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Production of massless, scalar particles by a relativistic, semitransparent, plane mirror in ð1þ 3ÞD
Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The corresponding
Bogoliubov coefficients are derived for a mirror with arbitrary, relativistic trajectories. We apply our
derived formula to two specific trajectories. One is commonly used in the ð1þ 1ÞD literature to
mimic gravitational collapse theoretically, and the other is proposed to be realizable experimentally.
In addition, we identify the relation between the particle spectrum and the particle production probability,
and we demonstrate the equivalence between our approach and the existing approach in the literature,
which is restricted to ð1þ 1ÞD. In short, our treatment extends the study to ð1þ 3ÞD spacetime
for a relativistic, plane mirror. Lastly, we offer a third approach for finding the particle spectrum using the
S-matrix formalism.
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I. INTRODUCTION

In 1970, Moore demonstrated [1] that quanta of electro-
magnetic field may be produced from the initial vacuum
state if the field is constrained in a one-dimensional cavity
and subject to time-dependent Dirichlet boundary condi-
tions in ð1þ 1ÞDMinkowski spacetime. This phenomenon
is a manifestation of the interaction between vacuum
fluctuations of the quantized field and moving boundaries.
A few years later, DeWitt [2] showed that, for a scalar
field subject to a single time-dependent Dirichlet boundary
condition, i.e., a moving, perfect, point mirror, in ð1þ 1ÞD
Minkowski spacetime, the production of particles out of the
initial vacuum state is also possible. Soon after, Fulling and
Davies studied the energy-momentum tensor [3] and
particle spectrum [4] for a perfect, point mirror following
prescribed trajectories in ð1þ 1ÞD. The production of
particles out of the vacuum due to time-dependent boun-
dary condition(s) is therefore referred to as the: “Moore
effect”, “dynamical Casimir effect”, “motion-induced radi-
ation”, or “moving mirror radiation”. For mirrors with a
variety of trajectories mimicking different scenarios of
black hole radiation, please see Good’s recent works,
e.g., [5,6], whereas for various trajectories mimicking

different candidate resolutions to the information loss
paradox of black hole evaporation, please see Chen and
Yeom [7].
Most works in this subject are studied in ð1þ 1ÞD

Minkowski spacetime in which the massless, scalar field
and the Klein-Gordon equation are conformal invariant.
Conformal invariance allows for exact solutions to the
Klein-Gordon equation for a perfect, point mirror in
arbitrary motion, i.e., arbitrary time-dependent Dirichlet
boundary condition. In addition, when expanding the scalar
field in terms of mode functions, the past null infinity
I− and the future null infinity Iþ can always serve as the
in-region and the out-region, respectively, and thus the
concept of particle is well defined in these two regions.
Nevertheless, conformal invariance breaks down in higher
dimensions and thus the techniques developed for ð1þ 1ÞD
no longer apply. Instead, in ð1þ 3ÞD spacetime, the proper
in-region and the out-region are, respectively, the remote
past (x0 → −∞) and the remote future (x0 → ∞). In this
case, particle spectra for a nonrelativistic mirror with
bounded motions starting and stopping at the same position
have been worked out [8–12] based on the perturbative
approach proposed by Ford and Vilenkin [13].
Aside from the concept of particles, another physical

quantity of common interest is the (local) energy-momen-
tum tensor. This quantity may be easier to obtain than the
particle spectrum (if it may be defined) for mirrors with
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arbitrary trajectories and even in higher dimensional
spacetimes since it only requires the knowledge of the
in-mode and the in-vacuum. Energy-momentum tensor is,
in general, not related to the particle spectrum by a simple
mode-summation procedure of adding up the energy
carried by each particle, see, e.g., [3–6,13,14], because it
also contains the effect of vacuum polarization. Energy-
momentum tensor for an infinite-size, plane, Rindler mirror
in ð1þ 3ÞD has been worked out by Candelas and Raine
[15] and Candelas and Deutsch [16], while spherical
mirrors with shells expanding/contracting with near-
uniform acceleration are also studied in, e.g., [17–19].
Limited by technologies, a direct construction of a

relativistic mirror in laboratories to test the above studies
were not feasible. Therefore, alternative experimental
proposals had been conceived and conducted, e.g., the
superconducting quantum interference device (SQUID)
experiment [20] and references therein. Nevertheless, it
is recently proposed by Chen and Mourou [21,22] that the
relativistic mirror may be manifested through plasma
wakefields.
In actual experiments, such as that proposed in [21,22]

that involve physical, relativistic mirrors, one tends to
encounter the following situations: (i) the spacetime is
ð1þ 3ÞD Minkowskian, (ii) the mirror is not a perfect
reflector, (iii) the mirror is roughly planar, and (iv) the
mirror has a finite transverse dimension. Therefore, for-
mulations that incorporate these realistic, less than perfect
situations are desirable for the cross-check with future
experimental results. In this paper, the approachwe adopted,
in principle, enables the inclusion of these situations.
However, we will only focus on (i), (ii), and (iii) in the
present paper and leave (iv) for further discussions in our
future work since the aims of the present paper are to lay
down the framework that applies to a plane mirror following
a general, relativistic trajectory in ð1þ 3ÞD Minkowski
spacetime and to explore new features that do not show up in
the standard ð1þ 1ÞD literature or the studied ð1þ 3ÞD
non-relativistic, plane mirror model.
The first example that we study is the trajectory that is

often used to mimic the physics of gravitational collapse of
a spherical null shell in ð1þ 3ÞD curved spacetime in the
ð1þ 1ÞD moving mirror literature. It is fortunate that this
trajectory enables an analytic computation and allows us to
check whether our ð1þ 3ÞD results are, in the k⊥ ¼ 0
limit, consistent with the ð1þ 1ÞD literature that uses
different approaches. The corresponding new features that
arise in ð1þ 3ÞD due to the nonvanishing transverse
momentum are also readily distinguished from the usual
behavior in ð1þ 1ÞD. Despite this trajectory is not yet
realizable in practice, it suffices to meet our aim of the
present paper, i.e., to see the emergence of new physical
properties when a relativistic, plane mirror is considered.
The second example that we study is one of the trajectories
proposed in [22] that might be realizable in practice. In this

paper, we study that trajectory under certain assumptions
such that analytic computations are possible.
We will begin with the Barton-Calogeracos (BC)

action [23]:

Sα½ϕ� ¼ −
1

2

Z
R
d4x∂μϕðxÞ∂μϕðxÞ

−
α

2

Z
R
d4xγ−1ðx0Þδðx3 − qðx0ÞÞϕ2ðxÞ; ð1Þ

where α is a coupling constant with the dimension of
length−1, γðx0Þ is the usual Lorentz factor, and qðx0Þ
denotes the mirror’s trajectory. In this action, the scalar
field ϕðxÞ interacts quadratically with a Dirac-delta func-
tion that simulates the moving mirror. Their interaction
is adiabatically switched on and off in the remote past
ðx0 → −∞Þ and the remote future ðx0 → ∞Þ and thus we
will identify them as the in-region and the out-region,
respectively. The BC action is applicable to relativistic,
partial reflecting mirrors and general spacetime dimen-
sions. The model is equivalent to a jellium sheet of zero
width, i.e., a surface of zero thickness with a surface current
density generated by the motion of small charge elements
with charge density ns (number of charge elements per
unit area) and the coupling constant is identified as
α ¼ 4πnse2=me, where e and me are the charge and the
mass of the individual entity, respectively [23,24].
Despite the generalizability of the BC action, so far only

reductions to ð1þ 1ÞD or the non-relativistic limit have
been studied, e.g., [25–31]. Recently, Fosco, Giraldo and
Mazzitelli [32] studied the pair production probability for
the BC action in higher dimensional spacetime by using the
in-out effective action approach. In this paper, we (i) derive
the particle spectrum for a mirror following general,
prescribed trajectories by solving the inhomogeneous
Klein-Gordon equation for the BC action using the Born
approximation and subsequently (ii) identify the relation
between the particle spectrum and the particle production
probability. In addition, we demonstrate the equivalence
of our approach to Nicolaevici’s approach [28,29] in the
ð1þ 1ÞD limit.
This paper is organized as follows. In Sec. II, the

ð1þ 3ÞD inhomogeneous Klein-Gordon equation is
solved perturbatively. The Bogoliubov transformation
between the in-/out-creation and annihilation operators
are subsequently derived and the particle spectrum follows
straightforwardly. The relation between the particle spec-
trum and the particle production probability is also iden-
tified. In Sec. III, we demonstrate the equivalence between
our treatment and the approach adopted in the literature
in ð1þ 1ÞD. In Sec. IV, we apply our ð1þ 3ÞD formula
to two specific trajectories. In Appendix, we offer a third
approach for finding the particle spectrum using the
S-matrix.
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In this paper, we use ℏ ¼ kB ¼ c ¼ 1 and the metric
signature ð−;þ;þ;þÞ in ð1þ 3ÞD. The symbol x refers to
ðx0;x⊥; x3Þ, where x⊥ are the coordinates x1, x2 that are
transverse to the mirror’s motion, k⊥ ≡ jk⊥j, R refers to
ð−∞;∞Þ, and Rþ refers to ð0;∞Þ, etc.

II. PARTICLE PRODUCTION IN ð1 + 3ÞD
A. Particle spectrum

The equation of motion (EOM) for the BC action is

∂μ∂μϕðxÞ ¼ αγ−1ðx0Þδðx3 − qðx0ÞÞϕðxÞ: ð2Þ

Due to the linearity of the differential equation, its solution
[33] can be superposed by

ϕðxÞ ¼ ϕhðxÞ þ ϕpðxÞ; ð3Þ

where (after second-quantization)

ϕ̂hðxÞ¼
Z

d3k0

ð2πÞ3=2ð2jk0jÞ1=2 ½âk0e−ijk0jx0þik0·xþH:c:�; ð4Þ

is the homogeneous solution with its integration range to be
determined and

ϕ̂pðxÞ¼−α
Z
R
d4x0γ−1ðx00Þδðx03−qðx00ÞÞϕ̂ðx0ÞGRðx;x0Þ; ð5Þ

is the particular solution; GRðx; x0Þ is the free field retarded
Green function. Applying the Born approximation to the
first order in α, we obtain

ϕ̂ð1ÞðxÞ¼ ϕ̂hðxÞþ ϕ̂ð1Þ
p ðxÞ

¼ ϕ̂hðxÞ

−α

Z
R
d4x0γ−1ðx00Þδðx03−qðx00ÞÞϕ̂hðx0ÞGRðx;x0Þ;

ð6Þ

where the homogeneous solution is now

ϕ̂h ¼
Z
D

d3k0

ð2πÞ3=2ð2jk0jÞ1=2 ½âk0e−ijk0jx0þik0·x þ H:c:�: ð7Þ

The domain for the integration over momentum is
determined as k0 ∈ D by the semitransparent condition:

jϕð1Þ
p ðxÞj ≪ jϕhðxÞj due to the first-order approximation

made. This constraint would lead to a physical infrared
cutoff for the incident free modes. This can be expected
directly from physical grounds. Semitransparency of the
mirror is just another way of saying the incident modes
interact weakly with the mirror, which is comprised of, e.g.,
electrons. For the interaction to be weak, the incident
modes should have wavelengths small enough compared to
the spacing between the adjacent electrons so as to pass
by the mirror without much scattering. This then imposes
the infrared cutoff for ϕ̂ð1ÞðxÞ since the electron density is
proportional to the coupling constant α as mentioned in
Sec. I. In principle, the perturbation in α can be extended to
higher orders since Eq. (3) is an integral equation. Had all
the orders been kept, the mirror would then become a
perfect reflector for all momenta by taking α → ∞.
Nevertheless, it may be technically impractical to discuss
the high reflection case by using the perturbative approach.
As a side remark, comparisons between our and Ford-
Vilenkin’s perturbative approach are summarized in Table I
and comparisons between our and Nicolaevici’s, Haro-
Elizalde’s approaches, which are exact in α, are summa-
rized in Table II.
The counterpart of ϕð1ÞðxÞ using the free field advanced

Green function, GAðx; x0Þ, is similarly obtained:

ϕ̂ð1ÞðxÞ¼ ϕ̂hðxÞ

−α

Z
R
d4x0γ−1ðx00Þδðx03−qðx00ÞÞϕ̂hðx0ÞGAðx;x0Þ:

ð8Þ

Using the retarded Green function, we are in fact
assuming the vacuum state defined by âink j0; ini ¼ 0. In
addition, since we are considering the first-order field, we

TABLE I. Comparisons between two different perturbative approaches that can be applied to ð1þ 3ÞD.
Lin-Chou-Chen Ford-Vilenkin [13]

Mirror reflectivity Semi-transparent Perfect reflector
In-/Out-field Free field Static-mirror field
Spacetime dimension ð1þ 1ÞD and ð1þ 3ÞD ð1þ 1ÞD and ð1þ 3ÞD
Coordinate frame Lab ðx0; x1; x2; x3Þ Lab ðx0; x1; x2; x3Þ
Perturbation in Coupling constant: α Boundary condition: qðx0Þ=x3, _q2ðx0Þ, etc.
Approach Retarded Green function Retarded Green function

Advanced Green function Advanced Green function
Valid trajectories Relativistic Non-relativistic
Mirror’s initial/final location No restriction Static at the same location
Beta-coefficient is found by Fourier transformation Fourier transformation
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may identify the homogeneous part of (8) as the out-field
while the remaining ϕ̂h in (6) and (8) as the in-field.
To obtain the knowledge of creation and annihilation

operators, we Fourier transform ϕ̂ð1ÞðxÞ byZ
R
dx0d2x⊥

Z
∞

0

dx3ϕ̂
ð1ÞðxÞeiωx0−ik·x; ð9Þ

and use the Green functions of the following form

GR=Aðx; x0Þ ¼
Z
R

dω
2π

e−iωðx0−x00Þ�iωjx−x0j

4πjx − x0j ; ð10Þ

where the Weyl identity for ω ∈ Rþ

eiωjx−x0j

4πjx−x0j¼
i

8π2

Z
R
d2k⊥

eik⊥·ðx⊥−x0⊥Þþiðω2−k2⊥Þ1=2jx3−x03j

ðω2−k2⊥Þ1=2
; ð11Þ

is to be used in the calculation. To proceed with computa-
tional ease, we temporary assume qðx00Þ ≤ 0 ∀ x00 since x3
is already positive in (9). Finally, by equating the Fourier
transform of (6) and (8) and subsequently choosing
ω > 0; ðω2 − k2⊥Þ1=2 > 0, and k3 ¼ ðω2 − k2⊥Þ1=2 > 0 after
lengthy calculations, we obtain the Bogoliubov transforma-
tion on the mirror’s right as

âoutk⊥k3 ≈ âink⊥k3 þ
α

4πi
1

jkj1=2
Z
R
dx00

Z
D
dk03

γ−1ðx00Þ
ðk2⊥ þ k023 Þ1=4

×
h
âink⊥k03

e−ið
ffiffiffiffiffiffiffiffiffiffiffi
k2⊥þk02

3

p
−jkjÞx0

0
þiðk0

3
−k3Þqðx00Þ þ âin†−k⊥k03

eið
ffiffiffiffiffiffiffiffiffiffiffi
k2⊥þx02

0

p
þjkjÞx0

0
−iðk0

3
þk3Þqðx00Þ

i
; ð12Þ

where

βkk0 ≈
α

4πi
1

jkj1=2
Z
R
dx00

γ−1ðx00Þ
ðk2⊥ þ k023 Þ1=4

eið
ffiffiffiffiffiffiffiffiffiffiffi
k2⊥þk02

3

p
þjkjÞx0

0
−iðk0

3
þk3Þqðx00Þ; ð13Þ

is our desired beta-coefficient that is relevant to particles emitted to the mirror’s right. Similarly, choosing ω > 0;
ðω2 − k2⊥Þ1=2 > 0 and k3 ¼ −ðω2 − k2⊥Þ1=2 < 0, one obtains the same expression of Bogoliubov transformation as above
but with k3 now being negative and the corresponding beta-coefficient is relevant to particles emitted to the mirror’s left.
The number of particles with k ∈ D per mode in the out-region is thus

dN
d2k⊥dk3

¼ h0; injâout†k⊥k3 â
out
k⊥k3 j0; ini

¼ A
4π2

Z
D
dk03jβkk0 j2

≈
Aα2

64π4jkj
Z
D
dk03

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k023

p ����
Z
R
dx00γ

−1ðx00Þeiðjkjþ
ffiffiffiffiffiffiffiffiffiffiffi
k2⊥þk02

3

p
Þx0

0
−iðk3þk0

3
Þqðx0

0
Þ
����2; ð14Þ

where A is the area of the infinite-size, plane mirror. The beta-coefficient and particle spectrum in ð1þ 1ÞD follow directly
from (13) and (14) by letting k⊥ ¼ 0.

TABLE II. Comparisons between different approaches for a relativistic, partially reflecting mirror.

Lin-Chou-Chen Nicolaevici [28,29] Haro-Elizalde [25]

Action Barton-Calogeracos action Barton-Calogeracos action Barton-Calogeracos action
Spacetime dimension ð1þ 1ÞD and ð1þ 3ÞD ð1þ 1ÞD ð1þ 1ÞD
Coordinate frame Lab ðx0; x1; x2; x3Þ Lab ðu; vÞ Lab ðu; vÞ Comoving ðū; v̄Þ
Perturbation or exact Perturbation in α Exact in α Exact in α
Approach Retarded Green function Differential equation for

reflection coefficient
Conformal transformation
of S-matrix elementsAdvanced Green function

Valid trajectories Relativistic Relativistic Relativistic
Mirror’s initial/final location No restriction No restriction No restriction
Beta-coefficient is found by Fourier transformation Klein-Gordon inner product Klein-Gordon inner product
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B. Particle production probability

The vacuum persistence amplitude Zα corresponding to
the BC action is defined as

Zα ¼ eiWα ¼
Z

DϕeiSα½ϕ�; ð15Þ

where Wα is the effective action. By decomposing Wα as
Wα ¼ W0 þWI, where W0 is the effective action in the
absence of interaction, i.e., free field effective action, the
interaction effective action WI can be written as

eiWI ¼ h0jT e−
iα
2

R
R
d4xγ−1ðx0Þδðx3−qðx0ÞÞϕ̂2ðxÞj0i; ð16Þ

where T is the time-ordering operator, ϕ̂ is a free scalar
field operator, and j0i is the free field vacuum state. By
expanding to the second order in α and using Wick’s
theorem, we obtain

eiWI ≈ 1þ α

2

Z
R
d4xγ−1ðx0Þδðx3 − qðx0ÞÞGFðx; xÞ

þ α2

8

�Z
R
d4xγ−1ðx0Þδðx3 − qðx0ÞÞGFðx; xÞ

�
2

þ α2

4

Z
R
d4xd4x0γ−1ðx0Þδðx3 − qðx0ÞÞ

× γ−1ðx00Þδðx30 − qðx00ÞÞG2
Fðx; x0Þ; ð17Þ

where GFðx; x0Þ is the free field Feynman propagator. The
constant factors in the denominator of each term are the
symmetry factors for the corresponding processes. For
example, the symmetry factor 2 for the OðαÞ process
comes from the propagator starting and ending on the same
spacetime point (vertex); the factor 4 ¼ 2 × 21 × 1! for the
last term originates, respectively, from (i) two propagators
connecting x and x0, (ii) 22=2 ¼ 21 ways of choosing
2=2 ¼ 1 vertex among the 2 vertices as an in vertex,
and (iii) 1!way to pair the in vertex with the remaining (out)
vertex. WI is approximately

iWI ≈
α

2
GFð0ÞA

Z
R
dτþα2

4

Z
R
d4xd4x0γ−1ðx0Þ

×δðx3−qðx0ÞÞγ−1ðx00Þδðx03−qðx00ÞÞG2
Fðx;x0Þ; ð18Þ

where we have used lnð1þ xÞ ≈ x − x2=2 and τ is the
mirror’s proper time. The above equation has also been
derived in [32]. However, in our following treatment, we
use the following expression for the Feynman propagator:

GFðx; x0Þ ¼ −iΘðΔx0Þ
Z
R

d3k
ð2πÞ3

e−ijkjΔx0þik·Δx

2jkj

− iΘð−Δx0Þ
Z
R

d3k
ð2πÞ3

eijkjΔx0þik·Δx

2jkj ; ð19Þ

where Θ is the Heaviside step function, Δx0 ¼ x0 − x00,
Δx ¼ x − x0, and replace Θð−Δx0Þ by 1 − ΘðΔx0Þ instead

of using Feynman parametrization as [32] did, we then
obtain the probability of particle production as

P ≈ 2ImW ≈
1

2

Z
D
d3k

Aα2

64π4jkj
Z
D
dk03

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k023

p
×

����
Z
R
dx00γ

−1ðx00Þeiðjkjþ
ffiffiffiffiffiffiffiffiffiffiffi
k2⊥þk02

3

p
Þx0

0
−iðk3þk0

3
Þqðx0

0
Þ
����2; ð20Þ

where the factor of 1=2 on the right-hand side is the product
of 2 × 1=4. Note that the domains for the momenta are D
since we are only considering the case of a semi-transparent
mirror, i.e., second order in α for the probability. Finally, by
comparing (20) with (14), we observe that the probability
of particle production is related to the particle spectrum by

P ≈ 2 ImW ≈
1

2

Z
D
d3k

dN
d2k⊥dk3

: ð21Þ

III. EQUIVALENCE OF DIFFERENT
APPROACHES IN ð1 + 1ÞD

A. Our approach

From (6), which applies in ð1þ 3ÞD, we can deduce the
in-mode in ð1þ 1ÞD straightforwardly by

uð1Þðt;xÞ≈uhðt;xÞ−α

Z
R
dt0mdx0γ−1ðt0mÞ

×δðx0− zmðt0mÞÞuhðt0m;x0ÞGRðt;x; t0m;x0Þ; ð22Þ
where

GRðt; x; t0m; x0Þ ¼
1

2
Θðt − t0m − jx − x0jÞ

¼ 1

2

Z
t

−∞
dt00δðt00 − t0m − jx − x0jÞ; ð23Þ

is the ð1þ 1ÞD retarded Green function, and we have
changed the notations for the mirror’s trajectory by
qðx00Þ→ zmðt0mÞ, the observation points by x0→t, x3 → x,
and the dummy variables by x00 → t0m, x03 → x0 for a clear
correspondence with the typical ð1þ 1ÞD literature.
For uhðt; xÞ ¼ e−iωt−iωx and on the mirror’s right, i.e.,

x − zmðt0mÞ > 0, the inhomogeneous part of (22) can be
evaluated as

−
α

2

Z
t

−∞
dt00

Z
R
dt0mγ−1ðt0mÞe−iωt0m−iωzmðt0mÞ

× δðt00 − t0m − xþ zmðt0mÞÞ

¼ −
α

2

Z
t

−∞
dt00

Z
dRðt0mÞ

1 − _zmðt0mÞ
γ−1ðt0mÞ

× e−iωt
0
m−iωzmðt0mÞδðt00 − x − Rðt0mÞÞ

¼ −
α

2

Z
tmðuÞ

−∞
dt0mγ−1ðt0mÞe−iωt0m−iωzmðt0mÞ; ð24Þ
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where Rðt0mÞ ¼ t0m − zmðt0mÞ in the first equality and
RðtmÞ ¼ t − x in the last equality. Notice that RðtmÞ ¼
t − x recovers the standard condition for an out-going
massless particle in the null coordinates u ¼ t − x, and
hence we denote tm by tmðuÞ. On the mirror’s left, i.e.,
x − zmðt0mÞ < 0, we have

−
α

2

Z
tmðvÞ

−∞
dt0mγ−1ðt0mÞe−iωt0m−iωzmðt0mÞ

¼−
α

2

Z
tmðuÞ

−∞
dt0mγ−1ðt0mÞeiω½tmþzmðtmÞ−t0m−zmðt0mÞ�e−iωt−iωx;

ð25Þ
instead, where tmðvÞ is determined by tm þ zmðtmÞ ¼ tþ x,
which again recovers the standard condition v ¼ tþ x for
an in-coming massless particle.
For the out-mode, we use the advanced Green function

GAðt; x; t0m; x0Þ ¼
1

2
Θðt0m − t − jx − x0jÞ

¼ −
1

2

Z
t

∞
dt00δðt0m − t00 − jx − x0jÞ; ð26Þ

in (22) instead. Following the same procedure as above, we
find, for uhðt; xÞ ¼ e−iωtþiωx and on the mirror’s right, i.e.,
x − zmðt0mÞ > 0, the inhomogeneous part as

−
α

2

Z
∞

tmðvÞ
dt0mγ−1ðt0mÞe−iωt0mþiωzmðt0mÞ: ð27Þ

The other situations, e.g., uhðt; xÞ ¼ e−iωt−iωx and on the
mirror’s left, may be straightforwardly found by using the
same procedure and thus we shall not repeat it here.

B. Nicolaevici’s approach

The in-mode given by Nicolaevici [28,29] is, e.g.,

VR ¼ e−iωv−RRðuÞe−iωpðuÞ; VL ¼TLðvÞe−iωv; ð28Þ

where the superscripts R=L refer to the mirror’s right/left,
ðu; vÞ are the ð1þ 1ÞD null coordinates, and the ray-tracing
function is

pðuÞ ¼ 2zmðuÞ þ u; ð29Þ

and the reflection and transmission coefficients are [34]

RRðuÞ ¼ α

2

Z
τ

−∞
dτ0e−α

2
ðτ−τ0Þþiω½vðτÞ−vðτ0Þ�;

TLðvÞ ¼ 1 − RRðuÞ; ð30Þ

where τ is the mirror’s proper time and vðτÞ ¼ tmðuÞþ
zmðtmÞ ¼ pðuÞ. In the first-order approximation, which
corresponds to the semitransparent limit [35], the reflection
coefficient becomes

RRðuÞ ≈ α

2

Z
τ

−∞
dτ0eiω½vðτÞ−vðτ0Þ�: ð31Þ

Therefore, we have

−RRðuÞe−iωpðuÞ ≈ −
α

2

Z
τ

−∞
dτ0e−iωt0m−iωzmðt0mÞ

¼ −
α

2

Z
tmðuÞ

−∞
dt0mγ−1ðt0mÞe−iωt0m−iωzmðt0mÞ;

ð32Þ

which recovers our result (24).
The out-mode is given by [28,29]

UR ¼ e−iωu−RRðvÞe−iωfðvÞ; UL ¼TLðuÞe−iωu; ð33Þ

where the ray-tracing function is

fðvÞ ¼ −2zmðvÞ þ v; ð34Þ

and the reflection and transmission coefficients are

RRðvÞ ¼ α

2

Z
∞

τ
dτ0eα

2
ðτ−τ0Þþiω½uðτÞ−uðτ0Þ�;

TLðuÞ ¼ 1 − RRðvÞ; ð35Þ

where uðτÞ ¼ tmðvÞ − zmðtmÞ ¼ fðvÞ. In the first-order
limit, we obtain

−RRðvÞe−iωfðvÞ ≈ −
α

2

Z
∞

tmðvÞ
dt0mγ−1ðt0mÞe−iωt0mþiω0zmðt0mÞ;

ð36Þ

which is identical to our (27).
The beta-coefficients on the mirror’s right using

Nicolaevici’s modes are

βrefωω0 ¼ −hUout�ðω > 0Þ; V inðω0 > 0ÞiKG
¼IBP −

�
ω

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

−∞
duRRðuÞe−iω0pðuÞe−iωu

��
≈
IBP α

4πi
ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

−∞
du

γ−1ðtmÞ
1 − _zmðtmÞ

eiðωþω0Þtm−iðω−ω0ÞzmðtmÞ

¼ α

4πi
ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

−∞
dtmγ−1ðtmÞeiðωþω0Þtm−iðω−ω0ÞzmðtmÞ;

ð37Þ

where the superscript “ref” refers to the beta-coefficient
contributed by the reflected modes, “IBP” refers to inte-
gration by parts, du ¼ ð1 − _zmðtmÞÞdtm, and h� � �iKG is the
Klein-Gordon inner product defined by
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hA;BiKG ¼ −i
Z
R
du½Aðu; vÞ∂↔uB�ðu; vÞ�v→∞: ð38Þ

For the beta-coefficient contributed by the transmitted
modes, the other set of in-mode is required, see [28,29].
Since the discussion is similar, we simply list the result we
obtained:

βtranωω0 ≈
α

4πi
1ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

−∞
dtmγ−1ðtmÞeiðωþω0Þtm−iðωþω0ÞzmðtmÞ:

ð39Þ

The above coefficients agree with the ð1þ 1ÞD limit of (13)
for k03 < 0 and k03 > 0, respectively.
We have now completed the demonstration of the

equivalence between our approach and the literature’s since
we are able to obtain identical expressions for the mode
functions and the beta-coefficients by further manipulating
the standard expressions by integration by parts and a
change of variable. Notice that the approach adopted and
the expressions given in the standard literature are restricted
to ð1þ 1ÞD since those analyses are based on the null
coordinates. Nevertheless, our treatment and expressions
extend the discussion to higher dimensions.

IV. EXAMPLES

A. Trajectory 1

We now apply our ð1þ 3ÞD formula, Eq. (13), to the
trajectory that is used to mimic the physics of gravitational
collapse of a spherical null shell in ð1þ 3ÞD curved
spacetime in the ð1þ 1ÞD moving mirror literature
[25–28]. By comparing with the ð1þ 1ÞD literature, we
identify properties that are exclusive to the plane mirror
model in higher, (1þ 3)-dimensional spacetime, whereas
the conventional ð1þ 1ÞD results are reproduced by
taking the limit: k⊥ ¼ 0. In addition to the trajectory’s
connection with gravitational collapse, this trajectory is
also one of the few trajectories that allows analytic studies
and thus it helps to develop intuitions for particle
production by a relativistic, plane mirror in ð1þ 3ÞD flat
spacetime.

In this section, the trajectory of interest is

zmðtmÞ ¼
(
0; −∞ < tm ≤ 0

−tm þ 1
κ −

W½e1−2κtm �
κ ; 0 ≤ tm < ∞;

ð40Þ

where WðxÞ is the product logarithm and κ is a parameter
that can be identified as a black hole’s surface gravity in the
ð1þ 1ÞD literature. Note that, in the following discussion,
we will change the notations in (13) by q → zm and
x00 → tm. This mirror is initially static and it begins to
execute Carlitz-Willey(CW)-like acceleration after tm ¼ 0
toward timelike infinity. The following list the results for
quantities in the acceleration phase that will appear in our
later computation.

dzm
dtm

¼ −
1 −W½e1−2κtm �
1þW½e1−2κtm � ;

γ−1ðtmÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W½e1−2κtm �

p
1þW½e1−2κtm � : ð41Þ

On the mirror’s right, the beta-coefficient due to the
reflected mode may be evaluated by

βrefkk0 ðk03> 0Þ

≈
α

4πi
1ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp Z

∞

−∞
dtmγ−1ðtmÞeiðjkjþjk0jÞtm−iðk3−k03ÞzmðtmÞ

¼−
α

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

1

jkjþ jk0j
�

þ α

4πi
1ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp Z

∞

0

dtmγ−1ðtmÞeiðjkjþjk0jÞtm−iðk3−k03ÞzmðtmÞ:

By making the change of variable:

dζ ¼ 2W½e1−2κtm �
1þW½e1−2κtm � dtm

ζ ¼ 1

κ
−
W½e1−2κtm �

κ
; tm ¼ ζ

2
−

1

2κ
lnð1 − κζÞ; ð42Þ

we obtain

βrefkk0 ðk03 > 0Þ ≈ −
α

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

1

jkj þ jk0j
�
þ α

4πi
1ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp Z 1

κ

0

dζð1 − κζÞ−1
2
− i
2κðjkjþk3þjk0j−k0

3
Þe

i
2
ðjkj−k3þjk0jþk0

3
Þζ

¼ −
α

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

1

jkj þ jk0j
�
þ α

4πiκ
e

i
2κðjkj−k3þjk0jþk0

3
Þffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp Z

1

0

dz z−
1
2
− i
2κðjkjþk3þjk0j−k0

3
Þe−

i
2κðjkj−k3þjk0jþk0

3
Þz;

where z ¼ 1 − κζ. Next, performing a contour integration in the lower complex plane of z and deforming the contour away
from the pole z ¼ 0 (this small arc gives no contribution), we obtain
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βrefkk0 ðk03 > 0Þ ≈ −
α

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

1

jkj þ jk0j
�
−

α

4πκ
ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

e
i
2κðjkj−k3þjk0jþk0

3
Þeiπ

4e−
π
4κðjkjþk3þjk0j−k0

3
Þ

×
Z

∞

0

dss−
1
2
− i
2κðjkjþk3þjk0j−k0

3
Þe−

ðjkj−k3þjk0 jþk0
3
Þ

2κ s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z¼−is

−
Z

∞

0

dsð1 − isÞ−1
2
− i
2κðjkjþk3þjk0j−k0

3
Þe−

ðjkj−k3þjk0 jþk0
3
Þ

2κ s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z¼1−is

�
:

The integrals can be evaluated in terms of Gamma and upper incomplete Gamma functions and the result is

βrefkk0 ðk03 > 0Þ ≈ −
α

4π
ffiffiffiffiffiffiffiffi
ωω0p

�
1

ωþ ω0

�
−
αe

iωr−
2κ e

iπ
4e−

πωrþ
4κ

4πκ
ffiffiffiffiffiffiffiffi
ωω0p

�
2κ

ωr
−

�1
2
−
iωrþ
2κ

�
Γ
�
1

2
−
iωrþ
2κ

�
− Γ

�
1

2
−
iωrþ
2κ

;
iωr

−

2κ

��
; ð43Þ

where we have defined ωrþ ¼ jkj þ k3 þ jk0j − k03, ω
r
− ¼ jkj − k3 þ jk0j þ k03, and ω ¼ jkj ¼ ðk2⊥ þ k23Þ1=2, ω0 ¼ jk0j ¼

ðk2⊥ þ k023 Þ1=2 for brevity. Following similar procedures, we obtain the beta-coefficient due to the transmitted modes as

βtrankk0 ðk03 > 0Þ ≈ −
α

4π
ffiffiffiffiffiffiffiffi
ωω0p

�
1

ωþ ω0

�
−
αe

iωt−
2κ e

iπ
4e−

πωtþ
4κ

4πκ
ffiffiffiffiffiffiffiffi
ωω0p

�
2κ

ωt
−

�1
2
−
iωtþ
2κ

�
Γ
�
1

2
−
iωtþ
2κ

�
− Γ

�
1

2
−
iωtþ
2κ

;
iωt

−

2κ

��
; ð44Þ

where ωtþ¼jkjþk3þjk0jþk03, ω
t
− ¼ jkj − k3 þ jk0j − k03.

Equations (43) and (44) apply in ð1þ 3ÞD for k;k0 ∈ D
satisfying the semitransparent condition. However, we will
take this physical infrared cutoffs for k3; k03 as kc ∼ α in this
paper for simplicity.

1. Case 1: k⊥ = 0 (ð1+ 1ÞD limit)

Perpendicular modes are effectively ð1þ 1ÞD.
Letting k⊥ ¼ 0 in (43) and (44) give

βrefωω0 ≈ −
α

4π
ffiffiffiffiffiffiffiffi
ωω0p

�
1

ωþ ω0

�
−

αe
iω0
κ e

iπ
4

4πκ
ffiffiffiffiffiffiffiffi
ωω0p

�
κ

ω0

�1
2
−iω

κ

e−
πω
2κ

×

�
Γ
�
1

2
−
iω
κ

�
− Γ

�
1

2
−
iω
κ
;
iω0

κ

��
; ð45Þ

and

βtranωω0 ≈ −
α

4π
ffiffiffiffiffiffiffiffi
ωω0p

�
1

ωþ ω0

�

þ α

4πi
1ffiffiffiffiffiffiffiffi
ωω0p

�
2

κ − 2iðωþ ω0Þ
�
: ð46Þ

In the high frequency regime: ω0 ≫ κ for βrefωω0, using the
asymptotic behavior for the upper incomplete Gamma
function, i.e., Γðs; nÞ ≈ ns−1e−n for n → ∞, the third term
exactly cancels out the first term in βrefωω0 by further
assuming ω0 ≫ ω (late time). The remaining contribution
to βrefωω0 is the second term and it gives

jβrefωω0 j2 ≈ α2

8πκωω02

�
1

e2πω=κ þ 1

�
; ð47Þ

which reproduces the spectrum in Refs. [25–28]. At this
point, ω > kc while ω0 > kc, ω0 ≫ κ, and ω0 ≫ ω. On the
other hand, all the terms in (46) combine to give

jβtranωω0 j2 ≈ α2κ2

16π2ωω0
1

ðωþ ω0Þ2½κ2 þ 4ðωþ ω0Þ2� : ð48Þ

2. Case 2: ω− ≪ κ

For ωr
− ≪ κ, the first term in βrefkk0 dominates:

jβrefkk0 ðk03 > 0Þj2 ≈ α2

16π2ωω0
1

ðωþ ω0Þ2 : ð49Þ

For 0 < ωt
− ≪ κ, the first term in βtrankk0 dominates:

jβtrankk0 ðk03 > 0Þj2 ≈ α2

16π2ωω0
1

ðωþ ω0Þ2 : ð50Þ

3. Case 3: ω0 ≫ ω (late time) ∧ ω0 ≫ κ

In this case, only the second term in βrefkk0 survives:

jβrefkk0 ðk03 > 0Þj2≈ α2

8πκωk023

�
1−

3ðωsinθÞ2
4k023

��
1

eω=TeffðθÞ þ1

�
;

ð51Þ

where TeffðθÞ ¼ κ=½ð1þ cos θÞπ� is identified as an effec-
tive temperature. At this point, the conditions required are:
k3 > kc, k03 > kc, ω0 ∼ k03 ≫ ω, and ω0 ∼ k03 ≫ κ.
On the other hand, to expand the incomplete Gamma

function for ωt
− ≫ κ in βtrankk0 , the additional conditions:

θ ≠ 0 and ω ≫ κ are required. However, in such a case,
the third term no longer cancels with the first term in βtrankk0
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but only indicates the latter is negligible compared to the
former. Nevertheless, since ωt

− ≫ κ, the third term is
negligible compared to the second term. Therefore, at
the end of the day, the second term in βtrankk0 dominates
and gives

jβtrankk0 ðk03 > 0Þj2 ≈ α2

4πκω2k03

�
e−2πk

0
3
=κ

1 − cos θ

�
; ð52Þ

under the conditions: k3 > kc, k03 > kc, ω0 ∼ k03 ≫ ω,
ω0 ∼ k03 ≫ κ, ω ≫ κ, and θ ≠ 0.
Using (14), (51), and (52), we are able to obtain analytic

expressions for their respective particle spectra.
The reflected particle spectrum is

dNrefð0 ≤ θ ≤ π=2Þ
dωdΩ

≈
Aω2

4π2

Z
∞

Λ1

dk03jβrefkk0 j2

¼ Aα2

32π3κΛ1

�
1 −

ðω sin θÞ2
4Λ2

1

��
ω

eω=TeffðθÞ þ 1

�
; ð53Þ

where Λ1 is a physical infrared cutoff approximated by κ or
ω. This cutoff is introduced since (51) is valid for k03 > kc
(semi-transparent condition), k03 ≫ ω, and k03 ≫ κ (the last
two conditions make the second term in (43) dominate).
Naively, if the parameter κ is less than kc, thenΛ1 should be
approximated by ω since k03 ≫ ω > kc > κ. However, from
(51), we know that α=κ should be less than one since the
spectrum should vanish without ambiguity in the no-
coupling limit, i.e., α ¼ 0. This then rules out the above
naive parameter regime since kc ∼ α. Therefore, we are
only left with the following two legitimate regimes: k03 ≫
κ > ω > kc and k03 ≫ ω > κ > kc. In the former case, Λ1

should be approximated by κ, whereas, in the latter case, Λ1

should be approximated by ω instead. Thus, Λ1 is approxi-
mated by κ or ω.
The transmitted particle spectrum is

dNtranðθ ¼ 0Þ
dωdΩ

≈
Aω2

4π2

Z
∞

Λ2

dk03jβtrankk0 j2

≈
Aα2

1024π4

�
κ2ω

Λ4
2

�
;

dNtranð0 < θ ≤ π=2Þ
dωdΩ

≈
Aω2

4π2

Z
∞

Λ2

dk03jβtrankk0 j2

≈
Aα2

16π3κ

�
Γð0; 2πΛ2=κÞ
1 − cos θ

�
; ð54Þ

where Λ2 ∼ ω. This cutoff is introduced since (52) is valid
for k03 > kc, k03 ≫ ω, k03 ≫ κ, and ω ≫ κ. There are two
possibilities within these regimes, i.e., k03 ≫ ω > κ > kc
and k03 ≫ ω > kc > κ. For both situations, Λ2 should be
approximated by ω. However, following similar argument

as the case for reflected spectrum, we conclude only the
former regime is legitimate.
In ð1þ 3ÞD spacetime, the number of particles emitted

in the off-perpendicular directions due to the reflected
modes is larger than those emitted perpendicularly to the
mirror’s surface, as illustrated in Figs. 1 and 2. In addition,
the motion of the mirror being relativistic is also crucial for
this phenomenon to occur. This should be expected since,
classically, the reflection of photons off a relativistic,
receding mirror in 3-dimensional space tends to spread
in large angles when the striking process is off-
perpendicular [36,37]. Therefore, in our current situation,
there are more in-modes reflected off-perpendicularly and
thus the excitation of these modes leads to more off-
perpendicular particles being created compared to their
perpendicular counterparts. As for the particles created by
the transmitted modes, they are mainly focused within a
small emission angle, as illustrated in Fig. 3. Thus, for a
relativistic, plane mirror in ð1þ 3ÞD, the created
perpendicular particles are the product of both the reflected,
perpendicular in-modes and the transmitted modes

FIG. 1. Angular spectrum for Eq. (53) when k03 ≫ κ > ω > kc.
We roughly take Λ1 ∼ κ and normalize the spectrum by its value
at ω ¼ 2, κ ¼ 4.

FIG. 2. Angular spectrum for Eq. (53) when k03 ≫ ω > κ > kc.
We take Λ1 ∼ ω and normalize the spectrum by its value at
ω ¼ 4, κ ¼ 2. The subgraph is a zoom-in for the case: ω ¼ 4,
κ ¼ 1 normalized by the value at θ ¼ π=2.
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although the contribution from the latter may be negligible
in comparison. However, for off-perpendicular directions,
the created particles may serve as a characteristic product of
the reflected in-modes.
Furthermore, the effective temperature TeffðθÞ is emis-

sion angle (θ)-dependent. In the perpendicular direction,
i.e., effectively ð1þ 1ÞD, the effective temperature recovers
the familiar temperature TH ≡ Teffðθ ¼ 0Þ ¼ κ=2π in the
ð1þ 1ÞD literature. However, as the emission angle gets
larger, the effective temperature monotonically increases
and eventually reaches twice the value of Teffðθ ¼ 0Þ ¼
κ=2π at θ ¼ π=2, i.e., Teffðθ ¼ π=2Þ ¼ κ=π. This tendency
may be understood as a manifestation of the fact that off-
perpendicular particles are more probable to be created as
mentioned in the last paragraph.

B. Trajectory 2

We now consider one of the trajectories proposed in [22]
for a plasma mirror that may be realizable in future
experiments. From Eqs. (23) and (28) of [22], one obtains
the following trajectory:

tmðzmÞ ¼ −
zm
ϵ
þ 3π

2ϵωp0ðaþ bÞ
�

aþ b

aþ bezm=D
− 1

�
; ð55Þ

where fωp0;a;b;Dg>0 are positive constants, −∞<zm ≤
0, 0 ≤ tm < ∞, 0 < ϵ ≤ 1, and we have made the mirror
left-moving as opposed to the original right-moving setup
in [22]. For simplicity, we will take ϵ ¼ 1 and a ¼ 1
hereafter. This trajectory is designed such that it asymptotes
the Davies-Fulling trajectory [4], which mimics gravita-
tional collapse by a point mirror in ð1þ 1ÞD, in the late
time tm → ∞ or simply in the limit: a ≫ b. Therefore, one
would expect to obtain similar particle spectra for this
trajectory as the previous example. The above trajectory
only describes the accelerating phase of the mirror. Before
the mirror accelerates, i.e., −∞ < tm ≤ 0, it moves at a
constant velocity approaching the speed of light [22]:

tmðzmÞ ¼ −
zm
v
; 0 ≤ zm < ∞; v → 1: ð56Þ

Having the trajectories, we now compute the correspond-
ing beta-coefficient on the mirror’s right due to the reflected
modes.

βrefkk0 ðk03> 0Þ

≈
α

4πi
1ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

−∞
dtmγ−1ðtmÞeiðωþω0Þtm−iðk3−k03ÞzmðtmÞ

¼ α

4πi
1ffiffiffiffiffiffiffiffi
ωω0p

Z
−∞

∞
dzm

t0m
ffiffiffiffiffiffiffiffiffiffiffiffi
t02m−1

p
jt0mj

eiðωþω0Þtm−iðk3−k03ÞzmðtmÞ

≈−
α

4π
ffiffiffiffiffiffiffiffi
ωω0p

� ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p

ωþþvk−3

�

þ αe
3iπωþb
2ωp0

4πi
ffiffiffiffiffiffiffiffi
ωω0p

ffiffiffiffiffiffiffiffiffiffiffi
3πb
ωp0D

s Z
∞

0

dzme−
zm
2Deiðωþþk−

3
Þzme−

3iπωþb
2ωp0

e−
zm
D
;

where ω ¼ jkj, ω0 ¼ jk0j, t0m ¼ dtm=dzm, ωþ ¼ ωþ ω0,
k−3 ¼ k3 − k03, and the second “≈” refers to assuming b ≪
ωp0D (this makes the velocity more continuous at tm ¼ 0),
b ≪ 1 (this makes the trajectory Davies-Fulling-like),
ωþ ≪ ωp0b−2 and leaving terms to the leading order.
The integral in the last line can be done by performing
contour integrations in the complex plane. The result is

βrefkk0 ðk03 > 0Þ≈−
α

4π
ffiffiffiffiffiffiffiffi
ωω0p

� ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p

ωþþvk−3

�

−
α

ffiffiffiffiffiffiffi
2D

p
e
3iπωþb
2ωp0 e

iπ
4e−

πDðωþþk−
3
Þ

2

4π
ffiffiffiffiffiffiffi
ωþp ffiffiffiffiffiffiffiffi

ωω0p

×

�
3πωþb
2ωp0

�
iDðωþþk−

3
Þ�

Γ
�
1

2
− iDðωþþk−3 Þ

�

−Γ
�
1

2
− iDðωþþk−3 Þ;

3iπωþb
2ωp0

��
: ð57Þ

By further taking the limit: ωþb ≫ ωp0 and recalling
v → 1, (57) simplifies to

βrefkk0 ðk03 > 0Þ ≈ α

4πωþ ffiffiffiffiffiffiffiffi
ωω0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dωp0

3πb

r

−
α

ffiffiffiffiffiffiffi
2D

p
e
3iπωþb
2ωp0 e

iπ
4e−

πDðωþþk−
3
Þ

2

4π
ffiffiffiffiffiffiffi
ωþp ffiffiffiffiffiffiffiffi

ωω0p

×

�
3πωþb
2ωp0

�
iDðωþþk−

3
Þ
Γ
�
1

2
− iDðωþ þ k−3 Þ

�
:

ð58Þ

Its modulus squared is

FIG. 3. Angular spectrum for Eq. (54). The spectrum is
normalized by the value at θ ¼ 0.1.
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jβrefkk0 ðk03> 0Þj2≈ α2D
4πωω0ωþ

�
1

e2πDðωþþk−
3
Þ þ1

�
þ terms irrelevant to our interest: ð59Þ

For ω0 ∼ k03, (59) becomes

jβrefkk0 ðk03 > 0Þj2 ≈ α2D
4πωk03ðωþ k03Þ

�
1

eω=TeffðθÞ þ 1

�
þ terms irrelevant to our interest; ð60Þ

where TeffðθÞ ¼ 1=½ð1þ cos θÞ2πD� is identified as an
effective temperature. For particles emitted perpendicularly
to the mirror’s surface, i.e., θ ¼ 0, the temperature becomes
TH ≡ Teffðθ ¼ 0Þ ¼ 1=4πD, which leads to the identifica-
tion of the surface gravity of an analog black hole as
κ ¼ 1=2D. For ω0 ∼ k03 ≫ ω (late time), the corresponding
particle spectrum is

dNrefð0≤θ≤π=2Þ
dωdΩ

≈
Aω2

4π2

Z
Λ2

Λ1

dk03jβrefkk0 j2

¼ Aα2

32π3κ

�
1

Λ1

−
1

Λ2

��
ω

eω=TeffðθÞþ1

�
þ terms irrelevant toour interest; ð61Þ

where Λ1 ∼ ω∨ωp0b−1 and Λ2 ∼ ωp0b−2. Since (61) is
derived under several above-mentioned assumptions, the
only possible legitimate cases are: (i) ωp0b−2≫
k03 ≫ω>kc >ωp0b−1, (ii) ωp0b−2≫k03≫ω>ωp0b−1>kc,
and (iii) ωp0b−2 ≫ k03 ≫ ωp0b−1 > ω > kc, for (61) to be
valid. For (i) and (ii), the infrared cutoffs are both approx-
imately ω, whereas the infrared cutoff for (iii) is approx-
imatelyωp0b−1. However, for all cases, the upper cutoffs are
approximately ωp0b−2, which originates from the condition
ωþ ≪ ωp0b−2 imposed at the very beginning. Notice that
the condition: kc ∼ α < κ ¼ 1=2D is also obeyed by the
above spectra based on similar argument addressed in the
previous subsection. However, in the current example, this
condition is irrelevant to the determination of legitimate
parameter regimes.
The spectra for this trajectory contain the same distribu-

tions, which are the parts relevant to mimic gravitational
collapse, as (51) and (53). The spectra also contain two
terms, which are contributed from the first term in (58) and
its cross-term with the Gamma function term, that are
not relevant to our interest of mimicking gravitational
collapse. Nevertheless, by comparing the modulus squared
of the first term in (58) to the second term involving the
Gamma function, we find the first terms in (60) and (61)
dominate over the terms irrelevant to our interest in the
regime: ω ≪ κ ln ½bk03=ωp0�.
Consider future flying plasma mirror experi-

ments [22,38] with ns¼1.6×105ðeVÞ2, α¼2.8×10−2 eV,

ωp0¼0.6×10−2 eV, and D ¼ 0.5 μm, the corresponding
characteristic frequency of the emitted particle would be
ωchar ¼ Teff ∼ 1=4πD ¼ 3.1 × 10−2 eV > ωp0, i.e., these
emitted particles can propagate through the plasma for
detection. In addition, for, say, b ¼ 0.2, condition (ii) is
satisfied and the emitted particles within the frequency
range: 3. × 10−2 eV < ω < 14.8 × 10−2 eV should distrib-
ute themselves according to (61).
In this subsection, we omit the computation of quantities

due to the transmitted modes since we are only interested in
quantities that can be associated with an analog black hole.
However, these computations should follow straightfor-
wardly as the discussions made in the previous example.

V. CONCLUSION

In this paper, we have investigated the production of
massless, scalar particles by a relativistic, semi-transparent,
plane mirror with arbitrary, relativistic trajectories based on
the Barton-Calogeracos (BC) action and derived the cor-
responding particle spectrum in ð1þ 3ÞD Minkowski
spacetime and identified the relation between the spectrum
and the particle production probability. Comparisons of our
treatment to the approaches adopted in the ð1þ 1ÞD
literature for a relativistic, point mirror and the ð1þ 3ÞD
literature for a nonrelativistic, plane mirror are summarized
in Tables I and II.
We apply our derived ð1þ 3ÞD spectrum formula to the

trajectory that is often used in the ð1þ 1ÞD literature to
mimic gravitational collapse. The spectra in various fre-
quency/momentum regimes are derived analytically. In
particular, in the regime ω0 ≫ ω and ω0 ≫ κ, we find
the particle spectrum created by the reflected in-modes has
an effective temperature depending on the emission angle
monotonically and the conventional ð1þ 1ÞD result is
recovered at θ ¼ 0. In addition, there are more particles
created with nonvanishing transverse momenta compared
to the perpendicular ones due to the relativistic property of
the mirror and the spacetime dimension being ð1þ 3ÞD.
As a second example, we apply our derived spectrum

formula to the Chen-Mourou trajectory proposed in [22].
This trajectory asymptotes the Davies-Fulling trajectory [4]
in the limits: tm → ∞ or a ≫ b. Thus, there will be a period
which mimics gravitational collapse for a ð1þ 1ÞDmoving
mirror model. For the sake of analytic computations to
extract the explicit distribution of the particle spectrum, we
make some assumptions throughout the discussion and find
the corresponding particle spectrum due to the reflected
modes is similar to that of the previous example, which
should be expected, and thus the discussions made pre-
viously also apply directly to this case.
In this paper, the mirror considered is an infinite-size,

homogeneous, plane mirror in ð1þ 3ÞD Minkowski space-
time. However, the formalism adopted in principle allows
the consideration of a mirror with finite size by, e.g.,

PARTICLE PRODUCTION BY A RELATIVISTIC … PHYS. REV. D 103, 025014 (2021)

025014-11



inserting a density function describing the mirror’s trans-
verse geometry. In addition, the geometric factor of the
mirror is incorporated into the particle spectra, i.e., (53) and
(54), via the area A, which has a dimension of length2. If we
group a factor of ω2 to the area A, they combine to give
A=λ2 → ∞, where λ is the wavelength of the particle
(another ω2 should be divided by α2 simultaneously giving
the semitransparent condition α=ω ≪ 1). This observation
indicates that the quantities we discussed are valid in the
realm of geometric optics. When the finite-size effect is
considered, the characteristic length

ffiffiffiffi
A

p
may be compa-

rable to the wavelength λ. In such a case, diffraction may
occur and the particle spectrum may include other correc-
tions in terms of the characteristic length. The issue of
finite-size effect will be further investigated in our upcom-
ing work.
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APPENDIX: S-MATRIX APPROACH

In this Appendix, we offer an alternative and fast way for
computing the particle spectrum. This approach begins by
recognizing the S-matrix of the BC action as

S ¼ T e−
iα
2

R
R
d4xγ−1ðx0Þδðx3−qðx0ÞÞϕ̂2

I ðxÞ; ðA1Þ

where T is the time-ordering operator and the subscript I
refers to the interaction picture.

By using the relation between the in-state/operator and
the out-state/operator:

j0; outi ¼ Sj0; ini and âoutk ¼ S†âinkS; ðA2Þ

and the identity (for later convenience):

h0; injâink0 âinp â
in†
k âink â

in†
p0 âin†q j0; ini

¼δðk0−qÞδðp−kÞδðk−p0Þþδðk0−kÞδðk−p0Þδðp−qÞ
þδðk0−p0Þδðp−kÞδðq−kÞ
þδðk0−kÞδðq−kÞδðp−p0Þ; ðA3Þ

we may then compute the particle spectrum by

dN
d2k⊥dk3

¼ h0; injâout†k âoutk j0; ini

¼ h0; injS†âin†k âinkSj0; ini

≈
Aα2

64π4jkj
Z
D
dk03

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k023

p
×

����
Z
R
dx00γ

−1ðx00Þeiðjkjþ
ffiffiffiffiffiffiffiffiffiffiffi
k2⊥þk02

3

p
Þx0

0
−iðk3þk0

3
Þqðx0

0
Þ
����2;

ðA4Þ

which agrees exactly with our previous result, Eq. (14). The
advantage of the S-matrix approach is that it enables one to
obtain the particle spectrum directly in a simpler manner
without the need of finding the mode functions, Eqs. (6)
and (8), first and performing laborious calculations.
Nevertheless, the mode functions derived in the main text
may be important for future studies of, e.g., energy-
momentum tensor, correlation functions, detector response
function, etc.
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