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We describe the dynamical mass generation in pseudoquantum electrodynamics (PQED) coupled to the
Gross-Neveu (GN) interaction, in (2þ 1) dimensions, at both zero and finite temperatures. We start with a
gapless model and show that, under particular conditions, a dynamically generated mass emerges. In order
to do so, we use a truncated Schwinger-Dyson equation, at the large-N approximation, in the imaginary-
time formalism. In the instantaneous-exchange approximation (the static regime), we obtain two critical
parameters, namely, the critical number of fermions NcðTÞ and the critical coupling constant αcðTÞ as a
function of temperature and of the finite cutoff Λ, which must be provided by experiments. In the
dynamical regime, we find an analytical solution for the mass function Σðp; TÞ as well as a zero-external
momentum solution for p ¼ 0. In the continuum theory Λ ¼ ∞, where scale-invariance is respected, it is
shown that the model has a dynamically generated mass for any value of the coupling constant α.
Furthermore, after calculating the effective potential for PQED, we prove that the dynamically generated
mass is an energetically favorable solution in comparison to the massless phase. We compare our analytical
results with numerical tests and a good agreement is found.
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I. INTRODUCTION

In the last decades, the interest in studying two-dimen-
sional theories has been increased since the experimental
realization of graphene [1,2] and other related materials,
such as the transition metal dichalcogenide monolayers [3].
The main goal is to derive either new quantum phases of
matter [4–7] or calculate renormalized parameters that
change the electronic properties of these materials [8–13],
opening possibilities for future technological applications
(in particular spintronics [14], valleytronics [15], and
electric-field tunning of energy bands [16,17]). Before this
context, in the realm of high-energy physics, several works

discussed the possibility of dynamical mass generation for
massless Dirac particles, yielding a phase transition to a new
quantum state of matter in which the chiral symmetry is
broken [18–21]. This is generated due to the electronic
interactions in the plane and it may occur even at finite
temperatures. Because electrons in these materials obey a
Dirac-like equation, therefore, some authors have also
considered the realization of dynamical mass generation
in these two-dimensional systems [22–25].
The possibility of chiral symmetry breaking, i.e.,

dynamical mass generation in quantum electrodynamics
(QED) has been discussed in several Refs. [18–21,26–28]
for both ð2þ 1ÞD and ð3þ 1ÞD cases, just to cite a few.
Furthermore, this symmetry-broken phase also has been
shown to occur due to four-fermion interactions (such as
Gross-Neveu and Thirring interactions) in Refs. [29–32]. In
this case, the fermionic field exhibits a massive phase due
to the spontaneous symmetry breaking, described by the
so-called gap equation. This is usually calculated at the
large-N expansion, whereN is the number of fermion fields
and the gap equation is calculated at order of 1=N [29,32].
The dynamical mass generation is a typical effect of
the nonperturbative regime, hence, it is common the
application of the Schwinger-Dyson equations (SDEs)
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for calculating the critical parameters that describe the
phase transition.
The SDEs are an infinite set of coupled-integral equa-

tions, relating all of the interacting Green functions of the
model [19,20,33]. Fortunately, within some approximative
scheme, it is possible to find a truncated set of equations for
calculating the desired Green functions, in particular, the
electron-self energy that provides the chiral symmetry
breaking. For pseudo-quantum electrodynamic (PQED)
[23,34], also called reduced quantum electrodynamics
[35], the dynamical mass generation has been studied both
at finite temperatures [36] and at zero temperature with the
presence of the Gross-Neveu interaction [31]. Nevertheless,
the effect of the Gross-Neveu interaction in PQED at finite
temperatures has not been considered until now.
In this work, we describe the dynamical mass generation

in PQED coupled to a Gross-Neveu interaction at finite
temperature. We use the Matsubara formalism in order to
include the effect of the thermal bath into the Schwinger-
Dyson equation for the electron. This is dependent on both
the gauge-field propagator and the auxiliary-field propa-
gator, obtained after we use a Hubbard-Stratonovich trans-
formation into the four-fermion interaction. These two
bosonic propagators are calculated in order of 1=N, which
is consistent with our assumption of strong-coupling limit.
Thereafter, we use this result into the Schwinger-Dyson
equation for the electron self-energy and calculate the full
electron propagator in the dominant order of 1=N in the
nonperturbative limit. From this result, we conclude that a
mass function is dynamically generated whether the num-
ber of fermions is less than a temperature-dependent critical
parameter NcðTÞ for a finite cutoff Λ. In the continuum
theory Λ ¼ ∞, the mass generation occurs at any value of
α. At large temperatures, we find that NcðTÞ ≪ 1, hence,
the dynamically generated mass vanishes and the system is
in the gapless phase.
This paper is organized as follow. In Sec. II. we show our

model and perform the large-N approximation. In Sec. III.
we write the truncated set of Schwinger-Dyson equations
within the unquenched-rainbow approximation. In Sec. IV.
we calculate the mass function in the static regime and
obtain the critical parameters for the phase transition. In
Sec. V. we use the zero-mode approximation in the
dynamical regime for calculating the mass function. In
Sec. VI. we summarize and discuss our main results. We
also include four appendixes, where we give details about
the angular integral, kernel expansion, the numerical results
for the mass function, and show that the dynamically
generated mass is the minimum of the effective potential.

II. PSEUDOQUANTUM ELECTRODYNAMICS
WITH GROSS-NEVEU INTERACTION

We consider N fermion fields constrained to the plane,
whose interaction is described by pseudoquantum electro-
dynamics (PQED) [34]. Furthermore, we assume a contact

interaction, given by the Gross-Neveu (GN) action [37].
Therefore, in the Euclidean space-time, the action of the
model reads

L ¼ 1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ iψ̄a∂ψa þ eψ̄aγ
μψaAμ

þ −
G0

2
ðψ̄aψaÞ2 −

ξ

2
Aμ

∂μ∂νffiffiffiffiffiffiffiffi
−□

p Aν; ð1Þ

where Fμν is the field intensity tensor of Aμ, which is our
gauge field, and ξ is the gauge-fixing parameter. On the
other hand, ψa is a four-component Dirac field, with the
flavor index a ¼ 1;…; N. The dimensionless coupling
constant e is the electric charge, γμ are the Dirac matrices
in the four-rank representation, whose algebra is defined by
fγμ; γνg ¼ −2δμν. The coupling constant G0 describes the
strength of the GN interaction and has unit of inverse of
mass in the natural system of units ðℏ ¼ c ¼ 1Þ.
In the perturbative regime at zero temperature, the model

in Eq. (1) for massive fermions has been used to describe the
renormalization of the band gap for WSe2 and MoS2 [13].
This result, nevertheless, requires a bare-mass term such as
m0ψ̄aψa which is renormalized at one-loop and provides a
beta function for themass in terms of theRG scale. From this
result, one concludes that the renormalized mass is depen-
dent on the electronic density and a good agreement with
experimental data has been found in Ref. [13].
In the nonpertubative limit, the mass term is generated

due to interactions even if we start withm0 → 0 [31]. Here,
we generalize this result by including a thermal bath of
temperature T.
From Eq. (1), we find the gauge-field propagator,

namely,

Δ0;μνðpÞ ¼
1

2
ffiffiffiffiffi
p2

p �
δμν −

�
1 −

1

ξ

�
pμpν

p2

�
ð2Þ

and the fermion propagator

S0;FðpÞ ¼ −
1

γμpμ
: ð3Þ

Before we discuss the vertex interactions, let us apply the
Hubbard-Stratonovich transformation, which converts the
four-fermion interaction into a Yukawa-type interaction by
including an auxiliary field φ and the coupling constant
g ¼ G0N. In this case, we replace the four-fermion inter-
action by the following scheme

LGN → LGN þ 1

2g

�
φ −

gffiffiffiffi
N

p ψ̄aψa

�
2

; ð4Þ

where LGN ¼ −G0ðψ̄aψaÞ2=2. Therefore, using Eq. (4) in
Eq. (1), we find
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LGN ¼ −
φffiffiffiffi
N

p ψ̄aψa þ
φ2

2g
: ð5Þ

Equation (5) must be supplemented by the motion equation
of φ, given by

φ ¼ gffiffiffiffi
N

p ψ̄aψa; ð6Þ

which proves that the transformation does not change the
dynamics of the model at classical level. Furthermore, the
bare auxiliary-field propagator is

Δ0;φ ¼ 1

1=g
; ð7Þ

and Eq. (1) reads

L ¼ 1

2

FμνFμνffiffiffiffiffiffiffiffi
−□

p þ iψ̄a∂ψa þ eψ̄aγ
μψaAμ

−
φffiffiffiffi
N

p ψ̄aψa þ
φ2

2g
−
ξ

2
Aμ

∂μ∂νffiffiffiffiffiffiffiffi
−□

p Aν: ð8Þ

The Yukawa-type vertex function is easily obtained from
Eq. (8) and is given by −1=

ffiffiffiffi
N

p
. On the other hand, for

summing the self-energies in the large-N expansion for
PQED, we shall replace e2 → λ=N, where λ is taken fixed
at large N. This allow us to sum over all of the diagram-
matic contributions in order of 1=N, which is an infinite
sum, unlike the standard perturbation in e. Therefore, the
PQED vertex reads

ffiffiffiffiffiffiffiffiffi
λ=N

p
γμ, describing the electromag-

netic interaction.

III. TRUNCATED SCHWINGER-DYSON
EQUATION AT FINITE TEMPERATURES

In this section we present the Schwinger-Dyson equa-
tions, obtained from Eq. (8), that describes the quantum
corrections for the two-point functions. In principle, this is
a very complicated set of integral equations for all of the
full Green functions of the model. From now on, we
assume the ladder approximation, also called rainbow
approach [38], which consists of neglecting quantum
corrections to the vertex functions. It is worthwhile to note
that this may be corrected by the Ball-Chiu vertex [39]
when one wishes to preserve the Ward-Takahashi identity.
Because we are interested in dynamical mass generation

for the electrons, we need to find a closed solution for
both gauge-field and auxiliary-field propagators. These
shall be given by the large-N approximation, thus the
bosonic-field propagators are calculated in the unquenched
approximation [40].

A. Auxiliary field

In Fig. 1, we show the diagrammatic representation of
the Schwinger-Dyson equation for the auxiliary field.
Its analytical expression is given by [31]

Δ−1
φ ðpÞ ¼ Δ−1

0;φ − ΠðpÞ; ð9Þ

where Δ−1
φ is the full propagator of φ and ΠðpÞ is given by

the fermionic loop, hence

ΠðpÞ ¼ −
1

N
Tr

Z
d3k
ð2πÞ3 1SFðp − kÞΓðp; kÞSFðkÞ; ð10Þ

where SFðpÞ is the full fermion propagator. In the lowest
order of 1=N, we find that ΠðpÞ ¼ −

ffiffiffiffiffi
p2

p
g0, with g0 ¼

1=4 [21]. Therefore, the full propagator of the auxiliary
field is given by

ΔφðpÞ ¼
1

g0

1

ðgg0Þ−1 þ
ffiffiffiffiffi
p2

p : ð11Þ

B. Gauge field

In Fig. 2, we show the diagrammatic representation of
the Schwinger-Dyson equation for the gauge-field propa-
gator [31].
Its analytical expression is given by

Δ−1
μν ðpÞ ¼ Δ−1

0;μνðpÞ − ΠμνðpÞ; ð12Þ

FIG. 1. The Schwinger-Dyson equation for the auxiliary field.
The left-hand side is the inverse of the full propagator of the
auxiliary field, the first term in the right-hand side corresponds to
the bare auxiliary-field propagator, and the second term ΠðpÞ is
the quantum correction. The function Γ½p; k� → 1 corresponds
to the approximated vertex.

FIG. 2. The Schwinger-Dyson equation for the gauge-field
propagator. The left-hand side is the inverse of the full propagator
of the gauge field, the first in the right-hand side corresponds to
the bare gauge-field propagator, and the second term ΠμνðpÞ is
the exact vacuum polarization tensor. The function Γμ½p; k� → γμ

corresponds to the approximated vertex.
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where Δ−1
μν is the full propagator and Πμν is the polarization

tensor due to the electromagnetic interaction. This is
given by

ΠμνðpÞ¼−
λ

N
Tr

Z
d3k
ð2πÞ3 γμSFðpþkÞΓνðp;kÞSFðkÞ: ð13Þ

Similarly to the previous case, in the lowest order of 1=N,
we find Πμν ¼ λ

ffiffiffiffiffi
p2

p
=8Pμν, where Pμν ¼ δμν − pμpν=p2.

Therefore, the full propagator reads

Δμν ¼ Δ0;μα½δαν − ΠαβΔ0;βν�−1: ð14Þ

Using Eqs. (2) and (13) in Eq. (14), we find

ΔμνðpÞ ¼
Pμνffiffiffiffiffi

p2
p

ð2þ λ
8
Þ

ð15Þ

in the Landau gauge, i.e., with ξ ¼ ∞.

C. Matter field

In Fig. 3, we show the diagrammatic representation of
the Schwinger-Dyson equation for the fermions field [31].
Its analytical expression is given by

S−1F ðpÞ ¼ S−10;FðpÞ − ΞðpÞ; ð16Þ

where SF is the full fermion propagator and Ξ is the
electron self-energy, given by

ΞðpÞ ¼ ΞλðpÞ þ ΞgðpÞ; ð17Þ

where Ξλ is the PQED contribution and Ξg is the GN
contribution, namely,

ΞλðpÞ ¼ λ

N

Z
d3k
ð2πÞ3 γ

μSFðkÞΓνðk;pÞΔμνðp − kÞ; ð18Þ

ΞgðpÞ ¼ 1

N

Z
d3k
ð2πÞ3 1SFðkÞΓðk;pÞΔφðp− kÞ

þ−
1

N

Z
d3k
ð2πÞ3 1Tr½SFðkÞΓðk;q ¼ 0ÞΔφðq ¼ 0Þ�:

ð19Þ

In order to find the full fermion propagator, it is
convenient to decompose this Green function into its
irreducible parts. Hence, we adopt the following ansatz

S−1F ðpÞ ¼ −γμpμAðpÞ þ ΣðpÞ; ð20Þ

where AðpÞ yields the wave function renormalization and
ΣðpÞ is called mass function. Note that ΣðpÞ ≠ 0 implies a
dynamical mass generation [21]. In order to obtain the mass
function, we take the trace operation in both sides of
Eq. (16). Thereafter, we substitute Eqs. (3), (18), (19), and
(20), within the rainbow approximation, Γνðp; kÞ → γν and
Γðp; kÞ → 1, we obtain

ΣðpÞ ¼ λ

N

Z
d3k
ð2πÞ3

δμνΣðkÞ
k2A2ðkÞ þ Σ2ðkÞΔμνðp − kÞ

þ 1

N

Z
d3k
ð2πÞ3

ΣðkÞ
k2A2ðkÞ þ Σ2ðkÞΔφðp − kÞ

− Δφð0Þ
Z

d3k
ð2πÞ3

ΣðkÞ
k2A2ðkÞ þ Σ2ðkÞ : ð21Þ

On the other hand, for calculating the wave function
renormalization, we multiply Eq. (16) by p and, after
calculating the trace operation, we obtain

AðpÞ ¼ 1−
λ

Np2

Z
d3k
ð2πÞ3 ðδ

βμδαν − δβαδμν

þδβνδμαÞ pβkαAðkÞ
k2A2ðkÞ þΣ2ðkÞΔμνðp− kÞ

þ 1

Np2

Z
d3k
ð2πÞ3

δβαpβkαAðkÞ
k2A2ðkÞ þΣ2ðkÞΔφðp− kÞ: ð22Þ

It is clear that Eqs. (21) and (22) are a coupled set of
equations for ΣðpÞ and AðpÞ. However, in the dominant
order 1=N, we may replace AðpÞ → 1 in Eq. (21). This is
also in agreement with the rainbow approximation.
Next, we use the Matsubara formalism for introducing

temperature effects into Eq. (21). In the imaginary-time
formalism, the main step is to change the time-component
integrals into a sum over Matsubara frequencies [41], i.e.,
we must perform

Z
dk0
2π

fðk0;k; βÞ →
1

β

X∞
n¼−∞

fðn;k; βÞ; ð23Þ

FIG. 3. The Schwinger-Dyson equation for the electron. The
left-hand side is the inverse of the full propagator of the fermion
field, the first term in the right-hand side corresponds to the bare
Dirac propagator, and the other terms in the right-hand side are
the electron self-energy ΞðpÞ.
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with

kμ ¼ ðk0;kÞ → ðωn;kÞ; ð24Þ

and

ωn ¼
8<
:

ð2nþ1Þπ
β for fermions;

2nπ
β for bosons;

where ωn are the Matsubara frequencies, T ¼ β−1 is the
temperature of the thermal bath, and n is the vibration mode
related to each momentum component. Note that we are
considering the Boltzmann constant as kB ¼ 1, in the
natural system of units. After including the thermal bath
in Eq. (21), we have

Σmðp; TÞ ¼ C1

XZ Σnðk; TÞ
ð2nþ 1Þ2π2T2 þ k2 þ Σ2

nðk; TÞ
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðn −mÞ2π2T2 þ ðp − kÞ2

p
þ C2

XZ Σnðk; TÞ
ð2nþ 1Þ2π2T2 þ k2 þ Σ2

nðk; TÞ
×

1

ðgg0Þ−1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðn −mÞ2π2T2 þ ðp − kÞ2

p ;

ð25Þ

where

XZ
→ T

X∞
n¼−∞

Z
d2k
ð2πÞ2 ; ð26Þ

C1 ¼
2λ

ð2þ λ
8
ÞN ; ð27Þ

and

C2 ¼
1

g0N
: ð28Þ

From now on, we assume that Σmðp; TÞ ¼ Σðp; TÞ and,
therefore, the mass function only depends on the dominant
vibrational mode m ¼ 0. The standard procedure for
calculating the mass function is to convert the integral
equation into a differential equation for Σðp; TÞ. It turns out
that there exist two main operations, namely, the sum over
n and the angular integral that must be performed before
finding this result. We shall explore some approximations
for these operations.
Before performing further approximations, let us show

that the sum over the vibrational modes n is convergent.
The convergence of this sum for PQED at finite temper-
ature has been shown in [36]. In Eq. (25), the sum over n
may be written as

U ¼
X∞
n¼−∞

1

ð2nþ 1Þ2 þ A2

1

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ C2

p ; ð29Þ

where we conclude that ðA2; C2Þ > 0 and, because we
consider g > 0 [37,42], we also find that B > 0.
Next, we apply the Cauchy integral test [43], where the

sum is written as

U ¼ 2
X∞
n¼1

uðþÞ
n þ u0; ð30Þ

with uðþÞ
n ¼ ðun þ u−nÞ=2. The test imposes that whether

uðxÞ ¼ ux is positive, continuous, and decreasing in the
interval ½1;∞�, hence, the integral over uðxÞ is finite and,
therefore, convergence is derived. This is exactly our case
and one may easily conclude that

uðxÞ > 0; ∀ xjx ∈ ½1;∞�; ð31Þ

u0ðxÞ < 0; ð32Þ

lim
x→a

uðxÞ ¼ uðaÞ; ∀ aja ∈ ½1;∞�: ð33Þ

Therefore, Eq. (30) is a convergent series for all n.

IV. STATIC REGIME p0 = 0

The static regime, also called instantaneous-exchange
approximation [44], consists of neglecting all of the time-
components of the bosonic-field propagator in Eq. (21),
with the consideration that the interaction vertex being only
γ0 in Eq. (18). This is usually realistic in cases where the
electron velocity is much less than the light velocity. In
these systems, it is possible to show that charged particles
interacts through the Coulomb potential. This is given by
the Fourier transform of the gauge-field propagator in
Eq. (2) after we perform pμ ¼ ðp0;pÞ → ð0;pÞ, where
we will use the following notation ð0;pÞ≡ ð0; PÞ. Next, let
us consider both zero and finite temperature cases for
calculating ΣðP; TÞ.

A. Zero temperature case

After considering the static regime with T → 0 in
Eq. (25), we find

ΣðPÞ ¼ C1

2

Z
d3k
ð2πÞ3

ΣðKÞ
k20 þK2 þΣ2ðKÞΔðP−KÞ

þC2

Z
d3k
ð2πÞ3

ΣðKÞ
k20 þK2 þΣ2ðKÞΔφðP−KÞ; ð34Þ

where d3k ¼ dk0d2K,
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ΔφðP − KÞ ¼ 1

ðgg0Þ−1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − KÞ2

p ; ð35Þ

and

ΔðP − KÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − KÞ2

p : ð36Þ

The integral over k0 in Eq. (34) is easily solved and the
angular integral may be solved by using the identity

Z
2π

0

dθΔφðP − KÞ ¼ 4Kðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − KÞ2

p þO½ðgg0Þ−2�; ð37Þ

where Kðx0Þ is the complete elliptic integral of the first
kind with x0 ≡ −4PK=ðP − KÞ2. Note that the angular
integral for the gauge-field term is very similar and that we
will neglect the terms in order of O½ðgg0Þ−2�. Replacing
Eq. (37) in Eq. (34), we find

ΣðPÞ ¼ 4

�
C1

2
þ C2

�Z
Λ

0

dK
ð2πÞ2

KΣðKÞKðK;PÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Σ2ðKÞ

p ; ð38Þ

where the kernel KðK;PÞ reads

KðK;PÞ ¼ Kðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − KÞ2

p : ð39Þ

Next, we approximate the kernel for its lowest order
terms, namely,

KðK;PÞ ≈ π

2P
ΘðP − KÞ þ π

2K
ΘðK − PÞ: ð40Þ

Note that ΘðP − KÞ is the standard step function. Using
Eq. (40) in Eq. (38), we have

ΣðPÞ ¼ ðC1=2þ C2Þ
4π

�Z
P

0

KdK
ΣðKÞ

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Σ2ðKÞ

p
þ
Z

Λ

P
dK

ΣðKÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Σ2ðKÞ

p �
: ð41Þ

On the other hand, by taking derivatives in respect to P in
both sides of Eq. (41), we obtain a differential equation for
the mass function, given by

P2Σ00ðPÞ þ 2PΣ0ðPÞ þ Nc

4N
PΣðPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ Σ2ðPÞ
p ¼ 0; ð42Þ

where the critical number of fermions is given by

Nc ¼
1

π

�
C1

2
þ C2

�
¼ λ

πð2þ λ
8
Þ þ

4

π
: ð43Þ

Equation (42) is also supplemented by two equations,
namely,

lim
P→0

P2Σ0ðPÞ ¼ 0; ð44Þ

which provides the infrared behavior (IR) and

lim
P→Λ

½PΣ0ðPÞ þ ΣðPÞ� ¼ 0; ð45Þ

which shows that the mass function is expected to vanish at
large P, which is our ultraviolet (UV) condition.
Using the approximation P=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2þΣ2ðPÞ

p
≈1 in Eq. (42),

which holds for large-external momentum, we find the
analytical solution

ΣðPÞ ¼ A1Pγ þ A2Pγ� ; ð46Þ

where γ ¼ −1=2þ i=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=N − 1

p
, and ðA1; A2Þ are arbi-

trary constants.
The analytical solution in Eq. (46) must be in agreement

with both IR and UV conditions in Eq. (44) and Eq. (45),
respectively. This is a standard step in order to calculate the
critical behavior of ΣðPÞ. First, we may consider the limit
where Λ ¼ ∞, which represents the continuum theory.
Thereafter, it is easy to show that ΣðPÞ obeys both IR and
UV conditions for any value ofN. Therefore, becauseNc in
Eq. (43) is dependent on λ ¼ 4παN, we also conclude that
the dynamical mass generation occurs for any value of α
(or λ). This continuum limit has been discussed for PQED
(in the dynamical limit) in Ref. [23] and for QED4 it has
been reviewed in Ref. [19], where the same conclusion is
derived.
Next, we assume that the system has a finite cutoff

Λ ∝ 1=a, where a ≈ 1 Å is the lattice parameter. This is
motivated by an effective description of electrons in
condensed matter physics [2–4,7,12]. In this case, the IR
condition in Eq. (44) is also respected for any value of N.
On the other hand, the analysis of the UV condition in
Eq. (45) is more subtle. Indeed, for the sake of simplicity,
let us define γ ¼ −1=2þ iR=2 with R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc=N − 1
p

in
Eq. (46). Clearly, we have two cases, i.e., (i) where R is
imaginary and N > Nc and (ii) where R is real and
N < Nc. In the first case, after using Eq. (46) in
Eq. (45), it follows that ΣðPÞ ≠ 0 does not obey the UV
condition and, therefore, we only find the trivial solution
ΣðPÞ ¼ 0.
For the second case, R is real and ΣðPÞmay be written as

ΣðPÞ ¼ Āffiffiffiffi
P

p sin

�
R

�
ln

P
MΛ

þ ϕ

��
; ð47Þ

where Ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 − C2

2

p
, C1 ¼ A1 þ A2, C2 ¼ A2 − A1,

Rϕ ¼ tan−1ð−iC1=C2Þ, and MΛ is a massive parameter.
Furthermore, using Eq. (47) in Eq. (45), we find that
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this massive parameter obeys a Miransky-scaling law,
namely,

MΛ ¼ Λe2þRe−2nπ=R; ð48Þ

where n is an integer. The typical values ofMΛ ensures that
ΣðPÞ obeys the UV condition and, therefore, we find a
massive phase only for N < Nc. Interesting, the numerical
results in Ref. [23] indicates that Σð0Þ (the maximum value
of ΣðPÞ occurs at P ¼ 0) also obeys a Miransky-scaling
law, given by Σð0Þ∝Λe−1=

ffiffiffiffiffiffiffiffiffi
N−Nc

p
. This shows that Σð0Þ→0

for N → Nc, which confirms the interpretation of N ¼ Nc
as a critical point. A similar result also holds for quantum
electrodynamics in (2þ 1) dimensions [18,20,21] and
(3þ 1) dimensions [19]. From now on, let us assume that
Λ is finite.
Because Nc is a function of α in Eq. (43), we may define

a critical coupling constant αc (or λc) through the critical
point R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc=N − 1
p

→ 0, which occurs for NcðλcÞ ¼ N
with λc ¼ 4παcN. Therefore, it follows that

αc ¼
16
Nπ − 4

Nπ − 12
; ð49Þ

which, in terms of the fine-structure constant, implies that
the mass generation occurs for α > αc and N < NcðαÞ.
Finally, from Eq. (43), we conclude that Ncðλ¼0Þ≤Nc≤
Ncðλ¼∞Þ, whereNcðλ¼0Þ¼4=π≈1.27 andNcðλ¼∞Þ¼
12=π≈3.82. This result may be compared with the
critical point calculated in the dynamical limit in
Ref. [31]. In this case, the value of the critical number is
0.81 ≤ Ndyn:

c ≤ 4.05. These results suggest that, in the
strong-coupling limit, it is more favorable to find a massive
phase in the dynamical limit, where p0 ≠ 0 in the gauge-
field propagator and the vertex interaction eγμ is taken into
account.

B. Finite temperature

In order to describe temperature effects, we include the
Matsubara frequencies in Eq. (34). Thereafter, we solve the
angular integral using Eq. (37) while for the Matsubara sum
we use the identity

T
X
n

1

ω2
n þ ϵ2k

¼ 1

2ϵk
½1 − 2nFðϵkÞ�; ð50Þ

where ϵK ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Σ2ðKÞ

p
and

nFðϵKÞ ¼
1

eβϵK þ 1
ð51Þ

is the Fermi-Dirac distribution. After using these proper-
ties, we find

ΣðP; TÞ ¼ 4

�
C1

2
þ C2

�Z
Λ

0

dK
K

ð2πÞ2
ΣðKÞKβðK;PÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Σ2ðKÞ

p ;

ð52Þ

where the temperature-dependent kernel KβðK;PÞ reads

KβðK;PÞ ¼ Kðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − KÞ2

p ½1 − 2nFðϵKÞ�: ð53Þ

Next, following the same steps as in the previous section,
we find the differential equation for the mass function,
namely,

P2Σ00ðPÞþ2PΣ0ðPÞþNchβðPÞ
4N

PΣðPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2þΣ2ðPÞ

p ¼ 0; ð54Þ

where

hβðPÞ ¼ ½1 − 2nFðϵPÞ�: ð55Þ

The linearized version of Eq. (54) may be obtained at large-
external momentum and by doing P → Λ in hβðPÞ. This
allow us to obtain a temperature-dependent critical number
NcðTÞ, given by

NcðTÞ ¼ Ncð0Þ
�
1 −

2

eΛ=T þ 1

�
; ð56Þ

where Ncð0Þ≡ Nc ¼ ðC1=2þ C2Þ=π is given by Eq. (43)
in terms of λ. On the other hand, for large-T, we obtain
NcðTÞ → 0, which implies that there exist no dynamical
mass generation for any λ.
In the large-external momentum, the solution of Eq. (54)

is given by Eq. (46), after we replace Nc → NcðTÞ. Hence,
we obtain a temperature-dependent exponent γðTÞ ¼
−1=2þ i=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðTÞ=N − 1

p
. Therefore, we find

ΣðP; TÞ ¼ A1ðTÞPγðTÞ þ A2ðTÞPγ�ðTÞ; ð57Þ

where the arbitrary constants ðA1; A2Þmay be dependent on
the temperature. Because both the IR/UV conditions and
the momentum dependence of the solution ΣðP; TÞ are the
same as in the zero-temperature case, it follows the same
critical behavior discussed before. In particular, for finiteΛ,
the dynamical mass generation only occurs for N < NcðTÞ.
Furthermore, similar to the zero-temperature case, this
critical point also may be described in terms of a temper-
ature-dependent critical constant αcðTÞ, given by

αcðTÞ ¼ −
4½4ð1 − eΛ=TÞ þ Nπð1þ e

Λ
TÞ�

Nπ½12ð1 − eΛ=TÞ þ Nπð1þ e
Λ
TÞ� : ð58Þ

Note that for T → 0, Eq. (58) yields Eq. (49), as expected.
In terms of α, the dynamical mass generation only occurs
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when α > αcðTÞ and N < NcðTÞ. In Fig. 4, we plot both
NcðTÞ and αcðTÞ and show that whether the temperature
increases, hence, the system quickly goes to a gapless
phase.
We also may find numerical results (see Appendix A for

more details) of the integral equation for ΣðP; TÞ in
Eq. (52). In Fig. 5, we plot these results and compare this
with our analytical solution given by Eq. (57).

V. DYNAMICAL REGIME p0 ≠ 0

In this section we recover the retardation effects by
assuming p0 ≠ 0 in Eq. (21). For T ¼ 0, this regime has
been discussed in several contexts.

After a simple changing of variables, the angular integral
of the PQED sector (see details in Appendix B) reads

IPQED
n ðp; k;TÞ ¼ 4

wn
p;k

K½xn�; ð59Þ

where,

wn
p;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2π2T2 þ ðp − kÞ2

q
; ð60Þ

and

xn ¼ −
4pk

4n2π2T2 þ ðp − kÞ2 : ð61Þ

Similarly, for the GN sector, we find

IGN
n ðp; k; TÞ ¼ 4

wn
p;k

�
KðxnÞ −

Πðyn; xnÞ
1 − g2g20ðwn

p;kÞ2
�

ð62Þ

with

yn ¼ −
4pk

4n2π2T2 þ ðp − kÞ2 − 1
g2g2

0

; ð63Þ

where KðxnÞ and Πðyn; xnÞ are the elliptic integral of the
first and third kind, respectively. In particular, note that for
g ¼ 0, we have that Πð0; xnÞ ¼ KðxnÞ, hence, the kernel of
the GN sector vanishes, as expected. The integral repre-
sentation for these functions are

KðxnÞ ¼
Z

π=2

0

dθ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xn sin2ðθÞ
p ð64Þ

and

Πðyn;xnÞ¼
Z

π=2

0

dθ
1

½1−yn sin2ðθÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−xn sin2ðθÞ

p : ð65Þ

The resulting kernel, after using the angular integral, is
a very complicated function of n. This preclude us of
solving the whole Matsubara sum, as we have did in the
static regime. Therefore, we shall investigate the lowest
order contribution, provided by the zero-mode n ¼ 0
approximation.

VI. ZERO-MODE APPROXIMATION

In this section we consider the fundamental vibrational
mode n ¼ 0 in Eq. (25). Using Eqs. (64) and (65), we find

FIG. 4. The critical parameters for the dynamical mass gen-
eration. We plot both Eq. (56) (the common line) and Eq. (58)
(the inset) withΛ ¼ 10 (units of energy). For the common line we
also use λ ¼ 8.0, while for the inset we use N ¼ 2. Note that for
small enough temperatures, the critical coupling constants remain
almost unchanged.

FIG. 5. The analytical and numerical solutions for ΣðP; TÞ. The
dashed line is the numerical solution of the integral equation
given by Eq. (52) with N ¼ 2. The common line is the analytical
solution given by Eq. (57) with N ¼ 2 and A1ðTÞ ¼ A2ðTÞ� ¼
0.06þ 0.13i. We have used Λ ¼ 10 (units of energy), λ ¼ 8.0,
and T ¼ 0.1 (units of Λ) for all of the curves. We include an inset
in order to facilitate the visualization of the numerical solution.
Note that the analytical solution is in good agreement with the
numerical results.
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Σðp; TÞ ¼ C1

π2

Z
∞

0

dk
kKðx0Þ
kp − kk

TΣðk; TÞ
π2T2 þ k2 þ Σ2ðk; TÞ

þ C2

π2

Z
∞

0

dk
k

kp − kk
TΣðk; TÞ

π2T2 þ k2 þ Σ2ðk; TÞ

×

�
Kðx0Þ −

Πðy0; x0Þ
1 − g2g20ðp − kÞ2

�
ð66Þ

For calculating an analytical solution of Eq. (66), we
write the elliptic integral as the hypergeometrics Appell F1.
BecauseF1 has an expansion in its parameters, we may find
a simplified version of the kernel (see Appendix C for more
details). Hence, Eq. (66) yields

ΣðpÞ¼C1T
2π

Z
Λ

0

dkfðkÞ
�
Θðp−kÞ

p
þΘðk−pÞ

k

�

þC2T
2π

Z
Λ

0

dkfðkÞ
�
Θðp−kÞ

p
þΘðk−pÞk

k2− 1
ðgg0Þ2

�
; ð67Þ

where fðkÞ≡ kΣðkÞ=½ðπTÞ2 þ k2 þ Σ2ðkÞ�. By taking
derivatives in respect to p in both sides of Eq. (67), we find

Σ0ðpÞ þ bΣðpÞ
ðπTÞ2 þ p2 þ Σ2ðpÞ ¼ −

a
p2

Z
p

0

dkfðkÞ; ð68Þ

with a ¼ ðC1 þ C2ÞT=2π and b ¼ C2T=2π, both constants
with dimension of mass. Next, we neglect the nonlinear
terms by using ðπTÞ2 þ p2 þ Σ2ðpÞ ≈ ðπTÞ2 þ p2, which
is expected to be reasonable at large p [36,45]. After
deriving Eq. (68) in respect to p, we obtain the differential
equation

p3Σ00ðpÞ þ
�
2p2 þ p3b

ðπTÞ2 þ p2

�
Σ0ðpÞ

þ
�

2p2b
ðπTÞ2 þ p2

−
2p4b

ððπTÞ2 þ p2Þ2 þ a

�
ΣðpÞ ¼ 0; ð69Þ

which is supplemented by two conditions for the infrared
and ultraviolet regimes. These are given by

lim
p→Λ

ΣðpÞ ¼ 0 ð70Þ

and

lim
p→0

p2

�
dΣðpÞ
dp

þ bΣðpÞ
ðπTÞ2 þ p2

�
¼ 0: ð71Þ

Unfortunately, Eq. (69) has not an analytical solution for
arbitrary values of the set ðp; TÞ of variables. Nevertheless,
we may consider a possible linearized version for large
external momentum.

A. Large-external-momentum approximation

In this section we investigate the linearized version of
Eq. (69) by assuming p ≫ T;ΣðpÞ. In this case, the
behavior of the generated mass is given by

p3Σ00ðpÞ þ ½2p2 þ pb�Σ0ðpÞ þ aΣðpÞ ¼ 0; ð72Þ

which yields

ΣðpÞ ¼ A1

b1F1½1 − a
b ; 2;

b
p�

p
þ A2G20

12

�
−
b
p

���� aþb
b

0; 1

�
; ð73Þ

where 1F1 is the confluent hypergeometric function and G
is the Meijer G-function [46]. The sign of this Meijer
G-function changes for different values of the external
momentum. Because we have not observed such behavior
in the numerical results of Eq. (66), from now on, we shall
take A2 ¼ 0 for the sake of agreement with the integral
equation. In Fig. 6, we plot our analytical solution in
Eq. (73) and compare this with the numerical results of the
integral equation in Eq. (66).

B. Zero-external-momentum approximation

In this section, we consider the limit Σðp ¼ 0; TÞ ¼
mðTÞ in Eq. (25), using the zero-frequency mode. In this
case, the angular integral provides a constant factor of 2π.
Hence, we find

1 ¼ 1

4π

Z
Λ

0

dk
1

π2T2 þ k2 þm2ðTÞ

×

�
C1T þ C2Tk

ðgg0Þ−1 þ k

	
: ð74Þ

FIG. 6. The analytical and numerical solutions for Σðp; TÞ in
the zero-mode approximation. The dashed line is the numerical
solution of the integral equation given by Eq. (66) with N ¼ 2.
The common line is the analytical solution given by Eq. (73) with
N ¼ 2 and A1ðTÞ ¼ 0.6. We have used Λ ¼ 10 (units of energy),
λ ¼ 3.0, and T ¼ 0.1 (units of Λ) for all of the curves. Note that
the analytical solution is in good agreement with the numerical
results only at large-p limit.
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After calculating the integral over k, we have

1 ¼ C1T
2π

arctan



Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2T2þm2ðTÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðTÞ þ π2T2

p

þ C2T
2π

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2T2 þm2ðTÞ

p
arctan



Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2T2þm2ðTÞ
p

�
½π2T2 þm2ðTÞ þ ð 1

gg0
Þ2�

þ
gg0 ln½ π2T2þm2ðTÞþΛ2

ðπ2T2þm2ðTÞÞð1þgg0ΛÞ2�
2½ðgg0Þ2ðπ2T2 þm2ðTÞÞ þ 1�

)
: ð75Þ

Equation (75) is our gap equation for the dynamical mass
as a function of temperature and the coupling constants.
Similarly to the BCS model, we define the critical temper-
ature as the point T ¼ Tc in which m vanishes. Here,
nevertheless, we define that C1T and C2T are fixed in order
to be in agreement with the fact that m ≠ 0 for T ¼ 0.
In Fig. 7, we plot the numerical solutions of mðTÞ for

both g ¼ 0 and g ¼ 1.0, which proves that the GN
interaction increases the gapped phase. Furthermore, in
Fig. 8, we show that the GN interaction increases the
critical temperature, as expected.

We have shown that a dynamical mass is generated
and, therefore, it is expected to observe a massive phase.
Nevertheless, one also needs to prove that this is indeed a
favorable phase in comparison to the symmetric phase. It
turns out that PQED has the same vertex interaction as in
QED3, namely, eγμ, which implies the same Schwinger-
Dyson equations, except by the different gauge-field
propagator. Therefore, we can safely follow the same steps
in Ref. [47] for QED3 and conclude that the nontrivial
solution is the minimum of the effective potential (See
Appendix D for more details).

VII. SUMMARY AND OUTLOOK

In this work, we investigate the influence of temperature
on the dynamical mass generation for fermions in PQED
with a Gross-Neveu interaction. In order to do so, we used
the Schwinger-Dyson equation for the electron in the
dominant order 1=N, neglecting quantum corrections to
the vertices at finite temperature. In the static regime, we
were able to solve the whole Matsubara sum. Thereafter,
we calculated the critical coupling constant αc and the
critical numbers of fermions Nc as a function of T and the
cutoff Λ. From these results, we concluded that the system
goes to a gapless phase whether we increase the ratio T=Λ.
In the continuum theory Λ ¼ ∞, where scale-invariance is
respected, the dynamical mass generation occurs for any
value of α [23]. Furthermore, we obtained an analytical
solution for the mass function ΣðpÞ, which is in good
agreement with our numerical results.
In the dynamical regime, we used the zero-mode

approximation in the sum over the Matsubara frequencies,
which allowed us to calculate the analytical solution ΣðpÞ.
This function agrees with our numerical results for large-
external momentum, while for small-external momentum
some deviations have been found. Moreover, we found a
gap equation that provides the value of the mass function
in the zero-external momentum approximation, i.e.,
Σðp ¼ 0; TÞ → mðTÞ. In this case, the numerical tests
show that the critical temperature increases as we increase
the strength of the fermionic self-interaction.
Several generalizations of this work may be performed.

For instance, one would investigate the main effects of
vertices quantum corrections into the critical parameters for
the mass generation. In particular, it would be relevant to
find a way to increase the gapped phase for finite temper-
ature. In this phase, the competition between α and g yields
a tunable mass which may be relevant for applications in
two-dimensional materials [13].
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APPENDIX A: THE NUMERICAL RESULTS

In this Appendix we briefly review the main steps in
order to find our numerical results. For the sake of
simplicity, note that Eq. (25) is a kind of Fredholm integral
equation of first kind, defined by

ZðxÞ ¼
Z

b

a
dyKðx; y; ZðyÞÞZðyÞ; ða ≤ x ≤ bÞ ðA1Þ

where Kðx; y; ZðyÞÞ is the kernel of the integral equation
and ZðxÞ is an unknown function. Throughout this work we
convert this into a differential equation, allowing us to find
analytical solutions for each approximation, namely,
Eq. (57) in the static approximation and Eq. (73) in the
zero-mode approximation. These solutions, nevertheless,
are not expected to well describe the behavior of the mass
function for small external momentum.
For properly describing the behavior of ΣðpÞ for any p,

we may find numerical results of both Eq. (52) and
Eq. (67). It is easy to conclude that these equations are
essentially a kind of Fredholm integral equation whether
we adjust the parameters, variables, and kernel. Next, let us
summarize our main steps. First, we use the trapezoidal
quadrature rule for calculating the integral over the kernel,
hence,

Z
b

a
dyKðx; y; ZÞZðyÞ

→
h
2

XM−1

i¼1

½Kðyi; x; ZiÞZi þKðyiþ1; x; Ziþ1ÞZiþ1�; ðA2Þ

where h is the size of each interval and yi is the iterative
variable (plays the role of loop momentum k). SettingM ¼
300 as the numbers intervals, hence, h ¼ ða − bÞ=ðM − 1Þ,
with a ¼ 10 (plays the role of the Λ cutoff), and b ¼ 10−3

in order to avoid divergences. Furthermore, note that
10−3 ≤ ðx; yiÞ ≤ 10. Using Eq. (A2) in Eq. (A1), we obtain
a set of algebraic equations for all of Zi from x ¼ b to
x ¼ a. Finally, after solving this set of equations, we find
Figs. 5 and 6.

APPENDIX B: ANGULAR INTEGRAL

The mass function given by Eq. (25) has two main
contributions, generated by PQED and GN interactions.
In the polar system of coordinates, it yields

ΣðpÞ ¼ C1T
X∞
n¼−∞

Z
∞

0

dk
ð2πÞ2

kΣðkÞ
ð2nþ 1Þ2π2T2þ k2þΣ2ðkÞ

×
Z

2π

0

dθ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n2π2T2þp2þ k2 − 2kpcosðθÞ
p

þC2T
X∞
n¼−∞

Z
∞

0

dk
ð2πÞ2

kΣðkÞ
ð2nþ 1Þ2π2T2 þ k2 þΣ2ðkÞ

×
Z

2π

0

dθ
1

1
gg0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2π2T2þp2 þ k2 − 2kpcosðθÞ

p :

ðB1Þ

After we use the identity cosðθÞ ¼ 1–2 sin2ðθ=2Þ and a
change of variable (θ → 2θ) in the angle, it is possible to
write the PQED angular integral as

IPQED
n ¼ 4

ωn
p;k

Z
π=2

0

dθ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−xn sin2ðθÞ
p ¼ 4

ωn
p;k

KðxnÞ; ðB2Þ

where ωn
p;k and xn are given in Eqs. (60) and (61),

respectively. The angular integral corresponds to an ellip-
tical integral of the first kind, whereas the angular integral
of the GN sector reads

IGN
n ¼

Z
2π

0

dθ
1

1
gg0

þ ωn
p;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xn sin2ðθÞ

p : ðB3Þ

After some algebra, it is possible to write Eq. (B3) as
the sum of three integrals, using the cosine double
angle identity (cosðθÞ ¼ 1–2 sin2ðθ=2Þ), therefore, IGN

n is
given by

ðI1ÞGNn ¼ 2

gg0yn

Z
π

0

dθ
1

1 − yn sin2ðθÞ
;

ðI2ÞGNn ¼ 2

ωn
p;k

Z
π

0

dθ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xn sin2ðθÞ
p ;

ðI3ÞGNn ¼ −
2

ωn
p;k

Z
π

0

dθ
1

ð1 − yn sin2ðθÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xn sin2ðθÞ

p ;

where the integral ðI1ÞGNn vanishes and, after properly
writing the integrals ðI2ÞGNn and ðI3ÞGNn , we obtain

IGN
n ¼ 4

ωn
p;k

�
KðxnÞ −

Πðyn; xnÞ
1 − g2g20ðωn

p;kÞ2
�
; ðB4Þ

with yn being defined in Eq. (63).
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Finally, using these results, we find the mass function,
namely,

ΣðpÞ¼ C1T
ð2πÞ2

X∞
n¼−∞

Z
∞

0

dk4
KðxnÞ
ωn
p;k

kΣðkÞ
ð2nþ1Þ2π2T2þk2þΣ2ðkÞ

þ C2T
ð2πÞ2

X∞
n¼−∞

Z
∞

0

dk
4

ωn
p;k

�
KðxnÞ−

Πðyn;xnÞ
1−g2g20ðωn

p;kÞ2
�

×
kΣðkÞ

ð2nþ1Þ2π2T2þk2þΣ2ðkÞ: ðB5Þ

APPENDIX C: THE KERNEL EXPANSION

The complete elliptic integral of the first and third kinds
may be written in terms of hypergeometric function of two
variables, for jxnj < 1 and jynj < 1 [46], we have

KðxnÞ ¼
π

2
F1

�
1

2
;
1

2
; 1; 1; xn; 0

�
; ðC1Þ

Πðyn; xnÞ ¼
π

2
F1

�
1

2
;
1

2
; 1; 1; xn; yn

�
: ðC2Þ

The series of the Hypergeometric Appell F1 is given by

F1ðα; β; β0; γ; xn; ynÞ ¼
X∞
l;q¼0

ðαÞlþqðβÞlðβ0Þq
ðγÞlþql!q!

xlny
q
n: ðC3Þ

The standard procedure in the treatment of the SDEs is to
consider two regions (infrared and ultraviolet) in the
external momentum. After considering the zero-mode
frequency n ¼ 0, we find

2π
F1ð12 ;12 ;1;1;x0;0Þ

jp−kj ¼Θðp−kÞ2π
p
þΘðk−pÞ2π

k
ðC4Þ

and

2π

jp − kj
�
F1

�
1

2
;
1

2
; 1; 1; x0; 0

�
−
F1ð12 ; 12 ; 1; 1; x0; y0Þ
1 − g2g20ðωn

p;kÞ2
�

¼ Θðp − kÞ 2π
p

þ Θðk − pÞ 2πðgg0Þ2k
½ðgg0Þ2k2 − 1� : ðC5Þ

Therefore, the mass function reads

ΣðpÞ¼ C1T
ð2πÞ2

Z
∞

0

dk
kΣðkÞ

π2T2þk2þΣ2ðkÞ
×
h
Θðp−kÞ2π

p
þΘðk−pÞ2π

k

i

þ C2T
ð2πÞ2

Z
∞

0

dk
kΣðkÞ

π2T2þk2þΣ2ðkÞ

×

�
Θðp−kÞ2π

p
þΘðk−pÞ 2πðgg0Þ2k

½ðgg0Þ2k2−1�
�
; ðC6Þ

which is Eq. (67).

APPENDIX D: THE EFFECTIVE POTENTIAL

In this Appendix we show that the dynamically gen-
erated mass is energetically favorable in comparison to the
symmetric phase (massless fermions).
In general grounds, one must use the solution of the

Schwinger-Dyson equation into the Conrwall-Jackiw-
Tomboulis (CJT) potential [48] and find its minimum.
This potential reads VCJT ∝ − lnZ, where Z is the partition
function, and its quantum dynamics is given by a sum of
2-particle-irreducible (2PI) graphs, which depends on all of
the full propagators and vertex interactions. Therefore, we
may not calculate VCJT for PQED, unless we assume a set
of approximations. For QED3, within the large-N limit, this
has been calculated in Ref. [47], where it is shown that a
dynamically generated mass m ≠ 0 is the minimum of the
CJT potential. Interesting, one could follow similar steps
for PQED and find the same conclusion, because the only
difference would be in the amplitude of the gauge-field
propagator and this only changes the value of m (and the
critical parameters).
Next, we apply the bilocal-field representation proposed

by Cahill-Roberts in Ref. [49] in order to provide an extra
derivation of such result. For the sake of simplicity, we
consider the rainbow-quenched PQED, which consists of
neglecting quantum corrections to both the vertex inter-
actions and the gauge-field propagator in Eq. (1). After
using the bilocal-field representation for PQED, we find

Z ≈N e−
R

d3ðx−yÞΓCR½Bμðx;yÞ� ≈N e−ΩVCJT ; ðD1Þ

where Bμðx; yÞ is a bilocal-field satisfying the auxiliary
condition hBμðx; yÞi ¼ −e2hΔðx − yÞψ̄ðxÞγμψðyÞi, N is a
normalization constant, and Ω is the space-time volume.
Furthermore, the Cahill-Roberts effective action reads

ΓCR½Bμ� ¼
Bμðx; yÞBμðy; xÞ

e2Δðx − yÞ − Tr ln½i∂ − γμBμ�; ðD2Þ

where Δðx − yÞ is the amplitude of the gauge-field propa-
gator, obtained from Δ0;μνðx−yÞ¼Δðx−yÞPμν in Eq. (2).
Note that γμBμ ¼ Ξðx; yÞ is the electron self-energy, as
defined in Eq. (16). From Eq. (D1), we conclude that the
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vacuum of the theory is given by the minimum of VCJT.
Furthermore, note that Eq. (D2) is one term of the effective
action derived in Ref. [50] for QED3 (see Appendix B).
From the Fourier transform of the motion equation

δΓCR½Bμ�=δBμ ¼ 0, we find the standard Schwinger-
Dyson equation for the electron self-energy ΞðpÞ. Next,
we consider a constant-field configuration within the
rainbow-quenched approximation, i.e., we decompose
the electron self-energy such that γμBμðpÞ¼ΞðpÞ¼
ð1− ĀÞγμpμþΣðpÞ≈m, where we have used that Ā ¼ 1

(in order to neglect the renormalization of the electron
wave function) and ΣðpÞ ≈ Σð0Þ ¼ m, which represents the

dynamically generated mass. Using this Schwinger-Dyson
equation, for eliminating Δðx − yÞ in Eq. (D2), we find

VCJT½m� ¼ 1

π2

Z
∞

0

k2dk

�
m2

k2 þm2
− ln

�
1þm2

k2

��
: ðD3Þ

It turns out that x=ð1þ xÞ − lnð1þ xÞ is a negative value
for any positive x≡m2=k2, hence, the dynamical mass
generation m ≠ 0 is energetically favorable to m ¼ 0, as
expected. It is worth to mention that Eq. (D3) also holds for
QED3 (with a differentm), as it has been shown in Eq. (4.9)
of Ref. [47].
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