in the Robin boundary conditions, which have been
recently thoroughly studied for an n-dimensional AdS
spacetime in [14–16] and for BTZ spacetime in [17,18].
Observe that one can consider more general boundary
conditions, e.g., [19], although we shall not discuss them
further in this work.
For these reasons, we shall be considering a generic real,

massive scalar field on a massless hyperbolic black hole
with arbitrary Robin boundary conditions and, as a first
step we investigate how to construct the two-point function
of a ground and of a thermal state. Similarly to AdS and to
BTZ spacetimes, see [14,17], we restrict our attention to a
subclass of boundary conditions of Robin type, charac-
terized by the absence of bound states, which hinder the
construction of a full-fledged ground state. In this scenario,
by using a standard mode decomposition and tools from
spectral analysis and from the theory of ordinary differ-
ential equations of Sturm-Liouville type, we are able to
construct the sought ground and thermal states. Notice that
we are not the first to study a scalar field on these
backgrounds [20] and vacuum fluctuations [21], including
also Robin boundary conditions [22], have been discussed
in the literature though only in the massless, conformally
coupled case. Hence our results expand these previous
works for manifold reasons. On the one hand, our frame-
work encompasses Robin boundary conditions for a
massive field with arbitrary coupling to scalar curvature
and on any spacetime dimension n ≥ 3. On the other hand,
we construct the two-point function, not only for a Hartle-
Hawking-like state, which we refer to as thermal/KMS
state, but also for a Boulware-like state, which we refer to
as ground state. In addition, as mentioned above, our
construction allows to investigate numerically the response
of an Unruh-DeWitt detector. Therefore we are able to
generalize previous results [3,8] concerning the anti-
Hawking effect. In other words, we consider a detector
following static trajectories of supercritical proper accel-
erations (a > 1

L, L being the AdS radius), and interacting
for an infinite proper time interval with states associated to
a massless conformally coupled scalar field. We show,
numerically, that the anti-Hawking effect is not manifest if
the dimension is four, and we expect it not to be manifest
for dimensions higher than three. We stress that, although
we focus our attention on the massless, conformally
coupled case for the study of the anti-Hawking effect,
the numerical analysis could be similarly reproduced also
in the massive scenario. The same applies for higher-
dimensional cases at the price of a heavier computational

effort. A preliminary numerical analysis indicates that, for
higher values of mass, the anti-Hawking effect is present
and more marked in all those cases when it occurs in the
massless scenario.
The paper is organized as follows. First, in Sec. II, we

describe the geometry of massless hyperbolic black holes.
Second, in Sec. III, we study the solutions of the Klein-
Gordon equation on such class of backgrounds. Then, in
Sec. IV, we construct, using considerations from spectral
theory applied to second order differential equations of
Sturm-Liouville type, the two-point function both of a
ground state and of a thermal state. In Sec. V, we briefly
describe the Unruh-DeWitt detector framework and we
write an explicit expression for the transition rate. Finally,
in Sec. VI, as an application of the framework established,
we perform a numerical analysis for the massless con-
formally coupled, real scalar field and we study the
dependence of the transition rate on the energy gap, on
the boundary condition, on the spacetime dimension and on
the local Hawking temperature.

II. MASSLESS HYPERBOLIC BLACK HOLES

In this section, we introduce the geometric data of
interest for this paper. From now on, with ðM; gÞ we
denote an n-dimensional, n ≥ 3, static solution of vacuum
Einstein’s equations with negative cosmological constant Λ
such that ðM; gÞ is isometric to R × I × Σn−2. Here, I ⊆ R
while Σn−2 is a simply connected, complete Riemannian
manifold of constant, negative Gaussian curvature which
we normalize to −1. In other words Σn−2 is an (n − 2)-
dimensional hyperbolic space. The line element reads

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
n−2; ð2:1Þ

where t ∈ R and

dΣ2
n−2 ¼ dθ2 þ sinh2 θdS2

n−3ðφ1;…;φn−3Þ

is the line element of the (n − 2)-dimensional hyperboloid
with θ ∈ R, while dS2

n−3 is the line element of the unit
(n − 3)-dimensional sphere endowed with the standard
angular coordinates φ1;…;φn−3. The function fðrÞ in
Eq. (2.1) reads

fðrÞ ¼ −1 −
2M
rn−3

þ r2

L2
; ð2:2Þ

where M ≥ 0 can be interpreted as the black hole mass

while L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1Þðn−2Þ

−2Λ

q
is the AdS radius which we normal-

ize, for convenience, to 1. From Eq. (2.2), we can infer that
the coordinate r has support in the interval ðrh;∞Þ, where
rh is such that fðrhÞ ¼ 0. As r → ∞, ðM; gÞ has a

LISSA DE SOUZA CAMPOS and CLAUDIO DAPPIAGGI PHYS. REV. D 103, 025021 (2021)

025021-2



conformal timelike boundary proper of any asymptotically
AdS spacetime.
For M > 0, Eq. (2.1) together with Eq. (2.2) identify the

n-dimensional hyperbolic Schwarzschild-AdS spacetime.
IfM ¼ 0, the underlying background is no longer singular,
although a coordinate singularity occurs at r ¼ rh ¼ 1.
Since for M ¼ 0, such as in the case M > 0, the locus
r ¼ rh is a bifurcate horizon generated by the Killing vector∂t, this limiting scenario is referred to as massless black
holes, cf. [9–11].
Observe that we could drop the assumption of Σn−2

being simply connected considering instead homogeneous
manifolds obtained as the quotient between the (n − 2)-
dimensional hyperbolic space by the subspace obtained
from the transitive action of any discrete subgroup of the
underlying isometry group. We decided to discard these
cases for the sake of simplicity and clarity of the presen-
tation. Yet, a reader should bear in mind that, barring minor
modifications, all our results can be extended to these cases.
Moreover, due to the possibility of performing different
compactifications on Σn−2, these solutions are also known
as topological black holes, see e.g., [23,24]. Since we focus
on the simply connected case, which is the hyperbolic
space case, we refer to them as hyperbolic black holes.
In this paper we work solely on massless hyperbolic

black holes, indicating the underlying background as
ðM; g0Þ to highlight that the metric is the same as in
Eq. (2.1) though considering M ¼ 0 in Eq. (2.2).

III. THE KLEIN-GORDON EQUATION

In this section, we consider a real, massive scalar field
Ψ∶M → R, arbitrarily coupled to scalar curvature. The
dynamics is ruled by the Klein-Gordon equation

PΨ ≔ ð□g0 − μ2ÞΨ ¼ 0; ð3:1Þ

where□g0 is theD’Alembertwave operator built out of (2.1):

□g0 ≔ −
1

ð−1þ r2Þ ∂
2
t þ ð−1þ r2Þ∂2

r

þ
�
nr −

ðn − 2Þ
r

�
∂r þ

ΔΣn−2

r2
; ð3:2Þ

whereΔΣn−2
is the Laplacian on the unit (n − 2)-dimensional

hyperboloid. Furthermore, μ2 ≔ m2 þ ξR is an effective
mass term combining the mass m2 ≥ 0 together with the
scalar curvature R ¼ −nðn − 1Þ built out of g0 and with the
coupling parameter ξ ∈ R.
Taking into account the symmetries of ðM; g0Þ, it is

convenient to work with a mode expansion and consider the
ansatz

Ψlðt; r; θ;φ1;…;φn−3Þ ¼ e−iωtRl;ωðrÞYlðθ̄Þ; ð3:3Þ

where θ̄ ≔ ðθ;φ1;…;φn−3Þ and Ylðθ̄Þ is an eigenfunction
of ΔΣn−2

,

ΔΣn−2
Ylðθ̄Þ ¼ λlYlðθ̄Þ;

with eigenvalue λl ¼ −ðn−3
2
Þ2 − l2, l ∈ R, cf. [25]. Note

that the spectrum of the Laplacian operator is continuous
due to the hyperbolic nature of Σn−2.

A. The radial equation as a hypergeometric equation

The ansatz (3.3) solves Eq. (3.2) if and only if the
function Rl;ωðrÞ obeys the following ordinary differential
equation, which we refer to as a radial equation:

�
ð−1þ r2Þ∂2

r þ
�
nr−

ðn−2Þ
r

�
∂rþ

λl
r2

þ ω2

ð−1þ r2Þ−μ2
�
Rl;ωðrÞ¼ 0: ð3:4Þ

Following [26], we recall that any second order differ-
ential equation can be written in Sturm-Liouville form. In
the case in hand, first performing the coordinate change
r ↦ z ¼ −1þr2

r2 ∈ ð0; 1Þ, it yields

LRl;ωðzÞ ¼ −
1

sðzÞ
�
d
dz

�
pðzÞ d

dz

�
þ qðzÞ

�
Rl;ωðzÞ

¼ ω2Rl;ωðzÞ; ð3:5aÞ

where the coefficients are

pðzÞ ≔ zð1 − zÞ3−n2 ; ð3:5bÞ

qðzÞ ≔ −
ð1 − zÞ1−n2

4

�
λl þ

μ2

1 − z

�
; ð3:5cÞ

sðzÞ ≔ ð1 − zÞ1−n2
4z

: ð3:5dÞ

Using Frobenius method to study the asymptotic
behavior of the solutions, we obtain that as z → 0þ,
Rl;ωðzÞ ∼ zα� , while as z → 1−, Rl;ωðzÞ ∼ ð1 − zÞβ� , where

α� ¼ � iω
2
; ð3:6aÞ

β� ¼ ðn − 1Þ
4

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þ2

4
þ μ2

r
: ð3:6bÞ

Choosing the ansatz

Rl;ωðzÞ ¼ zαþð1 − zÞβþhðzÞ; ð3:7Þ
we find that Rl;ωðzÞ satisfies Eq. (3.4) if and only if hðzÞ is
in turn a solution of the Gauss hypergeometric equation
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zð1 − zÞh00ðzÞ þ ðc − zðaþ bþ 1ÞÞh0ðzÞ − abhðzÞ ¼ 0;

ð3:8Þ

with parameters

a ¼ 1

2
ð1þ νþ iðωþ lÞÞ; ð3:9aÞ

b ¼ 1

2
ð1þ νþ iðω − lÞÞ; ð3:9bÞ

c ¼ 1þ iω: ð3:9cÞ

The auxiliary parameter introduced above, defined as

ν ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þ2

4
þ μ2

r
; ð3:9dÞ

can assume values in ð0;∞Þ if one imposes the
Breitenlohner-Freedman bound on the effective mass,

namely μ2 > − ðn−1Þ2
4

, which represents a standard mode-
stability requirement [27].
It is also worth mentioning that the parameters of the

hypergeometric equation given by Eqs. (3.9) assume these
particular values in the case rh ¼ L ¼ 1. If we consider a
massless hyperbolic black hole with a horizon at r ¼ rh,

which corresponds to taking fðrÞ ¼ r2−r2h
L2 in Eq. (2.1), these

parameters, as well α� and β�, would show a dependence on
rh and in L. In addition, the parameters a and b would also
depend on the spacetime dimension, namely in place of the
factor l one would have 1

2irh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 3Þ2ðr2h − L2Þ − 4L2l2

p
.

B. Square-integrable solutions and boundary
conditions

Following the rationale behind Sturm-Liouville theory,
cf. [26], our next step consists of classifying the solutions of
Eqs. (3.4) and (3.8) in terms of their square integrability
close to the endpoints z ∈ f0; 1g. In practical terms, we
shall look for a basis of solutions of Eq. (3.4) and we shall
individuate the elements which lie either in L2ðð0; z0Þ;
sðzÞdzÞ or in L2ððz1; 1Þ; sðzÞdzÞ where z0; z1 ∈ ð0; 1Þ can
be arbitrarily chosen, while sðzÞ is defined in Eq. (3.5d).
Similarly to [16,17] and using the classification of the
hypergeometric equations (3.8) in terms of the parameters
in Eq. (3.9), see e.g., [28], we shall highlight two regimes
depending on the values assumed by the auxiliary param-
eter ν, cf. Eq. (3.9d). Hence, starting from the ansatz (3.7),
we distinguish between two scenarios

(i) Neither c nor c − a − b is integer valued: A con-
venient basis of solutions to analyze Eq. (3.4) close
to z ¼ 0 is

R1ð0Þ ¼ zαþð1 − zÞβþFða; b; c; zÞ; ð3:10aÞ

R2ð0Þ ¼ z−αþð1 − zÞβþFða − cþ 1;

× b − cþ 1; 2 − c; zÞ; ð3:10bÞ

where, for simplicity of notation, we have dropped the
subscriptsω;l. Taking into account themeasure ruled
by sðzÞ, cf. Eq. (3.5d), we observe that if ω ∈ R none
of the solutions lies in L2ðð0; z0Þ; sðzÞdzÞ, while if
ImðωÞ < 0 (respectively ImðωÞ > 0) then R1ð0ÞðzÞ
(respectively R2ð0ÞÞ lies in L2ðð0; z0Þ; sðzÞdzÞ. The
behavior of the solution for complex values ofω plays
a key role in the construction of the fundamental
solutions associated to the Klein-Gordon operator P.

Focusing instead on the end point z ¼ 1, a con-
venient basis of solutions is

R1ð1Þ ¼ zαþð1 − zÞβþFða; b; aþ bþ 1 − c; 1 − zÞ;
ð3:11aÞ

R2ð1Þ ¼ zαþð1 − zÞβ−Fðc − a; c − b;

c − a − bþ 1; 1 − zÞ: ð3:11bÞ

where again, for simplicity of notation, we have
dropped the subscripts ω;l. Analogously, consider-
ing themeasure ruled by sðzÞ, we observe thatR1ð1Þ ∈
L2ððz1; 1Þ; sðzÞdzÞ for all admissible values of ν, but
R2ð1Þ ∈ L2ððz1; 1Þ; sðzÞdzÞ if and only if ν < 1. In
the language of Sturm-Liouville theory, cf. [26],R1ð1Þ
is also referred to as principal solution, so to highlight
its distinguished role. As a matter of fact,R1ð1Þ is the
unique solution of Eq. (3.4) up to scalar multiples such
that limz→1 R1ð1ÞðzÞ=RðzÞ ¼ 0 where R is any sol-
ution of Eq. (3.4) which is not a scalar multiple of
R1ð1Þ.

(ii) Otherwise: If c is integer valued, then the two
solutions (3.10) are not linearly independent. In view
of Eq. (3.9c), this occurs if and only ifω ∈ iZ. In this
case, one needs to introduce an additional solution to
identify a basis, cf. [28]. Yet, we omit reporting it
explicitly since it is not square integrable in a
neighborhood of z ¼ 0 and thus we shall not use it
in the rest of the paper.

If c − a − b is integer valued, this entails that
ν ∈ N0, cf. Eq. (3.9d). In this case, one has to consider
another solution since R1ð1Þ is proportional to R2ð1Þ.
Yet, if ν ≥ 1, only R2ð1Þ ∈ L2ðð0; z0Þ; sðzÞdzÞ is
square integrable, hence there is no need to report
explicitly the new solution. An interested reader can
still refer to [28].

Following the same strategy as in [14,16,17], when both
elements of the basis of solutions are square integrable
close to an end point, it is necessary to impose there a
boundary condition of Robin type to single out a unique
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representative. In the case in hand, this occurs at z ¼ 1
when 0 < ν < 1. Concretely, this translates to the statement
that a solution Rγ of (3.4) satisfies a Robin boundary
condition at z ¼ 1, parametrized by γ ∈ ½0; πÞ, if

lim
z→1

fcosðγÞWz½Rγ;R1ð1Þ� þ sinðγÞWz½Rγ;R2ð1Þ�g ¼ 0;

ð3:12Þ

where R1ð1Þ;R2ð1Þ are defined in Eq. (3.11). Here,
Wz½u; v� ≐ uðzÞv0ðzÞ − vðzÞu0ðzÞ is the Wronskian com-
puted with respect to two differentiable functions u and v.
As a consequence, the solution Rγ may be written as

RγðzÞ ¼ cosðγÞR1ð1ÞðzÞ þ sinðγÞR2ð1ÞðzÞ: ð3:13Þ

We note that γ ¼ 0 corresponds to the standard Dirichlet
boundary condition since it guarantees that Rγ coincides
with the principal solutionR1ð1Þ. At the same time, if γ ¼ π

2
,

we say that Rγ satisfies a Neumann boundary condition,
coinciding with R2ð1Þ. Yet, contrary to the Dirichlet
boundary condition, this is not a universal assignment as
it depends on the choice of the nonprincipal solutionR2ð1Þ.
Observe that Robin boundary conditions can only be

applied when 0 < ν < 1, as analyzed in the last section. If
ν > 1, only the principal solutionR1ð1Þ is square integrable
in a neighborhood of z ¼ 1 and, hence, no boundary
condition is required. In practice, this is as if the
Dirichlet boundary condition had been chosen.
A similar reasoning could be applied at z ¼ 0, but, as we

have shown in the preceding subsection, if we focus only
on square integrable solutions, only one exists, provided
that Im½ω� ≠ 0. Therefore, at z ¼ 0 there is no need to
impose any boundary condition.

IV. GROUND AND KMS STATES WITH ROBIN
BOUNDARY CONDITIONS

In this section, we outline the construction of a ground
state and of thermal/KMS states in the case under inves-
tigation. We start from the former and we follow the same
rationale used in [14,16,17,19], to which we refer for
further details.
More precisely, we are interested in building a bidis-

tribution ω2 ∈ D0ðM ×MÞ, dubbed a two-point function,
such that

ðP ⊗ IÞω2 ¼ ðI ⊗ PÞω2 ¼ 0; ð4:1Þ

ω2ðf; fÞ ≥ 0; ∀ f ∈ C∞
0 ðMÞ; ð4:2Þ

where P is the Klein-Gordon operator, cf. Eq. (3.1). In
addition, we impose that the antisymmetric part of ω2

coincides with the so-called causal propagator E, which is
the difference between the advanced and retarded

fundamental solutions associated to P, i.e., working at
the level of integral kernels

iEðx; x0Þ ¼ ω2ðx; x0Þ − ω2ðx0; xÞ for x; x0 ∈ M: ð4:3Þ

The causal propagator E is also the building block to
implement, covariantly, the canonical commutation relations
in the quantization of the underlying massive, real scalar
field. In the case in hand, it can be determined as a solution of
the following initial value problem, see e.g., [14]

PxEðx; x0Þ ¼ Px0Eðx; x0Þ ¼ 0; ð4:4aÞ

Eðx; x0Þjt0¼t ¼ 0; ð4:4bÞ

∂tEðx; x0Þjt¼t0 ¼ −∂t0Eðx; x0Þjt0¼t ¼
δðz − z0Þδðθ̄ − θ̄0Þ

sðzÞ ;

ð4:4cÞ

where the subscripts x and x0 refer to the variablewith respect
to which the Klein-Gordon operator P acts. In addition, sðzÞ
is the same function as in Eq. (3.5d), while δðθ̄ − θ̄0Þ denotes
the product between (n − 2) delta distributions, one for each
angular coordinate.
Our next step consists of finding an explicit expression

for E. This is possible exploiting the isometries of the
underlying metric, cf. Eq. (2.1). To start with, in view of the
invariance under time translation and of Σn−2 being an
homogeneous manifold, we can write

Eðx; x0Þ ¼ i lim
ε→0þ

Z
R
dl

Z
R
dω

sinð−iωðt − t0 − iεÞÞ
ω

× Ylðθ̄ÞYlðθ̄0ÞẼ2ðz; z0Þ; ð4:5Þ

where Ylðθ̄Þ are the hyperbolic harmonics, as in Eq. (3.3),
whose explicit expression, together with their completeness
relation is reported in the Appendix A.
To impose the initial conditions we observe that, if

Ẽ2ðz; z0Þ ¼ Ẽ2ðz0; zÞ, then Eq. (4.4b) holds true. At the
same time, Eq. (4.4c) entails

∂tEðx; x0Þjt¼t0

¼ lim
ε→0þ

Z
R
dl

Z
R
dωYlðθ̄ÞYlðθ̄0ÞẼ2ðz; z0Þ coshðωϵÞ:

ð4:6Þ
In view of the completeness relation of the hyperbolic
harmonics, Eq. (4.4c) amounts to imposing

Z
R
dωẼ2ðz; z0Þ ¼

δðz − z0Þ
sðzÞ : ð4:7Þ

In other words, the only unknown part of the causal
propagator is the radial part Ẽ2ðz; z0Þ, and in the following
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we will use the same procedure employed in [14,16,17] to
construct it from Eq. (4.7) using spectral techniques. In
addition, it will turn out that this analysis suffices also to
write down both the ground and the KMS states for the case
in hand.

A. The radial Green function on the complex plane

The first step to write down Ẽ2ðz; z0Þ consists of writing
the Green function Gðz; z0;ωÞ of the radial equation, which
we call radial Green function, cf. [[29], Ch. 4]. In view of
the analysis in Sec. III B of the square-integrable solutions
of the radial equation (3.5), we split G in two parts,

Gðz; z0;ωÞ ¼
�
G<ðz; z0;ωÞ; for ImðωÞ < 0;

G>ðz; z0;ωÞ for Im ðωÞ > 0;

which are connected to each other due to the symmetries of
the radial solutions as follows

G>ðz; z0;ωÞ ¼ G<ðz; z0; ω̄Þ ¼ G<ðz; z0;ωÞ:

For this reason, we focus only on ImðωÞ < 0. In addition
notice that the case ImðωÞ ¼ 0 is left out since no square-
integrable solution exists in this scenario close to the end
point z ¼ 0. Explicitly, we have

G<ðz; z0;ωÞ ¼
1

N <
fΘðz − z0ÞR1ð0ÞðzÞRγðz0Þ

þ Θðz0 − zÞR1ð0Þðz0ÞRγðzÞg:

The normalization constantN <, determined by the identity
LG ¼ δ, is

N < ≔ pðzÞWfR1ð0Þ; Rγg; ð4:8Þ

where pðzÞ is given by Eq. (3.5b) while W is the
Wronskian between the solutions R1ð0Þ and Rγ . Using
the connection formulas for the hypergeometric functions,
cf. Eqs. (15.10.5) and (15.10.21) from [[30], Ch. 15], we
find that the normalization constant reads

N < ¼ −νðA sinðγÞ − B cosðγÞÞ; ð4:9Þ

where, recalling the coefficients in Eq. (3.9),

A ¼ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ ; ð4:10aÞ

B ¼ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ : ð4:10bÞ

Observe that AðωÞ ¼ Aðω̄Þ and BðωÞ ¼ Bðω̄Þ if
ReðωÞ ¼ 0, while AðωÞ ¼ Að−ωÞ and BðωÞ ¼ Bð−ωÞ
if ImðωÞ ¼ 0.

B. The poles of the radial Green function

Recalling that our goal is the construction of Ẽ2ðz; z0Þ, and
hence of the causal propagator as in Eq. (4.5), the next step
consists of finding out whether the radial Green function
possesses poles or not. As a matter of fact, the existence of
poles depends on the boundary condition chosen through the
parameter γ ∈ ½0; πÞ, cf. Eq. (3.12). Moreover, these poles
are nothing but the zeros of the normalization constant seen
as a functionof the frequency,which in turn correspond to the
degenerate cases of the hypergeometric solutions.
First, we focus on Dirichlet and Neumann boundary

conditions. In these cases the zeros ofN < are, respectively,

B ¼ 0 ⇔ ωD ¼ �lþ ið2pþ 1þ νÞ; ð4:11aÞ

A ¼ 0 ⇔ ωN ¼ �lþ ið2pþ 1 − νÞ; for p ∈ N ∪ f0g:
ð4:11bÞ

The above set of poles coincides with the quasinormal
modes. For the case of Dirichlet boundary condition, it is
consistent with the quasinormal modes obtained in [31].
Note that the poles lying on the upper or lower part of the
complex plane is a matter of convention, consequence of
choosing αþ, instead of α− as in [31]. The smallest values
for the imaginary part of the poles above are

ImðωS
DÞ ¼ þð1þ νÞ; ð4:12aÞ

ImðωS
NÞ ¼ þð1 − νÞ: ð4:12bÞ

For ν ∈ ð0; 1Þ, all poles lie on the upper part of the complex
plane, hence N < has no zeros and the Green function has
no poles for Dirichlet or Neumann boundary condition.
Recall that for ν > 1 only the Dirichlet boundary condition
is applicable.
Second, let us consider Robin boundary conditions. In

this case, we need to invoke Cauchy’s argument principle.
Here goes a qualitative description for the cases considered
here, when there are no poles on the lower part of the
complex plane. Define ΞðωÞ ≔ B

A. The zeros of the function

HðωÞ ≔ tanðγÞ − ΞðωÞ ð4:13Þ

correspond to the poles of the radial Green function. The
poles of H are just those of Ξ, which coincide with ωN .
Note that γ ¼ arctanðΞðωÞÞ exists whenever ΞðωÞ is real
and this only happens for purely imaginary frequencies.
Therefore, the region where HðωÞ always has a zero is the
half line on the negative ImðωÞ axis stretching, to negative
infinity, from the pole with smallest imaginary part,
say ωS

0. This region corresponds to γ ∈ ½γ0; γ∞� for γ0 ≔
arctanðΞðωS

0ÞÞ and γ∞ ≔ limω→∞ arctanðΞð−iωÞÞ. We
choose positive values for γ0 and γ∞.
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Let Z and P be the number of zeros and poles of H.
Invoking the argument principle, and knowing the poles of
H, we just have to check the stability of a sequence of
contour integrals on Cn exhausting the lower half of the
ω-complex plane

I
C

H0ðzÞ
HðzÞ dz ¼ 2πiðZ − PÞ: ð4:14Þ

P equals the number of poles of Ξ, so, for each case, we can
compute the contour integrals and check thatZ stabilizes to
1. Therefore, for ω along the semiaxis ImðωÞ < 0, there
exists one and only one pole. By symmetry, we know that
its complex conjugate is also a pole for Gðz; z0;ωÞ.
In short, in the ω2-complex plane, the radial Green

function Gðz; z0;ωÞ has a branch cut on the positive real
line, but for γ ∈ ½0; γ0Þ it has no poles.

C. The resolution of the identity

Having constructed the radial Green function in Sec. IVA
and having analyzed its simple poles in Sec. IV B, we have
all the ingredients to derive an explicit form for Ẽ2ðz; z0Þ via
Eq. (4.7). More precisely, it holds, cf. [32]

1

2πi

I
C∞

dðω2ÞGðz; z0;ωÞ ¼ −
δðz − z0Þ
sðzÞ ; ð4:15Þ

where we have promoted the spectral parameter ω2 to a
complex coordinate and where C∞ denotes a circle of infinite
radius in the ω2 plane with a counterclockwise orientation.
Focusing on the class of Robin boundary conditions,
γ ∈ ½0; γ0Þ, for which the radial Green function has no
poles, it holds

I
C1

dðω2ÞGðz; z0;ωÞ ¼
I
C2

dωωGðz; z0;ωÞ; ð4:16Þ

where C1 and C2 are like in Fig. 1.
Let GR=L denote the right and left propagating compo-

nents of the radial Green function G, i.e.,

GR
<ðz; z0Þ ≔ N −1

< Θðz − z0ÞR1ð0ÞðzÞRγðz0Þ; ð4:17Þ

while GL
<ðz; z0Þ ≔ Gðz; z0Þ − GR

<ðz; z0Þ. Then the contour
integral in the ω plane can be written as

I
C∞
2

dωωGðz;z0;ωÞ

¼ lim
ε→0

lim
ρ→∞

�I
S<

dωωG<ðz;z0;ωÞþ
I
S<

dωωG<ðz;z0;ωÞ
�
:

ð4:18Þ

Focusing separately on the left and right propagating
components, say on GR, we can first deal with the limit
as ρ diverges. Since only a finite number of simple poles
occurs, one can use the same argument as in [[17]
Appendix A] to infer that the limit for large values of ρ
reduces to

I
C∞
2

dωωGRðz; z0;ωÞ ¼ Θðz − z0Þlim
ε→0

Z
R
drΔGR; ð4:19Þ

where

ΔGR ¼ ðrþ iεÞ
�

R1ð0ÞðzÞRγðz0Þ
−νðA sinðγÞ − B cosðγÞÞ

�����
ω¼rþiε

− c:c:;

ð4:20Þ

FIG. 1. Contours C1 and C2 of Eq. (4.16). Each semicircle on the right is mapped to a “Pac-Man” contour. Since we take C2 to be both
semicircles, the factor 2 coming from dω2 ¼ 2ωdω gets canceled.
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where c.c. stands for the complex conjugate. At last taking
the limit as ϵ → 0, we find

I
C∞
2

dωωGRðz; z0;ωÞ

¼ Θðz − z0Þ
Z
R
dω

ω

ν

ðĀB − AB̄Þ
jA sinðγÞ − B cosðγÞj2 RγðzÞRγðz0Þ:

ð4:21Þ

The integrand on the right-hand side of Eq. (4.21) is
symmetric under the exchange z ↔ z0 and it is even in ω.
Hence we can combine the contribution from the right and
from the left propagating Green function obtaining a so-
called resolution of the identity in terms of eigenfunctions
of the operator L, cf. Eq. (3.5) with Robin boundary
conditions parametrized by γ

δðz−z0Þ
sðzÞ ¼−

1

2πi

Z
R
dω

ω

ν

ðĀB−AB̄Þ
jAsinðγÞ−BcosðγÞj2RγðzÞRγðz0Þ:

ð4:22Þ

To conclude, combining Eqs. (4.7), (4.15) with (4.21), we
can infer

Ẽ2ðz; z0Þ ¼ −ωN −1RγðzÞRγðz0Þ; ð4:23Þ

where

N −1 ≔
1

2πiν
ðĀB − AB̄Þ

jA sinðγÞ − B cosðγÞj2

¼ 1

πν

ImðΞÞ
cosðγÞ2j tanðγÞ − Ξj2 ∈ R: ð4:24Þ

D. Construction of the ground and of the KMS states

In this section, we shall start from the explicit expression
of the causal propagator E, cf. Eqs. (4.5) and (4.23) to
construct a class of physically sensible two-point functions.
As discussed at the beginning of Sec. IV these are positive
distributions on M ×M which fulfill the equation of
motion and whose antisymmetric part coincides with the
causal propagator. In between the plethora of admissible
two-point functions, it is universally accepted that the so-
called Hadamard condition selects those which are physi-
cally sensible. Here we shall not enter into a detailed
analysis of its definition, referring an interested reader to
[33] for an extensive review and to [15,34] for an analysis
of the case of asymptotically AdS spacetimes.
As proven in [35], one notable class of two-point

functions obeying the Hadamard condition is the one
associated to a ground state. This state can only exist if

the underlying spacetime is stationary, as in the case of our
interest and it is completely specified by the requirement
that the two-point function is built only out of positive
frequencies. In other words, starting from Eqs. (4.5) and
(4.23), it follows that the two-point of the ground state for a
massive, real scalar field, obeying the Klein-Gordon
equation with Robin boundary conditions with parameter
γ ∈ ½0; γ0Þ is

ω2ðx; x0Þ ¼ lim
ε→0þ

Z
R
dl

Z
∞

0

dωe−iωðt−t0−iϵÞ

×N −1Ylðθ̄ÞYlðθ̄0ÞRγðzÞRγðz0Þ: ð4:25Þ

Given a ground state such as above, it is straightforward to
construct a thermal/KMS state, still exploiting the trans-
lation invariance of the underlying metric along the time
coordinate t, cf. Eq. (2.1). More precisely, the KMS
condition at inverse temperature β ¼ T−1 > 0, such as in
[[36], Eq. (3.11)], is guaranteed to hold for a two-point
function ω2;β ∈ D0ðM ×MÞ whose integral kernel reads

ω2;βðx; x0Þ ¼ lim
ε→0þ

Z
R
dl

Z
R
dω

ΘðωÞ
eβω − 1

× Ylðθ̄ÞYlðθ̄0Þω̃2ðz; z0Þ
× ½eβωe−iωðt−t0−iεÞ þ eþiωðt−t0þiεÞ�; ð4:26Þ

where Θ is the Heaviside distribution and ω̃2ðz; z0Þ is
related with Ẽ2ðz; z0Þ, given by Eq. (4.23), by the expres-
sion Ẽ2 ¼ −ωω̃2, consequence of Eq. (4.3). One can infer
that, for each value of β, the difference between ω2;β and ω2

is smooth. This entails that each KMS state is of Hadamard
form and thus physically acceptable.
To conclude the section, we highlight one notable

property of the KMS states. More precisely, taking the
Fourier transform of the two-point function ω2, with
respect to s ¼ t − t0 and calling Ω the associated momen-
tum, yields

F ½ω2�ðΩÞ ¼ lim
ε→0þ

Z
R
dl

Z
R
dωΘðωÞYlðθ̄Þ

× Ylðθ̄0Þω̃2ðz; z0Þe−ωεδðωþ ΩÞ: ð4:27Þ

Note that F ½ω2�ðΩÞ is nonvanishing only for negative
energy gap Ω. On the other hand, for any KMS state one
obtains

F ½ω2;β�ðΩÞ ¼ lim
ε→0þ

Z
R
dl

Z
R
dωΘðωÞYlðθ̄ÞYlðθ̄0Þω̃2ðz; z0Þ

×
e−ωε

eβω − 1
½eβωδðωþΩÞ þ δðω−ΩÞ�: ð4:28Þ
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Therefore, we have that F ½ω2;β�ðΩÞ is defined, and not
generally vanishing, for both positive and negative energy
gaps. In fact, it satisfies the detailed balance condition

F ½ω2�ð−ΩÞ ¼ eβΩF ½ω2�ðΩÞ: ð4:29Þ

V. AN Unruh-DeWitt DETECTOR

In this section, consider an Unruh-DeWitt detector
traveling in spacetime along a smooth timelike curve
xðτÞ parametrized by its proper time τ. Along the lines
of [37,38], we assume the detector to be a spatially
localized two-level system. Hence the detector can be
either in the ground state j0i or in an excited state jΩi.
The pair fj0i; jΩig forms an orthonormal basis for a Hilbert
space HD ≃ C2 and they are eigenstates of the detector’s
free Hamiltonian. In other words, it holds HDj0i ¼ 0 and
HDjΩi ¼ ΩjΩi. Following the standard approach, see e.g.,
[6,39,40], the detector can be coupled to a scalar field Ψ
through the interaction Hamiltonian

HintðτÞ ¼ cΨðxðτÞÞ ⊗ μðτÞ; ð5:1Þ

where c ∈ Rnf0g is a small coupling constant while μ is
the detector’s monopole moment operator. The total Hilbert
space of the coupled system is HΨ ⊗ HD and the total
Hamiltonian is

H ¼ HΨ ⊗ ID þ IΨ ⊗ HD þHint:

Within first-order perturbation theory, the transition prob-
ability of the total system from an initial state jii ¼ jψ ; 0i at
time τi, to a final state jfi ¼ jϕ;Ωi at time τf is

jMj2 ¼ c2jhΩjμð0Þij0ij2
����
Z

τf

τi

dτeiΩτχðτÞhϕjΨðxðτÞÞjψi
����
2

:

ð5:2Þ

The first term c2jhΩjμð0Þj0ij2 depends on the internal
details of the detector. The second one depends only on the
state of the field and on the trajectory of the detector. We
shall call it the detector’s response function, or the
transition probability, and we shall denote it with F .
Since we are interested in counting the detector’s clicks,
and not in how the interaction affects the field, we can sum
over all final states of the field jϕi and, by completeness, it
holds

F ¼
Z

τf

τi

dτ
Z

τf

τi

dτ0e−iΩðτ−τ0Þhψ jΨðxðτÞÞΨðxðτ0ÞÞjψi; ð5:3Þ

where hψ jΦðxðτÞÞΦðxðτ0ÞÞjψi is the pullback along the
detector’s trajectory of the two-point function ω2ðx; x0Þ
associated to the state jψi.

In the scenario where the detector is following a static
trajectory, the field is invariant under time translations and
we turn on the interaction at τi ¼ −∞, we can rewrite
Eq. (5.3) to obtain the instantaneous transition rate

_F ¼
Z
R
dse−iΩsω2ðs; xÞ; ð5:4Þ

where s is the proper time difference τ − τ0 while x
corresponds to fixed spatial coordinates of the detector’s
worldline. The dot denotes the derivative along the coor-
dinate τ. By direct inspection, one can realize that _F is the
Fourier transform of the pullback of two-point function
along the detector’s trajectory with the Fourier parameter
evaluated at Ω. We shall also call it the response of the
detector. Note that, for Ω > 0, Eq. (5.4) characterizes the
amplitude of the excitations of the detector, and for Ω < 0,
of the de-excitations.
Equation (5.4) might not hold true when the ε-regulari-

zation limit in the two-point function does not commute
with the proper time derivative of the transition probability.
This problem has been carefully studied for Hadamard
states on curved spacetimes in [5] and, since we are
considering a detector following a static trajectory on a
static spacetime, this potential problem does not occur.
For the ground state and for a KMS state, the transition

rate (5.4) is given, respectively, by Eqs. (4.27) and (4.28)
with Ω ↦

ffiffiffiffiffiffiffiffiffijg00j
p

Ω. This rescaling is a correction that
comes from switching the time interval to a proper time
interval t − t0 ↦ s=

ffiffiffiffiffiffiffiffiffijg00j
p

, where g00 ¼ −fðrÞ as in
Eq. (2.1). For a detector with energy gap Ω, following a
static trajectory xðτÞ ¼ ðτ; zD; θ̄DÞ at fixed spatial positions
z ¼ zD and θ̄ ¼ θ̄D, the transition rate for the ground state
reads

_F 0 ¼
Z
R
dlYlðθ̄DÞ2ω̃2ðzD; zDÞjω¼−

ffiffiffiffiffiffiffi
jg00j

p
Ω: ð5:5Þ

For the KMS state with respect to ∂t at inverse temperature
β

_F β ¼
signðΩÞ

esignðΩÞβω − 1

Z
R
dlYlðθ̄DÞ2ω̃2ðzD; zDÞjω¼þ

ffiffiffiffiffiffiffi
jg00j

p
jΩj;

ð5:6Þ

where signðΩÞ stands for the sign function with variable Ω.
Note that for a KMS state at inverse temperature β ¼ 2π the
detector’s response satisfies the detailed balance condition
(4.29) at the local Hawking temperature TH, defined by the
geometrical constant Hawking temperature corrected by the
time-dilation effect experienced by the detector

TH ≔
1

2π
ffiffiffiffiffiffiffiffiffijg00j

p : ð5:7Þ
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VI. NUMERICAL ANALYSES OF THE
TRANSITION RATE

In this section, we study the transition rate of an Unruh-
DeWitt detector coupled to a ground state and to a KMS
state, respectively given by Eqs. (6.3) and (5.6), on
massless hyperbolic black holes of three and four dimen-
sions. The analyses summarized here are mainly numerical
and they can be found in aMathematica notebook available
in GitHub [41]. Most notably, we observe that the anti-
Hawking effect does not occur on the four-dimensional
case, as shown in Sec. VI B.
We start with a few analytical considerations. For

ν ∈ ð0; 1Þ, one needs to impose a boundary condition at
z ¼ 1 and by Cauchy’s argument principle, we have shown
in Sec. IV B that if γ ∈ ½0; γ0Þ no poles occur, where

tanðγ0Þ ¼ Ξð0Þ ¼l¼0 ΓðνÞ
Γð−νÞ

Γð1−ν
2
Þ2

Γð1þν
2
Þ2 : ð6:1aÞ

In particular, for the massless conformally coupled case,
ν ¼ 1=2, (6.1a) reduces to

tanðγ0Þ ¼ −
1

2

Γð1=4Þ2
Γð3=4Þ2 ∼ −4.4 ∼ tanð0.57πÞ: ð6:2Þ

Let us consider γ ∈ ½0; γ0Þ, so that no pole occurs and take a
detector with energy gap Ω following a static trajectory
with z ¼ zD and θ̄ ¼ θ̄D. Putting together Eqs. (5.6)
and (4.5), the transition rate for the ground state reads

_F 0 ¼
Z
R
dlYlðθ̄DÞ2

1

2πiν
ðĀB − AB̄Þ

jA sinðγÞ − B cosðγÞj2

× RγðzDÞ2
���
ω¼−

ffiffiffiffiffiffiffi
jg00j

p
Ω
: ð6:3Þ

Considering Eq. (4.26) instead of (4.5), we obtain the
transition rate for the KMS state, here at inverse temper-
ature β ¼ 2π

_F TH
¼ signðΩÞ

esignðΩÞβω − 1

Z
R
dlYlðθ̄DÞ2

×
1

2πiν
ðĀB − AB̄Þ

jA sinðγÞ − B cosðγÞj2 RγðzDÞ2
����
ω¼þ

ffiffiffiffiffiffiffi
jg00j

p
jΩj
:

ð6:4Þ

A close scrutiny of Eqs. (6.3) and (6.4) leads to the
natural question of whether or not the transition rates
obtained still pertain a singular, distributional nature
inherited from the two-point functions of the ground and
the KMS states. We do expect them to yield a finite quantity
for all admissible values of the underlying parameters.
However, while the integrand is in both cases finite due to
the properties of the hypergeometric functions and to the

lack of poles for the admitted range of γ, the integral along
the spectral parameter l, might lead to divergences.
Although we do not have an analytic proof of this statement
for arbitrary parameters, in Appendix B, we prove that the
integral over l is indeed finite for the massless conformally
coupled case. It is also worth mentioning that the integrands
of the transition rates are invariant under the mapping
l ↦ −l. Moreover, the transition rate is a real-valued
quantity, since the solutions Rγ have a vanishing imaginary
part, as shown in Sec. B 3 of Appendix B.
In the following sections, we check how the response

function behaves with respect to the underlying parameters
for the states that we have constructed for the massless
conformally coupled case. Note that the response depends
on the energy gap, on the boundary condition and on the
position of the detector or, equivalently, on the local
Hawking temperature (5.7) by setting

zDðTHÞ ¼
1

1þ 4π2T2
H
:

Moreover, since the radial solutions do depend on the
dimension n through βþ ¼ n=4, so does the transition rate.
However, before looking at what happens on massless
hyperbolic black holes, it is worth recalling what occurs in
Minkowski spacetime. Therefore, in Sec. VI A, we use the
expressions for the transition rate obtained in [6] to review
the response of a detector measuring Unruh radiation on
Minkowski spacetime. Then, with our intuition refreshed,
we analyze the response of the detector measuring
Hawking radiation on massless hyperbolic black holes in
the remaining sections. For clarity purposes, most plots
have been normalized with respect to their own maximum
value, since here we are only concerned with qualitative
behaviors. In any case, all plots and their respective
normalization factor can be found at [41].
The framework established does apply to scalar fields

with arbitrary mass and coupling, and to perform a
numerical analysis in these cases is straightforward. We
have highlighted above the details that would need atten-
tion, namely the proof that the integral in l converges, but
we expect that to be, at least numerically, direct. One
should keep in mind that not all possible values of mass and
coupling allow for Robin boundary conditions to be
chosen, but only those for which ν ∈ ð0; 1Þ. In [41], we
have implemented the expressions of the transition rates for
arbitrary parameters. However, for convenience, in the
numerical analyses we consider in this paper we focus
on massless conformally coupled scalar field, which
corresponds to ν ¼ 1=2. The goal of the numerical analyses
of applying the general framework established by studying
and generalizing previous results concerning the manifes-
tation of the anti-Hawking phenomenon is reached with
analyzing only this case.
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A. The transition rate on Minkowski spacetime

On three- and four-dimensional Minkowski spacetime, an
Unruh-DeWitt detector with energy gap Ω following a
Rindler trajectory with proper acceleration a and interacting
with the vacuum state of a free, massless, real scalar quantum
field theory has the following response function [6]

_FMink3 ¼
1

2

1

e2πΩ=a þ 1
; ð6:5aÞ

_FMink4 ¼
1

2π

Ω
e2πΩ=a − 1

: ð6:5bÞ

As a function of the energy gap, _FMink3 and
_FMink4 behaves

as expected, in the sense that, heuristically speaking it is
always easier to deexcite than to excite: the lower the energy
gap, the higher the transition rate, as shown in the following
plot, cf. Fig. 2. On Minkowski spacetime of five and six
dimensions, the qualitative behavior is the same as the one
for n ¼ 4.
With respect to the proper acceleration of the detector,

the transition rate is significantly different on the three-
dimensional Minkowski spacetime when compared to the
higher dimensional counterparts. It is increasing for a
positive energy gap, but decreasing for a negative energy
gap, as shown in Fig. 3.

On four-dimensional Minkowski spacetime, we observe
that the transition rate is increasing for both positive and
negative energy gaps. Figure 4 illustrates this scenario.
Observe that the same qualitative behavior would have
been obtained considering the five- or the six-dimensional
Minkowski spacetime.
It is straightforward to verify that all transition rates in

Eq. (6.5) satisfy the detailed balance condition. Hence, we
can claim that the detector thermalizes with the field at the
Unruh temperature TU ¼ a

2π

_FMinkið−ΩÞ¼eΩ=TU _FMinkiðΩÞ; i∈f3;4;5;6g: ð6:6Þ

The relevant information that we can extract from recalling
how an Unruh-DeWitt detector responds to Unruh radiation
can be summarized as follows. First and foremost, in the
three-dimensional Minkowski spacetime, the transition rate
for a negative energy gap decreases with the proper
acceleration of the detector, i.e., the anti-Unruh effect,
which is just the flat geometry counterpart of the anti-
Hawking effect, occurs. Second, in the higher dimensional
counterparts, the transition rate is always increasing with
respect to the proper acceleration of the detector. Last, with
respect to the energy gap, the transition rate is decreasing in
all dimensions considered.

FIG. 2. The transition rate on Minkowski spacetime as a function of the energy gap Ω for a fixed proper acceleration a ¼ 1 and for
spacetime dimensions three and four, from left to right.

FIG. 3. The transition rate on the three-dimensional Minkowski spacetime as a function of the proper acceleration of the detector. On
the left, for Ω ¼ 0.1; on the right, for Ω ¼ −0.1.
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B. Transition rate on massless hyperbolic black holes

In this section, we summarize the numerical analyses
performed for the transition rates (5.5) and (5.6) on three-
and four-dimensional massless hyperbolic black holes. We
focus on a massless real scalar field, conformally coupled
to scalar curvature, which corresponds to ν ¼ 1=2, and
compatible with Robin boundary conditions at conformal
infinity for which γ ∈ ½0; γ0Þ. More precisely, in all plots we
consider fixed boundary conditions γ ∈ f0.50π; 0.47π;
0.40π; 0.25π; 0g, distinguishable by a consistent choice
of representation, respectively: blue, purple, pink, orange
and green. Moreover, the hyperbolic harmonics are written
explicitly in Appendix A, and are given by Eqs. (A1), for
n ¼ 3, and (A9) for n ¼ 4. First, we show the behavior of
the transition rates with respect to the energy gap, in
Sec. VI B 1. Then, Sec. VI B 2 contains our main results
concerning the anti-Hawking effect.
The principle ensuring that the truncation values of lmax,

and of m1;max in the four-dimensional case, are sufficiently
large is numerical stability. We outline below the steps
followed. Consider the evaluation of the transition rate in
the four-dimensional case. Each point in any plot depends
on the set of parameters:

fγ; ν;Ω; THð or zDÞ; θ;φ1;lmax; m1;max; psum; pintg;

where psum and pint are the numerical precisions corre-
sponding respectively to the summation over m1 and to the
integration over l. Since the transition rate is given by the
product between a small number (the normalization) and a
considerably large one (from Rγ), the precision settings are
not trivial. Moreover, since the evaluation can be computa-
tionally heavy—one evaluation can take up to one hour,
depending on the set of parameters chosen—we studied
thoroughly the necessary precision and truncation values at
different scales.
Let us consider as an example the plot on the right-hand

side of Fig. 5. For each fixed set of parameters

8>>>>>>>>><
>>>>>>>>>:

γ ∈ f0.50π; 0.47π; 0.40π; 0.25π; 0g;
ν ¼ 1=2;

zD ¼ 1=2;

θ ¼ 1=π;

φ ¼ 0;

Ω ∈ f−0.1;−10g;

we first establish the necessary precision of the summation
by evaluating the summand of the transition rate at
especially high values of m1 and of l (order between
100 and 300). For example, for m1 ¼ l ¼ 100, one needs

FIG. 5. Transition rate as a function of the energy gap for the KMS state at zD ¼ 1=2, θD ¼ π−1 and for different boundary conditions:
from top to bottom, γ ¼ ð0.50; 0.47; 0.40; 0.25; 0Þπ. On the left, for n ¼ 3 and with the integration performed up to l ¼ 100; on the
right, for n ¼ 4, at φ1 ¼ 0 and with the summation performed up to m1 ¼ 20 and integration, up to l ¼ 20.

FIG. 4. The transition rate on Minkowski spacetime as a function of the proper acceleration of the detector. On the left, forΩ ¼ 0.1; on
the right, for Ω ¼ −0.1.
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psum ¼ 150. Second, we determine pint in an analogous
way. After establishing which precision settings are suffi-
cient for each scale of m1 and l and for a given set of the
fixed parameters, one merely has to check whether the
result is stable under increasing truncation parameters. To
our goal we deemed sufficient requiring an accuracy of
three decimal points. At Ω ¼ −10, for Neumann boundary
condition and before normalization, we found _F ¼ 0.551
for all values m1;max ¼ lmax ∈ f20; 50; 100g. Each plot
required a separate analysis, and they can be found,
summarized, in the notebook available at [41].

1. Transition rate as a function of the energy gap

With respect to the energy gap, the transition rate for the
KMS state behaves on three- and on four-dimensional
massless hyperbolic black holes, as shown in Fig. 5. On the
left, there is the plot for n ¼ 3 and on the right, that for
n ¼ 4. Observe the similarity with Minkowski spacetime,
as shown in Fig. 2, but with an extra oscillatory behavior
similar to the one observed on a BTZ and on a
Schwarzschild black hole, as in [39,40].
In the following analysis, we refer to the range jΩj < π

as a small energy gap. In the three-dimensional case, the
transition rate displays an oscillatory behavior for negative
energy gaps with absolute values higher than ∼5 and it
decreases asymptotically to zero for increasing positive
energy gaps. The contrast with the response in the
Minkowski counterpart lies, beyond the oscillatory char-
acter, in the peak—an apparent global maximum—that it
presents for each boundary condition for a small negative
energy gap. In the four-dimensional case, the resemblance
with the Minkowski counterpart is most evident, also with
an extra oscillatory behavior. It is interesting to observe
that, in both cases, the transition rate is clearly disparate for
different boundary conditions for small energy gaps, but for
high energy gaps the disambiguation fades away. For
n ¼ 3, and high energy gaps, we can clearly see that there
are basically only two cases: the response for the Dirichlet
boundary condition—the green curve—and the response
for non-Dirichlet boundary conditions—collapsed in the
orange curve.
Numerically, the higher the absolute value of the energy

gap, the higher is the cutoff in the l integration we have to
choose to obtain a stable result. Since, for n ¼ 3 we
considered up to jΩj ¼ 50, we choose lmax ¼ 100. For
n ¼ 4, since we only plotted up to jΩj ¼ 10, we found that
lmax ¼ 20 suffices.

2. Transition rate as a function of the local Hawking
temperature

In this section, we illustrate the behavior of the transition
rates (5.5) and (5.6) with respect to the local Hawking
temperature on three- and four-dimensional massless

topological black holes still for a real, massless, confor-
mally coupled scalar field.
As mentioned in the introduction, if the derivative of the

transition rate with respect to the local Hawking temper-
ature assumes negative values, which is to say that the
transition rate is decreasing with respect to the local
Hawking temperature, then we say that the anti-Hawking
effect occurs As we reviewed in Sec. VI A, the transition
rate on Minkowski spacetime is particularly distinct in the
three-dimensional case. Recall that the proper acceleration
on Rindler trajectories on Minkowski spacetime is propor-
tional to the Unruh temperature, as in Eq. (6.6). As shown
in Fig. 3, the transition rate does decrease with increasing
proper acceleration when we consider a negative energy
gap, which corresponds to considering deexcitation ampli-
tudes. On the other hand, as illustrated in Fig. 4, the
transition rate, either for excitations or deexcitations, is
monotonically increasing with respect to the proper accel-
eration on Minkowski spacetime of dimensions 4, 5 and 6.
What we observe is that on massless hyperbolic black
holes, concerning the manifestation of a negative differ-
ential effect on the transition rate with respect to the local
temperature, it behaves rather similar to how it behaves on
Minkowski.
As a function of the local Hawking temperature, the

transition rate on the three-dimensional massless hyperbolic
black hole is given in Fig. 6. On the left, we observe that the
amplitude of the deexcitations for the ground state does
manifest the anti-Hawking effect. It looks very similar to the
response on the three-dimensional Minkowski spacetime, as
shown in Fig. 3, with a different behavior only for small
temperatures TH ∈ ð0; 1=2Þ. The region for which the effect
is observed, say TH > 1=2, corresponds to r < 1.04944 and
proper accelerations of a >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2

p
. For a KMS state

however, as on the right of Fig. 6, the anti-Hawking effect
is not manifest.
The wave equation does not distinguish a three-dimen-

sional massless hyperbolic black hole from Rindler-AdS3,
the universal covering of a static BTZ black hole, also
known as Rindler-AdS3 wedge. Indeed, for n ¼ 3, for
positive and negative, constant sectional curvatures, the
eigenvalues and eigenfunctions of the Laplacian operator
coincide. With that in mind, we remark that the results
obtained here are consistent with the ones in [3,8]. This
consistency concerns also the dependence of the anti-
Hawking effect from the boundary condition for the
ground-state: for rh ¼ 1, it is manifest for Neumann
boundary condition, but not for the Dirichlet one.
On the four-dimensional massless hyperbolic black hole,

the transition rate as a function of the local Hawking
temperature is given in Fig. 7. On the left, we observe the
amplitude of the deexcitations for the ground state, and we
note that the anti-Hawking effect is not manifest. We expect
that, for each TH;max chosen, the response will be mono-
tonically increasing with respect to TH after summing a
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sufficiently large number ofm1 terms, and integrating up to
a sufficiently large l. For TH;max ¼ 10, m1;max ¼ 100 and
lmax ¼ 100 we have numerical stability and we do not
observe any decrease on the transition rate, that is, the anti-
Hawking effect does not occur. For a KMS state, as we
observe on the right column of Fig. 7, the transition rate
definitely does not display the anti-Hawking effect. There
are two noteworthy features of this plot. One is that it is
qualitatively indistinguishable from the one on the four-
dimensional Minkowski spacetime, as in Fig. 4. The other
is that the transition rate barely discriminates the boundary
conditions. Yet, as before, we have to keep in mind that
TH ∈ ð0; 1=2Þ corresponds to r ∈ ð1.04944;∞Þ. The sub-
plots do show that the response functions distinguish the
boundary conditions in this interval.
It is also worth mentioning that, focusing on the

transition rate for the KMS states, as in Figs. 6 and 7,
but considering a positive energy gap Ω ¼ þ0.1 instead,
the behavior does not change.

VII. CONCLUSIONS

We have constructed a ground state and a KMS state
for a real massive free scalar quantum field theory on

n-dimensional massless topological black holes. By solv-
ing the wave equation, we obtained an explicit representa-
tion for the two-point function, which, by construction, has
all relevant physical properties one should require in this
context. The spacetimes considered are not globally hyper-
bolic, but the prescription here is compatible with Robin
boundary conditions at infinity. Moreover, we have written
down an explicit expression for the transition rate of an
Unruh-DeWitt detector following static trajectories and
interacting, for an infinite proper time interval, with the
physical states constructed.
As an application of the prescription, we considered the

particular case of the massless conformally coupled, real
scalar field and we performed a numerical analysis for the
three- and four-dimensional cases. We studied the transition
rate with respect to the detector’s energy gap and obtained,
for n ¼ 3 and n ¼ 4, a behavior similar with the one
observed on a BTZ black hole and on Schwarzschild black
hole, respectively. Since, on Minkowski spacetimes of
dimensions n ∈ f3; 4; 5; 6g, the anti-Unruh effect is only
manifest for spacetime dimension n ¼ 3, we expect the
anti-Hawking effect not to be manifest on massless
topological black holes of dimension n > 3. Indeed, the
numerical analysis strongly indicates that the anti-Hawking

FIG. 7. Transition rate as a function of the local Hawking temperature, summed up to m1 ¼ 100 and integrated up to l ¼ 100, on the
four-dimensional hyperbolic black hole for Ω ¼ −0.1, at θD ¼ π−1, φ1;D ¼ 0 and for different boundary conditions: from top to bottom
γ ¼ ð0.50; 0.47; 0.40; 0.25; 0Þπ. On the left, for the ground state; on the right, for the KMS state.

FIG. 6. Transition rate, integrated up to l ¼ 100, as a function of the local Hawking temperature on the three-dimensional hyperbolic
black hole for Ω ¼ −0.1, θ ¼ π−1 and for different boundary conditions. From top to bottom γ ¼ ð0.50; 0.47; 0.40; 0.25; 0Þπ. On the
left, for the ground state; on the right, for the KMS state.
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effect is not manifest on four-dimensional massless topo-
logical black holes, for none of the states considered.
Another interesting feature of the transition rate that we
noticed when n ∈ f3; 4g is that, for higher energy gaps, it
only distinguishes between Dirichlet and non-Dirichlet
boundary conditions. For n ¼ 4, we can draw a similar
conclusion when analyzing the transition rate as a function
of the local Hawking temperature, close to the event
horizon.
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APPENDIX A: THE LAPLACE OPERATOR ON
THE HYPERBOLIC SPACE

We review the properties of the eigenfunctions and of the
eigenvalues of the Laplace operators on the homogeneous
hyperbolic manifolds Σn−2 introduced in Sec. II. Observe
that Σn−2 is isometric to H1

ðn−2Þ, the upper sheet of the two-
sheeted hyperboloid—a copy of the (n − 2)-dimensional
hyperbolic space. This corresponds to case F in [25], to
which we refer for further details. Note that, for consistency
with the rest of this work and clarity, we are using a slightly
different notation from [25].
The hyperbolic spaceH1

n−2 is diffeomorphic to Rn−2, but
it has geometrically different properties due to its negative
curvature. However, for n ¼ 3, then Σ1 ¼ H1

1 is not
actually a hyperboloid, it is just the open real line para-
metrized by θ ∈ R. In this case, the eigenfunctions of the
Laplacian operator are simply plane waves

YlðθÞ ¼ 1ffiffiffiffiffiffi
2π

p eilθ; l ∈ R: ðA1Þ

Now let us consider the higher dimensional cases. Define p≡ − il
2
þ jlfðn−2Þ=2gj

2
þ n−3

4
and q≡ jlfðn−2Þ=2gj þ n−2

2
and, for

r ∈ f1; 2; 3;…g
�
n − 2

2

	
≔

� n−2
2
; if n − 2 ¼ 2r;

n−3
2
; if n − 2 ¼ 2rþ 1;

�
n − 2

2

�
≔

� n−2
2
; if n − 2 ¼ 2r;

n−1
2
; if n − 2 ¼ 2rþ 1:

ðA2Þ

For n > 3, the eigenfunctions of the Laplace operator onH1
ðn−2Þ are written in terms of Gauss hypergeometric functions and

of the (n − 3)-dimensional spherical harmonics, see [[25], A.1]

Y
l;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄Þ ¼

1

N
1
2

ðtanh θÞjlfðn−2Þ=2gjðcosh θÞil−n−3
2 Fðp; pþ 1=2; q; tanh2θÞYl2;…;lfðn−2Þ=2g

m1;…;mfðn−2Þ=2gðφ̄Þ; ðA3Þ

where φ̄ ¼ ðφ1;…;φn−3Þ, θ̄ ¼ ðθ; φ̄Þ and

N ¼
���� ð2πÞ1=2ΓðilÞΓðqÞ
Γðpþ ilÞΓðpþ ilþ 1=2Þ

����
2

: ðA4Þ

The completeness relations read

Z
H1

ðn−2Þ

dμðθ̄ÞYl;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄ÞY

l0;l0
2
;…;l0

fðn−2Þ=2g
m0

1
;…;m0

fðn−2Þ=2g
ðθ̄0Þ ¼ δðl − l0Þ

Yfðn−2Þ=2g

k¼2

δlklk0

Yfðn−2Þ=2g

k¼1

δmkmk0 ðA5Þ

and

Z
∞

0

dl
X
Sl

Y
l;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄ÞY

l0;l0
2
;…;l0fðn−2Þ=2g

m0
1
;…;m0

fðn−2Þ=2g
ðθ̄0Þ ¼ δðθ̄ − θ̄0; μÞ: ðA6Þ

Here Sl denotes the collection of all other indices l2;…; mfðn−2Þ=2g, which are constrained by the relations (A.4) and (A.5)
in [25]. The integral kernel of the delta distribution is defined with respect to the measure μ
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dμðθ̄Þ ¼ ðcosh θÞn−3dθdμðφ̄Þ; ðA7Þ

for θ ∈ ½0;∞Þ, φk ∈ ½0; π=2Þ; k ∈ 1;…; r − 1 and φk ∈ ½0; 2πÞ; k ∈ r;…; n − 3:

dμðφ̄Þ ¼
�Q

r−1
k¼1 cosφkðsinφkÞ2k−1dφk

Q
2r−1
k¼r dφk; if n − 2 ¼ 2r;

ðsinφrþ1Þ2r−1dφrþ1

Q
r−1
k¼1 cosφkðsinφkÞ2k−1dφk

Q
2r
k¼r dφk; if n − 2 ¼ 2rþ 1:

With the complex basis above one can construct a real basis, say fY1; Y2g, which satisfies analogous completeness relations

Y1ðθ̄Þ ¼
Y
l;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄Þ þ Y

l;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄Þ

2
; ðA8aÞ

Y2ðθ̄Þ ¼
Y
l;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄Þ − Y

l;l2;…;lfðn−2Þ=2g
m1;…;mfðn−2Þ=2g ðθ̄Þ

2i
: ðA8bÞ

In four dimensions, θ̄ ¼ ðθ;φ1Þ, p ¼ −il=2þ jl1j=2þ 1=4, q ¼ jl1j þ 1, l1 ≡m1 and (A3) reads

Yl
m1
ðθ;φ1Þ ¼

1

N
1
2

ðtanh θÞjl1jðcosh θÞil−1
2Fðp; pþ 1=2; q; tanh2 θÞYm1

ðφ1Þ; ðA9Þ

where Ym1
ðφ1Þ ¼ eim1φ1 . Since these eigenfunctions depend also on m1, we have that, beyond the integral in l, the

expressions for the two-point functions and for the transition rates (5.5) and (5.6) also have an implicit sum over m1 ∈ Z.

APPENDIX B: ON THE FINITENESS OF THE TRANSITION RATE

1. Asymptotic expansion of the hypergeometric functions

The hypergeometric functions that appear in Eq. (5.6) diverge exponentially as l → ∞. The l dependence of the
solutions R1ð1Þ and R2ð1Þ appears in the parameters of the hypergeometric solutions. Now, the standard large-parameter
asymptotic expansion one can find in [[30], (15.12.5)], which comes from [42] and is written in terms of ð1 − z0Þ=2 for
z0 ¼ 2z − 1, does not hold for our case: jphðz0 − 1Þj ¼ π, where ph stands for the phase of a complex number. Yet an
analytic extension which does include our case was studied in [43]. Let σ ≔ η=4þ i

ffiffiffiffiffiffiffiffiffijg00j
p

Ω=2, ξ ¼ lnð−z0 − i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
Þ

and let z0 ¼ 2z − 1. The asymptotic expression [[43], (3.2)], for large l, gives

Fðσ þ il=2; σ − il=2; η=2; 1 − zÞ ∼ Cðσ; η; z0Þ e
l=2ðπ−iξÞffiffiffiffiffiffiffiffiffiffi
il=2

p Γðil=2þ 1þ σ − η=2Þ
Γðil=2þ σÞ ; ðB1Þ

where the l-independent coefficient is given by

Cðσ; η; z0Þ ≔ eiπðη−1Þ=4Γðη=2Þ
2σ−1

ffiffiffi
π

p ð1þ z0Þη=4−σ−1=4
ð1 − z0Þη=4−1=4 :

In the massless conformally coupled case, that is ν ¼ 1=2 and for all n ≥ 3, we have that for η ¼ 3, the expansion above
applies to the solution in Eq. (3.11a) and for η ¼ 1, to that in Eq. (3.11b). Yet, the infinite l limit does not depend on η.
Using the asymptotic expansion of the Gamma function (B2), consequence of Stirling’s formula,

Γðzþ pÞ
Γðzþ qÞ ∼jzj→∞

zp−q for p; q; z ∈ C and jphzj < π; ðB2Þ

and noticing that j − z0 − i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
j ¼ 1 we have ξ ¼ iφ for φ ¼ phð−z0 − i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z02

p
Þ ∈ ð−π; 0Þ, then

Fðσ þ il=2; σ − il=2; η=2; 1 − zÞ ∼Dðσ; η; z0ÞelðπþφÞ=2lð1−ηÞ=2 ðB3Þ
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for Dðσ; η; z0Þ ≔ ði=2Þð1−ηÞ=2Cðσ; η; z0Þ. Therefore, both hypergeometric solutions grow exponentially with e
π
2
l as l → ∞,

and so does Rγ.

2. Asymptotic expansion of the normalization factor

Consider the normalization N −1 as per Eq. (4.24). For convenience, consider ν ¼ 1=2 and define s1 ≔
ðlþ

ffiffiffiffiffiffiffi
jg00j

p
ΩÞ

2
and

s2 ≔
ðl−

ffiffiffiffiffiffiffi
jg00j

p
ΩÞ

2
. The dependence of N −1 on l comes from the function Ξ≡ ΞðωÞ ¼ B

A, cf. Eqs. (4.10a) and (4.10b):

Ξ ¼ −
1

2

Γð1=4 − is2Þ
Γð3=4 − is2Þ

Γð1=4þ is1Þ
Γð3=4þ is1Þ

: ðB4Þ

The imaginary part of Ξ can be written as

ImðΞÞ ¼ −
1

4i

��
Γð1=4 − is2Þ
Γð3=4 − is2Þ

Γð1=4þ is1Þ
Γð3=4þ is1Þ

	
−
�
Γð1=4 − is2Þ
Γð3=4 − is2Þ

Γð1=4þ is1Þ
Γð3=4þ is1Þ

	��
;

¼ −
1

4i

�
−

8iπ2 sinhðπ ffiffiffiffiffiffiffiffiffijg00j
p

ΩÞ
coshð2πlÞ þ coshð2π ffiffiffiffiffiffiffiffiffijg00j

p
ΩÞEðlÞ

�
;

¼ c1
ðcoshð2πlÞ þ c2Þ

EðlÞ

∼l→∞e−2πlEðlÞ; ðB5Þ

where the constants are c1 ≔ 2π2 sinhðπ ffiffiffiffiffiffiffiffiffijg00j
p

ΩÞ, c2 ≔ coshð2π ffiffiffiffiffiffiffiffiffijg00j
p

ΩÞ, while EðlÞ is defined by

EðlÞ ≔ 1

Γð3=4þ is1ÞΓð3=4 − is1ÞΓð3=4þ is2ÞΓð3=4 − is2Þ
: ðB6Þ

Using that [[30], Eq. (5.11.9)]

jΓðxþ iyÞj ∼y→�∞jyjx−1=2e−πjyj=2; ðB7Þ

we have that the asymptotic behavior of EðlÞ is

EðlÞ ∼y→�∞ðjs1j−1=4eπ
2
js1jÞðj − s1j−1=4eπ

2
j−s1jÞðjs2j−1=4eπ

2
js2jÞðj − s2j−1=4eπ

2
j−s2jÞ ∼ eπl

l
: ðB8Þ

Therefore, the imaginary part of Ξ decreases exponentially with πl. Analogously, we have for the real part

ReðΞÞ ¼ −
1

4

��
Γð1=4 − is2Þ
Γð3=4 − is2Þ

Γð1=4þ is1Þ
Γð3=4þ is1Þ

	
þ
�
Γð1=4 − is2Þ
Γð3=4 − is2Þ

Γð1=4þ is1Þ
Γð3=4þ is1Þ

	��
;

¼ −
1

4

�
8π2 coshðπlÞ

coshð2πlÞ þ coshð2π ffiffiffiffiffiffiffiffiffijg00j
p

ΩÞEðlÞ
�
;

¼ −2π2
coshðπlÞ

coshð2πlÞ þ c2
EðlÞ

∼l→∞e−πlEðlÞ: ðB9Þ

On account of Eq. (B8), we obtain that the real part of Ξ, and thus its absolute value as well, decreases linearly with l. This
behavior for Ξ is indeed observed numerically. We conclude that N −1 also goes exponentially to zero. Figure 8 illustrates
the behavior of jΞj and of its imaginary part.
Note that the rate of exponential decay of the imaginary part of Ξ, ruled by π, is, indeed, considerably larger than that of

the exponential growth of Rγ as a function of l, ruled by π=2.
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3. Vanishing imaginary part for Rγ

Consider the solution R1ð1ÞðzÞ ¼ zαþð1 − zÞβþh1ð1ÞðzÞ,
where h1ð1ÞðzÞ is given implicitly by (3.11a) for a, b, c as in
(3.9) and αþ as in (3.6a). Assuming ω2 ∈ R, its complex
conjugate is given by

R1ð1ÞðzÞ ¼ z−αþð1 − zÞβþh1ð1ÞðzÞ: ðB10Þ

Using identity [[30], Eq. (15.10.13)],

Fða; b; aþ bþ 1 − c; 1 − zÞ
¼ z1−cFða − cþ 1; bþ 1 − c; aþ b − cþ 1; 1 − zÞ;

ðB11Þ

and noticing that 1 − c ¼ −2αþ, a − cþ 1 ¼ b̄, b − cþ
1 ¼ ā and aþ b − c ¼ ν, we get

h1ð1ÞðzÞ¼ ½z1−cFða−cþ1;b−cþ1;aþb−cþ1;1−zÞ��
¼ z2αþFðb;a;1þν;1−zÞ: ðB12Þ

Therefore, it holds

R1ð1ÞðzÞ ¼ zαþð1 − zÞβþh1ð1ÞðzÞ ¼ R1ð1ÞðzÞ ∈ R: ðB13Þ

An analogous argument holds for R2ð1ÞðzÞ. Using the
second equality within [[30], Eq. (15.10.14)], and since
1 − ā ¼ c − b and 1 − b̄ ¼ c − a, we have

h2ð1ÞðzÞ ¼ ½z−νFðc − a; c − b; 1 − ν; 1 − zÞ��
¼ z−νz2αþFðc − a; c − b; 1 − ν; 1 − zÞ: ðB14Þ

Which implies

R2ð1ÞðzÞ ¼ zαþð1 − zÞβþf2ð1ÞðzÞ ¼ R2ð1ÞðzÞ ∈ R: ðB15Þ

Therefore, RγðzÞ, which is a linear combination of R1ð1ÞðzÞ
and R2ð1ÞðzÞ with real-valued coefficients given by
Eq. (3.13), is also real valued.

4. On the convergence of the integral in l

The transition rates, given by Eqs. (5.5) and (5.6), are
written as integrals inl. In Sec.B 2,we showed that, for large
l, the integrand decays exponentially with l despite the fact
that the hypergeometric solutions diverge exponentially,
which was shown in Sec. B 1. Here, we give a simple
argument proving that the integral in l is convergent.
Suppose ζðlÞ is a function such that there exists a large l

value, say Λ, such that ζðlÞ ∼ e−l, for l ≥ Λ. Therefore

����
Z

∞

0

dlζðlÞ
���� ≤

Z
Λ

0

dljζðlÞj þ
Z þ∞

Λ
dljζðlÞj

¼
Z

Λ

0

dljζðlÞj − e−Λ < ∞: ðB16Þ

Since the argument above applies to the transition rates,
then the integrals in l converge. Since the normalization in
Eq. (4.24) and the solutions RγðzÞ are real valued, as shown
in Sec. B 3, we conclude that the transition rate as in
Eqs. (5.5) and (5.6) are real-valued, finite numbers.
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