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The continuous multiscale entaglement renormalization ansatz (cMERA) [Haegeman et al., Phys. Rev.
Lett. 110, 100402 (2013)] is a variational wave functional for ground states of quantum field theories.
So far, only scalar bosons and fermions have been considered. In this paper we explain how to generalize
the cMERA framework to gauge invariant quantum fields. The fundamental difficulty to be addressed is
how to make the gauge constraints (local linear constraints in the Hilbert space) compatible with the
UV structure of the cMERAwave functional (which is generated by a quasilocal entangler). For simplicity,
we consider U(1) gauge theory in dþ 1 spacetime dimensions, a noninteracting theory with massless
Hamiltonian HUð1Þ and Gaussian scale invariant ground state jΨUð1Þi. We propose a gauge invariant

cMERAwave functional jΨΛ
Uð1Þi that, by construction, accurately reproduces the long distance properties of

jΨUð1Þi while remaining somewhat unentangled at short distances. Moreover, jΨΛ
Uð1Þi is the exact ground

state of a gauge invariant, local Hamiltonian HΛ
Uð1Þ whose low energy properties coincide with those of

HUð1Þ. Our construction also extends the cMERA formalism to massive (nongauge invariant) vector boson
quantum fields.

DOI: 10.1103/PhysRevD.103.025013

I. INTRODUCTION

Gauge theories stand among the most successful
theories of physical reality, describing a wide range of
phenomena—from the standard model of particle physics
[1,2] and general relativity [3] to topological phases of quan-
tum matter [4]. They are characterized by an explicit redun-
dancy in the choice of degrees of freedom used to represent
the physical system. This redundancy is the price to be paid
in order to retain a more tractable and intuitive description,
for instance one in terms of a local Hamiltonian. Gauge
theories fit into the more general framework of constrained
theories, whose quantization is itself a rich and interesting
subject [5]. A quantum gauge theory can be formulated so
that physical states are confined to a particular, gauge
invariant subspace of the total Hilbert space of the theory.
To go beyond perturbative treatments of gauge theory,

one must often resort to numerical simulations. In lattice
gauge theory [6,7], spacetime is discretized into a lattice
in such a way that gauge invariance is preserved. Then
stochastic methods, such as Monte Carlo sampling,
are used to study certain aspects of the discretized theory.

For instance, and most prominently, such techniques have
been used to successfully extract the mass spectrum of
quantum chromodynamics (QCD) [8,9]. In spite of their
remarkable success, simulation strategies based on stochas-
tic sampling suffer from the fermionic sign and complex
action problems at finite fermionic density [10,11] and,
more generally, are not capable of simulating dynamics.
For such important problems, alternative formulations are
still much needed.
In the past two decades, tensor networks have arisen as a

useful new framework to treat quantum many-body prob-
lems on the lattice. By exploiting the entanglement struc-
ture of certain many-body wave functions, such as ground
states and low energy states of local Hamiltonians, tensor
networks offer efficient parametrizations and solutions to
problems of otherwise unmanageable computational com-
plexity. Much work has been devoted to applying tensor
network algorithms to lattice gauge theories [12–67], with
the expectation of advancing our numerical capabilities
past the breaking points of standard techniques, such as the
sign problem mentioned above in the case of Monte Carlo
simulation (see [66,67] for recent reviews). Successful
simulations in one spatial dimension [12–50] and partial
success in two spatial dimensions [51–62] are certainly*afrancorubio@perimeterinstitute.ca
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encouraging. However, very significant improvements will
be required before, e.g., QCD in three spatial dimensions
can be meaningfully tackled. Finally, continuous tensor
networks have been introduced more recently to simulate
quantum field theories (QFTs) directly in the continuum,
that is, without introducing a lattice [68,69]. Compared to
lattice tensor networks, continuous tensor network tech-
niques are still in their infancy, but one might hope that
once they are better understood in one spatial dimension
they will be more easily extended to higher dimensions.
The particular tensor networkwewill be interested in here

is the multiscale entanglement renormalization ansatz
(MERA) [70,71]. On the lattice, the MERA can be inter-
preted as a quantum circuit that builds an entangled many-
bodywave function starting from an unentangled or product
state by introducing entanglement via (nearest-neighbor)
local unitary gates that effectively act at progressively
smaller length scales. Running this procedure backwards,
we obtain a dual interpretation of the MERA as encoding a
(discrete version of a) renormalization group flow, where
entanglement at short length scales is progressively removed
from the wave function. For lattice gauge theories in the
Hamiltonian formalism, MERA has been seen to offer a
proper framework to represent gauge invariant ground states
[51,52]. In this case the renormalization group transforma-
tions exactly preserve the gauge constraints along the flow.
More specifically, in this work we will be concerned

with the continuous MERA (cMERA), which was pro-
posed by Haegeman, Osborne, Verschelde and Verstraete in
Ref. [68]. While the original formulation of Ref. [68]
applies to both interacting and noninteracting fields, in
practice cMERA is only well-understood for noninteracting
QFTs, in which case it this variational ansatz is a Gaussian
wave functional (see however [72–74] for proposals that go
beyond a purely Gaussian wave functional, e.g., through
the use perturbation theory). It is of course not obvious
why one would need a variational ansatz for a free QFT,
which can be solved exactly without much effort.
Nonetheless, the Gaussian cMERA offers a useful dem-
onstration that MERA can be brought into the continuum,
while also providing insights into the entanglement struc-
ture of ground state wave functionals. Moreover, similarly
to MERA [75,76], Gaussian cMERA has found application
as a conjectured realization of the holographic principle
of quantum gravity, namely as a toy model for the
AdS=CFT correspondence [77–85]. Quite promisingly,
Ref. [86] recently proposed a particular realization of
Gaussian cMERA, dubbed magic cMERA, which has a
UV structure analogous to that of the continuous matrix
product state (cMPS), another continuous tensor network.
This is important because cMPS techniques work equally
well for both noninteracting and interacting QFTs. Thanks
to this connection it is now finally possible to produce and
efficiently manipulate strongly correlated (that is, highly

non-Gaussian) cMERA wave functionals using cMPS
techniques [87].
Reference [68] formulated cMERA for scalar bosons and

for fermions. In this paper we take a step further and extend
the cMERA formalism to gauge invariant quantum fields.
Our main motivation is simple. If, as we expect, the
cMERA program is to eventually give rise to a useful
numerical simulation framework for interacting QFTs, then
understanding how to handle gauge invariant quantum
fields is a priority, given the central role gauge theories
play in modern physics. A second motivation for our work
comes from current applications of cMERA as a toy models
for the AdS=CFT correspondence. There the CFT theory is
often taken to be a gauge theory with a large gauge
group. Therefore a gauge invariant cMERA could also
be useful to build improved toy model of the AdS=CFT
correspondence.
In this work we will illustrate how the cMERA formalism

can be extended to gauge theories by considering the simple
case of noninteracting Uð1Þ gauge theory, or electromagnet-
ismwithoutmatter fields, in dþ 1 spacetime dimensions as a
proof-of-principle example.Uð1Þ gauge theory is ideal for our
purposes, because the Hamiltonian is quadratic and this
allows us to show, explicitly and exactly, how the local linear
constraints in Hilbert space implementing gauge invariance
can coexist with the quasilocal character of the entangler that
generates the cMERAwave functional.Our eventual goal is to
address interacting gauge theories, where the interactionmay
be due to either coupling to matter fields or to considering
non-Abelian gauge groups (or to both at the same time).
While a cMERA framework for interacting gauge theories
mayneed to build on theproposals ofRef. [87],we expect that
the compatibility between the quasilocal character of the
cMERA and the local character of the gauge constraints, as
demonstrated here for a noninteracting theory, will work in a
similar way in the interacting case.
We devote Sec. II to reviewing, and setting our notation

for, both cMERA and U(1) gauge theory. In Sec. III
we introduce a Gaussian cMERA that approximates the
ground state of U(1) gauge theory, and elaborate on its
properties. In particular, we will see that our proposal is a
natural extension to gauge fields of the magic entanglement
renormalization scheme of Ref. [86], thus paving the
way to subsequently building strongly correlated cMERA
wave functionals for interacting gauge theories. Finally, we
include a series of appendices elaborating on particular
aspects of our construction.

II. REVIEW OF BACKGROUND MATERIAL

In this section we briefly review some required back-
ground material. First we introduce the cMERA formalism
of Ref. [68] and a particular realization thereof, the magic
cMERA [86]. Then we review U(1) gauge theory, which is
massless, and the closely related massive vector boson
QFT.
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A. cMERA

The cMERA [68] (denoted jΨΛðsÞi or jΨΛi depending
on the context) is an ansatz that aims to approximate
some target wave functional of interest, typically the
ground state of a QFT Hamiltonian in d spatial dimensions.
It is produced through a unitary entangling evolution in
scale, which yields a one-parameter family of cMERA
states

jΨΛðsÞi≡ P exp

�
−i
Z

s

0

ds0 ½Lþ Kðs0Þ�
�
jΛi: ð1Þ

Here P exp denotes a path-ordered exponential, s is the
scale parameter, Lþ KðsÞ is the Hermitian operator that
generates the entangling evolution and jΛi is the initial
state. This initial state is taken to be unentangled, with
correlation functions that vanish when evaluated at differ-
ent points:

hΛjOðxÞOðyÞjΛi ¼ 0; x ≠ y: ð2Þ

(We can think of jΛi as the continuum limit of an
unentangled/product state of a lattice system.)
The generator of the evolution in scale is split into two

contributions, L and KðsÞ, which play two distinct roles. L
is the generator of nonrelativistic scale transformations that
rescale both space and the field degrees of freedom. As
such, L only depends on the field content of the theory
under study, and not on the specific form of the
Hamiltonian whose ground state we aim to approximate
with the cMERA. For a generic field φ with nonrelativistic
scaling dimension Δφ, we have

eisLφðx⃗Þe−isL ¼ esΔφφðesx⃗Þ: ð3Þ

On the other hand KðsÞ is a quasilocal operator called
entangler [see Eqs. (6) and (10) below for an example in
one spatial dimension]. By quasilocal we mean that the
operator, an integral of a quasilocal density, acts at a
specific length scale. It is standard to denote this length
scale as Λ−1, where Λ is the corresponding momentum
scale. Intuitively, the entangling evolution in scale builds
the cMERA wave functional from the initial uncorrelated
state jΛi by progressively introducing entanglement at
length scale Λ−1 as we keep enlarging both the rescaling
space and the fields. The resulting state will contain
correlations at a range of length scales above Λ−1, but
will (partially) preserve the unentangled character of the
initial state jΛi at shorter distances. This idea can be made
more precise, and allows us to say that a cMERA state
presents an entanglement UV cutoff at length scale
Λ−1 [88].
Let jΨi be the target state that the ansatz wave functional

jΨΛðsÞi aims to approximate at distances x larger than Λ−1,
in the sense that, e.g., the correlators agree to high accuracy

for Λx ≫ 1. When the ansatz succeeds, we say that jΨΛðsÞi
is a good long distance (LD) approximation to jΨi and
denote it by

jΨΛðsÞi ∼LD jΨi: ð4Þ

Of particular interest in this paper is the case where the
entangler is independent of s, KðsÞ≡ K. Then, in the limit
lims→∞jΨΛðsÞi (assuming this limit exists) we obtain a
fixed point wave functional known as a scale invariant
cMERA jΨΛi,

jΨΛi≡ lim
s→∞

e−isðLþKÞjΛi; ð5Þ

see Fig. 1. By construction, the fixed point wave functional
jΨΛi is invariant under further evolution under Lþ K. We
can think of DΛ ≡ Lþ K as a generator of an alternative
notion of scale transformations, one that is adapted to the
specific theory under study. For instance, in the context of a
free boson CFT [89], DΛ is the generator of (a quasilocal
version of) relativistic scale transformations, whereas L
generates nonrelativistic scale transformations. Then we
say that jΨΛi is invariant under this alternative notion of
scale transformations, which is why we call jΨΛi a scale
invariant cMERA wave functional.
Ideally, given a target QFT Hamiltonian, the specific

form of the entangler KðsÞ should be determined varia-
tionally from a procedure such as energy minimization.
While no general algorithms have been developed so far to
determine the entangler variationally, in the particular case
of free fields one can find examples of entanglers that give
rise to interesting cMERA wave functionals. For example,
for a free scalar ϕðxÞ in one spatial dimension, with
conjugate momentum πðxÞ, a possible family of entanglers
is given by the translationally invariant, quasilocal quad-
ratic operator [68]:

FIG. 1. The entangling evolution in scale generates a cMERA
state jΨΛðsÞi for each value s ∈ ½0;∞Þ. When the entangler is
scale independent, KðsÞ ¼ K, then in the large s limit we obtain a
fixed point, scale invariant cMERA jΨΛi.
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KðsÞ ¼ −i
2

Z
dx dy gðx − y; sÞψðxÞψðyÞ þ H:c:; ð6Þ

where ψðxÞ is the annihilation operator

ψðxÞ≡
ffiffiffiffi
Λ
2

r
ϕðxÞ þ i

ffiffiffiffiffiffi
1

2Λ

r
πðxÞ; ð7Þ

and gðx; sÞ is some profile function at scale s. A simple
example, independent of s, is the profile gðx; sÞ ¼ gðxÞ ∼
e−ðΛxÞ2 used in Ref. [68]. In Eq. (10) below we introduce an
alternative choice of profile.

B. Magic cMERA

The variational parameters in cMERA correspond to
different choices of the entangler K. There is a lot of
freedom in choosing the entangler K, compatible with
obtaining a good long distance approximation to a fixed
target state, and one may be able to use this freedom to
identify particularly useful subclasses of entanglers.
In one spatial dimension, consider a relativistic free

massless boson conformal field theory (CFT), with
Hamiltonian

HCFT ≡ 1

2

Z
dx ½πðxÞ2 þ ð∂xϕðxÞÞ2�; ð8Þ

and ground state jΨCFTi, or more generally a relativistic
free massive boson QFT, with Hamiltonian

Hm ≡HCFT þm2

2

Z
dxϕðxÞ2; ð9Þ

and ground state jΨmi. It was recently shown [86] that the
choice of entangler profile

gðx; sÞ≡ gðxÞ ¼ Λ
4
e−Λjxj ð10Þ

leads to cMERA wave functionals jΨΛi and jΨΛðsÞi with

jΨΛi ∼LD jΨCFTi; ð11Þ

for the massless case and

jΨΛðsÞi ∼LD jΨmðsÞi; ð12Þ

where jΨmðsÞi is the relativistic massive ground state jΨmi
for mass

mðsÞ≡ Λe−s: ð13Þ

Moreover, the magic cMERA wave functional has two
remarkable properties, that we summarize next.

(i) Compatibility with cMPS: jΨΛðsÞi has the same
UV structure as a cMPS [86]. As a result, cMPS
techniques [69,90–102] can be used to numerically
manipulate the cMERA wave functional efficiently.
Most importantly, these cMPS techniques work
equally well for both Gaussian and non-Gaussian
wave functionals. Therefore they provide a much
needed numerical venue for producing strongly
correlated (i.e., highly non-Gaussian) cMERAwave
functionals for interacting QFTs, as demonstrated
in Ref. [87].

(ii) Exact ground state of local Hamiltonian: the magic
cMERA jΨΛðsÞi is the exact ground state of a strictly
local QFT Hamiltonian HΛðsÞ, see Eq. (16) below.
This is unexpected. Indeed, it can be seen that a
generic choice of quasi-local entangler produces
a wave functional that is the ground state of a
Hamiltonian which is, at best, quasilocal [86].

Let us elaborate a bit more on this last property, since
it will play an important role in our discussion of the
Uð1Þ gauge invariant cMERA. We introduce the local
Hamiltonian

HΛ ≡HCFT þ AΛ
UV ð14Þ

for the massless case, where

AΛ
UV ≡ 1

2Λ2

Z
dx ð∂xπðxÞÞ2; ð15Þ

and the local Hamiltonian

HΛðsÞ≡HmðsÞ þ AΛ
UV; ð16Þ

in the massive case, where HmðsÞ is the relativistic massive
Hamiltonian Hm of Eq. (9) for mass mðsÞ given by (13).
Then Ref. [86] showed that jΨΛi is the exact ground state
of HΛ and jΨΛðsÞi is the exact ground state of HΛðsÞ.
The parent Hamiltonian HΛðsÞ is thus obtained from

the relativistic massive HmðsÞ by adding the nonrelativistic
UV regulator AΛ

UV, which breaks Lorentz invariance and
primarily affects the UV physics by modifying the
dispersion relation for momenta above the cutoff scale
Λ. On the other hand, the mass term in HΛðsÞ introduces
a mass gap in the low energy spectrum. Thus, for s > 0,
that is m < Λ, we can think of m and Λ in HΛðsÞ as
providing IR and UV regulators to the relativistic,
massless Hamiltonian HCFT, respectively.

C. U(1) gauge theory

Next we summarize the quantization of a gauge invari-
ant, massless vector boson field, which is nontrivial due
to the presence of constraints (then below we will also dis-
cuss the massive case, which is no longer gauge invariant).
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Our goal is to remind the reader of the characterization
of the ground state in terms of annihilation operators,
which will be useful in the forthcoming analysis. For a
more detailed review of the quantization procedure see
Appendix A.
Consider the free Maxwell Lagrangian for a bosonic

vector field Aμ in dþ 1 spacetime dimensions,

L≡ −
1

4
FμνFμν; ð17Þ

where Fμν ≡ ∂μAν − ∂νAμ is the field strength tensor.
We will quantize the theory in the temporal gauge
A0 ¼ 0. The spatial components Ai of the vector field
and their corresponding conjugate momenta Πi are pro-
moted to operators satisfying the canonical commutation
relations

½Aiðx⃗Þ;Πjðy⃗Þ� ¼ iδðx⃗ − y⃗Þ: ð18Þ

Due to gauge invariance, physical states are constrained to
satisfy Gauss’s law

∂iΠiðx⃗Þjphysi ¼ 0; ∀ x⃗ ∈ Rd: ð19Þ

The Hamiltonian of the theory is given by

HUð1Þ≡ 1

2

Z
ddx ½Πiðx⃗ÞΠiðx⃗Þ

−Aiðx⃗ÞðδijΔ− ∂i∂jÞAjðx⃗Þ�; ð20Þ

¼1

2

Z
ddk ½Πið−k⃗ÞΠiðk⃗Þ

þAið−k⃗Þðδijk2−kikjÞAjðk⃗Þ�; ð21Þ

where k ¼ jk⃗j. H can be diagonalized by changing to a
basis consistent of the longitudinal polarization

Akðk⃗Þ ¼
ikiAiðk⃗Þ

k
; Πkðk⃗Þ ¼

ikiΠiðk⃗Þ
k

; ð22Þ

and the d − 1 orthogonal transversal polarizations [103]

A⊥;nðk⃗Þ; Π⊥;nðk⃗Þ; n ¼ 1;…; d − 1: ð23Þ

(Summation over any repeated index n for this basis will be
implied throughout this paper.) This basis is additionally
helpful because the longitudinal polarization is precisely
the gauge degree of freedom, while the transversal polar-
izations are the physical (gauge invariant) degrees of
freedom, as can be seen by performing a gauge trans-
formation:

Ajðx⃗Þ → Ajðx⃗Þ þ ∂jωðx⃗Þ

⇒

(
Akðk⃗Þ → Akðk⃗Þ − kωðk⃗Þ;
A⊥;nðk⃗Þ → A⊥;nðk⃗Þ:

ð24Þ

Consequently, the gauge constraint (19) becomes

Πkðk⃗Þjphysi ¼ 0; ∀ k⃗ ∈ Rd: ð25Þ

The Hamiltonian HUð1Þ restricted to the gauge invariant
subspace reads

HUð1Þ ¼
Z

ddk ðΠ⊥;nð−k⃗ÞΠ⊥;nðk⃗Þ

þk2A⊥;nð−k⃗ÞA⊥;nðk⃗ÞÞ; ð26Þ

¼
Z

ddk k a†⊥;nðk⃗Þa⊥;nðk⃗Þ; ð27Þ

where

a⊥;nðk⃗Þ≡
ffiffiffi
k
2

r
A⊥;nðk⃗Þ þ i

ffiffiffiffiffi
1

2k

r
Π⊥;nðk⃗Þ; ð28Þ

and we have removed an infinite constant term from the
Hamiltonian in the usual way. What remains is nothing but
the Hamiltonian for d − 1 free bosons, whose ground state
jΨUð1Þi is defined via the annihilation operators:

a⊥;nðk⃗ÞjΨUð1Þi ¼ 0 ∀ k⃗; n ¼ 1;…; d − 1: ð29Þ

Notice that both Eq. (29) and the gauge constraint (25)
are constraints that are expressed in terms of operators that
are linear in the field operators Aiðx⃗Þ and Πiðx⃗Þ. These
constraints completely determine the ground state jΨUð1Þi,
which is therefore a Gaussian state.
For later reference, we parametrize the annihilation

operators akðk⃗Þ and a⊥ðk⃗Þ in terms of two functions αkðkÞ;
α⊥ðkÞ and write:

akðk⃗ÞjΨUð1Þi ¼ 0; a⊥;nðk⃗ÞjΨUð1Þi ¼ 0; ð30Þ

akðk⃗Þ≡
ffiffiffiffiffiffiffiffiffiffiffi
αkðkÞ
2

r
Akðk⃗Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2αkðkÞ

s
Πkðk⃗Þ; ð31Þ

a⊥;nðk⃗Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
α⊥ðkÞ
2

r
A⊥;nðk⃗Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2α⊥ðkÞ

s
Π⊥;nðk⃗Þ: ð32Þ

We see that in order to recover (25) and (29) from the
more general formulation (30)–(32), we just need to make
the particular choice of functions αkðkÞ, α⊥ðkÞ given by

αkðkÞ ¼ 0; α⊥ðkÞ ¼ k; ð33Þ
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where in the particular case of the longitudinal polarization,
αkðk⃗Þ ¼ 0 implies that the annihilation operator akðk⃗Þ is

proportional to Πkðk⃗Þ, as required by the gauge constraint.

D. Massive vector boson quantum field theory

For what follows it is also useful to recall the massive
vector boson theory, obtained by adding a (Proca) mass
term to the Lagrangian

Lm ≡ Lþ 1

2
m2AμAμ: ð34Þ

The relevant operator algebra is again generated by (18),
but the mass term breaks gauge invariance so physical
states are no longer restricted to satisfy (25). The massive
Hamiltonian

Hm≡HUð1Þ þ
1

2

Z
ddx

�ð∂iΠiðx⃗ÞÞ2
m2

þm2Aiðx⃗ÞAiðx⃗Þ
�

ð35Þ

can be diagonalized in the polarization basis (22)–(23) as in
the massless case, but the lack of gauge invariance implies
that the longitudinal component Akðk⃗Þ, Πkðk⃗Þ is now a
legitimate propagating degree of freedom, instead of a
gauge degree of freedom. The ground state of the theory is
again of the form (30)–(32), this time with functions αkðkÞ,
α⊥ðkÞ given by

αkðkÞ ¼
m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ; α⊥ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
ð36Þ

Note that in the limit m → 0, (36) reduces to (33) as
expected (see also Fig. 2).

III. cMERA

We are now ready to present our main result: a cMERA
wave functional jΨΛ

Uð1Þi that approximates the ground state

jΨUð1Þi of HamiltonianHUð1Þ in Eq. (20) for the U(1) gauge
invariant, massless free vector boson.
Our construction actually corresponds to a scale invari-

ant cMERA, that is, it is the fixed point of an entangling
evolution in scale generated by a constant entangler K
starting from an unentangled state jΛi [as introduced
earlier in Eq. (5)] and is an extension to gauge fields of
the magic MERA of Ref. [86]. It has the following three
key properties:

(i) Gauge invariance: the wave functional jΨΛ
Uð1Þi is

explicitly U(1) gauge invariant, that is, it fulfills the
constraint (25).

(ii) Correct large distance physics (I): the wave func-
tional jΨΛ

Uð1Þi accurately approximates the behavior
(e.g., correlators, see Fig. 3) of the ground state
jΨUð1Þi of HUð1Þ at distances x ≫ Λ−1, or

jΨΛ
Uð1Þi ∼

LD jΨUð1Þi: ð37Þ
(iii) Ground state of a local Hamiltonian (I): the cMERA

jΨΛi is the exact ground state of a Hamiltonian
HΛ

Uð1Þ, see Eq. (71) below, that is local and can be
understood as a UV regulated version of HUð1Þ.

Moreover, the intermediate cMERA wave functional
jΨΛðsÞi for any finite s ∈ ½0;∞Þ is related to the massive
vector boson described in the previous section in the
following ways:
(iv) Correct large distance physics (II): the wave func-

tional jΨΛðsÞi accurately approximates the behavior
(e.g., correlators, see Fig. 3) of the ground state
jΨmðsÞi of the relativistic massive vector boson Hami-
ltonian HmðsÞ, or Hamiltonian Hm in Eq. (35) for
mass mðsÞ ¼ Λe−s, that is

jΨΛðsÞi ∼LD jΨmðsÞi: ð38Þ
(v) Ground state of a local Hamiltonian (II): the

cMERA jΨΛðsÞi is the exact ground state of a
Hamiltonian HΛðsÞ, see Eq. (68) below, that is local
and can be understood as a UV regulated version of
HmðsÞ for mass mðsÞ ¼ Λe−s.

We emphasize that in our construction, for any finite s
[finite mass mðsÞ] the cMERA wave functional jΨΛðsÞi is
not gauge invariant, and gauge invariance is only attained in
the large s limit. That is, the entangling evolution in scale
takes place outside the gauge invariant subspace of the
Hilbert space. However, as we will show (see Fig. 5 below),
an approximation to jΨΛi (e.g., in terms of correlators) can
already be obtained from jΨΛðsÞi at finite s ≫ 1. Notice
that this situation closely mimics the relativistic gauge
invariant vector boson we are targeting: at finite mass m,

FIG. 2. The ground state jΨmi of the massive vector boson
Hamiltonian Hm depends on the mass m and is not gauge
invariant. However, in the limit m → 0 we recover massless
vector boson Hamiltonian HUð1Þ, whose ground state jΨUð1Þi is
gauge invariant. The green surface represents the gauge invariant
subspace, or physical subspace, of the Hilbert space.
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the theory is not gauge invariant, and gauge invariance is
only attained in the massless limit m → 0. Figure 4
summarizes the relations between cMERA states and the
ground states they target.

A. Unentangled state jΛi
We begin by defining annihilation operators

ψ iðx⃗Þ≡
ffiffiffiffi
Λ
2

r
Aiðx⃗Þ þ i

ffiffiffiffiffiffi
1

2Λ

r
Πiðx⃗Þ: ð39Þ

We then consider the unentangled state jΛi given by

ψ iðx⃗ÞjΛi ¼ 0; i ¼ 1;…; d: ð40Þ

This will be the starting point of our entangling evolution.
For later convenience, we write (40) in the basis of
polarizations in momentum space:

ψkðk⃗ÞjΛi ¼ 0; ð41Þ

ψ⊥;nðk⃗ÞjΛi ¼ 0; n ¼ 1;…; d − 1; ð42Þ

Here we have defined

ψkðk⃗Þ≡
ffiffiffiffi
Λ
2

r
Akðk⃗Þ þ i

ffiffiffiffiffiffi
1

2Λ

r
Πkðk⃗Þ; ð43Þ

ψ⊥;nðk⃗Þ≡
ffiffiffiffi
Λ
2

r
A⊥;nðk⃗Þ þ i

ffiffiffiffiffiffi
1

2Λ

r
Π⊥;nðk⃗Þ; ð44Þ

for n ¼ 1;…; d − 1. The initial state jΛi is clearly also of
the Gaussian form (30)–(32), with both functions αkðkÞ,
α⊥ðkÞ set to a constant:

αkðkÞ ¼ Λ; α⊥ðkÞ ¼ Λ: ð45Þ

B. Entangling evolution in scale

Our next step is to define the generator of scale trans-
formations as

FIG. 3. Correlator hBð0ÞBðx⃗Þi as a function of x≡ jx⃗j in
2þ 1 dimensions, where B≡ ∂1A2 − ∂2A1, for both a target
state and the corresponding cMERA approximation, which
matches the correlator of its target state for xΛ ≫ 1. (top) Gauge
invariant target state jΨUð1Þi and the corresponding cMERA
jΨΛ

Uð1Þi. The cMERA correlator has a distributional contribution
1
2Λ ðΔþ Λ2

2
Þδðx⃗Þ localized at the origin, not visible in the figure.

(bottom) Massive target state jΨmðsÞi for mðsÞ ¼ Λe−s and the
corresponding cMERA jΨΛðsÞi. The cMERA correlator has a

distributional contribution 1
2Λ ðΔþ Λ2−mðsÞ2

2
Þδðx⃗Þ localized at the

origin, not visible in the figure.

FIG. 4. The massive vector boson ground state jΨmðsÞi for
mðsÞ ¼ Λe−s is approximated by the cMERA state jΨΛðsÞi.
None of these wave functionals are gauge invariant. The massless
vector boson ground state jΨUð1Þi is approximated by the scale-
invariant cMERA state jΨΛ

Uð1Þi. These two wave functionals are

gauge invariant.
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L≡ 1

2

Z
ddx⃗Πiðx⃗Þ

�
−x⃗ · ∇⃗ −

d
2

�
Aiðx⃗Þ þ H:c:; ð46Þ

¼
Z

ddk⃗Πið−k⃗Þ
�
k⃗ · ∇⃗k⃗ þ

d
2

�
Aiðk⃗Þ þ H:c:; ð47Þ

which assigns nonrelativistic scaling dimensions ΔAi
¼

d=2 and ΔΠi
¼ d=2 to the fields, and consider an entangler

of the form

K ¼ −i
2

Z
ddx⃗ ddy⃗ gijðx⃗ − y⃗Þψ iðx⃗Þψ jðy⃗Þ þ H:c:; ð48Þ

¼ −i
2

Z
ddk⃗ gijðk⃗Þψ ið−k⃗Þψ jðk⃗Þ þ H:c:; ð49Þ

which is the natural generalization to vector bosons of
the scalar boson entangler (6). We choose a rotation
covariant form for the profile gijðk⃗Þ¼ gðkÞδijþfðkÞkikj,
and rewrite

K ¼ −i
2

Z
ddk⃗ ½gkðkÞψkð−k⃗Þψkðk⃗Þ

þ g⊥ðkÞψ⊥;nð−k⃗Þψ⊥;nðk⃗Þ� þ H:c:; ð50Þ

where we have defined

g⊥ðkÞ≡ gðkÞ; gkðkÞ≡ gðkÞ þ k2fðkÞ: ð51Þ

In our case, we choose

gkðkÞ ¼ 1 −
1

2

Λ2

Λ2 þ k2
; g⊥ðkÞ ¼

1

2

Λ2

Λ2 þ k2
: ð52Þ

To have a picture of what these profiles look like in position
space, notice that by inverse Fourier transforming we
obtain

F−1
�

1

Λ2 þ k2

�
ðxÞ ∝

Kd−2
2
ðΛxÞ

ðΛxÞd−22 ; ð53Þ

where x ¼ jx⃗j andKn is the nth modified Bessel function of
the second kind. This implies that the position space profile
of the entangler decays exponentially at large distances, and
for d > 1 it diverges at the origin. In particular, in 1þ 1
spacetime dimensions, g⊥ðxÞ is the same profile as that
in Eq. (10).
Having made our choices for jΛi, L and K, the family of

ansatz states jΨΛðsÞi is defined via Eq. (1). Since K is a
quadratic operator in the fields, and we start from a
Gaussian state jΛi, the whole evolution takes place in
the manifold of Gaussian states, and each jΨΛðsÞi is of the
form (30)–(32), i.e., it is given by a set of scale-dependent
annihilation operators

aΛk ðk⃗; sÞjΨΛðsÞi ¼ 0; ∀ k⃗ ∈ Rd; ð54Þ

aΛ⊥;nðk⃗; sÞjΨΛðsÞi ¼ 0; ∀ k⃗ ∈ Rd; n ¼ 1;…; d − 1;

ð55Þ
which are characterized by a pair of scale-dependent
functions αkðk; sÞ, α⊥ðk; sÞ,

aΛk ðk⃗; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αkðk; sÞ

2

r
Akðk⃗Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2αkðk; sÞ

s
Πkðk⃗Þ; ð56Þ

aΛ⊥;nðk⃗; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α⊥ðk; sÞ

2

r
A⊥;nðk⃗Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2α⊥ðk; sÞ

s
Π⊥;nðk⃗Þ:

ð57Þ
Using Eq. (1) we can solve for αkðk; sÞ and α⊥ðk; sÞ in
terms of gkðk; sÞ and g⊥ðk; sÞ:

αkðk; sÞ ¼ Λ exp

�
−2
Z

s

0

du gkðkes−uÞ
�
; ð58Þ

α⊥ðk; sÞ ¼ Λ exp

�
−2
Z

s

0

du g⊥ðkes−uÞ
�
: ð59Þ

For our particular choice of entangler given by Eq (52), we
have

αkðk; sÞ ¼
mðsÞ2
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Λ2

k2 þmðsÞ2

s
; ð60Þ

α⊥ðk; sÞ ¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmðsÞ2
k2 þ Λ2

s
; ð61Þ

where mðsÞ ¼ Λe−s. Since for the transversal modes of the
vector boson we used the same entangler as the one for a
scalar boson in Ref. [86], α⊥ðk; sÞ is the same function as
αðk; sÞ in Ref. [86].

C. Fixed-point wave functional and gauge invariance

In the limit s → ∞, the constraint from Eq. (54) becomes
the gauge invariance condition (25), so that the fixed-point
state jΨΛ

Uð1Þi belongs to the gauge invariant subspace. It is
fully characterized (up to a global phase) by the gauge
constraint and the s → ∞ limit of the annihilation operators
of the transversal modes:

Πkðk⃗ÞjΨΛi ¼ 0; ð62Þ

aΛ⊥;nðk⃗;∞ÞjΨΛi ¼ 0: ð63Þ
The state defined by the conditions (62)–(63) is a fixed
point of the evolution generated by Lþ K. This can be
shown in the same way as it was shown in Ref. [89] for the
scalar boson. There is a subtlety regarding the s → ∞ limit
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since the theories for s < ∞ and s ¼ ∞ are fundamentally
distinct. We elaborate on this last point in Appendix B.

D. Comparison of Gaussian wave functionals

The fact that all states involved in this discussion are
Gaussian, of the form (30)–(32), facilitates comparison
among them, since it can be conducted at the level of α
functions. It was argued in [89] that annihilation operators
for noninteracting cMERA states interpolate between those
of the target state at small momenta k ≪ Λ and those of
the unentangled initial state at large momenta k ≫ Λ. As
numerically checked in [88], this leads to correlation
functions with the corresponding interpolating behaviors.
Indeed, the two-point functions of jΨΛðsÞi, which for
Gaussian states encode all the other correlators, are
intimately related to αkðk; sÞ and α⊥ðk; sÞ:

hAkðk⃗ÞAkðq⃗Þi ¼
1

2

δðk⃗þ q⃗Þ
αkðk⃗; sÞ

; ð64Þ

hA⊥;nðk⃗ÞA⊥;nðq⃗Þi ¼
1

2

δðk⃗þ q⃗Þ
α⊥ðk⃗; sÞ

: ð65Þ

In the particular case of our current proposal, it follows
from Eqs. (60)–(61) that

αkðk; sÞ ∼
8<
:

mðsÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þmðsÞ2

p k ≪ Λ;

mðsÞ2
Λ k ≫ Λ;

ð66Þ

α⊥ðk; sÞ ∼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þmðsÞ2
p

k ≪ Λ;
Λ k ≫ Λ:

ð67Þ

We see that for k ≪ Λ these functions reproduce the target
state’s behavior [see Eq. (36)], while for k ≫ Λ they
become constant, which is the behavior seen for the
unentangled initial state jΛi [see Eq. (45); the longitudinal
case is special since the constant is rescaled along the
evolution from Λ at s ¼ 0 to 0 at s ¼ ∞).
Figure 5 shows the correlator hBð0ÞBðx⃗Þi for jΨΛðsÞi as

a function of s. We see that, aside from a delta at the origin
(see also Appendix B), the correlators for large s converge
to those of the fixed point wave functional jΨΛ

Uð1Þi. Thus,
we can learn about the proporties of the gauge invariant
jΨΛ

Uð1Þi by studying the nongauge invariant jΨΛðsÞi at finite
but large s.

E. Local Hamiltonians with relativistic IR physics

In order to prove statements (iii) and (v) from the
beginning of this section, consider the following family
of Hamiltonians:

HΛðsÞ≡HmðsÞ þ BΛ
UVðsÞ; ð68Þ

where HmðsÞ is the massive Hamiltonian from (35) with
mðsÞ ¼ Λe−s and

BΛ
UVðsÞ≡ 1

Λ2

Z
ddx Πiðx⃗ÞðδijΔ − ∂i∂jÞΠjðx⃗Þ

þmðsÞ2
Λ2

Z
ddx ð∂iAiðx⃗ÞÞ2: ð69Þ

For every s ∈ ½0;∞�, HΛðsÞ is quadratic and can hence be
easily diagonalized. We then find that jΨΛðsÞi is the ground
state of HΛðsÞ. The term BΛ

UVðsÞ in (68) can be seen as a
UV regulator for HmðsÞ. Notice that the first line in (69)
involves the transversal degrees of freedom, while the
second line involves the longitudinal one:

BΛ
UVðsÞ ¼

1

Λ2

Z
ddk k2Π⊥;nð−k⃗ÞΠ⊥;nðk⃗Þ

þmðsÞ2
Λ2

Z
ddk k2Akð−k⃗ÞAkðk⃗Þ: ð70Þ

The UV regulator term for the transversal modes is once
again equivalent to the one found in [86]. In the limit
s → ∞, the longitudinal degree of freedom is restricted by
the gauge constraint, and jΨΛ

Uð1Þi can be given a rather

compact parent Hamiltonian:

HΛ
Uð1Þ ≡HUð1Þ þ

1

Λ2

Z
ddxΠiðx⃗ÞΔΠiðx⃗Þ: ð71Þ

with HUð1Þ the Maxwell Hamiltonian from (20).

IV. DISCUSSION

In this paper we have explained, through the concrete
example of U(1) gauge theory (or electromagnetism with-
out matter fields) in dþ 1 spacetime dimensions, how to
extend the cMERA formalism to gauge invariant quantum

FIG. 5. Two-point correlator hBð0ÞBðx⃗Þi for state jΨΛðsÞi for
s ¼ 1, 2, 3 and for the fixed point wave functional jΨΛ

Uð1Þi in

2þ 1 dimensions (see also Fig. 3).
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fields. In particular, we have seen that the gauge constraint
can be made compatible with the UV structure of the
cMERA wave functional. As with previous cMERA con-
structions, the ansatz state can be understood as a the result
of modifying the short-distance structure of the target
state. Additionally, the resulting cMERA wave fuctional
jΨΛðsÞi has been seen to be the exact ground state of a
local Hamiltonian, obtained from the original relativistic
Hamiltonian by adding a non-relativistic term that modifies
its UV behavior.
As in the case of the free scalar boson of Ref. [86], for

finite s the entangling evolution in scale produces a
cMERA ansatz for the massive theory with mass mðsÞ ¼
Λe−s. However, for the vector boson analyzed here this
came with an interesting twist: since a mass term breaks
gauge invariance, the intermediate cMERA state jΨΛðsÞi is
not in the physical subspace of the gauge theory, and
the whole cMERA evolution happens outside of it, with
only the asymptotic fixed point cMERA state jΨΛ

Uð1Þi being
gauge invariant.
Our ultimate goal is to use cMERA to simulate interacting

gauge theories in dþ 1 spacetime dimensions. While for
d ¼ 1 non-Gaussian cMERAs for interacting QFTs can be
numerically manipulated using cMPS techniques [87], no
analogous strategy has yet been developed for d > 1.
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APPENDIX A: REVIEW OF THE
QUANTIZATION OF THEORIES

WITH CONSTRAINTS

The field theories we deal with in this paper are special
in the sense that they involve constraints due to the

Lagrangian not being regular. There are several nuances
that should be taken into account when quantizing a
constrained system, and in general there might not be a
unique way of doing so. For instance, the Maxwell
Lagrangian presents gauge invariance, and can thus
be quantized by fixing the gauge in a variety of ways.
Here we choose a quantization scheme that makes the
massive and massless theories “compatible,” in a sense
that we will specify below. The motivation for this
choice comes from the magic cMERA for a scalar field
[86], where the evolution in scale that asymptotically
generates the cMERA can be interpreted as the removal
of an IR cutoff given by a mass (see main text). In this
Appendix we review the canonical quantization pro-
cedure we make use of in the main text. For a more
thorough explanation we refer the reader to a specialized
textbook such as [5]. From now on, f; g refers to the
canonical Poisson bracket, and we usually omit the
space dependence of the fields.
These are the general steps we will follow for the vector

boson theories:
1. Given an irregular Lagrangian, find all the

constraints to be imposed in the Hamiltonian
formalism. This includes primary constraints
(dependency relations between coordinates and
momenta) and secondary constraints (constraints
derived from demanding that other constraints
are preserved by the time evolution generated
by the Hamiltonian).

2. Once all constraints have been found, classify them
as first class (if they Poisson commute with all other
constraints) or second class (if they do not).

3. Impose second-class constraints as operator equa-
tions in the algebra of operators (technically speak-
ing, what we do is replacing Poisson brackets by
Dirac brackets when defining the algebra of oper-
ators, but for all practical purposes we can think of
this step as firstly stated).

4. For first-class constraints we use two different
quantization strategies: either we impose them as
gauge invariance constraints on the Hilbert space
(claiming only gauge invariant states are physical),
or we add an additional constraint to make them
second class, then apply the previous step (gauge
fixing).

We begin with the massless vector boson (Maxwell)
Lagrangian density

L ¼ −
1

4
FμνFμν;

¼ −
1

4
ð∂μAν − ∂νAμÞð∂μAν − ∂νAμÞ; ðA1Þ

and compute the conjugate momenta to the field compo-
nents in the usual way
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Π0 ≡ ∂L
∂ð∂0A0Þ

¼ 0; ðA2Þ

Πi ≡ ∂L
∂ð∂0AiÞ

¼ −F0i ¼ ∂0Ai − ∂iA0: ðA3Þ

We find a single primary constraint: Π0 ¼ 0. This con-
straint is now included in the Hamiltonian by means of a
Lagrange multiplier u:

H ¼ ∂0AμΠμ − Lþ uΠ0; ðA4Þ

¼ 1

2
ΠiΠi þ 1

4
FijFij − A0∂iΠi þ uΠ0: ðA5Þ

We look for secondary constraints by imposing the pres-
ervation of the primary constraint under time evolution:

∂0Π0 ¼ fΠ0;Hg ¼ 0 ⇒ ∂iΠi ¼ 0: ðA6Þ

Thus we obtain a secondary constraint, that we identify as
Gauss’s law. We look for additional secondary constraints
and find that

∂0ð∂iΠiÞ ¼ f∂iΠi;Hg ¼ 0 ðA7Þ

holds without any additional assumptions. Thus we have
found all constraints.
The two constraints we obtained are first class since their

Poisson bracket vanishes:

fΠ0ðx⃗Þ; ∂iΠiðy⃗Þg ¼ 0: ðA8Þ

First-class constraints are a consequence of gauge
invariance, which it is well known that the Maxwell
field exhibits.
We now make the choice to quantize in the temporal

gauge. We add the (partially) gauge-fixing constraint
A0 ¼ 0 (temporal gauge), and check its consistency:

_A0 ¼ fA0;Hg ¼ ∂H
∂Π0

¼ u: ðA9Þ

Hence we can impose the preservation of the gauge fixing
just by a condition on the Lagrange multiplier. The new set
of constraints includes a first-class constraint

∂iΠi ¼ 0 ðA10Þ

and a pair of second-class constraints

A0 ¼ Π0 ¼ 0: ðA11Þ

Upon quantization, the second pair of constraints can
be imposed (à la Dirac) as operator equations: the
operator representation of A0 and Π0 vanishes identically.

The remaining first-class constraint generates (“residual”)
gauge transformations:

Ai ↦ Ai þ ∂iϵðxÞ: ðA12Þ

This transformations do not affect the physical degrees of
freedom, and any two states that differ by one of them
should be identified. Consequently, we define the physical
Hilbert space as the subspace of the total Hilbert space
whose elements are invariant under ∂iΠi:

∂iΠ̂ijphysi ¼ 0: ðA13Þ

And the relevant operator algebra is just the one generated
by the spatial components of fields and momenta Ai, Πi,
with the usual canonical commutation relations:

½Aiðx⃗Þ;Πjðy⃗Þ� ¼ iδijδðx⃗ − y⃗Þ: ðA14Þ

In this setting we can now write down and diagonalize the
Hamiltonian operator, as is done in the main text.
We now turn to the massive vector boson, given by the

Proca Lagrangian

L ¼ −
1

4
FμνFμν −

1

2
m2AμAμ: ðA15Þ

The nonvanishing mass term spoils gauge invariance, but
this does not mean that the Lagrangian is regular, since we
obtain the same primary constraint

Π0 ≡ ∂L
∂ð∂0A0Þ

¼ 0; ðA16Þ

which we include it with a Lagrange multiplier u:

H ¼ _AμΠμ − Lþ uΠ0; ðA17Þ

¼1

2
ΠiΠiþ1

4
FijFijþ1

2
m2AμAμ−A0∂iΠiþuΠ0: ðA18Þ

Looking for secondary constraints, we find

∂0Π0 ¼ 0 ⇒ m2A0 þ ∂iΠi ¼ 0; ðA19Þ

and

∂0ðm2A0 þ ∂iΠiÞ ¼ 0 ⇒ u ¼ ∂iAi; ðA20Þ

thus the theory presents two constraints. These are second-
class, since their Poisson bracket does not vanish:

fΠ0ðx⃗Þ; m2A0ðy⃗Þ þ ∂iΠiðy⃗Þg ¼ −m2δðx⃗ − y⃗Þ: ðA21Þ

We proceed to quantize the theory “à la Dirac”: we impose
the constraints as operator equations, which effectively
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removes A0, Π0 as independent operators, and impose
canonical commutation relations on the rest of operators:

Π0 ¼ 0; A0 ¼ −
∂iΠi

m2
; ðA22Þ

½Aiðx⃗Þ; Ajðy⃗Þ� ¼ ½Πiðx⃗Þ;Πjðy⃗Þ� ¼ 0; ðA23Þ

½Aiðx⃗Þ;Πjðy⃗Þ� ¼ δijδðx⃗ − y⃗Þ: ðA24Þ

As expected, the Hilbert space presents no gauge con-
straints, unlike the massless case. From here on the
Hamiltonian can be reexpressed as in Eq. (35), and
diagonalized by writing it in terms of the corresponding
creation-annihilation operators.
It can be seen now why we have chosen this particular

schemes for quantization of the massive and massless
vector fields. The relevant operator algebras are identical:
we have in both cases Ai, Πi, the spatial components of the
field and their momenta, and they satisfy canonical com-
mutation relations. (This would not be as trivial if we had
chosen, for example, the Coulomb gauge quantization for
the gauge theory, where the commutation relations of
the operators are modified from the canonical case.) The
Hilbert spaces where these observables are represented
are also taken to be the same, with the caveat that for the
massless case only a subspace of the total Hilbert space is
physical, since the number of physical degrees of freedom
is reduced by the gauge invariance. This allows for a cMERA
evolution to be defined consistently as in the main text, in a
way thatΨΛðsÞ is amassivevectorbosonstate for finites anda
massless vector boson state for s ¼ ∞.

APPENDIX B: ON THE CONTINUITY
OF THE s → ∞ LIMIT

In this Appendix we point out a subtlety with the s → ∞
limit of the longitudinal degrees of freedom in the cMERA
from the main text. A reader familiar with the m → 0
limit of the massive vector boson theory to the massless
vector boson theory will find it analogous to what we
present here. To be concrete, we study the particular case of
1þ 1 dimensions, where there are no transversal degrees
of freedom. We thus denote Aðk⃗Þ≡ A1ðk⃗Þ ¼ Akðk⃗Þ and

Πðk⃗Þ≡ Π1ðk⃗Þ ¼ Πkðk⃗Þ. The massless case theory is pure
gauge, having no physical degrees of freedom except for
the zero mode Aðk⃗ ¼ 0Þ, Πðk⃗ ¼ 0Þ (which gives the
quantization of the constant value of the electric field,
the only physical degree of freedom of the classical theory).
The massless Hamiltonian is given by

H ¼ 1

2

Z
dxΠðxÞ2 ¼ 1

2

Z
dkΠð−kÞΠðkÞ; ðB1Þ

and its ground state is characterized by

ΠðkÞjΨi ¼ 0; ðB2Þ

which includes the gauge invariance constraint (k ≠ 0) and
the energy minimization for the single degree of freedom
(k ¼ 0). It is hard to make statements about the entangle-
ment properties of this state, since, even though Fourier
transformation of (B2) yields local annihilation operators

ΠðxÞjΨi ¼ 0; ðB3Þ

as befits an unentangled state, there are no local physical
degrees of freedom to speak about their correlations or lack
thereof.
Applying the formalism from the main text, we start

from the unentangled state

ψðxÞjΛi ¼ 0 ðB4Þ

and evolve with an entangler

K ¼ −i
2

Z
dk gðkÞψð−kÞψðkÞ þ H:c: ðB5Þ

with

gðkÞ ¼ 1 −
1

2

Λ2

Λ2 þ k2
: ðB6Þ

In position space, this entangler looks like this

K ¼
Z

dx AðxÞΠðxÞ −
Z

dx dy e−Λjx−yjAðxÞΠðyÞ; ðB7Þ

which has an on-site part, and a bilocal part, which acts at a
particular lengthscale Λ−1. The cMERA states are then
characterized by

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
αðk; sÞ

2

r
AðkÞ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2αðk; sÞ

s
ΠðkÞ

!
jψΛðsÞi ¼ 0; ðB8Þ

with

αðk; sÞ ¼ mðsÞ2
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Λ2

k2 þmðsÞ2

s
: ðB9Þ

Figure 6 shows a qualitative plot of αðk; sÞ. States at finite
values of s are ground states of the following regularized
version of the massive vector boson Hamiltonian:

HðsÞ ¼
Z

dx

�
ΠðxÞ2
2

þm2

Λ2
ð∂AðxÞÞ2

�
; ðB10Þ

where mðsÞ ¼ Λe−s. This states are entangled, due to the
action of K. At any finite time in the evolution, the state has
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all the entanglement that has been introduced from the
UV cutoff scale Λ−1 to the IR cutoff scale mðsÞ−1. This
entanglement does not disappear smoothly in the s → ∞
limit because the convergence to the fixed point is not
smooth. Take a look at the two-point function for ΠðxÞ:

hΠðxÞΠðyÞi ∝ F−1½αðkÞ�ðx − yÞ: ðB11Þ

Because of the behavior of αðkÞ we can decompose this
correlator into two parts: an on-site delta and an integrable
function of the distance:

hΠðxÞΠðyÞi ∼mðsÞ2
Λ

δðx − yÞ þ fsðx − yÞ: ðB12Þ

As s → 0, we have kfsk2 → 0 so both terms in the
correlator go to zero. However the value at x ¼ y, corre-
sponding to the squared norm ofΠðxÞjΨΛðsÞi preserves the
delta divergence for the whole evolution, while it should be
zero in the gauge invariant subspace.

APPENDIX C: UV REGULARIZATION OF
CORRELATION FUNCTIONS

In the main text we have provided a cMERA for the
ground state of a vector boson theory. The cMERA states
can be seen to approximate the long distance properties of
their target states, while keeping their short distance
properties closer to those of the original unentangled state.
In this Appendix we study the UV structure of the proposed
gauge invariant cMERA in more detail.
In [88], the existence of the short distance limit of two-

point functions of cMERA states was used as a witness for
UV regularization. These correlation functions usually take
the following form in cMERA states:

hOðx⃗ÞOðy⃗Þi ¼ Cδðx⃗ − y⃗Þ þ fðjx⃗ − y⃗jÞ; ðC1Þ

with C a constant and f some function such that

lim
x⃗→y⃗

hOðx⃗ÞOðy⃗Þi < ∞; ðC2Þ

that is, the short-distance limit of the correlator of two
fields is finite, barring the on-site delta divergence. In our
particular example, and focusing on the A fields, the two-
point functions are given in terms of the α functions by
(65). Removing the constant factor responsible for the δ
functions, the corresponding limits are given by

lim
x⃗→y⃗

hAkðx⃗ÞAkðy⃗Þi ¼
Z

ddk

�
1

αkðk; sÞ
−

Λ
mðsÞ2

�
; ðC3Þ

lim
x⃗→y⃗

hA⊥;nðx⃗ÞA⊥;nðy⃗Þi ¼
Z

ddk

�
1

α⊥ðk; sÞ
−
1

Λ

�
; ðC4Þ

where the expectation values are taken with respect to
jΨðk; sÞi. For the α functions from (60)–(61) we have

1

αkðk; sÞ
∼

Λ
mðsÞ2

�
1 −

Λ2 −mðsÞ2
2k2

þ…

�
; ðC5Þ

1

α⊥ðk; sÞ
∼
1

Λ

�
1þ Λ2 −mðsÞ2

2k2
þ…

�
; ðC6Þ

and the UV divergence is removed in d ¼ 1, but it remains
in higher dimensions. Notice that since

αkðk; sÞ ¼
mðsÞ2
α⊥ðk; sÞ

; ðC7Þ

and both functions asymptote to constants, their asymptotic
behavior is very much related, as can be seen in the
expansions above.
If needed, we can build cMERAs where these states are

more strongly UV regulated, at the cost of adding extra
derivatives to the entangler and the parent Hamiltonians.
Consider an entangler of the form (50) whose momentum
space profile is given by

g⊥ðkÞ ¼
1þ nκ2n−2

2ð1þ κ2n−2Þð1þ κ2 þ κ2nÞ ; κ ≡ k
Λ
; ðC8Þ

gkðkÞ ¼ 1 − g⊥ðkÞ; ðC9Þ

for n > 1. g⊥ðkÞ is a rational function of k2 that goes to 1
2
at

k ¼ 0 and decays as k−2n at long distances. Its Fourier
transform, namely the real space profile of the entangler, is
therefore integrable for dimensions d < 2n. The resulting α
functions corresponding to this entangler, if applied on the
same initial state, are

FIG. 6. Evolution of αðk; sÞ (qualitative plot).
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α⊥ðk; sÞ ¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ k2Λ2n−2

k2n þ k2Λ2n−2 þ Λ2n

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ k2mðsÞ2n−2 þmðsÞ2n

k2n þ k2mðsÞ2n−2

s
; ðC10Þ

αkðk; sÞ ¼
m2ðsÞ
α⊥ðk; sÞ

; ðC11Þ

with asymptotic fixed points:

α⊥ðkÞ ¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ k2Λ2n−2

k2n þ k2Λ2n−2 þ Λ2n

s
; ðC12Þ

αkðkÞ ¼ 0: ðC13Þ

These states are more strongly UV regularized, as can be
checked by expanding

1

αkðk; sÞ
∼

Λ
mðsÞ2 þ

ΛðmðsÞ2n − Λ2nÞ
2mðsÞ2k2n þ…; ðC14Þ

1

α⊥ðk; sÞ
∼
1

Λ
þ Λ2n −mðsÞ2n

2Λk2n
þ…; ðC15Þ

Indeed, the short distance limit of the corresponding two-
point functions will be finite for d < 2n, while their long
distance behavior can still be seen to approximate that of
the target state correlation functions.
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