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A well-recognized open conceptual problem in relativistic quantum field theory concerns the relation
between measurement and causality. Naive generalizations of quantum measurement rules can allow for
superluminal signaling (“impossible measurements”). This raises the problem of delineating physically
allowed quantum measurements and operations. We analyze this issue in a recently proposed framework in
which local measurements (in possibly curved spacetime) are described physically by coupling the system
to a probe. We show that the state-update rule in this setting is consistent with causality provided that the
coupling between the system and probe is local. Thus, by establishing a well-defined framework for
successive measurements, we also provide a class of physically allowed operations. Conversely, impossible
measurements can only be performed using impossible (nonlocal) apparatus.
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I. INTRODUCTION

It is a central tenet of special and general relativity that
there is a maximal speed of causal influence, the speed
of light: there can be no superluminal signaling. This
should apply, in particular, to relativistic quantum field
theory (QFT) and relativistic quantum information (RQI).
However, as is very well known, the standard notion of
measurement challenges this tenet: it has been argued that
“ideal measurements” in QFT can yield superluminal
signaling [1,2] and that “nondemolition” measurements
of Wilson loops in non-Abelian gauge theory can transfer
charge over spacelike distances [3]. Even operations not
directly associated to an ideal measurement, such as unitary
transformations, can enable superluminal communication
[2]. Those measurements that are in conflict with causality
are called impossible measurements [1] and their existence
naturally raises the question of delineating (i) “physically
allowedquantumoperations” [3], aswell as (ii) “observables
[that] can be measured consistently with causality” [4].
These questions are not just of general conceptual impor-
tance [4] but also directly affect applications in RQI [2,5]
due to the lack of a clear-cut criterion for allowed operations
that also allows an explicit construction of the latter.
One way to address the difficulties just mentioned is to

adopt an operational approach to measurement, in which
the system of interest is temporarily coupled to a meas-
urement device (probe); following a measurement of
a probe observable the probe is discarded (traced out).
This constitutes a measurement scheme [6] for an induced

observable of the system and, importantly, yields an
associated state-update rule. Although well established in
quantum mechanics, this idea was only recently adapted to
QFT in possibly curved spacetimes, thus implementing the
concept of a measurement scheme in a local and covariant
way [7] (see [8] for a summary). We call this the FV
framework (after the authors of [7]) and its elements FV
measurement schemes.
In this paper we show that, due to the locality of the

coupling between system and probe, measurements in the
FV framework are not plagued by superluminal signaling
in the sense of [1]; i.e., an impossible measurement
requires an impossible, nonlocal apparatus. As a result,
FV measurement schemes are consistent with causality and
the associated state-updates provide a large and explicitly
calculable class of “physically allowed quantum opera-
tions”; a significant improvement to the “case-by-case
analysis” [4], which has been the approach of all previous
literature on this topic to the best of our knowledge. This
reinforces the usefulness of the FV framework for treating
measurements in QFT, pointing to its use as a general way
to understand which operations are physically allowable,
and hence forming useful underpinning for applications
in RQI.
The structure of our paper is as follows: in Sec. II we

recall the essence of the causality problem posed by Sorkin
[1] in the form of a tripartite signaling protocol applicable
in flat as well as curved spacetime; this is followed by a
nontechnical motivation and discussion of FV measure-
ment schemes and a statement of our main result.
Section III comprises the precise presentation of the FV
framework in the language of algebraic quantum field
theory and in Sec. IV we show that, in the FV framework,
Sorkin’s protocol does not result in any acausal effects.
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Section V consists of a discussion of causal factorization
and forms the basis of our discussion of multiple observers
covered in Sec. VI. In particular, we demonstrate how the
state updates associated to selective and nonselective
measurements (postulated in Secs. II and IV) can be
derived from the principle of causal factorization. The
consequences on causality of this analysis are displayed in
Sec. VII, where we explicitly show that the FV framework
consistently describes any finite number of causally order-
able measurements without any superluminal signaling
issues. As a last point we conclude and provide an outlook
in Sec. VIII.

II. HEURISTIC OVERVIEW

A. Superluminal signaling à la Sorkin

Sorkin has argued [1] that the notion of an ideal
measurement conflicts with locality and causality when
extended from quantummechanics to QFT. In particular, he
presented the following protocol: let Alice, Bob and
Charlie be three experimenters in three laboratories per-
forming actions in the spacetime “regions of control” O1,
O2, O3 such that parts of O1 are in the past of O2 and parts
of O2 are in the past of O3, but such that O1 is spacelike
separated from O3 as shown in Fig 1. Let A be a local
observable of O1, e.g., an algebraic combination of
quantum fields smeared against test functions vanishing
outside O1. Define B, C similarly and let ρ be the initial
state of the quantum field. Sorkin considers the following
tripartite procedure. In step one, Alice performs a local
measurement of A in her laboratory. In the absence of any
postselection in the experimental data analysis, the result-
ing updated state is a probabilistic mixture, i.e., a convex
combination of states, each selected on a different possible
outcome of the measurement, weighted by the respective
probabilities. This updated state is denoted ρA. In step two,
Bob measures B, producing a further (similar) update
ρA ↦ ρAB. In step three, Charlie measures observable C
in state ρAB. Since Charlie’s laboratory is spacelike sepa-
rated from Alice’s, TrðρABCÞ should (in the absence of
superluminal communication) give the same result as
TrðρBCÞ—the situation where Alice does not measure at

all. This condition, Sorkin argues, puts nontrivial con-
straints on feasible (ideal) measurements, to the extent that
“it becomes a priori unclear, for quantum field theory,
which observables can be measured consistently with
causality and which can’t. This would seem to deprive
[QFT] of any definite measurement theory, leaving the
issue of what can actually be measured to (at best) a case-
by-case analysis” [4]. By contrast, we will show that the FV
framework furnishes QFT with a definite measurement
theory.

B. The idea behind the FV framework

A measurement scheme in quantum measurement
theory is the theoretical description of a measurement on
a system, prepared in state ρS, by the operational procedure
of bringing it into contact with a probe, itself to be regarded
as a quantum system, and initially prepared in state ρP.
The “contact” between system and probe is modeled by
coupling them together via interactions. In quantum
mechanics, this is achieved by an interacting unitary time
evolution which operates for a short period of time and is
then removed. A subsequent measurement made on the
probe is interpreted as a measurement of the system, and
indeed it is possible to establish a correspondence between
observables of the probe and induced observables of the
system. One says that the combination of the probe,
interacting dynamics and probe observable form a meas-
urement scheme for the induced system observable (see [6]
for a comprehensive account).
The FV framework translates the above idea to QFT in

possibly curved spacetime; equally, it can incorporate QFT
under the influence of external fields. It is phrased in terms
of the algebraic approach to QFT [9] (see [10] for an
introduction), but for the purposes of the following dis-
cussion we use familiar terminology of QFT; the more
formal algebraic version will be set out in Sec. III and used
in our proof.
We consider two local relativistic QFTs, modeling the

system and the probe. Taking a tensor product, they may be
combined as a single theorywith no coupling between them.
If the two theories are obtained from Lagrangian densities
LS and LP, the uncoupled combination is defined by the
sum LS þ LP. The contact between system and probe is
modeled by another QFT, in which the two are coupled so
that the coupling is only effective within a compact set K of
spacetime, the coupling zone. Crucially, it is assumed that
this coupled QFT is itself a local relativistic theory. For
Lagrangian theories, the coupled theory would be described
by a local coupling term such as LI ≔ −λαðxÞϕðxÞψðxÞ,
whereϕ and ψ are system and probe Hermitian scalar fields,
respectively, and the real-valued smooth function α, perhaps
representing an external field, vanishes outsideK. However,
we emphasize that our results are not tied to this particular
couplingLI , nor is it even required that the theories involved
are described by Lagrangians.

FIG. 1. Schematic spacetime diagram of the relative causal
position of the regions O1, O2 and O3.
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These assumptions allow for a direct identification
between the free theory and the interacting theory before
as well as after the coupling—or more precisely, outside
K’s causal future and past, respectively. The comparison
between these identifications is encoded in a unitary
scattering matrix S, which takes the place of the interacting
time evolution in the quantum mechanical setting. To be
specific, the adjoint action A ↦ SAS−1 of S is obtained by
mapping from the uncoupled to coupled theory using the
late-time identification, followed by mapping back to the
uncoupled system using the early-time identification. This
corresponds to the usual composition of Møller maps.
(Assuming the coupled and uncoupled theories both have
the time-slice property—see below—any observable can be
expressed in terms of either late-time or early-time observ-
ables.) In the example above the scattering map is given by
S ≔ T̄ expfiλℏ

R
K αðxÞϕðxÞψðxÞdxg to all orders in formal

perturbation theory, where T̄ exp is the anti-time-ordered
exponential and α functions as a smooth spacetime cutoff.
The locality of the theories under consideration is

reflected in localization properties of S, which are dis-
cussed in more detail in Lemma 1 below. In consequence,
the idea of a measurement scheme can be implemented in
QFT as a local concept. In particular, it was shown in [7,8]
how the correspondence between probe observables and
induced system observables may be made, and how rules
for state update appropriate to selective and nonselective
measurements may be described. A nontechnical outline of
these results now follows.
Suppose that Z is a local observable of the probe theory,

corresponding to a local observable 1 ⊗ Z of the
uncoupled combination of the system and probe theories.
Likewise, ρS ⊗ ρP is an uncorrelated state of the same
theory. We consider an experiment in the coupled theory, in
which an observable corresponding to 1 ⊗ Z at late times is
measured in a state that corresponds to ρS ⊗ ρP at early
times. The expectation value of this measurement,
EρPðZ; ρSÞ, is [7]

EρPðZ; ρSÞ ¼ TrððρS ⊗ ρPÞðSð1 ⊗ ZÞS†ÞÞ: ð1Þ

We remark that we use the term expectation value in an
operational way following the frequentist interpretation.
For an analysis of the interpretation in terms of the first
moment of an underlying probability measure we refer the
reader to [11]. The induced system observable ẐρP corre-
sponding to probe observable Z is, by definition, the
observable whose expectation in state ρS matches that of
the actual experiment:

TrðρSẐρPÞ ¼ EρPðZ; ρSÞ: ð2Þ

It turns out that the induced observable belongs to the
algebra of system observables corresponding to the

coupling region (more precisely, to the causal hull of
any connected neighborhood thereof).
Turning to the issue of state updates, let us, for the sake

of presentation, consider the case where there is a meas-
urement of a probe observable Z and a (not further
specified) measurement of a system observable A in the
“out” region (i.e., not to the past) of the Z measurement. (A
more formal discussion solely in terms of probe observ-
ables yields the same expressions for the updated states and
is given in Sec. VI.) For simplicity let us assume that Z is a
yes-no observable (i.e., an effect). Analyzing the A and Z
measurement results together over an ensemble of identical
runs, we may restrict to the subensemble in which the
Z-measurement was successful (“yes”). The expectation
value of A, conditioned on success of Z, is

TrððρS ⊗ ρPÞðSðA ⊗ ZÞS†ÞÞ
ProbðZjρSÞ

≕Trðρ0SjZAÞ; ð3Þ

where the system state ρ0SjZ defined in this way may be
regarded as the updated state consequent upon successful
measurement of Z, which occurs in the full ensemble
with probability ProbρPðZjρSÞ ¼ EρPðZ; ρSÞ. In a similar
way, the updated state ρ0Sj¬Z conditioned on an unsuccessful
(“no”) Z measurement may be obtained from the above on
replacing Z by 1 − Z. If no selection is made, then the
updated state ρ0S is an appropriately weighted statistical
mixture of ρ0SjZ and ρ0Sj¬Z, giving

Trðρ0SCÞ ¼ TrððρS ⊗ ρPÞðSðC ⊗ 1ÞS†ÞÞ: ð4Þ

Notice that this expression is independent of the particular
observable Z; in tracing out the probe degrees of freedom, it
is assumed that no further measurements of the probe
are made.
Multiple measurements, each conducted by a different

probe, may be accommodated provided that their coupling
regions lie in a causal order, with each separated by a
Cauchy surface from its predecessor. A crucial consistency
relation established in [7] implies that the rules for state
updates are independent of the choice of order when more
than one is possible; this was shown explicitly in [7] for
pairs of measurements and will be extended to the general
case in Sec. VI below. The consistency result relies on a
natural assumption called causal factorization.

C. Sorkin’s protocol in the FV framework

In the FV framework, Sorkin’s protocol is modeled as
follows: Alice, Bob and Charlie are each described by
probes which are coupled to the system of interest in the
compact coupling zones K1, K2, K3 each contained in
the connected regionsO1,O2,O3 respectively, in which the
experimenters perform actions. This guarantees that there is
a natural causal order of K1, K2, K3, i.e., the one inherited
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from O1, O2, O3, see Fig 1. In particular, there are Cauchy
surfaces having K1 to their past and K2 to their future; K2

and K3 are also separated by Cauchy surfaces in the
same way.
The measurements of Alice and Bob in step one and two

of the protocol produce an update of the system state ρS ↦
ρAB according to

TrðρABCÞ
¼ TrððρS ⊗ ρP1

⊗ ρP2
ÞðS1S2ðC ⊗ 1 ⊗ 1ÞS†

2S
†
1ÞÞ;

ð5Þ

which is a straightforward generalization of Eq. (4) using the
natural causal order of the three experimenters. In fact there
is no ambiguity if K1, K2 and K3 admit other causal orders
(which can happen if K2 is spacelike from K1 or K3)—see
Sec. V. As argued above, the expectation value of Charlie’s
measurement in step three is given by Eq. (5) for a probe-
induced system observable C, which is determined by the
interaction between Charlie’s probe and the system in
coupling zone K3 and may be localized in O3. The super-
luminal signaling between the spacelike separated experi-
menters Alice and Charlie in Sorkin’s protocol arises if
TrðρABCÞ differs from TrðρBCÞ, where ρB is the updated
state in a situation where Alice does not perform an
experiment; i.e., where there is no coupling between her
probe and the system and hence no measurement is made on
the system. This corresponds to Eq. (5) in the case where
S1 ¼ 1. Hence, there is no superluminal signaling if

TrððρS ⊗ ρP1
⊗ ρP2

ÞðS1S2ðC ⊗ 1 ⊗ 1ÞS†
2S

†
1ÞÞ

¼ TrððρS ⊗ ρP2
ÞðS2ðC ⊗ 1ÞS†

2ÞÞ ð6Þ

for system observables C induced by Charlie’s probe. The
main result of this paper is that (6) holds under very mild
technical assumptions. This result is stated and proved as
Theorem 2 in Sec. IV and makes essential use of the
localization properties of the scattering map.
In fact, the statement we prove is actually more general

as it establishes the desired equality for all system
observables C localizable in O3 and not just the ones
induced by Charlie’s probe (if this class is smaller).

III. TECHNICAL DESCRIPTION

The setting of the FV framework is algebraic quantum
field theory in possibly curved spacetime, which we now
briefly recall.

A. Lorentzian geometry

We start by fixing notation and recalling standard results
of Lorentzian geometry. Let M be a globally hyperbolic
spacetime, i.e., a time-oriented Lorentzian spacetime of
dimension at least two that contains a Cauchy surface.

For N ⊆ M let JþðNÞ and J−ðNÞ denote its causal future
and past, respectively, and define its causal hull to be
chðNÞ ≔ JþðNÞ ∩ J−ðNÞ; N is called causally convex if it
equals its causal hull. Any open causally convex subset of
M will be called a region and is itself globally hyperbolic
when regarded as a spacetime in its own right. Let DþðNÞ
and D−ðNÞ denote the future and past Cauchy develop-
ments of N, that is, the set of points p ∈ M such that
every past-, respectively, future-inextendible piecewise
smooth causal curve through p intersects N. Then DðNÞ ≔
DþðNÞ ∪ D−ðNÞ is called the Cauchy development or
domain of dependence of N. The causal complement of
a subset K is defined to be K⊥ ≔ MnðJþðKÞ ∪ J−ðKÞÞ.
For a compact subset K, the sets MnJ∓ðKÞ and K⊥ are all
open and causally convex and therefore globally hyper-
bolic. See, for example, the Appendix of [12] for details
and proofs.

B. Algebraic quantum field theory

Let M be a globally hyperbolic spacetime. An algebraic
quantum field theory (AQFT), or simply a theory, on M
consists of a �-algebra A with a unit 1, together with a
family of sub-�-algebras AðNÞ of AðMÞ ≔ A, each con-
taining 1 and labeled by the regions N ⊆ M. The elements
of AðNÞ are considered to be local observables of N, e.g.,
algebraic combinations of smeared fields “

R
N fðxÞϕðxÞdx”

for a quantum field ϕ and a test function f vanishing
outside N. This interpretation motivates the following
additional assumptions:

Isotony: for regions N1 ⊆ N2: AðN1Þ ⊆ AðN2Þ.
Einstein causality: for spacelike separated regions N1

and N2: the elements of AðN1Þ commute with the
elements of AðN2Þ.

Time-slice property: for regions N1 ⊆ N2, so that N1

contains a Cauchy surface for N2: AðN1Þ ¼ AðN2Þ.
The time-slice property encodes the existence of a (not

further specified) local dynamical law. Morally: a quantum
field is determined by its data on a Cauchy surface. We
emphasize that the time-slice property is local in the sense
that it applies to every region N2.
Due to time-slice (and isotony), every observable is

localizable in many different, possibly disjoint regions. For
example, if an observable A is localizable in a region N1

and N2 is a disjoint region containing N1 in its domain of
dependence, i.e., N1 ⊆ DðN2Þ, then A is also localizable
in N2.
One also assumes a Haag property, which heuristically

guarantees that the theory captures all relevant degrees of
freedom. It is used to show that induced observables are
localisable in every connected region containing the cou-
pling zone—see [7] for details.
Haag property: for every compact set K ⊆ M and every

connected region L containing K, AðLÞ contains every
C ∈ A that commutes with all elements of AðK⊥Þ [13].
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In AQFT, a state is a linear map ω∶ AðMÞ → C which
assigns expectation values to algebra elements and is
therefore required to be normalized, ωð1Þ ¼ 1, and pos-
itive, ωðA�AÞ ≥ 0 for all A ∈ AðMÞ.

C. Coupled theories

The coupling between probe and system theory and the
resulting scattering map arise as follows: suppose we have
three theories on a globally hyperbolic spacetime M: a
system-theory S, a probe-theory P and a coupled theory C,
which mirrors the crucial assumption that the coupled
structure is itself local. Let S ⊗ P denote the tensor-
product theory, i.e., the uncoupled combination. As dis-
cussed before, S and P are coupled together only in a
compact coupling zone K ⊆ M, which is modeled by the
existence of a bijective, structure and localization preserv-
ing identification between the coupled and uncoupled
theories outside (the causal hull) of K, see [7] for the
details. For the in-region M− and out-region Mþ defined
by M� ≔ MnJ∓ðKÞ, this gives us the following maps:

S ⊗ P → ðS ⊗ PÞðMþÞ → CðMþÞ → C;

C → CðM−Þ → ðS ⊗ PÞðM−Þ → S ⊗ P; ð7Þ

each of which is an isomorphism. The first, third, fourth
and sixth are given by the time-slice property as M� each
contain a Cauchy surface for M [12]. The other arrows
are given by the localization preserving identification map.
The overall composition defines the scattering map
Θ∶ S ⊗ P → S ⊗ P, which is an automorphism preserv-
ing algebraic relations but not localization. Our earlier
discussion in Sec. II implicitly assumed that Θ was
implemented as the adjoint action of a unitary scattering
operator S, i.e., ΘðAÞ ¼ SAS†, but this is neither needed
nor assumed in what follows. The localization properties of
Θ are summarized in the following lemma.
Lemma 1. (Propositions 3.1(b), 3.1(c) in [7]).
(1) For every region N ⊆ K⊥∶Θ acts trivially on

ðS ⊗ PÞðNÞ.
(2) For every region N ⊆Mþ and every region N− ⊆M−

with N ⊆ DðN−Þ∶ΘðS ⊗ PÞðNÞ ⊆ ðS ⊗ PÞðN−Þ.
The first property captures the idea that the coupling has

no effect in spacelike separated regions, whereas the second
property indicates how Θ changes the localization of
observables.
Now suppose that the system is prepared in state ω and

the probe in state σ, and that a measurement of a probe
observable is made. The state update rule (without selec-
tion) is that ω ↦ ω0, where

ω0ðCÞ ¼ ðω ⊗ σÞðΘðC ⊗ 1ÞÞ; ð8Þ

which is readily recognized as the analog of (4).

IV. MAIN RESULT

Let us now discuss the rigorous FV version of Sorkin’s
protocol and Eq. (5). Alice, Bob and Charlie each perform
actions in the connected regions O1, O2, O3. We assume
they fulfill (i) O2 ∩ J−ðO1Þ ¼ ∅; (ii) O3 ∩ J−ðO2Þ ¼ ∅;
(ii) O3 is spacelike separated form O1; (iv)O3 has compact
closure Ō3. Note that this covers the situation sketched in
Fig. 1 but is more general. Let S be the system theory and
let P1, P2 be the two probe theories of Alice and Bob with
compact coupling zones K1, K2 contained in the regions
O1, O2, respectively. Denote the corresponding in and out
regions by M∓

1 ;M
∓
2 , the initial states by σ1, σ2 and the

associated scattering maps by Θi∶ S ⊗ Pi → S ⊗ Pi for
i ¼ 1, 2. On S ⊗ P1 ⊗ P2 define Θ̂1 ≔ Θ1 ⊗3 1 and
Θ̂2 ≔ Θ2 ⊗2 1, where the subscript on the tensor product
indicates the slot into which the second factor is inserted.
Let C be a system observable localizable inO3, Charlie’s

“region of control.” For example, C could be the induced
observable corresponding to any probe observable of
Charlie’s. Owing to assumptions (i)–(iii), Alice, Bob and
Charlie admit a causal order in which Alice’s region
precedes Bob’s, and Bob’s region precedes Charlie’s. If
Alice and Bob each perform a measurement, the expect-
ation value for Charlie’s measurement is therefore given by

ωABðCÞ ≔ ðω ⊗ σ1 ⊗ σ2ÞððΘ̂1 ∘ Θ̂2ÞðC ⊗ 1 ⊗ 1ÞÞ; ð9Þ
for initial system state ω. Strictly speaking, when writing
down Eq. (9) at this stage, we make the assumption that
the effect of two causally orderable measurements on
the initial state ω is given in terms of a composition of
individual state updates. However, further below in Sec. VI
we show how Eq. (9) can be derived in the FV framework.
Furthermore, assumptions (i)–(iii) do not exclude the
possibility that the regions controlled by Alice, Bob and
Charlie also admit other causal orderings, but Charlie’s
expectation value is well-defined and independent of any
choices made. This will also be discussed in greater depth
in Sec. V. On the other hand, if Alice does not perform her
experiment, Charlie’s expectation value is

ωBðCÞ ¼ ðω ⊗ σ2ÞðΘ2ðC ⊗ 1ÞÞ: ð10Þ
The following theorem [the rigorous analog of Eq. (6)]

shows that Sorkin’s protocol does not signal in the FV
framework. Note that it gives the desired equality without
the (possibly restricting) assumption that C is an induced
observable.
Theorem 2. In the notation above, suppose the follow-

ing assumptions hold: (a) K2 ∩ J−ðK1Þ ¼ ∅; (b) O3 is a
region with compact closure; (c)O3 ∩ J−ðK2Þ ¼ ∅; (d) Ō3

is spacelike separated from K1. Then

∀C ∈ SðO3Þ∶ðΘ̂1 ∘ Θ̂2ÞðC ⊗ 1 ⊗ 1Þ ¼ Θ̂2ðC ⊗ 1 ⊗ 1Þ:
ð11Þ
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This immediately implies

ωABðCÞ ¼ ðω ⊗ σ1 ⊗ σ2ÞððΘ̂1 ∘ Θ̂2ÞðC ⊗ 1 ⊗ 1ÞÞ
¼ ðω ⊗ σ2ÞðΘ2ðC ⊗ 1ÞÞ ¼ ωBðCÞ; ð12Þ

i.e., Charlie’s measurement outcome is independent of
whether Alice does or does not perform an experiment
at all. There is no superluminal signaling.
The proof of Theorem 2 relies on localization properties

of the scattering map, combined with a geometrical lemma.
Lemma 3. Let K1; K2; L be compact subsets of M, let

K2 ∩ J−ðK1Þ ¼ ∅ and L ∩ J−ðK1Þ ¼ ∅. Then there exists
a Cauchy surface Σ of Mþ

1 such that Σ ⊆ MnðJ−ðK1Þ ∪
JþðK2Þ ∪ JþðLÞÞ, as sketched in Fig. 2.
Proof.—Mþ

1 ¼ MnJ−ðK1Þ is globally hyperbolic (see
Lemma A.4 in [12]). By Proposition 4 in [14] (due to
Geroch [15]) there exists a surjective, continuous function
t∶ Mþ

1 → R, strictly increasing on every future-directed
causal curve, whose level sets are Cauchy surfaces for Mþ

1 .
Since K2 and L are compact and t is continuous, τ̃ ≔
min t½K2 ∪ L� exists. Choose τ < τ̃ and set Σ ≔ t−1½fτg�. Σ
is a Cauchy surface for Mþ

1 and fulfills the desired
properties. ▪
We apply the lemma for the case where K1, K2 are the

coupling zones of Alice and Bob and L is the closure of
Charlie’s region of control, i.e., L ¼ Ō3, which is compact.
This allows us to prove that O3 is contained in the domain
of dependence of K⊥

1 ∩ M−
2 .

Lemma 4. Let K1, K2 be compact subsets of M such
that K2 ∩ J−ðK1Þ ¼ ∅. Then for every region O3 with
compact closure such thatO3 ∩ J−ðK2Þ ¼ ∅ and Ō3 ⊆ K⊥

1

it holds that O3 ⊆ DðK⊥
1 ∩ M−

2 Þ.
Proof.—By setting L ≔ Ō3 and using Lemma 3, we

can find Σ, a Cauchy surface for Mþ
1 which lies in

MnðJ−ðK1Þ ∪ JþðK2Þ ∪ JþðŌ3ÞÞ. Set T ≔ J−ðŌ3Þ ∩ Σ ⊆
K⊥

1 ∩ M−
2 . [T is spacelike separated from K1, because Σ is

disjoint from J−ðK1Þ and because J−ðŌ3Þ is disjoint from
JþðK1Þ as Ō3 ⊆ K⊥

1 by assumption.] Now O3 ⊆ DðTÞ,
while K⊥

1 ∩ M−
2 ¼ Mþ

1 ∩ M−
1 ∩ M−

2 ; as Mþ
1 ;M

−
1 and M−

2

are open and causally convex (see Lemma A.4 in [12]), so
is their intersection, i.e., it is a region, and since it contains
T, we have that O3 ⊆ DðTÞ ⊆ DðK⊥

1 ∩ M−
2 Þ. ▪

Theorem 2 now follows by using the localization
properties of Θ and the fact that Charlie’s region of control
is contained in the domain of dependence of a subregion
of K⊥

1 .
Proof of Theorem 2.—SinceC ∈ SðO3Þ,C ⊗ 1 ⊗ 1 can

be localized in O3 too. According to Lemma 4, O3 ⊆
DðK⊥

1 ∩ M−
2 Þ. According to Lemma 1, we know that

Θ̂2ðC ⊗ 1 ⊗ 1Þ can be localized in the region K⊥
1 ∩M−

2 .
But since K⊥

1 ∩ M−
2 ⊆ K⊥

1 , we have by Lemma 1 that
ðΘ̂1 ∘ Θ̂2ÞðC ⊗ 1 ⊗ 1Þ ¼ Θ̂2ðC ⊗ 1 ⊗ 1Þ. ▪

V. CAUSAL FACTORIZATION

In the previous section we showed that measurements of
three observers described in the FV framework do not run
into the potential superluminal signaling issues associated
to Sorkin’s impossible measurements. To do this, we made
the assumption that the effect of causally orderable mea-
surements may be given in terms of a composition of
individual state updates as in Eq. (9). In the next section we
will show that this assumption can actually be derived in
the FV framework as a result of what is called causal
factorization, which we now describe. Our presentation
here is certainly not the most general possible but will be
sufficient for our current purposes. We intend to report
elsewhere on more abstract and general properties of causal
factorization.
To start, let K be a collection of compact spacetime

subsets. A linear order ≤ on K is said to be a causal linear
order if K < K0 implies J−ðKÞ ∩ JþðK0Þ ¼ ∅ for every
K;K0 ∈ K. It follows that whenever K < K0, there is a
Cauchy surface ofM with K to its past and K0 to its future.
If K admits a causal linear order, we say that K is causally
orderable. A causally orderable set may admit more than
one distinct causal linear order; this happens, for example,
in the case of two spacelike separated sets. When the
members of a causally orderable set K are the coupling
zones for a collection of observers, we will describe the
observers as causally orderable and use any causal linear
ordering of K to induce a linear order on the collection of
observers.
Now let S be a theory of interest and consider two

causally orderable observers, A and B, with probe theories
PA and PB. The description of A’s measurements in the FV
scheme involves among other things the uncoupled combi-
nation S ⊗ PA and a coupled theory CA with a coupling
zone KA, along with a corresponding scattering map ΘA on
S ⊗ PA; B’s measurements are described in a similar way.
If both A and B measure independently, then they can be
considered as a combined “super-observer” whose probe
theory PfA;Bg is a tensor product of PA and PB. As the two
coupling regions KA and KB may be separated by a Cauchy

FIG. 2. Schematic spacetime diagram of the relative causal
position of the compact setsK1,K2 (coupling zones) and L (Ō3 in
Lemma 4) as well as the Cauchy surface Σ in Lemma 3.
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surface, it is reasonable to assume that there is a combined
coupled theory CfA;Bg with coupling zone KA ∪ KB, and a
scattering map ΘfA;Bg, which can be decomposed as an
appropriate composition of the individual scattering maps.
Accordingly, we say that the combination of A and B
respects bipartite causal factorization, if and only if the
coupled theory CfA;Bg exists and

ΘfA;Bg ¼
�
Θ̂A ∘ Θ̂B if KB ∩ J−ðKAÞ ¼ ∅;

Θ̂B ∘ Θ̂A if KA ∩ J−ðKBÞ ¼ ∅;
ð13Þ

where Θ̂X (X ¼ A;B) denotes the trivial extension of the
scattering map ΘX from an automorphism of S ⊗ PX to
an automorphism of S ⊗ PfA;Bg by tensoring with a
suitable identity map. In particular, if the two coupling
regions are spacelike separated thenΘfA;Bg may be factored
in both ways. The assumption of bipartite causal factori-
zation is motivated by the expression for the scattering map
in terms of time-ordered products in conventional pertur-
bation theory. As a special case of Bogoliubov’s factori-
zation relation, bipartite causal factorization is in particular
fulfilled by the time-ordered exponential of local coupling
terms (with smooth cutoff) in renormalized perturbation
theory [16] and by the generators in recent nonperturbative
Lagrangian approaches [17]. Moreover it is proved to hold
for the probe models considered in [7].
Our treatment of multiple observers is based on three

physically motivated assumptions:
(1) every finite collection of causally orderable observ-

ers can be combined to form a super-observer,
whose probe theory is a tensor product of the
individual probe theories;

(2) the combination process may be achieved in a single
step, or equivalently, as the result of successive
stages of combination;

(3) the combination of any causally orderable pair of
observers fulfils bipartite causal factorization.

To illustrate these ideas, let us consider three (distinct)
causally orderable observers A;B;C admitting a causal
linear order ≤ in which A ≤ B ≤ C. The super-observer
fA;B;Cg can be formed in one go, or equivalently by first
combining A and B to fA;Bg and then further combining
with C; alternatively, we can first combine B with C and
then combine with A. Understanding “equivalence” as
equality of scattering maps, we have

ΘffA;Bg;Cg ¼ ΘfA;B;Cg ¼ ΘfA;fB;Cgg ð14Þ

and, on using bipartite causal factorization, one has

ΘfA;B;Cg ¼ Θ̂fA;Bg ∘ Θ̂C ¼ Θ̂A ∘ Θ̂B ∘ Θ̂C; ð15Þ

where the hats denote the extension of the scattering maps
to S ⊗ PfA;B;Cg. Moreover the assumptions also imply that

whenever there is a choice between different causal orders
for fixed A;B;C, the combined scattering mapΘfA;B;Cg can
be written as a composition of the individual scattering
maps in either of these orders.
In general, given any finite set Obs of N causally

orderable observers, the super-observer has a combined
probe theory

PObs ¼ ⊗
X∈Obs

PX ð16Þ

and an overall scattering map ΘObs on S ⊗ PObs that
factorizes as

ΘObs ¼ Θ̂X1
∘ Θ̂X2

∘ � � � ∘ Θ̂XN
ð17Þ

whenever X1 < X2 < … < XN according to some causal
linear ordering ≤ of Obs; the hats denote extensions to
S ⊗ PObs. There are many equivalent formulas for ΘObs,
arising from different ways of successively combining the
observers.

VI. MEASUREMENTS BY MULTIPLE
OBSERVERS

In this section we demonstrate how multiple successive
measurements can be treated in the FV framework. We start
with a discussion of one single observer and a pair of two
observers, where we recall results from [7]. We then move
on to present the treatment of three observers, which readily
generalizes to the generalN ∈ N observer case. We end this
section with a discussion of the process of postselection.

A. Induced observables and effects

Let S be a theory of interest and let A be an observer who
wishes to measure (the expectation value) of some local
observable of S in initial state ω. Suppose A has probe
theory PA, initial probe state σA, compact coupling zone
KA, a coupled theory CA, identification maps and associated
scattering map ΘA∶ S ⊗ PA → S ⊗ PA. The prediction
for the expectation value of a probe observableOA ∈ PA in
the actual experiment conducted by A, given initial system
state ω, is denoted by EAðOA;ωÞ and given by [7]

EAðOA;ωÞ ¼ ðω ⊗ σAÞðΘAð1 ⊗ OAÞÞ: ð18Þ

If the observable algebras are represented as operators on
a Hilbert space, we can consider the case where ω and σA
are given by density matrices and whereΘA is implemented
as the adjoint action of a unitary scattering operator. Then
the above equation is easily recognized as a straightforward
generalization of Eq. (1).
Returning to the general situation, it was shown in [7]

that σA and ΘA give rise to a map εA∶ PA → S such that
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∀OA ∈ PA∶ ωðεAðOAÞÞ ¼ ðω ⊗ σAÞðΘAð1 ⊗ OAÞÞ:
ð19Þ

We call εAðOAÞ the induced (system) observable corre-
sponding to OA, as introduced in Eq. (2).
Exploiting the Haag property it can be shown that

εAðOAÞ is a local observable of the system theory, which
can be localized in any connected region containing KA
[[7], Theorem 3.3].
The interpretation of Eq. (19) is the following: if

observer A is interested in the expectation value of a
specific local system observable, then she needs to prepare
and tune her physical detector, i.e., find OA, σA and ΘA
such that εAðOAÞ is the desired system observable. It is an
open question whether this is always possible, so we take
the pragmatic viewpoint and say the system observables of
interest to an observer are those which can be measured
using a probe, i.e., those which can be induced by some
probe observable upon tuning the probe state and scatter-
ing map.
The result of an actual experiment is generically not

immediately a sharp numerical outcome but rather an
answer to a (finite collection of) yes-no question(s). In
quantum theory, this is modeled abstractly by considering a
projector or more generally an effect P associated to yes and
1 − P associated to no as the main observables of interest.
Recall that a �-algebra element P is an effect if and only if
P† ¼ P and 0 ≤ P ≤ 1 where 0 ≤ P means that P is a
convex combination of elements of the form A†A. One
frequently calls the expectation value of an effect P its
success probability.

B. Two observers

Consider a set of two observers Obs ¼ fA;Bg each of
whom wishes to determine the expectation value of a
system observable εAðOAÞ and εBðOBÞ, respectively, for
probe observables OA ∈ PA and OB ∈ PB. We intend to
answer the following question: “what is the expected
outcome of observer B’s measurement?”
Similar to before, for every X ∈ Obs who interacts with

a system-theory S in initial state ω we have a probe-theory
PX, initial state σX, compact coupling zone KX, coupled
theory CX identification maps and associated scattering
map ΘX∶ S ⊗ PX → S ⊗ PX.
As in the previous section, we may regard the collection

of all observers as super-observer in its own right with
probe P ≔⊗X∈Obs PX, coupling zoneK ≔ ⋃X∈ObsKX and
initial state σ ≔⊗X∈Obs σX on P. Let O ≔⊗X∈Obs OX
be the probe observable of interest. We assume the
existence of an associated coupled theory C emerging
from coupling S to P in K giving rise to a scattering
map Θ∶ S ⊗ P → S ⊗ P.
Let us now assume that after (an ensemble of) their

experiments, the observers meet in their joint future to

analyze their experimental data together. Since we consider
the two of them to constitute a single super-observer, the
expectation value of their joint measurement is, according
to Eq. (18),

EfA;BgðO;ωÞ ¼ ðω ⊗ σÞðΘð1 ⊗ OÞÞ: ð20Þ

IfOA andOB are effects,O is an effect as well and Eq. (20)
can be understood as the success probability of the
“combined effect” O corresponding to the success of both
OA and OB, i.e., EfA;BgðO;ωÞ ¼ ProbfA;BgðOA &OB;ωÞ.
In the context of effects it is also immediately possible to

give an answer to the posed question. B’s expected outcome
is the success probability ProbfA;BgðOB;ωÞ that B observes
probe effect OB given initial system state ω irrespective of
A’s outcome. It is given as a marginal probability

ProbfA;BgðOB;ωÞ
¼ ProbfA;BgðOA &OB;ωÞ þ ProbfA;Bgðð¬OAÞ&OB;ωÞ
¼ ðω ⊗ σÞðΘð1 ⊗ OA ⊗ OBÞÞ
þ ðω ⊗ σÞðΘð1 ⊗ ð1 −OAÞ ⊗ OBÞÞ

¼ ðω ⊗ σÞðΘð1 ⊗ ÔBÞÞ; ð21Þ

where we used an explicit order of the tensor product, P ¼
PA ⊗ PB and where the hat denotes the inclusion of OB in
P, ÔB ¼ 1 ⊗ OB. (The case in which one wishes to
perform an analysis post-selected on a specific outcome
of observer A is known as selective measurement and is
discussed further at the end of this section.)
Note that Eq. (21) only depends on A through σA and the

coupled scattering map Θ and, in particular, is independent
of OA. As a matter of fact, the above discussion in terms of
effects can be seen as a motivation for considering Eq. (21)
to be the answer to the posed question even in the situation
where OA and OB are not effects, i.e., generally:

EfA:BgðOB;ωÞ ¼ ðω ⊗ σÞðΘð1 ⊗ ÔBÞÞ: ð22Þ

This is useful since, e.g., the field �-algebra of the linear
scalar field does not admit any nontrivial effects at all.
Moreover, the expression makes a prediction for the
expectation value of B’s experiment, which can be deter-
mined from B’s local experimental data alone. There is no
need for B to meet A in their joint future to conduct data
analysis together.
Let us continue the investigation of expression (22) in the

physically relevant case that the set Obs is causally
orderable. There are at most two possible linear causal
orders on Obs, corresponding to the cases 1. A ≤ B; or
2. B ≤ A.
If the combination of the two observers respects bipartite

causal factorization, the super-scattering map decomposes
as Θ ¼ Θ̂A ∘ Θ̂B in the first case, while Θ ¼ Θ̂B ∘ Θ̂A in the
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second. Before continuing, it is convenient to observe that,
upon writing Θ̂Bð1 ⊗ OA ⊗ OBÞ ¼

P
j Sj ⊗ OA ⊗ Bj

and noting that εBðOBÞ ¼
P

j σBðBjÞSj, the following
holds:

ðω ⊗ σA ⊗ σBÞðΘ̂A ∘ Θ̂Bð1 ⊗ OA ⊗ OBÞÞ

¼ ðω ⊗ σA ⊗ σBÞ
�
Θ̂A

�X
j

Sj ⊗ OA ⊗ Bj

��

¼ ðω ⊗ σAÞ
�
ΘA

�X
j

σBðBjÞSj ⊗ OA

��

¼ ðω ⊗ σAÞðΘAðεBðOBÞ ⊗ OAÞÞ: ð23Þ

This allows us to simplify Eq. (22) in each case:
(1) For A ≤ B we order the tensor product of probes as

P ¼ PA ⊗ PB and get

EfA;BgðOB;ωÞ¼ ðω⊗ σÞðΘð1⊗ ÔBÞÞ
¼ ðω⊗ σA ⊗ σBÞðΘ̂A ∘Θ̂Bð1⊗ ÔBÞÞ
¼ ðω⊗ σAÞðΘAðεBðOBÞ⊗ 1ÞÞ:

ð24Þ

Therefore, if the system state ωA is defined so that
ωAðCÞ ≔ ðω ⊗ σAÞðΘAðC ⊗ 1ÞÞ for all C ∈ S, B’s
expected outcome in this situation is

EfA;BgðOB;ωÞ ¼ ωAðεBðOBÞÞ ¼ EBðOB;ωAÞ; ð25Þ

which is his expected outcome if A does not
measure, but with the system prepared in state ωA
instead of ω. This is the justification for regarding
ωA as the updated system state associated with A’s
measurement, as asserted in Eqs. (4) and (8).
For future reference, let us define the update
map J AðωÞ ≔ ωA.

(2) For B ≤ A and after ordering the tensor product of
probes as P ¼ PB ⊗ PA for convenience,

EfA;BgðOB;ωÞ ¼ ðω⊗ σÞðΘð1⊗ ÔBÞÞ
¼ ðω⊗ σB ⊗ σAÞðΘ̂B ∘ Θ̂Að1⊗OBÞÞ
¼ ðω⊗ σBÞðΘBð1⊗OBÞÞ
¼ ωðεBðOBÞÞ ¼ EBðOB;ωÞ; ð26Þ

where we used that Θ̂Að1 ⊗ ÔBÞ ¼ ð1 ⊗ ÔBÞ. This
follows from the fact that in the present order of the
tensor product of probes we have that 1 ⊗ ÔB ¼
1 ⊗ OB ⊗ 1 and Θ̂A ¼ ΘA ⊗2 1, where again the
subscript on the tensor product indicates the slot into
which the second factor is inserted. Recalling that
observer B precedes A (with respect to ≤), the above

result shows that there is no influence from the
future to the past.

Finally, we remark that if KA and KB are spacelike
separated, the causal order is not unique: there is an
ordering corresponding to case 1 and another correspond-
ing to case 2. However, there is no ambiguity because B’s
expected outcome is given by (22) in either case. This
implies in particular that

ωAðεBðOBÞÞ ¼ ωðεBðOBÞÞ ð27Þ

if KA; KB are spacelike separated (as has been observed
in [7]).

C. Three observers

The obvious next step is to consider three observers
and to give an answer to the question: “for a set of three
observers Obs ¼ fA;B;Cg, each of which performs a
measurement, what is the expected outcome of observer
B’s measurement of the induced system observable
εBðOBÞ?”
Following the reasoning and notation of before we can

immediately write down the answer as

EfA;B;CgðOB;ωÞ ¼ ðω ⊗ σÞðΘð1 ⊗ ÔBÞÞ; ð28Þ

where we again assumed the existence of an appropriate
overall super-observer similar to the bipartite case.
Let us further investigate Eq. (28) under the additional

assumption that Obs is causally orderable and that causal
factorization holds. As A and C can be interchanged, there
are at most three cases: A;B;C are such that there exists
a linear order ≤ with (1) A ≤ B ≤ C; (2) C ≤ A ≤ B;
or (3) B ≤ C ≤ A.
Choosing a convenient order of tensor products and

using results from before yields the following:
(1) For A ≤ B ≤ C:

EfA;B;CgðOB;ωÞ
¼ ðω ⊗ σA ⊗ σB ⊗ σCÞðΘ̂A ∘ Θ̂B ∘ Θ̂Cð1 ⊗ ÔBÞÞ
¼ ðω ⊗ σA ⊗ σBÞðΘ̌A ∘ Θ̌Bð1 ⊗ ǑBÞÞ
¼ ðω ⊗ σAÞðΘAðεBðOBÞ ⊗ 1ÞÞ
¼ ωAðεBðOBÞÞ
¼ EBðOB;ωAÞ; ð29Þ

where the haček denotes the extension to S ⊗
PfA;Bg and where, similarly to before, we used that

Θ̂Cð1 ⊗ ÔBÞ ¼ 1 ⊗ ÔB and that Θ̂A and Θ̂B act
trivially on PC. The upshot is that observer B’s
outcome is given by taking the initial system state,
updating it according to the map J A associated to
the observer preceding B (with respect to ≤) and
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evaluating the updated state on B’s induced system
observable. The observer succeeding B (with respect
to ≤) can be completely ignored.

(2) For C ≤ A ≤ B, ordering P ¼ PC ⊗ PA ⊗ PB,

EfA;B;CgðOB;ωÞ
¼ ðω ⊗ σC ⊗ σA ⊗ σBÞðΘ̂C ∘ Θ̂A ∘ Θ̂Bð1 ⊗ ÔBÞÞ
¼ ðω ⊗ σC ⊗ σAÞðΘ̌C ∘ Θ̌AðεBðOB ⊗ 1ÞÞ
¼ ωACðεBðOBÞÞ
¼ EBðOB;ωACÞ; ð30Þ

whereωAC ≔ ðJ A ∘J CÞðωÞ, cf. Theorem 3.5 in [7].
Here, the haček denotes the trivial extension of the
scattering maps to S ⊗ PfA;Cg. The investigation of
this case has some interesting consequences. First it
provides a proof of Eq. (9) which we used in the
discussion of Sorkin’s protocol (where Alice takes
the place of C and Bob takes the place of A here).
Second, if we regard X ≔ fA;Cg as a super-
observer in its own right, then Eq. (30) can be
written as

EfA;B;CgðOB;ωÞ
¼ ðω ⊗ σX ⊗ σBÞðΘ̂X ∘ Θ̂Bð1 ⊗ ÔBÞÞ
¼ ðω ⊗ σXÞðΘXðεBðOBÞ ⊗ 1ÞÞ
¼ ωXðεBðOBÞÞ
¼ EBðOB;ωXÞ; ð31Þ

which is the same calculation as in the case of two
observers leading to Eq. (25). This idea will be used
in the remaining case, as well as later on to simplify
the investigation of N > 3 observers. (We will
continue to use capital sans-serif Latin letters for
individual observers, i.e., elements of Obs, as well
as super-observers, i.e., subsets of Obs.)

(3) For B ≤ C ≤ A, ordering P ¼ PB ⊗ PC ⊗ PA and
then regarding X ≔ fA;Cg as superprobe in its own
right enables us to write

EfA;B;CgðOB;ωÞ
¼ ðω ⊗ σB ⊗ σXÞðΘ̂B ∘ Θ̂Xð1 ⊗ ÔBÞÞ
¼ ðω ⊗ σBÞðΘBð1 ⊗ ÔBÞÞ ¼ ωðεBðOBÞÞ
¼ EBðOB;ωÞ; ð32Þ

which reinforces the message that there is no signal-
ing from the future to the past.

A given set of observers fA;B;Cg can admit more than
one causal order, however, as for two observers, the answer
for the various admissible cases will agree.

D. N observers

Let us assume that we have a finite setObs ofN causally
orderable observers, each of whom wishes to determine the
expectation value of an induced system observable. We fix
one observer B ∈ Obs and ask this: “what is the expected
outcome EObsðOB;ωÞ of observer B’s measurement of the
induced system observable εBðOBÞ?” More specifically,
we want to know how the general answer EObsðOB;ωÞ ¼
ðω ⊗ σÞðΘð1 ⊗ ÔBÞÞ may be simplified in this situation.
Any fixed causal order ≤ on Obs gives rise to the

following tripartite partition A ≔ fX ∈ ObsjX < Bg, fBg
and C ≔ fX ∈ ObsjX > Bg. It immediately follows from
Eq. (29) in the analysis of three observers that

EObsðOB;ωÞ ¼ ωAðεBðOBÞÞ ¼ EBðOB;ωAÞ: ð33Þ

That is, B’s expected outcome is equal to the one obtained
in the absence of the other observers, but in system state ωA
(which is equal to ω if A is empty, i.e., if B is the earliest
observer according to ≤). Moreover, suppose that the
constituent observers of A are ordered A1 < A2 < � � � <
AjAj according to ≤. Then causal factorization gives

ΘA ¼ Θ̂A1
∘ � � � ∘ Θ̂AjAj ; ð34Þ

which implies that we can write the updated state ωA as the
result of jAj many individual updates according to

ωA ¼ ðJ AjAj ∘ � � � ∘J A1
ÞðωÞ ¼ ωAjAj;…;A1

; ð35Þ

which follows from the jAj ¼ 2 case by induction.
This demonstrates how multiple measurements are

modeled in the FV framework and shows in particular
how the familiar concept of successive state updates is
recovered in the situation of causally orderable observers.
As we have emphasized, in spite of the possible ambiguity
of the causal order, causal factorization ensures that the
answer is unique and also free of any influence from the
future to the past with respect to any causal order on the set
of observers. However, Sorkin’s impossible measurements
raise the question of whether any rule for assigning
expectation values might be plagued by other acausal
influences. It is the purpose of Sec. VII to show that this
is not the case in the FV framework, thus generalizing the
results of Sec. IV.
Before that, we end the present section with a discussion

of selective measurements, i.e., the process of postselection
and associated conditional expectation values.

E. Conditional expectation and postselection

Let Obs ¼ fA;Bg be a set of two causally orderable
observers each of whom performs a measurement of system
observable εXðOXÞ for X ∈ Obs. In this context: “what is
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observer B’s outcome conditioned on a certain outcome of
A’s measurement?”
To this end let us consider the situation where OA is an

effect and where B is interested in the outcome of his
experiment given that A measures successfully. As before,
let us motivate our answer by first considering the case of
an effect OB and let us assume that, after conducting (an
ensemble of) their experiments, the observers meet in their
joint future to analyze their data together. In this case
(slightly generalizing Sec. 3.3 of [7]) we can write down the
success probability of OB conditioned on (success of) OA
as the conditional probability

ProbfA;BgðOBjOA;ωÞ ¼
ProbfA;BgðOB &OA;ωÞ

ProbfA;BgðOA;ωÞ

¼ ðω ⊗ σÞðΘð1 ⊗ OA ⊗ OBÞÞ
ðω ⊗ σÞðΘð1 ⊗ ÔAÞÞ

¼ ωðεfA;BgðOA ⊗ OBÞÞ
ωðεAðOAÞÞ

; ð36Þ

under the standing assumption that ProbfA;BgðOA;ωÞ ¼
ðω ⊗ σÞðΘð1 ⊗ ÔAÞÞ ≠ 0, and where we used the explicit
order of tensor products P ¼ PA ⊗ PB. We emphasize that
the conditional success probability is operationally deter-
mined by means of postselection, i.e., the selection of those
members of the ensemble of the combined experiment,
which yielded a positive answer to A’s measurement. This
requires access to the experimental data of both B and A and
can consequently only be performed in their joint future.
Having found the conditional success probability, we

again view it as a justification for postulating the following
conditional expectation as an answer to the question in the
case where OB is not necessarily an effect but a general
observable:

EfA;BgðOBjOA;ωÞ ¼
ωðεfA;BgðOA ⊗ OBÞÞ

ωðεAðOAÞÞ
: ð37Þ

Let us investigate Eq. (37) further in the following cases:
(1) A ≤ B: Using Eq. (23) we observe that

ωðεfA;BgðOÞÞ ¼ ðω ⊗ σAÞðΘAðεBðOBÞ ⊗ OAÞ;
ð38Þ

which allows us to write

EfA;BgðOBjOA;ωÞ ¼
ðω ⊗ σAÞðΘAðεBðOBÞ ⊗ OAÞ

ðω ⊗ σÞðΘð1 ⊗ ÔAÞÞ

¼ ðω ⊗ σAÞðΘAðεBðOBÞ ⊗ OAÞ
ðω ⊗ σAÞðΘAð1 ⊗ OAÞÞ

≕ωAjOA
ðεBðOBÞÞ

¼ EBðOB;ωAjOA
Þ; ð39Þ

in terms of the selective update map

J AjOA
ðωÞ ≔ ωAjOA

; ð40Þ
which yields a well-defined state provided that OA
has nonzero success probability ðω ⊗ σAÞðΘAð1 ⊗
OAÞÞ ≠ 0 [7]. Equation (39) shows how Eq. (37) can
be understood in terms of an updated state in the case
where there exists a causal order such that A
precedes B and also constitutes a proof of Eq. (3).
Additionally note that J Aj1 ¼ J A.

(2) B ≤ A: the interpretation of this scenario is that B
performs postselection on a measurement that (at
least with respect to one causal order) succeeds his
own. There is a priori no reason to expect this
postselection to be trivial and we have not found any
simplified expression for EfA;BgðOBjOA;ωÞ in this
case. One might naïvely think that such a postse-
lection conflicts causality as there is an apparent
influence from the future to the past. This issue is
resolved by reminding oneself that postselection can
only be performed by all observers together in their
joint future.

For completeness we mention that it was shown in
Theorem 3.4 in [7] how in the case of spacelike separation,
any possible apparent acausal behavior of the selective
update map can be attributed to spacelike correlations of the
initial state ω. To see this we observe that for spacelike
separated A;B

Θ̂A ∘ Θ̂Bð1 ⊗ OA ⊗ OBÞ
¼ Θ̂A ∘ Θ̂Bð1 ⊗ OA ⊗ 1 · 1 ⊗ 1 ⊗ OBÞ
¼ ðΘ̂A ∘ Θ̂Bð1 ⊗ OA ⊗ 1ÞÞ · ðΘ̂A ∘ Θ̂Bð1 ⊗ 1 ⊗ OBÞÞ
¼ ðΘ̂A ∘ Θ̂Bð1 ⊗ OA ⊗ 1ÞÞ · ðΘ̂B ∘ Θ̂Að1 ⊗ 1 ⊗ OBÞÞ
¼ ðΘAð1 ⊗ OAÞ ⊗ 1Þ · ðΘBð1 ⊗ OBÞ ⊗2 1Þ; ð41Þ
which (cf. Sec. 3.2 in [7]) implies that

ωðεfA;BgðOA ⊗ OBÞÞ ¼ ωðεAðOAÞεBðOBÞÞ: ð42Þ
This shows that for spacelike separated observers

EfA;BgðOBjOA;ωÞ ¼ EBðOB;ωÞ; ð43Þ

if and only if ωðεAðOAÞεBðOBÞÞ ¼ ωðεAðOAÞÞωðεBðOBÞÞ,
i.e., εAðOAÞ and εBðOBÞ are uncorrelated in state ω.
The generalization to N observers in the case whereObs

admits a causal order ≤ such that B is the latest observer
(with respect to ≤) follows immediately: we look at the
partition A ≔ fX ∈ ObsjX < Bg and fBg and wish to
condition B’s expected outcome of a measurement of the
probe-effect OB on the successful measurement of the
probe-effects OX for X ∈ A. Setting OA ≔ ⊗

X∈A
OX yields

just as before
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EObsðOBjOA;ωÞ ¼ ωAjOA
ðεBðOBÞÞ ¼ EBðOB;ωAjOA

Þ:
ð44Þ

It is noteworthy that the total selective update map
J AjOA

ðωÞ can be written as a composition of individual
selective update maps

J AjOA
ðωÞ ¼ ðJ jAj ∘ � � � ∘J 1ÞðωÞ; ð45Þ

where we again ordered the constituent observers of A as
A1 < � � � < AjAj and used the short-hand notation J r ≔
J ArjOAr

. This follows by induction from the case jAj ¼ 2

given by Theorem 3.5 in [7].

VII. ABSENCEOF IMPOSSIBLEMEASUREMENTS
FOR MULTIPLE OBSERVERS

In this section we demonstrate the absence of any acausal
influence in the measurements of an arbitrary finite number
of causally orderable observers in a theory respecting
causal factorization.
To that end let us reconsider the situation of N observers

Obs. As in the previous section, we focus our attention on a
fixed observer B, taking the role played by Charlie in
Sec. IV, and a fixed linear order ≤. As shown before in
Eq. (33), B’s expected outcome EObsðOB;ωÞ equals
ωAðεBðOBÞÞ in the absence of any postselection on results
of any other observers. Let us assume that there is an
observer Y ∈ A who is spacelike separated from B, i.e,
KB ⊆ K⊥

Y , and will play the role of Alice. This gives rise to
the partition A¼X∪ fYg∪Z, where X ≔ fJ ∈ AjJ < Yg
and Z ≔ fJ ∈ ObsjJ > Yg. The super-observer Z will
play the role of Bob. We can then write

ωAðεBðOBÞÞ ¼ ðωX ⊗ σY ⊗ σZÞðΘ̂Y ∘ Θ̂ZðεBðOBÞ ⊗ 1ÞÞ:
ð46Þ

The following holds:
Theorem 5. If, in the above notation, KB is connected

and spacelike separated from KY, then:

ðωX ⊗ σY ⊗ σZÞðΘ̂Y ∘ Θ̂ZðεBðOBÞ ⊗ 1ÞÞ
¼ ðωX ⊗ σZÞðΘZðεBðOBÞ ⊗ 1ÞÞ: ð47Þ

A consequence of this theorem is that

ωAðεBðOBÞÞ ¼ ωAnfYgðεBðOBÞÞ; ð48Þ

and hence

EObsðOB;ωÞ ¼ EAnfYgðOB;ωÞ; ð49Þ

emphasizing that we can completely ignore the spacelike
separated observer Y as well as the super-observer C
succeeding B with respect to ≤.

It follows by successive application of the theorem that
no observer that is spacelike separated fromB can influence
the expected outcome of observer B’s measurement. This
shows that there is no Sorkin-type (or any other) super-
luminal signaling between the individuals in theN observer
case if each coupling zone is connected. We remark that the
need to restrict to connected coupling zones comes from the
connectedness condition in the formulation of the Haag
property. If connectedness is dropped from the Haag
property (cf. [13]), then one can also drop the connected-
ness in the above theorem.
The proof of Theorem 5 relies on the geometrical

Lemma 6 and an application of Theorem 2.
Lemma 6. For every connected compact subset K ⊆ M

there exists a connected region N ⊇ K with compact
closure.
Proof.—A subset with compact closure is called pre-

compact. As a smooth manifold, M has an exhaustion by
countably many precompact open sets Gα such that Ḡα ⊆
Gαþ1 and M ¼ ∪α Gα. Since K is compact, it can be
covered by finitely many Gα and since they are nested,
there exists β such that K ⊆ Gβ. Since M is globally
hyperbolic, the causal hull of Gβ, chðGβÞ, is open (see
Lemma A.8 in [12]) and chðḠβÞ is compact (by definition
of global hyperbolicity). Since obviously Gβ ⊆ Ḡβ, it also
follows that chðGβÞ ⊆ chðḠβÞ [as J�ðGβÞ ⊆ J�ðḠβÞ and
chðGβÞ ¼ J−ðGβÞ ∩ JþðGβÞ]. So chðGβÞ is a subset of a
compact set and hence precompact. As chðGβÞ can be
viewed as a globally hyperbolic manifold in its own right,
every connected component is hence precompact, con-
nected, open and causally convex. Since K is connected
and contained in chðGβÞ, it is contained in one connected
component, which finishes the proof. ▪
Let us now prove Theorem 5.
Proof of Theorem 5.—By assumption, KB ⊆ K⊥

Y and
from the existence of the causal order KB ⊆ Mþ

Z ¼
MnJ−ðKZÞ, and since KB is connected, it is contained in
one connected component of the open, causally convex
subset K⊥

Y ∩ Mþ
Z . This connected component can be

viewed as a globally hyperbolic manifold in its own right
and hence we can apply Lemma 6 to furnish a connected
region N ⊆ K⊥

Y ∩ Mþ
Z that contains KB and has compact

closure fully contained inK⊥
Y . Now εBðOBÞ is localizable in

N, moreover, after identifying K1 ≔ KY, K2 ≔ KZ and
O3 ≔ N, we see that the assumptions of Theorem 2 are
fulfilled, thus establishing the desired equality. ▪

VIII. CONCLUSIONS AND OUTLOOK

The issue of measurement in QFT has been plagued by
acausality exemplified by Sorkin’s protocol. Our main
result shows that a consistent and fully causal interpretation
of tripartite measurement processes in the sense of meas-
urement schemes is possible via the local and covariant
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proposal in [7], which is applicable to generic quantum
field theories coupled to external forces and on possibly
curved spacetimes. The principle of causal factorization
of scattering processes for an arbitrary finite number of
causally orderable observers allowed us to generalize
our result to the N observer case. As opposed to other
work, such as [18], our result thereby provides a class of
“physically allowed operations” that can be characterized
abstractly as well as constructed explicitly in specific
models, see [7].
The FV framework may be considered a first important

step towards a solution to the problem of delineating all
“physically allowed quantum operations” raised in [3];
however, whether all of them are induced by FV meas-
urement schemes is unknown. It is therefore important to
more explicitly characterize the system observables asso-
ciated to measurement schemes. We intend to report on this
issue elsewhere. It is also worth noting that local scattering
operators, understood as operations reflecting the result of
measuring observables, have recently been proposed as a
new foundation for AQFT [17] and this viewpoint could be
fruitfully combined with ours.
For our key assumption of causal factorization, we

have restricted ourselves to a physical motivation and
formulation of this assumption. A more rigorous,

mathematical investigation would be very interesting and
we intend to report on this elsewhere.
Finally it is worth mentioning that nonrelativistic, non-

local particle detector models are a very common tool and
widely used for example in quantum field theory in curved
spacetime and relativistic quantum information. Other
authors have shown that coupling such a detector model
to a finite number of field modes [2] or to all but the zero
mode [19] leads to superluminal signaling. In view of our
result, this is due to the nonlocality of such a coupling,
whereas the detector model sketched at the end of [7]
consequently does not signal superluminally. Applying the
FV framework to questions in which particle detector
models have so far been used, for example entanglement
harvesting [20], promises to yield additional insight both
on a conceptual level and with respect to explicitly
computable results.
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