
 

Nonlocal scalar field in an external potential: The WKB approximation
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We consider a nonlocal theory of a scalar massive field in a flat spacetime background in the presence of
an external potential and construct WKB solutions for this theory. We use a model in which the kinetic part
of the scalar field action is modified by changing □ to □fð□Þ operator. We discuss conditions when the
corresponding form factor f is chosen so that the theory does not contain new unphysical degrees of
freedom. We applied the obtained WKB solutions for study energy levels of the field trapped by a one-
dimensional potential and the probability of the barrier penetration. This allows us to illustrate how the
effects of the nonlocality change the known results obtained for the local field theory.
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I. INTRODUCTION

The idea of nonlocality is quite old in theoretical physics.
Nonlocal modifications of the field theory were discussed
already in the publications [1–3]. Even if one works with a
local quantum field theory, already at the one loop level, its
effective action is nonlocal. This nonlocality is connected
with the vacuum polarization and particle creation effects,
and it reflects the fact that a vacuum is a physical medium
and in this sense it behaves as a condensed matter with very
special properties. The nonlocality that we consider in this
paper is of a different origin. We assume that a field theory
is described by a nonlocal action already at the tree level. In
particular this means that its interaction with external
sources, as well as a self-interaction, is nonlocal.
Usually such a nonlocal modification contains a scale

parameter which determines either the energy at which the
effects of the nonlocality become important or the corre-
sponding spacetime length when it happens. Nonlocal
theories were discussed in the beginning of seventies of
the past century by Efimov [4–7]. The nonlocality is often
introduced to modify high energy properties of the theory
and to improve its ultraviolet behavior. More recently, the
interest in nonlocal theories increased. This was mainly
stimulated by the development of the string theory.
Nonlocal fields naturally arise in the string theory and in
the theories with a noncommutative geometry (see e.g.,
[8–15] and references therein). Nonlocal effects in quantum
gravity were widely discussed recently. A comprehensive

review of modifications of gravity involving a minimal
length scale and related references can be found in [16].
There is a subclass of the nonlocal field theories some-

times called ghost-free theories. An effective action in these
models contains an infinite number of derivatives so that
the corresponding field equations are effectively nonlocal.
These models have been widely discussed recently, and
they have rather “nice properties.” In these theories the
nonlocality is introduced in such a way that it preserves
local Lorentz invariance, and it does not introduce new
unphysical degrees of freedom (ghosts). In these models the
ultraviolet (UV) behavior of the theory at short distances is
improved, while in the infrared (IR) regime (at large scales)
they reproduce results of a corresponding local theory
[17–23]. The main motivation for the study of such infinite
derivative modifications of the gravity equations is con-
nected with attempts to solve long-standing problems of
cosmological and black hole singularities [18,24–34].
Complete equations of a modified gravity, which include

both nonlocality and nonlinearity, are quite complicated. It
is much easier to study a linearized version of the theory.
However, already the study of linearized models allows one
to obtain several stimulating results: (i) The nonlocality
removes singularities of the field produced by pointlike
sources [18,35–38]; (ii) There exists a mass gap for mini
black hole formation [39,40]; (iii) It allows one to dem-
onstrate a formation of the inner horizon for black hole
creation in the scattering of ultrarelativistic particles [41].
A standard technique for solving these problems is usage
of nonlocal Green functions, which for the flat space-
time background can be found by means of the Fourier
transform.
The study of the nonlocal field in the presence of an

external potential is a much more complicated problem.
There exists very special cases when it is possible to find an
explicit solution. For example, such a solution was obtained
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for scattering of a nonlocal scalar field by a deltalike
potential [42–44]. However, in a general case, in the
presence of an arbitrary potential one needs to solve a
nonlocal linear equation with the space-dependent coef-
ficients, which is a very nontrivial problem.
The purpose of this paper is to demonstrate that one can

obtain asymptotic solutions for this problem by using a
standard WKB method. Its main idea is to search for a
solution ΦðxÞ of the field equation in the form
ΦðxÞ ≈ uðxÞ exp ½iSðxÞ=ℏ�. After substitution of this ansatz
into the field equation, one collects terms of the expansion
into the powers of ℏwhich are of the same order of ℏ. In the
leading order one gets a first-order partial differential
equation of the form Hð∇S; xÞ ¼ 0 known as an eikonal
equation. A subleading equation determines evolution of a
slowly changing field amplitude uðxÞ. The eikonal equation
can be identified with the Hamilton-Jacobi equation for the
Hamiltonian obtained by the substitution of∇S ¼ p into it.
Initial data for the Hamilton-Jacobi equation specify a beam
of trajectories in the phase space which forms a Lagrangian
submanifold (for details see e.g., a remarkable book [45]).
Knowledge of this Lagrangian submanifold allows one not
only to construct the eikonal function SðxÞ but also to find a
solution of the transport equation for the amplitude uðxÞ by
using the Liouville theorem. This WKB method is widely
used in the standard quantum mechanics and field theory
where the corresponding equations are second-order
partial differential equations. However, it can be applied
to a wider class of so-called quasilinear differential equa-
tions. A comprehensive presentation of these results can be
found in the book [46]. In this paperwe apply thismethod for
study of quasiclassical solutions of the linear nonlocal scalar
field equations in the presence of an external potential. A
similar approach for other higher and infinite order equa-
tions can be found in [47].
This paper is organized as follows. In Sec. II we describe

a model of a nonlocal scalar field with infinite number of
derivatives, which is analyzed in the paper. In Sec. III we
construct a WKB solution for such a field in the presence of
an external potential in any number of spacetime dimen-
sions. In Sec. IV we consider a special case when the
potential depends on only one spatial Cartesian coordinate.
Energy levels for the nonlocal scalar field confined by the
one-dimensional parabolic potential are calculated in Sec.V.
Under-barrier propagation of the nonlocal field and barrier
penetration effect are discussed in Sec. VI. Section VII
contains discussion of the obtained results. Additional
technical details are collected in two appendices.

II. NONLOCAL SCALAR FIELD EQUATION

We consider N-dimensional flat spacetime. Its metric in
Cartesian coordinates is

ds2 ¼ ημνdxμdxν; μ; ν ¼ 0; 1;…; N − 1; ð1Þ

where ημν ¼ diagð−1; 1;…; 1Þ. Let us consider a scalar
massive field φ obeying the Klein-Gordon equation

ðℏ2
□ −m2 − VÞφ ¼ 0: ð2Þ

Here □ ¼ ημν∂μ∂ν, m is the mass of the field, and VðxÞ is
an external potential. In what follows we shall study
solutions of this equation and its nonlocal generalization
in the WKB approximation. For this reason we keep the
Planck constant ℏ, while as usual put c ¼ 1.1 The Klein-
Gordon equation follows from the action

W½φ� ¼ 1

2

Z
dNxφðFð□Þ − VÞφ; Fð□Þ ¼ ℏ2□ −m2:

ð3Þ
We consider a generalization of the Klein-Gordon

equation in which the operator Fð□Þ is modified.
Namely, we assume that it is a scalar operator which
may contain an arbitrary (finite or infinite) number of
partial derivatives ∂=∂xμ. It is easy to check that the
covariance of the action requires that such an operator
can be written as a scalar function of the □-operator. In
order to keep a proper dimensionality of the action we
introduce a parameter μ, which has a dimension of the
mass, and we write the operator Fð□Þ in the form

Fð□Þ ¼ μ2F̂ðℏ2
□=μ2Þ: ð4Þ

The corresponding generalized Klein-Gordon equation is

½−F̂ðzÞ þ V̂�φ ¼ 0; ð5Þ

where z ¼ ℏ2□=μ2 and V̂ ¼ V=μ2.
We consider a class of theories for which the function

F̂ðzÞ has the following properties:
(1) F̂ðzÞ does not vanish anywhere on the complex

plane of z besides the point z ¼ m̂2;
(2) F̂jz¼m̂2 ¼ 0 and dF̂ðzÞ=dzjz¼m̂2 ¼ 1;
(3) For a real value of its argument z the function F̂ðzÞ

is real.
These conditions guarantee that the inverse of the operator
F̂ has a single pole with its residue equal to 1. In other
words, there are no new unphysical (ghost) degrees of
freedom in this theory. To satisfy the required properties it
is sufficient to choose F̂ in the form

F̂ðzÞ ¼ F ðẑÞ; F ðẑÞ ¼ ẑfðẑÞ; ẑ ¼ z − m̂2; ð6Þ

where fðẑÞ ¼ expðgðẑÞÞ and gðẑÞ is an entire function of
the complex variable satisfying the condition gðẑ ¼ 0Þ ¼ 0.
We call fðẑÞ a form factor.

1In these units one has ½ℏ� ¼ ML, ½□� ¼ L−2, and
½m2� ¼ ½V� ¼ M2.
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In order to illustrate the results we shall use a special
example of the form factor. Namely, we put gðẑÞ ¼ ẑ2, then
one has

F ðẑÞ ¼ XðẑÞ≡ ẑ expðẑ2Þ: ð7Þ

This function obeys all the conditions listed above.
Besides this for real ẑ, it is a monotonically increasing
from −∞ at ẑ ¼ −∞ to þ∞ at ẑ ¼ þ∞ and is positive
for ẑ > 0. One also has F ð−ẑÞ ¼ −F ðẑÞ. The function
XðxÞ is shown at Fig. 1. Other properties of this function,
which are used later in the paper, can be found in
Appendix B.
One can expand the function F ðẑÞ into powers of ẑ. This

gives an infinite series of the powers of □ for the field
operator F̂ðℏ2

□=μ2Þ. This means that this operator is
nonlocal. Let us also mention that the mass parameter μ,
which enters this operator, determines a characteristic
energy scale at which the effects of the nonlocality become
important. In the limit μ → ∞ the operator F becomes
ℏ2
□ −m2, and the theory is local.

III. WKB APPROXIMATION

A. A solution of the nonlocal field equation in the WKB
approximation

Let us write the nonlocal field Eq. (5) in the form2

Ôφ¼0; Ô¼1

2
ð−μ2F ðẑÞþV̂Þ; ẑ¼ℏ2

□=μ2−m̂2: ð8Þ

We include a factor 1=2 in the operator Ô, which evidently
does not change solutions but this simplifies the form of
some relations. The operator Ô belongs to the class of
Eqs. (A1) discussed in the Appendix. We are looking for a
solution of the field Eq. (8) in the WKB approximation and
write it in the following form:

φðxÞ ¼ exp

�
iSðxÞ
ℏ

�X∞
j¼0

�
ℏ
i

�
j
ujðxÞ: ð9Þ

Here SðxÞ is a fast changing phase, while ujðxÞ are slowly
changing functions. Let us emphasize that besides standard
conditions of the validity of the WKB approximation
formulated in textbooks on quantum mechanics, we also
assume that the parameter of nonlocality μ does not depend
on ℏ. We keep this parameter fixed in the limit ℏ → 0. This
allows us to discuss effects of the nonlocality in the
quasiclassical approximation.
In order to find the eikonal function SðxÞ and the

amplitudes ujðxÞ, we follow the steps described in
Appendix A. First of all we define a symbol Hðx; pÞ of
the operator Ô. Let pμ be a covector and denote p2 ¼ pμpμ.
Then one should substitute −ℏ2□ → p2 into (8). The
corresponding symbol for the operator Ô is

Hðx; pÞ ¼ 1

2
½−μ2F ðẑÞ þ VðxÞ�; ẑ ¼ −

1

μ2
ðp2 þm2Þ:

ð10Þ

The eikonal Eq. (A8) implies that the following constraint
Hðx; pÞ ¼ 0 is valid.
The next step is to study a dynamical system in 2N-

dimensional phase space satisfying Hamilton’s equations

dxμ

dτ
¼ ∂H

∂pμ
;

dpμ

dτ
¼ −

∂H
∂xμ : ð11Þ

Since the HamiltonianHðx; pÞ is an integral of motion, it is
sufficient to choose Hðx; pÞ ¼ 0 at the initial “time” τ ¼ 0,
then the constraint Hðx; pÞ ¼ 0 is valid for any later time.
We define a (N − 1)-dimensional surface Σ by

conditions

xμ ¼ fμðyiÞ; i ¼ 1;…; N − 1; ð12Þ

and choose an initial state for the field φ in the form

φðxÞjΣ ¼ u0ðyÞ exp
�
i
ℏ
S0ðyÞ

�
: ð13Þ

After solving Eqs. (A13) we impose the initial conditions
(A14) for the Hamiltonian Eqs. (11). Solving this system,
we find

FIG. 1. Function XðxÞ.

2In the nonlocal theory it is convenient to use the parameter μ
to define dimensionless quantities. We specify such quantities by
using a hat over them. Here and later we shall use the following
notations

m̂¼m=μ; η̂¼ η=μ; η̂0 ¼ η0=μ; V̂¼V=μ; ẑ¼ η̂20− η̂2:
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xμ ¼ xμðτ; yiÞ; pμ ¼ pμðτ; yiÞ: ð14Þ

A sought solution φðxÞ of the nonlocal Eq. (8) in the
leading order of the WKB approximation is

φðxÞ¼u0ðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð0;yÞ
Jðτ;yÞ

s
exp

�
i
ℏ

�
S0ðyÞþ

Z
τ

0

pμdxμ
��

: ð15Þ

This expression is obtained from (A19) by using the
relation

∂2Hðx; pÞ
∂xμ∂pμ

¼ 0 ð16Þ

valid for the Hamiltonian (10). The integral in the exponent
in (15) is taken over phase trajectories which belong to the
Lagrangian submanifold determined by given initial con-
ditions. Here the function J, which enters into the prefactor
in (15), is defined by (A18).

B. Remarks on the Hamilton’s equations

Let us discuss now the Hamilton’s equations in more
detail. One has

∂H
∂pμ

¼ F 0pμ: ð17Þ

Here a prime denotes a derivative ofF ðẑÞwith respect to its
argument ẑ. Hence the Hamilton’s Eqs. (11) take the form

_xμ ≡ dxμ

dτ
¼ F 0pμ; ð18Þ

_pμ ≡ dpμ

dτ
¼ −

1

2
V;μ: ð19Þ

The first of these equations implies

_x2 ≡ ημν _xμ _xν ¼ ðF 0Þ2p2: ð20Þ

Since ẑ ¼ −ðp2 þm2Þ=μ2, the right-hand side of this
relation is a function of p2. We assume that one can solve
Eq. (20) and find p2 as a function of _x2. Then the
Lagrangian of this dynamical system is

Lðx; _xÞ ¼ _xμpμ −H

¼ 1

2
½μ2ðF − 2ẑF 0Þ − 2m2F 0� − 1

2
VðxÞ: ð21Þ

It is understood that in this expression for L one should
express ẑ as a function of _x2. Since L does not contain
explicitly the parameter τ, the corresponding “energy” for
this Lagrangian is conserved. This energy is nothing but the
Hamiltonian in which p2 is a function of _x2 defined by (20).

The constraint equation in the dimensionless form is (see
footnote 2)

−F ðẑÞ þ V̂ðxÞ ¼ 0: ð22Þ

If V̂ðxÞ ≥ 0, thenF ðẑÞ ¼ ẑfðẑÞ should be real and positive.
The argument of this function ẑ ¼ −ðp2 þm2Þ=μ2 is real.
Since fð0Þ ¼ 1 and fðẑÞ does not vanish, this function is
positive for real ẑ. This means that the sign of F ðẑÞ
coincides with the sign of ẑ. Equation (22) implies that the
classical motion is possible only in a domain where ẑ ≥ 0.
In the absence of the potential the constraint equation

takes the form

H0ðpÞ ¼ −
1

2
μ2ẑfðẑÞ ¼ 0: ð23Þ

Since fðẑÞ does not vanish, this equation gives p2 ¼ −m2.
The condition μ2F 0ðẑ ¼ 0Þ ¼ 1 implies that

∂H0ðpÞ
∂pμ

����
p2þm2¼0

¼ pμ: ð24Þ

This means that in the absence of the potential the
Hamilton’s Eqs. (18) and (19) coincide with the equations
for a free particle with the Hamiltonian ð1=2Þðp2 þm2Þ. In
other words, the effects of the nonlocality are important
only off shell, that is, in the presence of the external
potential.

IV. ONE-DIMENSIONAL CASE

To illustrate an application of the general approach
described in the previous section, we consider now a
simple model. Namely, we assume that the external
potential VðxÞ depends on only one spatial Cartesian
coordinate. We denote this coordinate by q and use the
following notations:

xμ ¼ ðt; q; x⊥Þ; x⊥ ¼ ðx2;…; xNÞ: ð25Þ

We use index a ¼ 2;…; N to enumerate transverse coor-
dinates x⊥. We write the eikonal function S, which enters
the WKB solution (9), in the form

S¼−εtþðp⊥;x⊥ÞþSðqÞ; ðp⊥;x⊥Þ¼
XN
a¼2

paxa: ð26Þ

We also assume that the functions uj depend only on the
coordinate q.
Let us assume first that the potential VðqÞ vanishes. In

order to solve the corresponding field Eq. (8) one can put
SðqÞ ¼ ηq where η ¼ const, u0 ¼ const, and uj≥1 ¼ 0.
This is a plane wave solution of the field Eq. (8). Denote
pμ ¼ ð−ε; η; p⊥Þ, where the components of the covector
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p⊥ are pa with a ¼ 2;…; N. Hence, S ¼ ðp; xÞ ¼ pμxμ.
Other solutions of the field equation can be obtained by
superimposing the plane-wave solutions, which in fact is
just by using the Fourier representation. The constraint
equation p2 þm2 ¼ 0 gives

−ε2 þ p2⊥ þm2 þ η2 ¼ 0: ð27Þ

In the presence of the potential we look for a solution of
the nonlocal field Eq. (8) in the form

φðxÞ ¼ exp

�
i
ℏ
ð−εtþ ðp⊥; x⊥ÞÞ

�
ΦðqÞ: ð28Þ

Substituting this expression into (8), one obtains the
following reduced equation:

Ô1Φ ¼ 0; ð29Þ

Ô1 ¼
1

2
½−μ2D̂fðD̂Þ þ VðqÞ�; ð30Þ

D̂ ¼ 1

μ2

�
η20 þ ℏ2

∂2

∂q2
�
; η20 ¼ ε2 − p2⊥ −m2: ð31Þ

To obtain the symbol H1ðq; ηÞ of the operator Ô1, we
substitute

ℏ
i
∂
∂q → η: ð32Þ

The result is

H1ðq; ηÞ ¼
1

2
½−μ2F ðẑÞ þ VðqÞ�; ð33Þ

F ðẑÞ ¼ ẑfðẑÞ; ẑ ¼ η̂20 − η̂2: ð34Þ

For real η the variable ẑ is also real, as well as the
Hamiltonian itself. We also require that for real ẑ one has
F 0ðẑÞ > 0. For fðẑÞ ¼ expðgðẑÞÞ this condition is satisfied
when

1þ ẑ
dgðẑÞ
dẑ

> 0: ð35Þ

In particular, this is valid for the choice (7).
The Hamilton’s equations, (18) and (19) in ðq; ηÞ-phase

space reduce to

_q ¼ ∂H1

∂η ¼ μ2F 0η; _η ¼ −
∂H1

∂q ¼ −
dV
dq

; ð36Þ

while the constraint equation isH1ðq; ηÞ ¼ 0. Let us denote
by ðqðtÞ; ηðtÞÞ a solution of these equations with the
initial condition qð0Þ ¼ q0 and ηð0Þ ¼ η0. A solution of

the field Eq. (29) in the leading order of the WKB
approximation is

ΦðqÞ ¼ 1ffiffiffi
J

p exp
h i
ℏ
SðqÞ

i
Φ0ðq0Þ; ð37Þ

SðqÞ ¼
Z

q

q0

ηdq ¼
Z

τ

0

ηðτÞ _qðτÞdτ: ð38Þ

In the expression for SðqÞ the integral is taken along the
path qðτÞ connecting the initial point q0 with a final point q.
The function Φ0ðq0Þ ¼ exp½ iℏSðq0Þ�u0ðq0Þ is the initial
value for ΦðqÞ. The factor J is

J ¼
���� dxdτ

���� ¼ μF 0 ffiffiffiffiffiffiffiffiffiffiffiffi
ẑ0 − ẑ

p
; ẑ0 ¼ η̂20: ð39Þ

The second equality in the expression for J is obtained by
using the first Hamilton’s Eq. (36).
Since the Hamiltonian H1ðq; ηÞ is invariant under the

reflection η → −η one can write another WKB solution by
a simple change of the sign in the exponent of (37). Taking
a superposition of these two WKB solutions one can write
ΦðqÞ in the following form

ΦðqÞ ¼ C1ffiffiffi
J

p exp

�
i
ℏ
SðqÞ

�
þ C2ffiffiffi

J
p exp

�
−
i
ℏ
SðqÞ

�
: ð40Þ

For C2 ¼ C̄1 the WKB solution (40) is real.

V. BOUND MOTION: ENERGY LEVELS

A. A general case

Let us assume that the potential VðqÞ is nonnegative, and
at some point a the following condition is valid,

F̂ ðη̂0Þ ¼ V̂ðaÞ: ð41Þ

Then the constraint equation

F̂ ðẑÞ ¼ V̂ðqÞ ð42Þ

implies that the momentum η vanishes at a. This means that
a is a turning point. If dV=dqðaÞ > 0, then the “particle”
comes to this point from the left, that is, from the domain
where q < a and η > 0. After reaching this turning point η
changes its sign and the particle moves to the left. If the
potential VðqÞ has another turning point b, where
dV=dqðbÞ < 0, then the particle comes to it from the right
with η < 0, changes its direction of motion at b to the
opposite, and moves to the right with η > 0.
Let us assume that there exist two turning points a < b

such that the motion is restricted by the interval a ≤ q ≤ b.
Such a motion is called bound. Let us consider a non-
negative potential VðqÞ which has its minimum at q0 and
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Vðq0Þ ¼ 0. At this point the absolute value of the momen-
tum jηðqÞj reaches its maximum, which is equal to η0. Thus,
for such a bound motion the phase trajectory lies within a
rectangle ½a; b� × ½−η0; η0�. Let us emphasize that the
Hamiltonian (33) contains a free parameter η0, which
determines a size and a shape of the phase trajectory.
Since the parameter ẑ depends on the square of the
momentum η, a phase trajectory on the plane ðq; ηÞ is
symmetric with respect to the reflection η → −η. For a
given value η0 > 0, constraint Eq. (42) defines a closed
curve on the ðq; ηÞ phase plane (see Fig. 2).
The energy levels of the states corresponding to the

bound motion are quantized. In the quasiclassical approxi-
mation these levels can be found by using standard Bohr-
Sommerfeld quantization condition [46]:

J ¼
I

ηdq ¼ πℏð2nþ 1Þ ð43Þ

Here the integral is taken over a complete period. For a
given η0 > 0, this integral is equal to the surface area inside
the phase-trajectory curve corresponding to this parameter.
Because of the reflection symmetry η → −η, this integral
can be written as

J ¼ 2

Z
b

a
ηðqÞdq: ð44Þ

The integral is taken between the turning points a and b.
Sometimes it is convenient to rewrite J in another form.

Using constraint Eq. (42) one can express the coordinate q
as a function of η. This function has two branches, which
we denote by q�ðηÞ (see Fig. 2). Then, integrating by parts
(44) and taking into account that ηðaÞ ¼ ηðbÞ ¼ 0, one
finds

J ¼ 2

Z
η0

0

ðqþðηÞ − q−ðηÞÞdη: ð45Þ

If the potential VðxÞ is a symmetric function of q,
Vð−qÞ ¼ VðqÞ, then one has q0 ¼ 0 and q−ðηÞ ¼
−qþðηÞ. In this case the quantity J can be written in the
form

J ¼ 4

Z
η0

0

qþðηÞdη: ð46Þ

B. Parabolic potential: Local theory

Let us consider a case when the potential VðqÞ is
parabolic

VðqÞ ¼ V2
1q

2; ð47Þ

where V1 is a positive constant which has the dimension
½V1� ¼ M=L. For the local theory the form factor fðẑÞ ¼ 1
and the constraint equation takes the form

η2 þ V2
1q

2 ¼ η20: ð48Þ

Solving (48) we find

q ¼ �V−1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η20 − η2

q
: ð49Þ

The integral (46) can be easily calculated. We denote the
result by J0. Then one has

J0 ¼
πη20
V1

: ð50Þ

This gives the following expression for the energy levels:

ε2n ¼ m2 þ p2⊥ þ ℏV1ð2nþ 1Þ: ð51Þ

It is easy to see that the number of levels Δn within the
interval Δðε2Þ is

Δn ¼ 1

2ℏV1

Δðε2Þ: ð52Þ

The coefficient 1=ð2ℏV1Þ does not depend on n. In this
sense, the corresponding distribution of energy levels,
Δn=Δðε2Þ, is equidistant.

C. Parabolic potential: Nonlocal theory

1. Phase trajectories

In order to discuss the effect of the nonlocality on the
distribution of the energy levels for the trapped nonlocal
field, we consider the same parabolic potential (47) as in the
previous subsection but modify the kinetic part of the
effective Hamiltonian. We use dimensionless units defined
in Footnote 2 and denote

FIG. 2. A phase trajectory.
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q̂ ¼ V1q=μ; ẑ0 ¼ η̂20 ¼
1

μ2
ðε2 −m2 − p2⊥Þ: ð53Þ

Then the constraint (42) gives

q̂ ¼ �F̂ ðẑÞ1=2: ð54Þ
Let us denote

η̂ ¼ η̂0 sinϕ; ẑ ¼ ẑ0cos2ϕ: ð55Þ

Then relations (54) and (55) allow one to write the equation
for phase trajectories in the parametric form ðqðϕÞ; ηðϕÞÞ.
The phase trajectories for the special choice of the form
factor (7) are shown in Fig. 3.

2. Energy levels

Using dimensionless variables, the action integral (46),
which enters the Bohr-Sommerfeld relation (43) for the
energy levels, can be written as follows:

J ¼ 2μ2

V1

Z
ẑ0

0

dẑ
ffiffiffi
z

pffiffiffiffiffiffiffiffiffiffiffiffi
ẑ0 − ẑ

p f1=2ðẑÞ: ð56Þ

We use here the expression for F̂ in terms of the form factor
f, F̂ ¼ ẑfðẑÞ. After change of variables, ẑ ¼ ẑ0ξ, relation
(56) takes the form

J ¼ σðẑ0ÞJ0: ð57Þ

Here J0 is the value of the action integral for the local
theory (50) and the factor σðẑ0Þ is

σðẑ0Þ ¼
2

π

Z
1

0

dξ
ffiffiffi
ξ

pffiffiffiffiffiffiffiffiffiffi
1 − ξ

p f1=2ðẑ0ξÞ: ð58Þ

For a fixed value of η0 and μ → ∞, the parameter ẑ0 → 0.
Since fð0Þ ¼ 1, the integral (58) simplifies. It can be
calculated analytically, and the result is σð0Þ ¼ 1. Hence, in
this limit J coincides with J0. This is not surprising since in
the limit μ → ∞ the theory becomes local. For a numerical
calculation of σðẑ0Þ, it is convenient to put ξ ¼ cos2 ϕ and
rewrite (58) in the form

σðẑ0Þ ¼
4

π

Z
π=2

0

dϕ cos2ϕf1=2ðẑ0cos2ϕÞ: ð59Þ

The function σðẑ0Þ for the choice of the form factor
fðẑÞ ¼ expðẑ2Þ is shown at Fig. 4. For this form factor it is
possible to show that for large ẑ0 the function σðẑ0Þ has the
following asymptotic form:

σðẑ0Þ ∼
1.13
ẑ0

expðẑ20=2Þ: ð60Þ

Figure 5, which plots the ratio σðẑ0Þ=σ0ðẑ0Þ, demonstrates
this property.
The parameter ẑ0, which enters J, depends on the energy

ε. The condition of quantization

J ¼ πℏð2nþ 1Þ ð61Þ

allows one to find the corresponding quasiclassical energy
levels εn. Since for small ẑ0 the coefficient σðẑ0Þ is close to
1, the number of the energy levels n in the interval Δε2 has
the form (52). However, for large n this distribution of the
number of levels is quite different. For the form factor
fðẑÞ ¼ expðẑ2Þ, one can find it by using the asymptotic
form of the coefficient σðẑ0Þ,

FIG. 3. Phase trajectories for the form factor f ¼ expðẑ2Þ.
Different curves correspond to the different values of ẑ0 param-
eter: 0.14 for line 1; 0.7 for line 2; 1.0 for line 3, and 1.1 for line 4.

FIG. 4. Function σðẑ0Þ for the form factor fðẑÞ ¼ expðẑ2Þ.

FIG. 5. Ratio σ=σ0 as a function of ẑ0.
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J ¼ 1.13
πμ2

V1

expðẑ20=2Þ: ð62Þ

The condition of quantization (61) gives

expðẑ20=2Þ ¼ 0.88
ℏV1

μ2
ð2nþ 1Þ: ð63Þ

For n ≫ 1 one gets

ẑ20 ≈ 2 ln n: ð64Þ

Since ẑ0 ¼ η20=μ
2, one finds

ε2 ≈m2 þ p2⊥ þ
ffiffiffi
2

p
μ2

ffiffiffiffiffiffiffiffi
ln n

p
: ð65Þ

This relation implies

Δn ≈
ffiffiffi
2

p

μ2
n

ffiffiffiffiffiffiffiffi
ln n

p
Δðε2Þ: ð66Þ

The obtained result means that the equidistance of the
energy level distribution (52) of the local theory is broken
by nonlocality. In the limit of large n and given interval
Δðε2Þ the number of the corresponding levels Δn grows
with n as n

ffiffiffiffiffiffiffiffi
ln n

p
.

VI. BARRIER PENETRATION

A. WKB approximation for under-barrier “motion”

Let us consider a potential which has the form shown in
Fig. 6 and assume that the effective energy of the particle is
such that its trajectory has a turning point at q ¼ a. At this
point one has

F ðẑ0Þ ¼ V̂ðaÞ; ẑ0 ¼ η̂20: ð67Þ

Let us write the constraint Eq. (42) in the form

F ðẑ0Þ − F ðẑÞ ¼ V̂ðaÞ − V̂ðqÞ: ð68Þ

In the domain to the left from the turning point a, one has
V̂ðqÞ < V̂ðaÞ. We assume that for real ẑ the function F ðẑÞ

is monotonically growing. Then one has ẑ < ẑ0. In the
region q > a, where V̂ðqÞ > V̂ðaÞ, one should have ẑ > ẑ0.
This condition implies that η2 < 0, which is impossible for
a real value of η.
It is well known that in the local theory a quasiclassical

solution for a wave function in the classically forbidden
domain can be obtained by considering complex trajecto-
ries. Namely, one should change η → iη. The same trick
does work for the nonlocal theories considered in this
paper. After the change ẑ → η̂20 þ η̂2, the value of ẑ can be
larger than ẑ0 for real η̂, and Eq. (68) has a solution in the
region, where q > a, that is in the classically forbidden
domain.
A quasiclassical solution in the underbarrier domain

can be obtained by the change η → iη in (40), and it is of
the form

ΦðqÞ ¼ C−ffiffiffi
J

p exp

�
−
1

ℏ
SðqÞ

�
þ Cþffiffiffi

J
p exp

�
1

ℏ
SðqÞ

�
; ð69Þ

SðqÞ ¼
Z

q

q0

ηdq ¼
Z

τ

0

ηðτÞ _qðτÞdτ: ð70Þ

Here,

J ¼ μF 0 ffiffiffiffiffiffiffiffiffiffiffiffi
ẑ − ẑ0

p
; ẑ0 ¼ η̂20: ð71Þ

For real coefficients C� the WKB solution (69) is real.

B. Nonlocal field in a linear potential

For a linear potential

VðqÞ ¼ U0 þU1ðq − aÞ; ð72Þ

one-dimensional nonlocal field Eq. (29) can be solved
exactly. For this purpose we denote q ¼ aþ x and write
ΦðxÞ in the form

ΦðxÞ ¼
Z

∞

−∞
dη eiηx=ℏΦ̃ðηÞ: ð73Þ

Using the inverse Fourier transform, one gets

Φ̃ðηÞ ¼ 1

2πℏ

Z
∞

−∞
dx e−iηx=ℏΦðxÞ: ð74Þ

The field Eq. (29) implies the following differential
equation for Φ̃ðηÞ:

�
U1

ℏ
i
∂
∂ηþU0 þ μ2F ðẑÞ

�
Φ̃ðηÞ ¼ 0: ð75Þ

A solution of this equation isFIG. 6. Potential VðqÞ.
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Φ̃ðηÞ ¼ C exp

�
−

i
ℏU1

SðηÞ
�
; ð76Þ

SðηÞ ¼ U0ηþ μ2
Z

η

0

dηF ðẑÞ: ð77Þ

Substitution of this expression into (73) gives

ΦðxÞ ¼ C
Z

∞

−∞
dη exp

�
i
ℏ

�
ηx −

1

U1

SðηÞ
��

: ð78Þ

This is a desired solution of the nonlocal field Eq. (29).

C. Connection of WKB solutions at a turning point

Consider a potential of the form shown in Fig. 6 and
denoted by a, a coordinate of a left turning point. One has
V;qðaÞ > 0. To the left of a and at some distance from it one
can use WKB solution (40). For the real field ΦðqÞ, we
denote

C1 ¼
1

2
C expð−iψÞ; C2 ¼

1

2
C expðiψÞ; ð79Þ

where C and ψ are real and write the WKB solution (40) in
the form

ΦðqÞ ¼ Cffiffiffi
J

p cos ðS=ℏ − ψÞ; ð80Þ

S ¼
Z

q

a
ηðqÞdq; J ¼ μF 0 ffiffiffiffiffiffiffiffiffiffiffiffi

ẑ0 − ẑ
p

: ð81Þ

To the right of the turning point a and at some distance
from it we use a decreasing in the underbarrier domain
WKB solution

ΦðqÞ ¼ C−ffiffiffi
J

p expð−S=ℏÞ; ð82Þ

S ¼
Z

q

a
ηðqÞdq; J ¼ μF 0 ffiffiffiffiffiffiffiffiffiffiffiffi

ẑ − ẑ0
p

: ð83Þ

At the turning point theWKB approximation is not valid.
In order to establish a relation between the (80) and (82)
solutions, one can use the following trick [48] which can be
easily adapted to our problem. For this purpose we consider
formally ΦðqÞ as a function of a complex variable q and
find it along a path on the complex plane of q connecting
positive and negative values of q − a. We choose this path
to be a half of the circle of constant radius ρ with the center
at q ¼ a and take ρ so that the conditions of the validity of
the WKB approximation are satisfied along the path. Let us
denote

q − a ¼ ρe�ϕ: ð84Þ

We choose a signþ for a semicircle in the upper half of the
complex q-plane and − for a semicircle in the lower half of
the complex q-plane. The angle ϕ changes from 0 to π. At
the turning point, ẑ ¼ ẑ0 ¼ η̂20 and q ¼ a. We assume that ρ
is small so that jẑ − ẑ0j and jq − aj are also small and use
the following linearized form of the constraint equation:

F 0
0ðẑ− ẑ0Þ¼ V̂;qðaÞðq−aÞ; F 0

0¼ðdF=dẑÞjẑ0 : ð85Þ

Let us denote B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂;qðaÞ=F 0

0

q
. One also has ẑ − ẑ0 ¼ η̂2.

Then (84) and (85) imply

η ¼ μBρ1=2e�iϕ=2: ð86Þ

For the analytically continued WKB solution (82), we get

S� ¼ 2

3
μBρ3=2 expð�3iϕ=2Þ; ð87Þ

J� ¼ μBF 0
0ρ

1=2 expð�iϕ=2Þ: ð88Þ

Here � stands for the quantities calculated along a semi-
circle in the upper (þ) and lower (−) half of the q-plane.
Using these relations at ϕ ¼ π where a − q ¼ ρ, one
obtains

C ¼ 1

2
C−; ψ ¼ −π=4: ð89Þ

This establishes a relation between the WKB solution (82)
in the domain to the right of the turning point and the WKB
solution (80) to the left of it. This gives a required
connection formula. It should be emphasized that for the
operator Fð□Þ with the properties specified in Sec. II,
this connection relation is the same as for a standard
Schrödinger equation.
We assume now that the potential has two turning points

a < b and the domain between these points is forbidden for
the classical motion. We suppose that in the region q < a
the field ΦðqÞ has the form (80) and its amplitude is C.
Then in the region q > b it has the same form with a
different amplitude C̃. Similarly to the local case, the ratio
jC̃=Cj2 can be found by using the connection formula (89)
twice [48]

R ¼
�
C̃
C

�
2

¼ exp

�
−
2

ℏ
P

�
; ð90Þ

P ¼ μ

Z
b

a

ffiffiffiffiffiffiffiffiffiffiffiffi
ẑ − ẑ0

p
dq: ð91Þ

Here, ẑ0 ¼ η̂20 and ẑ ¼ ẑ20 þ η̂2. In the expression for P the
quantities ẑ and q satisfy the constraint (42). The quantity R
gives a probability of the barrier penetration. It should be
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emphasized that these relations are obtained in the WKB
approximation, which is valid when R ≪ 1.

D. Barrier penetration

1. Inverse parabolic potential: Local theory

For the local theory the effective Hamiltonian is

Hðq; ηÞ ¼ 1

2
½−ðη20 − η2Þ þ VðqÞ�; ð92Þ

where η20 ¼ ε2 − p2⊥ −m2. Let the potential VðqÞ be of the
form

VðqÞ ¼
�
V0 − V2

1q
2; if jqj ≤ q�;

0; if jqj > q�;
ð93Þ

where V0 > 0 and q� ¼
ffiffiffiffiffiffi
V0

p
=V1. This potential is shown

in Fig. 7. It is called an inverse parabolic potential.
We assume that η20 < V0 so that there exit two turning

points at q ¼ �a, where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 − η20

p
V1

: ð94Þ

For the motion in the underbarrier domain, we put η ¼ iη̃
where

η̃ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V − η20

q
¼ �V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − q2

q
: ð95Þ

We denote by P0 the following integral:

P0 ¼
Z

a

−a
jη̃jdq

¼ V1

Z
a

−a
dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − q2

q
¼ 1

2
πa2V1: ð96Þ

Using relation (94) we can also write P0 in the form

P0 ¼
πðV0 − η20Þ

2V1

: ð97Þ

Let us emphasize that P0 depends only on the difference
V0 − η20, but it does not depend on the value of η0 itself. In
other words, the penetration probability is sensitive only to
the fact of how close the effective energy η20 is to the top of
the potential V0. Let us also remind that the adopted WKB
approximation is valid only when the dimensionless
quantity P0 is large, that is, when the probability of the
penetration R0 ¼ expð−2P0=ℏÞ is small (see e.g., [48]).

2. Inverse parabolic potential: Nonlocal theory

Let us assume again that the potential VðqÞ has the form
(93). We denote by ẑ0 and ẑ1 solutions of the following
equations:

F ðẑ0Þ ¼ V̂0 − V̂2
1a

2; F ðẑ1Þ ¼ V̂0: ð98Þ

Then the WKB probability of the barrier penetration is

R ¼ exp

�
−
2

ℏ
P

�
; ð99Þ

P ¼ μ

V̂1

Z
ẑ1

ẑ0

dẑffiffiffiffiffiffiffiffiffiffiffiffi
ẑ − ẑ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðẑ1Þ − F ðẑÞ

p
: ð100Þ

Let us calculate the value of P for the case when F is of
the form (7). When both parameters V0 and η20 are much
smaller than μ2, the function XðẑÞ ≈ ẑ and the integral in
(100) can be easily taken with the following result:

P ¼ πμðẑ1 − ẑ0Þ
2V̂1

¼ πðV0 − η20Þ
2V1

: ð101Þ

In this regime the effects of the nonlocality are not
important, and we reproduce the expression for P0 obtained
in the local case [see Eq. (97)].
The effects of the nonlocality play an important role in

the different regime when V̂0 ≫ 1 and η̂20 ≫ 1. To dem-
onstrate this we consider again the theory with the form
factor fðẑÞ ¼ expðẑ2Þ. In order to compare the expression
for P with P0 we fix as earlier the value of the difference
V0 − η20, but now we assume that V̂0 ≫ 1. Then one has
ẑ1 − ẑ0 ≪ 1. In Appendix B it is shown that one can write
the following approximate expression for P in this case:

P ¼ κðV̂0ÞP0; κðV̂0Þ ¼
1ffiffiffiffiffiffi
X0
1

p : ð102Þ

Here, X0
1 ¼ dX=dxjx¼ẑ1

and Xðẑ1Þ ¼ V̂0. Using (B2) one
can write

X0
1ðẑ1Þ ¼ ð1þ 2ẑ21Þ expðẑ21Þ; ð103Þ

V̂0 ¼ ẑ21 expðẑ21Þ: ð104ÞFIG. 7. The inverse parabolic potential.
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These relations give a parametric representation of X0
1ðẑ1Þ

as a function of V̂0. The plot of the function κðV̂0Þ is shown
in Fig. 8. It shows that this function is equal to 1 at V̂0 ¼ 0,
and it is less than 1 and monotonically decreases for
positive V̂0.
Since R ¼ expð−2P=ℏÞ, the relation (102) can be

rewritten as follows:

R ¼ ðR0ÞκðV̂0Þ: ð105Þ

Since R0 < 1, the value of R is always greater that R0. This
means that in the nonlocal theory the probability of the
barrier penetration is larger than in the local case. In other
words nonlocality makes the barrier more transparent in the
high-energy regime.

VII. DISCUSSION

Let us discuss the obtained results. In this paper we study
quasiclassical solutions of the nonlocal massive scalar field
equations. The kinetic part of the action for such a theory
contains a function of the □-operator, which is chosen so
that the theory does not contain new unphysical degrees of
freedom. In Sec. II we formulated conditions imposed on
the form factor of such a theory. We also described a special
model which is used later in the paper for the illustration. In
Sec. III we described an ansatz used in the WKB approxi-
mation for a solution of the nonlocal field equation. In the
leading order of the 1=ℏ-expansion one obtains the equa-
tion for the eikonal function SðxÞ, which is of the form
Hðx;∇SÞ ¼ 0. This is a first-order partial differential
equation, which has the form of the Hamilton-Jacobi
equation for the Hamiltonian Hðx; pÞ, obtained by sub-
stitution ∇S ¼ p. To calculate the eikonal function SðxÞ it
is sufficient to construct the Lagrangian submanifold in the
phase space ðx; pÞ by using the initial conditions for S.
Such a Lagrangian submanifold is formed by phase
trajectories which are solutions of the Hamiltonian

equations of motion. Since the system is conservative, this
submanifold belongs to the subspace Hðx; pÞ ¼ 0. Let us
emphasize that this procedure is very similar to the standard
one adopted for the quantum mechanics and local field
theory. When the field operator is of the second order the
corresponding effective Hamiltonian Hðx; pÞ is a quadratic
polynomial in momentum p. For the nonlocal theory
Hðx; pÞ is a nonpolynomial function of p, and this is a
main difference with the local case. As a result the
construction of the WKB solutions becomes technically
more complicated.
WKB solutions presented in Sec. III are valid for a wide

class of nonlocal scalar field theories with an arbitrary
external potential VðxÞ in a flat spacetime with any number
of spatial dimensions. These relations are greatly simplified
for the case when the potential V depends only on one
spatial Cartesian coordinate. For this case the phase space is
two dimensional and the Hamilton’s equations are com-
pletely integrable. The corresponding WKB solutions are
described in Sec. IV. In Sec. V we used the WKB
approximation for the calculation of the energy levels of
the nonlocal field trapped by a one-dimensional potential.
To illustrate general formulas we considered the case when
the form factor of the nonlocality is of the special form (7),
and the potential is parabolic. The energy levels εn of the
field depend on a discrete integer parameter n. For the local
case the number Δn of the levels in the interval Δðε2Þ is
Δn ¼ Δðε2Þ=ð2ℏV1Þ, and it does not depend on the value
of n. In this sense the levels are equidistant. In the nonlocal
case for large n this dependence is different

Δn ≈
ffiffiffi
2

p

μ2
n

ffiffiffiffiffiffiffiffi
ln n

p
Δðε2Þ: ð106Þ

This means that for a fixed value of ℏV1

μ2
and very high

energy there are much more energy levels in a given
interval Δðε2Þ than in the local case.
Finally, we discussed the under-barrier motion and

obtained an expression for the probability of the barrier
penetration. This probability has the form ∼ expð−2P=ℏÞ.
We calculated the factor P for the special form of the
nonlocality (7) in the presence of the inverse parabolic
potential. For the local theory this factor is P0 ¼
πðV0 − η20Þ=ð2V1Þ. In other words, it depends on how
close is the energy of the state η20 to the top of the potential
V0, but it does not depend on the height V0 of the potential
itself. The situation in the nonlocal case is quite different.
Namely, one has P ¼ κP0, where the factor κ depends on
the height V0 of the potential. This factor is always less than
1, and it decreases when V0 grows. This means that the
nonlocality “helps” the field to penetrate the potential
barrier.
The examples considered in this paper are rather simple.

It would be interesting to apply the developed in the paper

FIG. 8. Parameter κ as a function of V̂0.
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method for study of the effects of the nonlocality in the
early cosmology and in the black hole’s interior.
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APPENDIX A: WKB APPROXIMATION

We collected here useful information concerning con-
struction of solutions of the nonlocal field equations in the
WKB approximation. Further details and required math-
ematical foundations can be found in the book [46].
Let ðx1;…; xNÞ be coordinates of a point x in RN . We

denote by α a set of N non-negative integer numbers
α ¼ ðα1;…; αNÞ. We consider the following operator in
this space:

Ô ¼
X
α

aα

�
ℏ
i

∂
∂x1

�
α1
…

�
ℏ
i

∂
∂xN

�
αN
: ðA1Þ

The sum is taken over all different combinations of α. We
do not assume that the number of terms in the sum is finite,
so that this expression can be used as a formal series in
derivatives representation of nonlocal operators.
Let us make a substitution

ℏ
i

∂
∂xμ → pμ ðA2Þ

in the expression (A1). Then we obtain a function of 2N
variables which we denote by H ¼ Hðx; pÞ,

H ¼ Hðx; pÞ ¼
X
α

aαp
α1
1 …pαN

N : ðA3Þ

Here, p ¼ ðp1;…; pNÞ. This object is called a symbol of
the operator Ô.
We are looking for a solution φ of the equation

Ôφ ¼ 0 ðA4Þ

in the form of the following formal series:

φðxÞ ¼ exp
�
iSðxÞ
ℏ

�X∞
j¼0

�
ℏ
i

�
j
ujðxÞ: ðA5Þ

Usually it is sufficient to consider only the first few terms in
the series. This gives what is known as the WKB approxi-
mation for the solution φ. To obtain the functions SðxÞ and
ujðxÞ that enter (A5) the following procedure is used (see
e.g., [45,46] and references therein).
If one substitutes expression (A5) into the Eq. (A4), then

one finds that in the leading order j ¼ 0 the following
condition is to be satisfied:

H

�
x;
∂S
∂x

�
u0 ¼ 0; ðA6Þ

where

∂S
∂x ¼

� ∂S
∂x1…;

∂S
∂xN

�
: ðA7Þ

For a nonvanishing function u0ðxÞ, the following Hamilton-
Jacobi equation is valid:

H

�
x;
∂S
∂x

�
¼ 0: ðA8Þ

Let us consider a ð2NÞ-dimension space Γ2N with
coordinates ðx; pÞ ¼ ðx1;…; xN; p1;…; PNÞ and denote
by Ω a symplectic two form in it

Ω ¼
XN
μ¼1

dpμ ∧ dxμ: ðA9Þ

AnN-dimensional surfaceΛN in Γ2N is called a Lagrangian
submanifold if the Ω vanishes on ΛN . If a Lagrangian
submanifold can be uniquely projected onto the x-space,
then there exists such a function SðxÞ that pμ ¼ ∂S=∂μ

on ΛN .
The Hamiltonian Hðx; pÞ given by the equation (A3)

implies the following Hamilton’s equations

dxμ

dτ
¼ ∂Hðx; pÞ

∂pμ
;

dpμ

dτ
¼ −

∂Hðx; pÞ
∂xμ : ðA10Þ

These equations determine the Hamiltonian flow in the
phase space Γ2N preserving the symplectic form Ω, and the
Hamiltonian itself is an integral of motion.
Let ΣN−1 be a (N − 1)-dimensional surface in the

coordinate space. Its embedding is defined by the equations

xμ ¼ fμðyiÞ; i ¼ 1;…; N − 1: ðA11Þ

One can consider yi as coordinates on ΣN−1. We associate
with ΣN−1 a (2N − 2)-dimensional phase space Γ2N−2

and denote its canonical coordinates by ðy; vÞ ¼
ðy1;…; yN−1; v1;…; vN−1Þ. The symplectic 2-form ω in
Γ2N−2 is

ω ¼
XN−1

i¼1

dvi ∧ dyi: ðA12Þ

Denote by S0 ¼ S0ðyÞ a function on ΣN−1 and
∇S0 ¼ ðS0

;y1
;…; S0

;yN−1Þ, then a (N − 1)-dimensional sur-

face ðy;∇SÞ of Γ2N−2 is a Lagrangian submanifoldΛN−1, so
that ωjΛN−1 ¼ 0.
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Let us define a covector pðyÞ ¼ pμðyÞ on ΣN−1 by two
conditions

pμðyÞdxμ ¼pμðyÞ
∂fμ
∂yi ¼ 0; HðxðyÞ;pðyÞÞ¼ 0: ðA13Þ

We assume that this system of N equations has a solution
which determines pμðyÞjΣN−1 .
Let us consider the following initial conditions for the

Hamilton’s Eqs. (A10)

xμjτ¼0 ¼ fμðyiÞ; pμjτ¼0 ¼ pμðyÞ: ðA14Þ

A family of solutions of the Hamilton’s Eqs. (A10) with
these initial conditions, ðxðτ; yÞ; pðτ; yÞÞ, forms aN-dimen-
sional surface in Γ2N , which we denote by B. It is possible
to show that B is a Lagrangian submanifold in Γ2N and that
Hðx; pÞ ¼ 0 on it. This implies that there exists such a
function SðxÞ that

pμjB ¼ ∂S
∂xμ : ðA15Þ

This function is a solution of the Hamilton-Jacobi Eq. (A8)
satisfying the initial condition SðxÞjΣN−1 ¼ S0ðyÞ.
This function SðxÞ can be found as follows. Denote a

1-form θ ¼ P
μ pμdxμ, then Ω ¼ dθ. Since the symplectic

form Ω vanishes on B, the integral

Z
pμdxμ ðA16Þ

calculated along a path on B between its two points does
not depend on the choice of the path. The required solution
SðxÞ of the Hamilton-Jacobi equation satisfying the initial
condition SjΣN−1 ¼ SðyÞ can be written in the form

SðxÞ ¼ S0ðyÞ þ
Z

τ

0

pμdxμ: ðA17Þ

Here xμ ¼ xμðτ; yÞ and pμ ¼ pμðτ; yÞ.
Let us note that the map xμ ¼ xμðτ; yÞmay be considered

as a transformation between the coordinates ðτ; yÞ and xμ.
Let us denote by J a Jacobian of this transformation

Jðτ; yÞ ¼
���� det ∂xðτ; yÞ∂ðτ; yÞ

����: ðA18Þ

Then the leading term of the asymptotic solution (A5)
is [46]

φðxÞ ¼ u0ðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð0; yÞ
Jðτ; yÞ

s
exp

�
i
ℏ

�
S0ðyÞ þ

Z
τ

0

pμdxμ
�

−
1

2

Z
τ

0

XN
μ¼1

∂2Hðx; pÞ
∂xμ∂pμ

dτ

�
: ðA19Þ

For τ ¼ 0 the right-hand side of this expression reduces to
u0ðyÞ exp ½ iℏ S0ðyÞ�, and it should be found from the initial
condition for the function φðxÞ at Σ.

APPENDIX B: FUNCTION XðxÞ= x expðx2Þ AND
ITS PROPERTIES

In this Appendix we discuss some properties of the
function

XðxÞ ¼ x expðx2Þ: ðB1Þ

The derivatives of this function are

X0 ¼ ð1þ 2x2Þ expðx2Þ;

X00 ¼ 6x
�
1þ 2

3
x2
�
expðx2Þ;

α ¼ 1

2

X00

X0 ¼ x

�
1þ 2

2x2 þ 1

�
: ðB2Þ

We denote by Y an inverse function of X such that the
following relations are valid:

y ¼ XðxÞ; x ¼ YðyÞ: ðB3Þ

The inverse function can be written as follows:

YðyÞ ¼ y exp

�
−
1

2
Wð2y2Þ:

�
: ðB4Þ

Here, W is a Lambert W function defined by the relation

WðzÞ expðWðzÞÞ ¼ z: ðB5Þ

For a real positive argument W is a real single-values
function.
Consider the following integral:

I ¼
Z

x1

x0

dxffiffiffiffiffiffiffiffiffiffiffiffi
x − x0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xðx1Þ − XðxÞ

p
: ðB6Þ

Let us assume that x1 − x0 is small. To obtain an approxi-
mate value of the integral I, in this case, we use the Taylor
expansion

XðxÞ ¼ X1 − X0
1ðx1 − xÞ þ 1

2
X00
1ðx1 − xÞ2 þ…: ðB7Þ
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Here, X1 ¼ Xðx1Þ, X0
1 ¼ X0ðx1Þ, X00

1 ¼ X00ðx1Þ. Skipping
the higher order terms denoted in (B7) by dots, one has

I ¼
ffiffiffiffiffiffi
X0
1

q Z
x1

x0

dxffiffiffiffiffiffiffiffiffiffiffiffi
x − x0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − xÞ − αðx1 − xÞ2

q
; ðB8Þ

where α ¼ 1
2
ðX00

1=X
0
1Þ. This integral can be calculated

exactly. Let us denote β ¼ x1 − x0, then for αβ < 1 the
answer is

I ¼ 2
ffiffiffiffiffiffi
X0
1

p
3α

½ð2αβ − 1ÞEð
ffiffiffiffiffiffi
αβ

p
Þ − ðαβ − 1ÞKð

ffiffiffiffiffiffi
αβ

p
Þ�:

Here, E and K are complete elliptic integrals. For the small
value of αβ one has

I ¼ πβ

2

ffiffiffiffiffiffi
X0
1

q �
1 −

3

8
αβ

�
: ðB9Þ

For αβ ≪ 1 one can neglect the second term. Keeping the
leading term one gets

I ¼ πβ

2

ffiffiffiffiffiffi
X0
1

q
¼ π

2

X1 − X0ffiffiffiffiffiffi
X0
1

p : ðB10Þ

For small x1 one has X0
1 ≈ 1 and

I ≈
π

2
ðX1 − X0Þ: ðB11Þ
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