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Renormalons beyond the Borel plane
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The renormalon singularities are a known source of the divergent behavior of asymptotic perturbative
series from field theoretical models. These singularities live in the Borel plane and are responsible for
ambiguities in the physical plane. We propose that field theories can have renormalons beyond the usual
first Borel plane. We show an example with a scalar field theory where, considering a chain of cat’s eyes
diagrams, the model develops a Gevrey-3 asymptotic series.
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I. INTRODUCTION

The renormalon phenomenon has been known since the
1970s; it was initially proposed by ’t Hooft, who noted it as
one source of divergence for the perturbative asymptotic
series of quantum field theories. The renormalon shows
up as a singularity in the Borel plane. Initially, the exact
definition of the renormalon singularity was a matter of
discussion, with some debate whether it was a simple pole,
a nth order pole, or rather a branch cut on the Borel plane
[1]. Although new perspectives have drawn attention in the
past two decades [2-39], the seminal report from Beneke,
see Ref. [1], is still a useful reference on the state of the art
regarding the formal discussion.

Nowadays, the renormalon problem is understood as a
component of the broader context of the resurgence program
[16,19,24,27-29,31,36]. The singularity is an indication that
the original perturbative series requires a transseries con-
tribution. Also, the renormalon singularity, which arose as a
formal aspect from quantum field theory, is seen as a useful
guide to phenomenological predictions [40-74].

It is usual in the literature to consider a large-N
expansion when one is interested in exploring the existence
of renormalons inside the theory. That occurs because, in
this limit, the relevant contributions are planar diagrams,
more commonly chains of bubble diagrams. For example,
for quantum chromodynamics (QCD) this produces the
usual contribution to the Adler function. However, the
large-N expansion hides other singularities, as the instanton
problem, because the poles get far away from the origin in
this approximation. Due to historical reasons—as pointed
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by Ref. [1]—it is very common to relate renormalons and
bubble-chain diagrams, although the renormalon singular-
ity might appear at different subsets of Feynman diagrams.
Once we consider a quantum field theory in general
(outside the large-N approximation), we have no guarantee
that the usual planar diagrams are the most relevant ones,
and other scenarios might appear.

Another common relationship is that the renormalon
singularities live in the Borel plane. To our knowledge,
every report so far is still considering that renormalons are
singularities that lives in the first Borel plane and produce
a Gevrey-1 asymptotic series [25,28,29,31,32,35,37,75].
Here we propose a new perspective, where we suppose a
generic chain and show that new kinds of singularities
occur that might live in a g-Borel plane instead of the
typical Gevrey-1 case of the Borel plane. Therefore, we
propose an extension on the definition of the renormalon
singularity, asserting that they live in a Gevrey-q plane, thus
extending the Gevrey-order of the perturbative series.

We aim to identify scenarios where a renormalon
singularity might occur. Notice that we do not intend to
discuss at which order in some perturbative expansions
these contributions appear. The relevant point here is that
the contributions considered are subsets of the full pertur-
bative expansion and shall appear. Following this chain of
thought, we also do not apply any procedure to circumvent
the renormalon problem and give the nonperturbative
solution, as we are mostly interested in studying the
existence or not of renormalons singularities.

As our main interest lies in the formal aspect of quantum
field theory, it suffices to consider as a toy model a massless
scalar field theory. This model is known to possess ultra-
violet (UV) renormalons produced by a sum of bubble-
chain diagrams, and—more importantly—we show that
this model reveals one novel scenario with cat’s eyes chain
diagrams. The sum over these chains produces a Gevrey-3
series, therefore extending the definition of the renormalon
singularity beyond the usual Borel plane.

Published by the American Physical Society
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I1. g-BOREL SERIES

In many scenarios, perturbative series diverge and only
make sense as an asymptotic series. A rather simple
example of divergence occurs when the perturbative series
has a factorial growth, as

[Se]

A~ S (k)15 (1)

k=0

where g is the expansion parameter (the coupling constant),
q is the power of the factorial growth, and s is the sign
(s = £1) of the coefficients.

A well-established procedure is to consider an extension
of the Borel sum [76]. The usual Borel sum occurs for
g = 1 and relates to the conventional asymptotic power
series (in the sense of Poincaré). In this extension we
consider ¢ factorials to control the growth, which is well
established in the studies of g-summability and Gevrey-¢g
series. First we transport the usual sum to a summation in
the g-Borel plane

A = ByA) ~ > (st = —
k=0

(2)

“1—su

Then, if this new infinite sum is summable in the g-Borel
plane we proceed to implement a g-Borel inverse transform

g = A duty..du et B Al (guy.u,). (3)

In the following, we denote the physical plane as 0-Borel
(Gevrey-0), the usual Borel plane as 1-Borel (Gevrey-1),
and so on.

Let us consider, as an example, ¢ = 1 and ¢ = 2 in the
most simple scenario. For s = —1,

T 4 1 0,%
_G’ - ) :2’
g 3‘( 9‘0,0,0,% 1

where Ei is the exponential integral function and G}; is the
Meijer-G function. Therefore, we can relate the asymptotic
sum to a well-defined function through g-summability.

On the other hand, if we take s = 1, we find a pole in the
positive real axis of the g-Borel plane. This singularity
introduces an ambiguity due to the choice of the integra-
tion path.

Few known physical models produce a Gevrey-g series
and discuss g-summability. For example, a scenario with
Gevrey-2 is the sextic anharmonic oscillator, while for
Gevrey-3 there is the octic anharmonic oscillator [77,78].

In Sec. III, we propose with some degree of generality
that there can be Gevrey-g series in field theoretical
models. This is shown both for UV and IR renormalons.
In Sec. IV, we take a toy model and show explicitly the
existence of a Gevrey-3 series when considering the subset
of cat’s eyes chain diagrams.

III. RENORMALONS FROM CHAINS

Renormalons are singularities that arise due to low/large
momenta of integration (IR/UV renormalons) in the sum-
ming of a particular subset of Feynman diagrams. The usual
understanding is that they live in the first Borel plane. In
this section, we argue that they can occur in the g-Borel
plane, meaning that we are not considering the Gevrey-1
asymptotic series as usual, but that the asymptotic series
can be of the Gevrey-¢ type.

In the following we consider the sum over a subset
of Feynman diagrams that produce a “chain,” R;(«)
(Fig. 2). The chain is built by the successive introduction
of “chain-links,” ¢g(#) (Fig. 1). The chain link is some
simple structure as a bubble diagram, a sunset diagram, a
cat’s eye diagram or other possibilities. Formally, we can
write the sum over all chain diagrams of some particular
chain link as

Ra)=Y" / def(@)ag(e)]. (4)
k

where «a is related to the coupling of the theory, and f(#)
contains all additional contribution for the chain diagram.
The momentum ¢ is integrated over the whole chain.

This representation is very general and contains all
possibilities for a one-chain scenario. We remark that we
do not deal here with the multichain scenario.

To determine the structure of R(a) we are mainly
interested in the asymptotic behavior with respect for
the internal momentum £ (this translates to consider the
large k behavior). The behavior of both f(#) and ¢(¢)
depends on the particular scenario under interest. However,
it is known from the expression of Feynman amplitudes
in the complete Mellin representation [79-81], that the

L+ qq {4+ qo
L VAN
a1 a2
FIG. 1. Eye-cat-link diagram.
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asymptotic expansion with respect to the external momen-
tum behaves as

I~ £PIn?¢, (5)

where pe Z, g€ Z*.

Therefore, we can say without loss of generality1 that
both f(#) and g(¢) behaves asymptotically as a trans-
monomial® 27 In? £.

A. UV renormalons

We have to split the investigation into the IR and UV
scales, as the asympototic behavior is different in each case.
First, let us consider the UV scale

f(&) = ¢~n"¢, g(¢) = ¢~In?¢, (6a)

R~ 7 deroaor
:Zw/dﬁ+%ww, (6b)
k

here a > 0, ¢ > 0 such that the integration does not require
any new subtraction and is well behaved for £ — .

Making the change of variables ¢ = ¢’ and identifying
the gamma function,

T(dk+b+1)

Ryy(a) ~ zk:“k (a + ck — 1)@rbit” (7)

We obtain the large k behavior using the Stirling approxi-
mation for the gamma function,

2n(dk + b)

dk+b O\t
R ~ k
uv(@) Za <e(a—|—ck— 1)) a+ck—1

k

In the scenario with ¢ # 0 the k* behavior related to the
factorial growth is canceled out and the function is well
defined,

Tn a recent article, Ref. [29] considered a scenario that
behaves as Inx/(x + 1). That produces renormalon poles in
scenarios prohibited here. However, this expression is “unstable,”
a small perturbation in the asymptotic approximation
(In x = In 1 4+ x) destroys the renormalon pole.

The transmonomial is an extension of the usual monomial
structure and is related to the definition of a transseries.

Ruvle)~ ()
()

The relevant scenario occurs only if c =0 and d > 1, at
large k we obtain

1 "+
(2;1)% (a—1)b+1el

SIS

This expression reveals that in the UV regime the sum
over the set of chain diagrams behaves as a Gevrey-d series.
The special case of d = 1 produces the usual Grevrey-1
scenario of the Borel sum. In this approximation the sum of
chains is d-Borel summable and produces a polylogarithm
of order (d—1)/2 —b,

Ryy(a) ~

1 dv+s

(27)7 (a—1)"*1e?

x Z[(a i 1>dsign(a)urkkd—;

i, [ sign(@)u o

(27)T (a — 1)0H1eb

Ryy(@) = By[Ryy|(u) ~

The polylogarithm function of order v, Li,(x), has a
branch point at x = 1 if v > 0, or a pole of order 1 — v if
v < 0. Therefore, if % — b > 0 we have a branch point at
u = uy = sign(a)(“1)?. And, if &1 — b < 0 this point is a
pole of order 1 + b + %

For example, at perturbative QCD, see Ref. [1], @« = —|a]
and in UV region (for the chain of fermionic bubbles at
1/Ny, where N is the number of flavors) we have a = 2,
b=1,c=0,d = 1. This means that v = 1 and we obtain
a Gevrey-1 UV renormalon located at u = —1 as a double
pole (as expected).

B. IR renormalons

To take into account the IR scale we use a slightly
different choice of f(¢) and g(¢),

F(£) = Wmbe,  g(¢) =%, (10a)
Rir(a Z/ def(€)|ag(2))*
=Nk [ desrreknbrdg, 10b
> I n (10b)
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Note that the power dependence with ¢ is in the
numerator instead of the denominator as in the UV scale.
This choice is to guarantee that Ry is well behaved in the
IR scale and does not require any new subtraction.

We can employ the substitution £ = 1/v,

o0 1
Rg(a) ~ Zak [ dv? v~k (= In p)Ptak
x

= Z(_l)b((_l)da)k /°° dv%v—a—ck(ln v)PHk

A 1

the integral assumes the same form as Ryy, see Eq. (6b),
with the little shift ¢ — a + 2. Following the same steps as
before we obtain that—requiring ¢ = 0 and d > 1—in the
IR regime the sum of chains also behaves as a Gevrey-d
series. At large k it produces

1 (_l)bdh‘f’% Kbk |: < d >d:|k
(27)T (a+1)PTe? 4= (27k) 5 “\Tar1 ’
(11)

which is d-Borel summable, producing a polylogarithm of
order (d — 1)/2 — b with a singularity at

a+ 1\

d 9
once again this singularity is a pole of order 1 + b + (1 —
d)/2 in the scenario where (d — 1)/2 — b < 0, or a branch
point if (d—1)/2—-b> 0.

At perturbative QCD, see Ref. [1], @ = —|a| and in IR
region we have a =1, b =0, ¢ =0, d = 1 for the chain
of fermionic bubbles at 1/N,, where N is the number of

flavors. Also v = 1, so u = 2 is the first IR renormalon and
is a simple pole (as expected).

R (@)~

= (—sign(a)

C. Discussion

In the last sections, we indicate that the existence of
renormalons is directly related to the logarithm behavior of
the chain links. This relationship is commonly assumed,
although not explicitly formulated. Therefore we propose
to conjecture that:

(i) the sum of a set of chains can have a renormalon

only if the chain-link behaves as InZ.

About the renormalon singularity, we also claim that:

(i) The renormalon “lives” in the d-Borel plane, where

In? # is the behavior of each “insertion”/chain-link.
(i) The renormalon is a pole of order 1+ b+
(1 —4d)/2, where b is the logarithm contribution,
In® £, outside the insertions. It can also be a branch
point if b+ (1 —d)/2 < 0.

(iii) The location of the UV/IR pole depends only on a
and d, where a is the power contribution (¢ for IR

renormalons, #~¢ for UV renormalons) outside
the insertions.

With this, it becomes clear that renormalons do not need
to be singularities in the first Borel plane; this is just a
particular case.

In what follows, we exhibit a simple example where a
Gevrey-3 renormalon appears.

IV. CAT’S EYES CHAIN

Let us consider a flavorless and massless scalar field
theory with quartic interaction A¢* /4!. We propose to build
a chain diagram where each chain link is given by a cat’s
eye diagram. Each insertion is

G(¢) = (=g)’1(2). (12)

where I(¢) is the cat’s eye diagram, see Fig. 1, whose
amplitude is given by

I(f):/qul / d”q, / d”q; 1 l
2n)P ) @x)P ) 2m)P (g1 +¢) qi
y 1 i 1 i

(02 +2)* 43 (a5 + 01— 42)* B3

(13)

After some manipulations, see the Appendix, we
can obtain that the solution of cat’s eye diagram at
D =4-2¢is

1) = (4736[%’2{68 <—c1 Yot 0@)), (142)
with

¢) = 0.8224670298... (14b)

¢, = 0.8224670334.. (14c)

Or, after applying a minimal subtraction scheme and
keeping only the finite components

1(¢) =ag+a Inf* + a, In> 2 + a2, (15a)
with constants

3 -8

az = " 15,6 = —4.761481354 x 107°,  (15b)
3y 5

a, = T80 = —2.748401 625 x 107/, (15¢)

a, = 5.886714656 x 1072, (15d)

ap = 7.074471170 x 1077, (15e)
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FIG. 2. Chain of cat’s eye organized as a correction to the mass.

We can already expect that this will generate a Gevrey-3
series due to the In® behavior.

We produce the chain diagram by adding the chain-links.
At Fig. 2 we show the scenario with k chain links. The
amplitude, before regularization, is

Ri(p) = =95k / (jﬂ;ﬂu (z]f i(:))z : (16)

where S, = [(k+ 1)2¥]7! is the symmetry factor for the
diagram with k eye-cat-links. We calculate the symmetry
factor using a general expression for symmetry factors of
the scalar theory, by Ref. [82].

At D = 4 the function / behaves asymptotically as a
logarithm and by power counting R; has a quadratic
divergence. We can make a subtraction as a BPHZ
(Bogoliubov-Parasiuk-Hepp-Zimmermann) procedure
[83] (Ri(p) — R(0) — p?0,2Ri(p)ly). which produces at
low p

k)~ (-30) [TEre. w)

To investigate the asymptotic UV behavior, we can
consider £ € [1,00] and make the change of variables
¢ = e’ such that,

4 k
A gp” 1 1
Rp =~y (29)
X /oo dte™(ag +2at + 4a,r* + 8ast® )~
0
(18)

As k € N we can use the multinomial representation and
integrate over f,

gp* 1 I \*
«(p) ~ —@m (—59 )
X Z a{}’a{ ‘aéza?
Jotirtiatjz=k
o KIT(1 + j; +2j, + 3)3) ‘
Joli1li21js!

(19)

The dominant contribution comes from j = (0,0, 0, k)
(accuracy of ~70%, it can be checked numerically for
large values of k). The second contribution comes from
j=1(0,0,1,k—1) (with an accuracy of more than 90%).
That way, we can write

4 3 k
R gp a, gax\*T'(1+ 3k)
R ~— 14+—= (- 20
(p) 167:2( +3a3>< 2) 1 20

and it is clear that these coefficients produce a divergent
series. Taking the Stirling approximation for large values of
k the sum over all cat’s eyes chains produce

ReY R~ (5) 0 e
k=1 =1 \¢
with k and § given by
o= e I (1 +“2>, (21b)
1677 3as
1= e 21¢)

This expression for R is not summable in the first Borel
plane. The Borel transform introduces a k! damping that
behaves just as k. We can control the divergent behavior
only with a 3-Borel transform, that introduces a k!3,
meaning a k°* damping, sufficient to obtain a summable
expression. Therefore, this is a Gevrey-3 asymptotic series.

If we transport Eq. (20) into the 3-Borel plane we obtain
a hypergeometric function,

4
gp a 12
BS[R]N_1672_2 <1+3a3> |:_1+2F1<353329.gu>:|5

(22)

it has a branch point at u = 1/g. This cut lies in the
integration path of the 3-Borel plane, therefore we have a
singularity that blocks the inverse Borel transform.

If we try to get back into the physical plane we obtain an
imaginary ambiguity due to the choice of the integration
path from the 3-Borel to the 2-Borel plane. However, there
are no new poles in the 2-Borel plane, neither in the 1-Borel
plane. Meaning that the only ambiguity appears when
passing the Gevrey-3 series to the 2-Borel plane.
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The fact that the only singularity comes from the 3-Borel
plane is a consequence of the previous approximation to
consider the most dominant divergent behavior. In the full
scenario, one would expect renormalon singularities at
Gevrey-1,2 and 3. Note, for example, that at Eq. (19) one of
the contributions is j, = j; = j3 =0, j, = k which pro-
duces a Gevrey-2 series,

> ga2/2
> e

=1

(1 +2k),

This new series has a branch point in the 2-Borel plane
located at u = —1/(2a,g°) < 0, which does not lie in the
integration path. If we keep investigating, we find other
singularities produced by Eq. (19). In fact, the sum over the
cat’s eyes chain diagrams produces more then one asymp-
totic series, each with a different Gevrey order. However,
the relevant behavior is already revealed: the highest degree
is Gevrey-3 and there is a renormalon singularity that lives
in the 3-Borel plane.

V. CONCLUSION

We exhibited that the renormalon problem goes beyond
the first Borel plane. It seems that the renormalon singu-
larities are in some different category when compared to
the instantonlike singularities, only known to occur at the
Gevrey-1 level. Although we did not discuss a realistic
theory nor considered the phenomenological influence, it is
beyond doubt that we have a new singularity that lives in
the 3-Borel plane. We remark that our report poses a new
difficulty for the program to cure all renormalon ambi-
guities. Furthermore, there are some aspects open to future
investigations. We need to determine how the Gevrey-¢g
renormalon impacts the asymptotic series or the resurgence
program. Also, we must check whether a Gevrey-d series
(with d > 1) also appear for realistic theories.
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APPENDIX: CAT’S EYE DIAGRAM

In this section, we consider for completeness a step-by-
step computation of the cat’s eye diagram, as this evaluation
is not easily found in textbooks.

Let us start from the original amplitude,

_ dPq dPq, dPq, 1 i
0= | G | @ | Grasara
1 1 1 1
X(2+f) 5(g3+q1 - )2‘1_%’

and then introduce Schwinger parameters «a; for each
propagator,

- [ 55 o

x e~ @+ =] p=as(@+E) ~asq; p=as(q5+q1~42)*~ 643

(A2)

After some algebraic manipulations on these expressions,
we obtain that

= [ |t | Ml

a1 +43a5 ‘a3 143062
% e_a125(ql+T) e_a346(QZ+W)
U_q _ 1959346 0396910512 2
X @ 2534613 U e, (AS)
where
Ajiy.iy = ) F O, + -+, (Ada)
U = apasasss + 2346015, (Adb)

V = ajar (34056 + asa6) + azay(@pase + asag)

+ asag(oyay + oaz). (Adc)

We can make a shift in the momenta,

0 [ | o

6
© 2 ) U2 yp
x/ | |da,-e_“125qle_“34éqze wstaclie™0, (AS5)
0 i=1

and then compute the integration of the internal momenta

1 w0 6 e~
I f :—D/ da,»—.
#) (47)% Jo 11 U?

1

(A6)

Let us reparametrize defining the new sectors

al :stl...t57

14(1 = 15),

a3 = Sl1t2l3(1 - l‘4)3

a2:sl’l...

ay = stitr(1 = t3),
as = st;(1 — 1),

Ag = S(l - tl),
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such that oy 4+ ---+ a¢ =s. This change of variables
produce the Jacobian

da, - - dag = s°t163631,dsdt, - - - dts,

and after some manipulation we obtain that

Ay = sty 1y, (A7a)
azy = stify(1 = 1314), (A7b)
apps = sti(1 =ty + ttaty), (A7c)
aze = s(1— 1) + 111(1 — 131)), (A7d)
U =510, (A7e)
V =685V, (ATf)
with U and V given by
= (1 =t)t3t4(1 =t + t115(1 = t314))
+ (L=t + tat3ty)(1 = 1314)(1 = 11),  (A8)

V=00 -1)(1=1)(1 =14+ 1425)(1 = 15 + 1314 (1 = 15))
+ tat3t4(1 = 1112) (1 = 13) (1 — 14)
+ (1 = 1314) (1 = 15)1415).

Substituting this back into the integral I, Eq. (A6), we
obtain

(A9)

1 !
o) — L / a2 Gl
@) (4r)% Jo H Uz(t)

1

. )
X / ds s~ P)~1esnnly,
0

This expression can be directly integrated over s,

D6 =32 15 (233042,
o) =" [

(A10)

@n)? Jo L1777 grp-oye-Rp12-30° (A11)
and taking that D =4 — 2,
llbl% 251‘3 3[:[4
I(f) 4” 6— ’%sbﬂﬁs/ Hd U2 deyy3e (A12)

Although at this point we do not know the behavior of
the remaining integral with respect to ¢, we can already see
that the pure logarithmic behavior of £ can only occur at
& = 0, which reinforces the perception that the existence of
renormalons is an aspect related to the dimension where the
theory is renormalizable.

Let us take 7V~ as a subdominant contribution
(1 + O(e)). And as the polynomial U is independent of
ts this variable can be integrated out. Also we can re-
write U as

U = (1 - lz + tzl3t4(1 - [314))
—11(1 =1y + 51314(1 = 131,))

:A1 _t1A27 (A13)
to integrate over f,
1 1
dty —————
A (A - Ay
B /Al—Az dy 1
A, —A2 y2—4e
1 1 1
= - Al4
1 —4e {(A1 —Ay)' A, ATTRA, (A1)
At this point, Eq. (A12) becomes
I'Be](1+0(¢)) I'3¢](1+0(¢))
I(¢)= - Js, AlS
( ) (4ﬂ)6—3sf65 1 (471)6—35/65 2 ( )
where J; and J, are given by
1 t1_2€l2_36l
J = / dtydtzdty 2 3 3 4
0 1 =1y + t51314(1 = 1314)
1
X - (Al6)
(1213141 = 1) (1 = 1324)] '
1 t1—25't2—38t
Jr, = / dt,dt;dty 2 3 3 4
0 1=ty + tirt314(1 = t314)
1
X . Al7
[1 =15 + o314 (1 = 1314)]' 7% (AL7)
The second integral, J,, is finite and gives
J, =0.8224670298... = (A18)

The integral J; has a divergent contribution from the ¢,
integration. We can reorganize it and compute the other
integrals

1
Jl :/ dtz - / dt3/ dt4
0 l—t €

X
1—t,+ t2t3t4(1 —t314) (1 — t3t4) —4e

1 21n(1 — 1)
— anE—l 1 —t 4e—1 - 7
[ amer e 250
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Note that we can rewrite it as a derivative of a function of
u and v (and later identify u = 2¢, v = 4¢)

Glu.v) :—Aldtt"‘l(l—t)"‘l (1—§>_1, (A19)

21n(1 — 1)

o (A20)

1
9,G(u,v) :A det'=1(1 =11

Where is G(u,v) is known, see Eq. 3.197(3) from
Ref. [84],

Ji = GO (2¢, 4¢)

=\ ['(2e + k)
Z k ‘T <F/(4€) -
£ 2'T'(6¢ + k)

T(4¢)I" (6¢ + k))

I'(6e + k)

1 2 1 2 A1
- (et o) + | (55 Lar

1 7 2
+— +7/

100
—yIn2 122—7
T8 82 7n+4“ 2;

1
G(u,v) = =B(p,v),F, (LM;u + v;§>
==Y
< T(p+v+k)2*

where B(u,v) is the Beta function and ,F; is the hyper-
geometric function. We use the representation as a infinite
sum of gamma functions, to make manipulations easier.

Making the derivative with respect to v and substituting
u =2, v=A4e,

(A21)

1
=32 +0.8224670334... + O(e) (A22)
€
Finally, we obtain
I'[3¢] 1
We can expand with respect to € — 0 to make the poles evident,
1 1 € £ 9 £? £?
1(¢) = L sy ro@))(1-3enZ 1 2em s om0
@) =Gy <3e y+g6r+m)+ 0l ))< ety e+ O )>
1
(8 5 —Cq + CH + O( )) (A24)
After some algebraic manipulations it produces
1 L 1y 1 £ 1 (chy—c;, m+6y2 9y 2 3 ¢
1()=—F|—=+— —In— - —Zln—+=—In*>—
@) (47:)6{863—’—52( 8§ 8 4n>+ 3 T2 16 4 16 4x
2 (cy—c, 7+ 6y? 3y 2 3 /2
—3In— - ——-"1n®— o A25
n47r< 3 T ) 16" 4z 16" 4 07 ”] (A25)
We consider a MS subtraction, such that the poles (e73,e72,e"") are removed and the amplitude becomes
1(€) = ag + a; In£2 + a)In?¢? + a3In*£2, (A26a)
where the constants are
3 -8
az = ——c—=—4761481354 x 107°, (A26b)
4°r
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3

G, = =5 = —2.748401625 x 107, (A26¢)
V3

a; = 5.886 714656 x 10, (A26d)

The correct determination of a, requires one more term
in the e-expansion in Eq. (A24). After some computations
one finds a, = 7.074 471170 x 107",

Therefore, the chain of cat’s eyes has the In® # behavior
that can produce a Gevrey-3 divergent series. This loga-
rithmic behavior is a property of D =4 and is respon-
sible for the renormalon divergence. If we consider the
same diagram in any other dimension we will obtain
something like ¢ In” # that does not produce a renormalon
divergence.
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