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A class of two-dimensional sigma models interpolating between CP1 and the SUð2Þ principal chiral
model is discussed. We add the Wess-Zumino-Novikov-Witten term and examine the renormalization
group flow of the two coupling constants which characterize the model under consideration. The model
flows to the SUð2Þ Wess-Zumino-Novikov-Witten conformal field theory in the IR limit. There is an
ordinary phase in which the model flows from the asymptotically free UV limit of the CP1 model coupled
to an extra massless degree of freedom. At higher-loop order we find evidence that there is also a phase in
which the model can flow from nontrivial fixed points in the UV. A nonperturbative confirmation of these
extra fixed points would be desirable.
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I. INTRODUCTION

Nonlinear sigma models are often used as toy models in
high energy physics to illuminate aspects of more realistic
theories like QCD (see, e.g., [1]). But even seemingly
abstract models can turn out to be useful effective field
theory descriptions of phenomena in both high energy
physics and condensed matter. Some examples of the latter
which directly pertain to the target space under consideration
here are found in the study of frustrated spin systems [2].
The sigma model we are considering here is a deforma-

tion of both the Oð2NÞ model and the CPN−1 model. The
Lagrangian is given by

Lκ ¼
1

2λ2
ð∂n†∂n − κjn†∂nj2Þ; ð1Þ

where n is an N-dimensional complex unit vector, jnj2 ¼ 1.
When κ ¼ 0, this is just the Oð2NÞ model, i.e., the sigma
model on S2N−1. When κ ¼ 1, the model becomes Uð1Þ
gauge invariant and is the sigma model on CPN−1. For
intermediate values of κ, the target space is a “squashed
sphere” that is topologically equivalent to S2N−1, but which
has a deformed metric along the Uð1Þ fibers of the fiber
bundle defined by the natural map from S2N−1 → CPN−1.
The κ deformation breaks the global Oð2NÞ symmetry of

S2N−1 down to SUðNÞ ×Uð1Þ, and so this sigma model is a

natural candidate for an effective field theory of a systemwith
suchglobal symmetry. For this reason, it has beenwell studied
in the condensed matter community beginning with the N ¼
2 case in a 1989 paper by Dombre and Read on quantum
antiferromagnets on a two-dimensional spatial triangular
lattice [3]. A 1995 paper by Azaria, Lecheminant, and
Mouhanna study this model in both the weak coupling and
largeN limits and contains many more references to work on
this model from this era [4]. A more recent 2018 paper
considers this model as an effective field theory for anti-
ferromagnets on a two-dimensional triangular lattice with
noncoplanar ordering, and also on three-dimensional pyro-
chlore lattices [5].
From the high-energy point of view, this is also an

interesting toy model, especially in two spacetime dimen-
sions, which is connected to the high temperature limit of
the condensed matter models in three spacetime dimen-
sions. So far the introduction of an interpolating parameter
κ in the Lagrangian seems rather ad hoc, but it arises
naturally by coupling the CPN−1 model to massless fields.
To see this, note that the ordinary CPN−1 Lagrangian can

be written with an auxiliary gauge field Aμ in order to make
the gauge symmetry obvious,

1

2λ2
ð∂μ þ iAμÞn†ð∂μ − iAμÞn:

The auxiliary gauge field can then be coupled to a massless
Dirac fermion ψ ,

1

2λ2
ð∂μ þ iAμÞn†ð∂μ − iAμÞnþ 1

2α
ψ̄γμði∂μ þ AμÞψ ; ð2Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 025016 (2021)

2470-0010=2021=103(2)=025016(11) 025016-1 Published by the American Physical Society

https://orcid.org/0000-0003-3851-3672
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.025016&domain=pdf&date_stamp=2021-01-15
https://doi.org/10.1103/PhysRevD.103.025016
https://doi.org/10.1103/PhysRevD.103.025016
https://doi.org/10.1103/PhysRevD.103.025016
https://doi.org/10.1103/PhysRevD.103.025016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where α is an arbitrary parameter we will eventually
connect to κ. This Lagrangian in turn is connected to a
Stueckelberg field ϕ, through the bosonization map in two
dimensions (2D),

1

2λ2
ð∂μ þ iAμÞn†ð∂μ − iAμÞnþ 1

4πα
ð∂μϕ − AμÞ2: ð3Þ

For an example of bosonizing a Dirac fermion in a
background gauge field see, e.g., [6]. The gauge can
now be fixed so that ϕ ¼ 0, and the additional term
becomes a mass term for A, which breaks the confinement
of the CPN−1 model. When auxiliary A field is integrated
out we recover the squashed sphere Lagrangian (1) if we
make the identification,

α ¼ 1

2π

κλ2

1 − κ
: ð4Þ

So this formulation shows that the squashed sphere
Lagrangian is something rather natural to consider, just
being equivalent to a HiggsedCPN−1. But going back to the
original formulation (1) in terms of the parameter κ
emphasizes that it is somehow interpolating between the
CPN−1 andOð2NÞmodels, which is interesting because the
properties of these models are very different. In particular
CPN−1 has a nontrivial second homotopy group and can be
modified by a θ term, whereas this cannot be defined in the
case of the Oð2NÞ models. On the other hand, for N ¼ 2,
the two components of the complex unit vector n can be
packaged into a matrix U ∈ SUð2Þ where

U ¼
�

n�1 n0
−n�0 n1

�
:

In terms of U, the Lagrangian (1) becomes

L ¼ 1

4λ2
Trð∂μU†∂μUÞ − κ

2λ2
ημνI3μI3ν; ð5Þ

where

I3μ ≡ 1

2
Trð−iU†∂μUτ3Þ;

with τ3 the third Pauli matrix. Moreover, ημν is the
spacetime (or world sheet, depending on the interpretation)
metric. In 2DMinkowski space ημν ¼ diagf1;−1gwhile in
Euclidean ημν ¼ diagf1; 1g.
The key point is that the first term is just the Lagrangian

of SUð2Þ principal chiral model (PCM), which makes sense
since the target space S3 of the Oð4Þ model is equivalent to
the Lie group SUð2Þ.
The principal chiral model can also be modified by

a topological term: the Wess-Zumino-Novikov-Witten
(WZNW) term [7–9]. In this paper we will investigate

the impact of the WZNW term on the squashed sphere
sigma model, which is in some sense interpolating to the
CP1 model in which the WZNW term does not make sense
in two spacetime dimensions.
This is not the first time the SUð2Þ PCM and the CP1

model have been connected through topological terms. In
the so-called Haldane conjecture [10], an antiferromagnetic
Heisenberg spin chain with a half-integer spin is shown to
be equivalent to the CP1 model with a theta term set to
θ ¼ π. The antiferromagnetic Heisenberg spin chain in turn
flows to a massless Dirac fermion in the IR, which can be
equivalently represented as SUð2Þ PCM with a WZNW
term at level k ¼ 1. So the CP1 model at θ ¼ π flows to the
SUð2Þ WZNW model at level k ¼ 1 [11,12].
However the squashed sphere model considered in the

following is not the same as this flow. In the UV the model
looks like CP1 coupled to a massless fermion, as in (2). As
usual this massless fermion will wash out any dependence
on a theta term we might try to define. Even so, we can still
define a WZNW term for the squashed sphere model or
equivalently the Higgsed CP1 model, and it will have some
interesting consequences.
Various generalizations of this squashed sphere model,

both with and without a WZNW term, have been consid-
ered by a number of authors, particularly in regards to its
integrability (see below) and applications to AdS=CFT
(see, e.g., [13]). The classical integrability of the squashed
sphere model was first shown by Cherednik in 1981 [14]. A
later rediscovery of the integrability [15] involves modi-
fying the SUð2Þ current by a topological current so as to
preserve the flatness condition [16]. This result was also
extended to the squashed sphere with a WZNW term, as we
consider here, and the RG flow was calculated to one
loop [17,18].
The one loop RG flow was also calculated for a four-

parameter generalization of the squashed sphere target
space [19] which in another limit reduces to the integrable
sausage model [20]. This four-parameter model and related
target spaces were further considered in [13].
Besides this four-parameter model, another generaliza-

tion of the squashed sphere model is the Yang-Baxter
model [21] which is also integrable [22]. The Yang-Baxter
model with a WZNW term was considered [23], and the
classical flatness condition for the currents was shown to
persist to one loop. Two-loop renormalizability of such
models were recently addressed in [24,25].
Other issues in higher-loop calculations in sigma models

with two or more coupling constants addressed in the
literature are crucial for what follows. For instance,
Metsaev and Tseytlin [26] pointed out that the β functions
in such theories depend on a renormalization scheme
choice starting with two-loop order. This generally speak-
ing applies to our model as well as to the generic sigma
models with metric gab and two-form gauge field hab, see
Sec. II C.
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In our calculation we follow the pattern described in
detail in [27] (see also references therein). The background
field method is used combined with dimensional regulari-
zation. This is insufficient to unambiguously determine
two-loop terms. To eliminate the ambiguities we apply two
different consistency conditions which had been suggested
in the past. The first constraint stems from string theory (to
be referred to below as an integrability condition).
Perturbative in α0 string calculations [26] are related to
ours through the integrability condition. This will be
discussed in Sec. III.
The integrability requirement for the σ model β functions

is insufficient to constrain them unambiguously. The
second constraint comes from analysis of expansion in
the vicinity of the conformal point. For instance, the exact
nonperturbative result for the derivative of the β function at
the critical point is known from [28]. This aspect is
incorporated in Sec. III A while in Sec. III B we carry
out some additional checks. As a result, at two loops we
fully determine the β functions of the model. Three-loop
analysis carried out in [27] leaves a few constants unde-
termined. We briefly discuss this issue in Sec. II C,
deferring its solution for the future.
In this paper our focus is on the two-loop RG flow, which

leads to new features not seen in the one loop case. With the
second loop included, the RG flow drastically changes, in
particular due to the emergence a second separatrix and one
or more new nontrivial fixed points in the UV. In general, a
tentative existence of an extra fixed point from balancing
one- and two-loop terms (with not necessarily small higher-
order corrections) cannot not proven. As a counterexample
we could refer to symmetric space models with negative
curvature (but without the Wess-Zumino-Novikov-Witten
term) [29]. Higher-loop corrections are small if the param-
eter k ≫ 1. Since the phenomenon we detected1 disappears
at k ≥ 9 we can only hope that at k smaller than 9, but not
too small, (say, k ¼ 7, Fig. 2), the extra fixed points
survive. To complete the proof nonperturbative methods
are needed.
The paper is organized as follows. In Sec. II we will

review briefly the squashed sphere model in the formu-
lation (5) close to the SUð2Þ PCM, and we will explain how
to add a WZNW term. The discussion closely follows that
of [30]. The general results on renormalizing a sigma model
with a WZNW term are reviewed briefly in Sec. II C.
The RG equations of the squashed sphere sigma model

with a WZNW term are found and discussed in Sec. III.
Section III A discusses the ordinary regime in which the
model flows to the CP1 sigma model coupled to a massless
fermion in the UV. Section III B begins the discussion of
the two loop results by comparing the loop expansion of the
beta functions to the expansion about the WZNW CFT. In

Sec. III C a particular RG trajectory is found that is argued
to be valid to all orders in perturbation theory. And finally,
in Sec. III D, nontrivial UV fixed points of the model are
found at two loop order. The possible nonperturbative
existence of these fixed points is further discussed in the
conclusion, Sec. IV.

II. INTRODUCING THE WZNW TERM

A. Introducing the model

We will begin by recalling the Lagrangian of the SUðNÞ
PCM,

LPCM ¼ 1

4λ2
Trð∂μU†∂μUÞ; ð6Þ

where U is a N × N matrix in SUðNÞ. This has SUðNÞL ×
SUðNÞR global symmetry,

UðxÞ → VLUðxÞV−1
R :

Up to a normalization factor, the Noether currents corre-
sponding to these symmetries are

JL;μ ¼ i∂μUU†; JR;μ ¼ −iU†∂μU: ð7Þ

Of course, once additional terms are added to the action, the
Noether currents JL, JR will need to be modified, but these
original combinations ofU matrices will still be useful. The
Noether current under right isospin transformations here
will also be referred to as I, and it may be expanded in
terms of the Lie algebra basis τa,

Iμ ¼ Iaμτa ≡ −iU†∂μU:

The Lie algebra basis is normalized as

TrðτaτbÞ ¼ 2δab:

It will be convenient to reexpress the Lagrangian in terms of
these currents.

LPCM ¼ 1

2λ2
X
a

Ia;μIaμ: ð8Þ

Of course we could have equally well expanded in terms of
JL instead of JR ¼ I, but as in [31] we will explicitly break
the SUðNÞL × SUðNÞR symmetry down to SUðNÞL ×
Uð1ÞR by adding extra terms depending on JR.
As far as eventually adding a WZNW term is concerned,

the interesting case is when N ¼ 2, in which case the
squashed sphere sigma model Lagrangian is just [31]

L ¼ 1

2λ2
ððI1Þ2 þ ðI2Þ2 þ ð1 − κÞðI3Þ2Þ; ð9Þ1The additional fixed points show up at 2 < k ≤ 8, see

Sec. III D.
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where the upper index taking values 1,2,3 refers to the usual
Pauli matrix basis of the Lie algebra. When κ ¼ 0 this is the
ordinary SUð2Þ PCM, which is equivalent to the sigma
model on the sphere S3. When κ ¼ 1, the Uð1Þ global
symmetry becomes a gauge symmetry, and the model is
equivalent to the sigma model on CP1.

B. Adding a WZNW term

In two spacetime dimensions, the only finite action field
configurations are those which have a unique limit as the
spacetime argument goes to infinity, and thus these field
configurations map out a two-dimensional surface in the
squashed sphere target space homeomorphic to S3. Since
the target space is three dimensional it is meaningful to
consider the three-dimensional volume enclosed by the
field configuration in the target space. A term proportional
to this volume is exactly theWZNW term wewill add to the
action.
This can be calculated by integrating over the volume

form on the squashed sphere, thus we will need an
expression for the determinant of the metric. In terms of
an orthonormal basis on the target space expressed in terms
of the vielbeins eaμ, it is easy to show that the determinant of
the metric is

ffiffiffi
g

p ¼ ϵλμνe1λe
2
μe3ν: ð10Þ

The coordinates on the target space are not yet fixed, but
they can be chosen to be compatible with the spacetime
coordinates. The two-dimensional spacetime coordinates
can be thought of as defining a coordinate system on the
image of the field configuration UðxÞ in the target space.
And if we introduce an arbitrary third coordinate, the image
of UðxÞ can be continued throughout the bulk of the target
space. This choice of coordinates is useful because the
quantity Iaμ can be interpreted as the projection of the
coordinate vector ∂μ onto the left-invariant vector field
corresponding to the Lie algebra element τa. And since the
components of the target space metric can be read off the
sigma model Lagrangian, our Lagrangian (9) is telling us
that the left-invariant vector fields τa are orthogonal. In
other words, up to a constant normalization, the currents Iaμ
can be identified with the vielbeins.

ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p

λ3
ϵλμνI1λI

2
μI3ν;

¼ −i
12

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p

λ3
ϵλμνTrðIλIμIνÞ: ð11Þ

Now we will integrate this over the interior of the field
configuration, but since the target space is homeomorphic
to S3 there is some ambiguity in which side is considered
the interior and which is the exterior. We could even allow
for the “interior” of the field configuration to wrap around

the manifold multiple times. In any case, as usual the
ambiguity in signed volume will be some integer multiple
of the total volume of the target space, 2π2λ−3

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
. This

ambiguity will be harmless in the path integral if we
normalize it to be some integer multiple k of 2πi. So the
WZNW action is just

SWZNW ¼ 2πik

2π2λ−3
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
Z

dx3
ffiffiffi
g

p
;

¼ k
12π

Z
dx3ϵλμνTrðIλIμIνÞ: ð12Þ

Note that all dependence on the parameters λ and κ has
canceled, so the WZNW term for the squashed sphere is
exactly the same as for the unit sphere S3.
Adding the WZNW action to the original action of the

PCM (6), the Noether currents are modified. Using the
same normalization as in (7), they become

JL;μ ¼ i∂μUU† − k
λ2

2π
ϵμν∂νUU†;

JR;μ ¼ −iU†∂μU − k
λ2

2π
ϵμνU†∂νU: ð13Þ

At a special value of the coupling constant, which we will
call λ2k,

λ2k ¼
2π

k
; ð14Þ

these currents reduce to one independent component in
holomorphic coordinates, z ¼ x0 þ ix1,

JL;z̄ ¼ 2i∂ z̄UU†; JR;z ¼ −2iU†∂zU; ð15Þ

and the Noether current conservation law implies that JR;z
only depends on z, and JL;z̄ only depends on z̄. These
currents form a Kac-Moody algebra of level k and this is of
course just the WZNW conformal fixed point first found
in [9].
Since we will be modifying the Lagrangian by terms of

the form IμIμ ∝ IzIz̄ we will need to consider not only Iz,
which is one component of a conserved current, but also Iz̄
which is no longer conserved and thus can have an
anomalous dimension. The scaling dimension of this
operator was calculated by Knizhnik and Zamolodchikov
[28]. It takes the form 2Δ1 þ 1, where, in the case of group
SUð2Þ,

Δ1 ¼
2

2þ k
: ð16Þ
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C. Renormalizing WZNW models

The problem of renormalizing sigma models with a
WZNW term has been considered by a number of authors
[32–34]. The key step is to rewrite the WZNW term in the
action as a two-dimensional integral on the same footing as
the ordinary sigma action and then apply the same back-
ground field method which works to find the renormaliza-
tion of the sigma model without a WZNW term (an early
example of which is found in [35]). TheWZNW term in the
action (12) may be rewritten as

SWZNW ¼ i
3

Z
dx3Sabcϵλμν∂λϕ

a∂μϕ
b∂νϕ

c; ð17Þ

where ϕa are the fields in the sigma model mapping to
coordinates in the target space, and Sabc is proportional to
the volume form on the target space ωabc,

Sabc ¼
kλ3

2π
ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p ωabc: ð18Þ

Of course since S is a three form on a three-dimensional
manifold, it is a closed form. And even on higher dimen-
sional target spaces, the WZNW term may be written as an
integral over a closed form. This means that locally (but not
globally), we may write S as the exterior derivative of a
two-form gauge field h,

Sabc ¼ ∂ ½ahbc�;

and apply Stokes’s theorem to rewrite the action as

SWZNW ¼ i
3

Z
dx2habϵμν∂μϕ

a∂νϕ
b; ð19Þ

which just looks like an antisymmetric version of the
ordinary sigma model action,

Sσ ¼ −
1

2

Z
dx2gabημν∂μϕ

a∂νϕ
b; ð20Þ

where g is the target space metric and ημν is defined after
Eq. (5). Note that in our conventions all λ and κ dependence
is absorbed into the definitions of g and h.
The problem of finding the renormalization of a sigma

model with general g and h has been solved up to three
loops [27], although there are still some ambiguities left to
be cleared up, as we will discuss later. In our case, S is
proportional to the volume form, so its covariant derivative
vanishes, and it also satisfies the identity

S½abhSc�gh ¼ 0:

This will simplify some of the formulas for the β functions
slightly. To two loops the beta function is given2 as [34]

μ
∂
∂μ gab ¼

1

2π
R̂c

abc þ
1

8π2
R̂acdfR̂b

cdf

−
1

ð2πÞ2 R̂adfbSdghSfgh; ð21Þ

where R̂abcd is the Riemann curvature tensor Rmodified by
S in such a way that it has an interpretation as a Riemann
curvature for a target space metric with torsion [32],

R̂abcd ≡ Rabcd − SfabSfdc: ð22Þ

The last term in (21) involved some ambiguities in
continuing the Levi-Civita tensor in dimensional regulari-
zation which were fixed by matching the beta function to
the dimension of the operator perturbing the conformal
fixed point [33].
For the ordinary (κ ¼ 0) SUð2Þ WZNW model,

Rabcd ¼ λ2ðgadgbc − gacgbdÞ;

and given that S is proportional to the Levi-Civita tensor the
contraction SfabSfdc produces an identical structure. So the
full Riemann curvature with torsion R̂ is

R̂abcd ¼ λ2ð1 − η2Þðgadgbc − gacgbdÞ;

where we have defined the useful parameter3

η≡ kλ2

2π
¼ λ2

λ2k
: ð23Þ

When we are at the point η ¼ 1, the modified Riemann
curvature R̂abcd ¼ 0 and thus the β function vanishes. And
this is of course just the point where λ2 ¼ λ2k which was
introduced above in the context of the current algebra.

III. RG FLOWOF THE SQUASHED SPHEREWITH
WZNW TERM

It is now a simple matter to calculate the β function when
κ ≠ 0. Now the Riemann tensor will no longer take a form
proportional to ðgadgbc − gacgbdÞ, but it can still be calcu-
lated from the structure coefficients of the group as in, e.g.,
[4,31]. Taking the left invariant vector fields corresponding

2The expression for the derivative of the β function in (21)
generally speaking must involve symmetrization in a, b on the
right-hand side. However, in the case under consideration in
which the antisymmetric tensor hab does not run (corresponding
to the WZNW term) this is irrelevant, as discussed above
Eq. (21).

3The parameter η in (23) and below (without indices) is not to
be confused with the spacetime metric ημν.
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to the standard Pauli matrix basis for the Lie algebra as a
basis for the tangent space, the metric is

g11 ¼ g22 ¼
1

λ2
; g33 ¼

1 − κ

λ2
; ð24Þ

and the Riemann tensor Rabcd ¼ R½ab�½cd� is

R1212¼−
1

λ2
ð1þ3κÞ; R1313¼R2323¼−

1

λ2
ð1−κÞ2: ð25Þ

Also recall that the antisymmetric S tensor is proportional
to the volume form ω,

Sabc ¼
ληffiffiffiffiffiffiffiffiffiffiffi
1 − k

p ωabc: ð26Þ

Applying the general two-loop RG equations (21), we find
beta functions for λ and κ,

μ
d
dμ

�
1

λ2

�
¼ 1

π

�
ð1þ κÞ − 1

1 − κ
η2
�
þ η

πk

�
1þ 2κ þ 5κ2 − 4

1þ κ

1 − κ
η2 þ 3

1

ð1 − κÞ2 η
4

�
;

μ
d
dμ

�
1 − κ

λ2

�
¼ 1

π
½ð1 − κÞ2 − η2� þ η

πk

�
ð1 − κÞ3 − 4ð1 − κÞη2 þ 3

1

ð1 − κÞ η
4

�
: ð27Þ

When κ ¼ 0 this agrees with the usual two-loop RG
equation for the WZNW model [33,34]. When κ ≠ 0 but
k ¼ 0, which implies η ¼ 0 and η=k ¼ λ2=2π, then the RG
equations agree with the two-loop equations first found
in [4].

A. Below the first separatrix

Let us first consider the one-loop behavior. The RG flow
is plotted in Fig. 1. Everything flows to the WZNW CFT in
the IR. The curve η ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

solves the RG equations, and
is in fact a separatrix determining two classes of UV
behavior. Below the separatrix every trajectory flows in the
UV to the asymptotically free fixed point related to CP1.
And above the separatrix the coupling constant η and thus
λ2 appears to diverge in the UV. This divergence is quite
possibly an artifact of taking only a finite order in

perturbation theory, but we will have more to say on this
later.
Actually, as shown in [17,23], the separatrix η ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

is exactly the condition needed for the SUð2Þ currents at
nonzero κ to satisfy the flatness condition of [16] without
modification by a topological current. The condition η ¼ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
solving the RG equations to one loop can be seen as

a specific case of the preservation of the classical integra-
bility condition for Yang-Baxter models with a WZNW
term to one loop as found in [23]. Note that the exact
condition η ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

is no longer preserved by the RG
equations to two loops, although there is still a separatrix
that approximately satisfies this for large k.
Far below the separatrix, for η ≪

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
, the RG

equations reduce to the RG equations for the squashed
sphere sigma model without a WZNW term. There is an
RG invariant in this case first found in [4],

K ¼
ffiffiffi
κ

p
1 − κ

λ2:

As pointed out in [31], this value K is the exponent of
power law behavior of two-point functions of the unit
vector n field in the UV. This makes sense considering the
representation of the squashed sphere model in terms of a
Stueckelberg field ϕ discussed earlier, see Eq. (3). In the
UV, where κ ≈ 1 and λ ≈ 0, the correlation function is being
dominated by a phase factor expðiϕÞ, where ϕ is essentially
a massless free field. In terms of the parameter α in (4), this
has two-point function,

he−iϕðzÞeiϕð0Þi ∝ jzj−α ≈ jzj−K
2π;

which is exactly the value of the exponent found in [31].
Note in passing that we had been considering ϕ in (3) as

a Stueckelberg field coupled to the gauge field A, but we

0.20.0

0.5

1.0

1.5

0.0

0.4 0.6 0.8 1.0

FIG. 1. RG flow for the squashed sphere sigma model with a
WZNW term to one loop. The flow is pointing towards the IR.
The separatrix η ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

is plotted in red.
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can fix the gauge by making one of the components of n
real, and then integrate out A. In doing so, the sigma model
Lagrangian takes a form where ϕ has the interpretation as
the coordinate along the Uð1Þ fibers of the squashed sphere
target space in a coordinate system closely related to the
Fubini-Study coordinates (detailed in the appendix of [31],
see also [36]). The coupling between ϕ and the CP1

degrees of freedom involves an extra factor of λ2 and so
the ϕ field decouples in the κ → 1, λ2 → 0 limit.
This means that the squashed sphere model at κ ≈ 1 is

not a small perturbation on CP1 alone, the additional
degree of freedom given by ϕ is very important to the
behavior of the correlation functions. This can also be seen
by considering the Zamolodchikov c theorem [37]. The
central charge at the WZNW fixed point is

c ¼ 3k
kþ 2

;

and, since the central charge monotonically decreases along
the RG flow and we are free to take k as large as we want,
there must be a central charge of at least three in the UV.
This emphasizes the point that the theory near κ ¼ 1 can
not be just theCP1 sigma model, which has a central charge
of 2 at its asymptotically free UV fixed point. In order for
the flow to be consistent we need the extra degree of
freedom given by the ϕ field.
This is in contrast to the situation with the Haldane

conjecture [10,11]. There we are considering CP1ðθ ¼ πÞ
flowing to only the level k ¼ 1 WZNW model, which has
central charge c ¼ 1. So, as pointed out in [12], it is
perfectly consistent for the UV behavior to be given by the
asymptotically free fixed point of the CP1 model alone.
Returning now to our discussion of K and the correlation

functions, note that even with the WZNW term, the
quantity K has an unambiguous definition below the
separatrix through the limit of λ2=ð1 − κÞ in the UV.
Correlation functions of n now have power law behavior
in both the UVand IR. As just mentioned, the UV behavior
is determined by the value of K, and the IR behavior is
given by the scaling dimension of n field in the WZNW
CFT. Since the field n is just components of U, which is a
primary field in the WZNW CFT, it has scaling dimension
2Δ1=2, where Δ1=2 was calculated in [28],

Δ1=2 ¼
3=4
kþ 2

:

Furthermore, as in the squashed sphere model without a
WZNW term, trajectories with small values of K pass near
the κ ¼ 0, η ¼ 0 fixed point and so display crossover
behavior associated to the UV behavior of the SUð2Þ PCM.

B. Testing the loop expansion

The RG equations (27) are based on a loop expansion of
the action. Our model has three parameters, λ2 (or equiv-
alently η), κ, and the discrete parameter k. So it perhaps is
not clear at first which small parameter we are expanding
in. But recall that the action (9) implies

S ¼ k
4πη

Z
dx2½ðI1Þ2 þ ðI2Þ2 þ ð1 − κÞðI3Þ2�

þ k
12π

Z
dx3ϵλμνTrðIλIμIνÞ:

Since k−1 multiplies each term in the same position as ℏ, it
should be treated as the loop expansion parameter, and
indeed each term of the RG equations (27) has a definite
power of k−1. At large k successive loop contributions are
suppressed.
As a consistency check this expansion in k−1 can be

compared with a perturbative expansion about the WZNW
fixed point action S0, in a calculation similar to the κ ¼ 0
case [33,34]. If the CFT action S0 is perturbed by operators
Oi each of which has a well-defined scaling dimension Δi,

S ¼ S0 þ giOi;

then under a RG coarse graining from μ to μ0, to lowest
order in the small parameter gi the action will transform to

S0 þ gi

�
μ0

μ

�
Δi

Oi ≈ S0 þ gi

�
1þ Δi log

μ0

μ

�
Oi:

So to the lowest order the β function for gi is just,

βgi ¼ giΔi þOðg2Þ: ð28Þ

In our case the total action is

S ¼ S0 þ
k
2π

�
1 − η

η

�Z
dx2

1

2
½ðI1Þ2 þ ðI2Þ2�

þ k
2π

�
1 − κ − η

η

�Z
dx2

1

2
ðI3Þ2:

So the coefficients of the operators perturbing the fixed
point action are

gη ≡ k
2π

�
1 − η

η

�
; gκ ≡ k

2π

�
1 − κ − η

η

�
: ð29Þ

Expanding the beta functions (27) in these parameters,
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μ
d
dμ

�
1

λ2

�
¼

�
4

k
−

8

k2

�
gη þOðg2Þ;

d
dμ

�
1 − κ

λ2

�
¼

�
4

k
−

8

k2

�
gκ þOðg2Þ: ð30Þ

And indeed, using the dimension 2Δ1 þ 1 of the operator Iz̄
in (16), the dimension of the operators

R
dx2ðIaÞ2 is

2Δ1 ¼
4

2þ k
¼ 4

k
−

8

k2
þOðk−3Þ:

So the loop expansion to two loops agrees with conformal
perturbation theory to first order.

C. An exact RG trajectory

Notice that the straight line η ¼ 1 − κ satisfies the RG
equations (27) to two loops. The meaning of this may be
clarified by considering the parameters perturbing the
WZNW fixed point (29). If gκ is set to zero at one scale,
it remains zero under the RG flow. No ðI3Þ2 perturbation on
the fixed point is generated through renormalization.
In fact, we conjecture that this will hold not just to two

loops, but to all orders in perturbation theory. The reason
that η ¼ 1 − κ satisfies the RG equations is that the β
function for ð1 − κÞ=λ2 (or equivalently, for gκ) is of the
form (27)

μ
d
dμ

�
1− κ

λ2

�
¼ 1

k0
½a02;0ð1− κÞ2 þ a00;2η

2� þ 1

k1
½a13;1ð1− κÞ3

þ a11;3ð1− κÞη3 þ a1−1;5ð1− κÞ−1η5�:

Here anj;k is just notation for the numerical coefficient of the
term ð1 − κÞjηk in the (n − 1)-loop correction to the beta
function. Since κ ¼ 0, η ¼ 1 is a fixed point, we must have
the condition

X
i;j

ani;j ¼ 0: ð31Þ

So, given this condition, the reason why η ¼ ð1 − κÞ solves
the RG equations is because at each loop order n, the sum
of the powers of η and (1 − κ) is the same for each term. In
other words, for each n, iþ j is constant for all non-
vanishing ani;j.
But consider now the general expansion of the beta

function in the loop index n and as a Legendre expansion in
(1 − κ) and η,

μ
d
dμ

�
1 − κ

λ2

�
¼

X
n;i;j

1

kn
ani;jð1 − κÞiηj:

Expanding to first order in gη, gκ we have

μ
d
dμ

�
1 − κ

λ2

�
¼

X
n

2π

knþ1

�
gκ
X
i;j

iani;j þ gη
X
i;j

ðiþ jÞani;j
�

þOðg2Þ:

But as in (28) there should be no first order gη term. So
besides (31), there is also the condition

X
i;j

ðiþ jÞani;j ¼ 0: ð32Þ

This condition can also be derived by considering the 1=λ2

beta function at κ ¼ 0 and demanding that the dimension
agrees with the ð1 − κÞ=λ2 beta function at gη ¼ 0, as
in (30).
The point is now that a simple way to satisfy this second

condition (32), is if iþ j is a constant for all nonvanishing
ani;j, in which case it simply reduces to the first condition
(31). And, as mentioned above, this is exactly what is
needed for η ¼ 1 − κ to solve the RG equations. So while
this is not a proof, it seems rather plausible that η ¼ 1 − κ,
or equivalently gκ ¼ 0, is preserved under the RG flow to
all orders.

D. Additional fixed points

In Fig. 2, the RG flow is plotted to two loops. The
behavior below the first separatrix, which is now a slight
deformation of the one loop result η ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

, is quali-
tatively the same as for one loop, but the behavior above the
first separatrix is dramatically different. There is now a
second separatrix, and between the first and second
separatrices the trajectories flow to the WZNW CFT in
the IR, but flow to one or more new nontrivial fixed points
in the UV, plotted in red in Fig. 2.
Where the second separatrix meets κ ¼ 0 there is an IR

unstable fixed point. Setting κ ¼ 0 in the RG Eqs. (27), and
dividing out the factor of ð1 − η2Þ, we see that the unstable
fixed point is at the value η ¼ η0, which is the real root of
the cubic equation

3η30 − η0 − k ¼ 0: ð33Þ

When k is in the range 2 < k ≤ 8, there are also two
additional fixed points for κ > 0, as shown on the left of
Fig. 2. The coordinates of these fixed points can be found
by first noting that η ¼ 1 − κ solves the RG equations, as
noted in Sec. III C. This means ð1 − κÞ − η should be a
factor in the RG equation (27) for ðð1 − κÞ=λ2Þ, and in fact,
we can factor out ð1 − κÞ2 − η2,

μ
d
dμ

�
1− κ

λ2

�
¼ ð1− κÞ2 − η2

πkð1− κÞ ½kð1− κÞ þ ηð1− κÞ2 − 3η3�:

And we can also solve for the RG equation of κ alone,
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μ
dκ
dμ

¼ −
4η

k
κ

�
ð1 − κÞ þ 2η

k
ðð1 − κ2Þ − 2η2Þ

�
:

The fixed points ðκ0; η0Þ are roots of the bracketed poly-
nomials on the rhs of these two equations, and these can be
further manipulated so that κ0 is given by the two real roots
of a single quartic equation, and then η0 can be easily found
from the value of κ0,

4ð1 − κ0Þð1þ 3κ0Þð1þ 5κ0Þ2 − k2 ¼ 0; ð34Þ

η0 ¼
k

10κ0 þ 2
: ð35Þ

This quartic equation also indicates an upper bound on k for
which these two extra fixed points exist. At k ≥ 9, these
two fixed points disappear as in the right side of Fig. 2, and
since the loop expansion is essentially an expansion in k−1,
it is not clear whether these two fixed points are an artifact
of the loop expansion or not.

IV. DISCUSSION OF RESULTS

In fact it is not clear whether the new unstable fixed point
at κ ¼ 0 which solves (33) is an artifact or not. Of course at
κ ¼ 0 this is just the ordinary well-known SUð2Þ WZNW
model, so it is perhaps surprising that there would be an
additional fixed point. But this fixed point does already
appear in the two-loop RG equations published long
ago [33,34].
Note that the loop expansion may be expected to be more

accurate at high k, and according to (33) the η coordinate of
this fixed point scales as η0 ∼ k1=3 at large k. Although η
increases with k, the parameter η actually multiplies the
action in the combination 2πη=k ¼ λ2. And since λ2 of the

unstable fixed point scales as k−2=3, naïvely it appears to be
in the weak-coupling regime when k is large.
There are actually three-loop results available that can

illuminate the issue [27]. The β function at κ ¼ 0 is4

μ
d
dμ

�
1

λ2

�
¼ 1

π
ð1− η2Þ þ η

πk
ð1− η2Þð1− 3η2Þ

þ η2

2πk2
ð1− η2Þ½8þ ð1− η2Þq2 þ ð1− η4Þq4�:

ð36Þ

The numerical parameters q2 and q4 in (36) are scheme
dependent; in particular, they depend on the dimensional
regularization of the Levi-Civita symbol. The authors of
[27] were unable to fix them by first-order perturbation
theory about the WZNW CFT. So they are somewhat
questionable and below we will use the values suggested in
[27] only for the purpose of orientation,

q2 ¼ −
10

3
; q4 ¼ −

5

3
: ð37Þ

With the above remark in mind, we will nevertheless have a
look on whether the unstable fixed point (33) survives after
including the three-loop terms. Dividing out the 1 − η2

factor associated with the WZNW fixed point, and keeping
only the highest order terms in η at each loop, we have the
fixed points as solutions to the equation

−
q4
2k

η6 − 3η3 þ k ¼ 0:

1.5

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

FIG. 2. RG flow for the squashed sphere sigma model with a WZNW term to two loops. On the left is the level k ¼ 7 and on the right
is k ¼ 9. The green dot is the ordinary WZNW CFT, and the red dots are additional fixed points. The two fixed points with κ > 0
disappear for levels k ≥ 9.

4As was mentioned in Sec. I, RG scheme dependence
ambiguity at three loops has not yet been resolved (for a related
discussion in the pure metric case see, e.g., the Appendix in [24]).
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The unstable fixed point survives for large k as long as
q4 > −9=2, which is satisfied if the value given in [27] is
correct. What is more, given q4 < 0, there is a second fixed
point which is stable in the IR and first appears at
three loops.
Although these three-loop results are only for κ ¼ 0, let

us consider what this might imply about the κ > 0 behavior.
As seen in Fig. 2, at the order of two loops, all RG
trajectories above the second separatrix flow to strong
coupling in the IR. Now given there is an IR stable fixed
point that appears at three loops, it is very tempting to
conjecture that the new stable fixed point at three loops lies
at the end of a new third separatrix, above which all
trajectories flow to strong coupling in the UV. If the pattern
continues, at each loop order there could be a new
separatrix and a new fixed point at κ ¼ 0, alternating
between IR stable and unstable.
Needless to say, this is a shaky argument since not even

the unstable fixed point at κ ¼ 0 appearing at two loops has
been proven to exist outside of perturbation theory. Given
the value of q4 in [27], the three loop correction only shifts
the fixed point value η0 by a numerically small amount, but
the correction is also of order k1=3. To investigate this, it

might be useful to go beyond perturbation theory in k−1,
and compare to conformal perturbation theory about the
WZNW CFT at higher orders in gη, gκ.
To summarize, in this paper we studied a two-dimen-

sional field theory which is a deformation of the SUð2Þ
WZNW model that explicitly breaks one of the two SUð2Þ
global symmetries in the UV. The RG flow is partitioned by
separatrices. Below the first separatrix, all trajectories flow
in the UV to the weak-coupling fixed point of the CP1

sigma model coupled to a massless fermion or Stueckelberg
field. Above the first separatrix, to lowest order all
trajectories appear to flow to a Landau pole in the UV,
but as higher loops are added these trajectories appear to
instead flow to new “asymptotically safe” nontrivial fixed
points. Demonstrating the nonperturbative existence of
these fixed points, and the question of what CFT they
correspond to is still an open question.
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