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We analyze in full detail the geometric structure of the covariant phase space (CPS) of any local field
theory defined over a space-time with boundary. To this end, we introduce a new frame: the “relative
bicomplex framework.” It is the result of merging an extended version of the “relative framework” (initially
developed in the context of algebraic topology by R. Bott and L. W. Tu in the 1980s to deal with
boundaries) and the variational bicomplex framework (the differential geometric arena for the variational
calculus). The relative bicomplex framework is the natural one to deal with field theories with boundary
contributions, including corner contributions. In fact, we prove a formal equivalence between the relative
version of a theory with boundary and the nonrelative version of the same theory with no boundary. With
these tools at hand, we endow the space of solutions of the theory with a (pre)symplectic structure
canonically associated with the action and which, in general, has boundary contributions. We also study the
symmetries of the theory and construct, for a large group of them, their Noether currents, and charges.
Moreover, we completely characterize the arbitrariness (or lack thereof for fiber bundles with contractible
fibers) of these constructions. This clarifies many misconceptions about the role of the boundary terms in
the CPS description of a field theory. Finally, we provide what we call the CPS-algorithm to construct the
aforementioned (pre)symplectic structure and apply it to some relevant examples.
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I. INTRODUCTION

The dynamical evolution of a given field theory on a
globally hyperbolic n-space-time M ¼ ½t0; tf� × Σ is gov-
erned by its field equations together with some boundary
conditions. If the theory is well-posed, we can evolve
uniquely the initial data defined over a Cauchy surface, at
least for a small interval of the evolutionparameter. Ingeneral,
a lot of interesting theories, such as general relativity orYang-
Mills, are only well posed up to a gauge transformation,
meaning that the evolution exists but is nonunique.
If we consider the second-order Lagrangian framework,

we have to define a space of field configurations Q over a
Cauchy surface Σ ⊂ M and consider its tangent bundle TQ,
which has no additional canonical structure. However, the
cotangent bundle has a canonical symplectic structure
which plays an essential role in the definition of the
Hamiltonian framework [1–3]. This approach is excellent
to understand the dynamical evolution of a system for a
given time but it is not as well suited to understand some

nonlocal concepts, such as the entropy of a black hole in
general relativity [4]. This can be achieved by considering
the whole solution ϕ over M instead of a curve fφτgτ of
fields Q over Σ.
Let SolðMÞ be the space of solutions of our theory and

CDSðΣÞ the Cauchy data set, formed by all admissible
initial data that we can put over a fixed Cauchy surface. We
assume, as it is the case in the Hamiltonian framework, that
CDSðΣÞ is a submanifold of T�Q with the inclusion {. We
can define a “polarization” map P∶ SolðMÞ → CDSðΣÞ of
the form PðϕÞ ¼ ðqðϕÞ; pðϕÞÞ ∈ T�Q. Here, qðϕÞ ∈ Q
represents the initial position and pðϕÞ ∈ T�

qðϕÞQ the initial

momentum. If we evolve them with the equations of motion
of the theory, we recover, at least for a small evolution
parameter, the solution ϕ. This map is bijective if the theory
is well posed. If we have some degeneracy (gauge free-
dom), then the map is only surjective. In any case, we have
the following diagram

ðT�Q;ΩÞ → ðCDSðΣÞ; {�ΩÞ → ðSolðMÞ;ω ≔ P�{�ΩÞ:
The (pre)symplectic structure ω is fundamental in the study
of some global issues but it is not easy to obtain. Besides, it
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requires a choice of polarization P. It seems then desirable
to have alternative methods to define a (pre)symplectic
structure  over SolðMÞ and ways to check if it is
equivalent to ω. This is precisely the main goal of this
work. Namely, in this paper, we develop the geometrical
foundations to construct a (pre)symplectic structure over
SolðMÞ adapted to the physical problem. After that, we
study some symmetries of the theory and find an interesting
subset of them which turn out to be Hamiltonian. All this is
done within the context of the so-called covariant phase
space (CPS) methods. Finally, we study several examples
where  is indeed equivalent to ω. However, we will also
show one particular example where both structures differ. It
is important to mention at this point that more work is
needed to understand fully this issue.
The most important contribution of this paper is the

introduction of what we refer to as the “relative bicomplex
framework.” In particular, we develop the “relative frame-
work,”which is the natural one to deal with boundaries, and
merge it with the bicomplex framework, which is the
natural one to deal with fields. In fact, we prove that all the
results that hold in the nonrelative framework without
boundary, also hold in the relative framework with boun-
dary. Moreover, it can easily be extended to include
boundary corners. This should clarify many misconcep-
tions involving the boundary and boundary terms in the
CPS methods. Moreover, we completely characterize the
arbitrariness of the aforementioned constructions. These
results are also useful when no boundaries are present.
Finally, we provide a simple four-step algorithm that can be
implemented for any local action theory to obtain the (pre)
symplectic structure over SolðMÞ.

A. State of the art

A careful historical review can be found in the intro-
ductions of [5–7]. Here we only consider some of the
highlights of this area to shed some light about the
motivation of this and similar works.
The idea to consider the geometric structure of the space

of fields can be traced all the way back to J. L. Lagrange
[8]. Since then, it has subsequently often reappeared. Just to
mention a few, S. Lie, J.G. Darboux, E. Cartan, or E.
Nother were interested in these kinds of problems. The
more concrete idea of considering the space of solutions
instead of the space of initial Cauchy data begins to appear
in the physics literature circa 1960. To the best of our
knowledge, the first explicit mention is due to Bergman and
Kommar [9], where they consider the frozen phase space.
After that, it is easier to find results in the mathematical
journals (related to the inverse variational problems). For
instance, in the 1960s [10], in the 1970s [11–13], and in the
1980s [14–20]. Following these and similar references, one
can see that some results have been (re)obtained over and
over using different notations and frameworks. For some
modern reviews and extended results see [21–25].

Meanwhile, in the physics community, the CPS methods
regained interest in the 1980s with the paper of Č. Crnković
and E. Witten [26]. Almost simultaneously, G. Zuckerman
[27] published a paper (halfway between the physics and
mathematics literature) dealing with a very similar prob-
lem. After that, we can find many papers discussing the
covariant phase space methods [4,5,28–35].
The study of these methods for manifolds with bounda-

ries is scarcer. The first one we are aware of was due to
A.M. Vinogradov [19,20], although it is not studied in
much detail. In the physics literature, some boundary
conditions at infinity were considered in [4,5,36], although
the methods used are a bit ad-hoc because, as we will see in
Sec. III E, the symplectic structure used there is not the
most natural one. After that, several attempts to consider
exact counterterms in the symplectic structure (that upon
integration become boundary terms) were considered for
example in [37,38] to obtain a more sensible symplectic
structure. The first serious attempt to write a review about
these results can be found in [39], although it does not
include almost any of the aforementioned mathematical
references. This led the authors to (re)obtain some results
that are obvious in a more geometric language, e.g., the
inclusion of their C term is completely natural as we will
see in Sec. III D. Moreover, they fail to see that their
(unnecessary) argument to justify the inclusion of the C
term also applies to their definition of symmetries, as we
show in Eq. (3.13). The most relevant literature that deals
with the geometry of field theories in manifolds with
boundaries can be found in [3,23,40–43].

B. Structure of the paper

After this introduction, we proceed in Sec. II with a
quick review of the mathematical results and notation
needed for the rest of the paper. In particular, we develop
the new “relative bicomplex framework” based in the
relative pairs [44] and the variational bicomplex [14].
The central part of this work is Sec. III, where we study
in detail the space of fields, the relevant objects that can be
defined there, and the ambiguities that may arise. We also
prove that the definition of the objects with geometric
meaning, under very mild hypotheses, is not ambiguous.
As a by-product, in Sec. IV we provide what we call the
CPS-algorithm to define the canonical presymplectic
structure over the space of solutions. Finally, Sec. V is
devoted to applying the CPS-algorithm to several relevant
examples. Some additional results and material for the
interested reader are included in the Appendixes. It is worth
mentioning that this work is thought to have three different
self-contained ways of reading it:
(1) Sections IV and V, to get an idea of how the CPS-

algorithm works in concrete examples.
(2) Sections II and III, to understand the origin of the

algorithm introduced in IV and used in V.
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(3) Motivated readers are encouraged to read also
Appendix A, where we formalize these concepts
in the more natural (although arguably more cum-
bersome) language of jets.

II. MATHEMATICAL BACKGROUND

A. Motivation

The space of fields F over M is an infinite-dimensional
manifold defined as the space of sections of a particular
bundle. The topology and differential structure of F are
usually taken for granted despite the subtleties inherent to
any infinite-dimensional manifold. We somewhat agree
with the common belief that quite often it is not necessary
to be completely rigorous about it and one can proceed in
analogy with the finite-dimensional case. However, we
want to stress two key facts:

(i) This is not always the case, especially in the
presence of boundaries.

(ii) Even accepting a reasonable lack of mathematical
rigor, there is plenty of space to improve the
formalism without making it more complicated,
even in the presence of boundaries.

This section is precisely devoted to the latter point:
introduce the required mathematical background to under-
stand the rest of the paper using a language similar to the
one most commonly used in the literature (treating F as an
infinite-dimensional differential manifold where all the
usual finite-dimensional manipulations are valid), but using
a globally geometric approach. Regarding the first point,
we have included in Appendix A a very basic introduction
to the formalism of jet bundles. This language is the natural
one to prove important results and perform computations.
In this same Appendix, we explain how to connect both
formalisms.

B. Differential geometry on M

1. Tensor fields

Over an n-manifold M, we have its spaces of tensor
fields, i.e., sections of the bundles ðTMÞ⊗r ⊗ ðT�MÞ⊗s.
Taking the sections with ðr; sÞ ¼ ð1; 0Þ leads to the space of
vector fields XðMÞ, while ðr; sÞ ¼ ð0; 1Þ leads to the space
of 1-form fields Ω1ðMÞ. More generally, we have the
graded algebra of form fields ΩðMÞ with the wedge
product ∧. The exterior derivative dM over ΩðMÞ defines
the complex

0 → Ω0ðMÞ!dM Ω1ðMÞ!dM � � �!dM Ωn−1ðMÞ!dM ΩnðMÞ → 0:

Other important operations that we will use extensively are
the Lie derivative LV of any tensor field and the interior
product ιV of any form field, both of them with respect to a
vector field V ∈ XðMÞ.

For non-compact manifolds, we often have to restrict
ourselves to forms with compact supportΩk

cðMÞ, in order to
guarantee their integrability. To ease the notation, and
because it will be more cumbersome in the next few
sections, we will not mention anything about the integra-
bility. We assume in the following that all the objects
involved can be integrated whenever necessary.

2. Closed and exact forms

If α ∈ ΩkðMÞ, we say that its degree, denoted by jαj, is k.
A form α ∈ ΩðMÞ is closed if dMα ¼ 0 (it belongs to the
kernel of dM), while it is exact if α ¼ dMβ for some β ∈
ΩðMÞ (it belongs to the image of dM). As d2M ¼ 0, every
exact form is closed. The converse depends on the de Rham
cohomology

HkðMÞ ¼ kerðdMÞk
ImðdMÞk−1

ðdMÞk∶ΩkðMÞ → Ωkþ1ðMÞ:

3. Local description

If U ⊂ M is a local patch with coordinates fxig, then we
have (using multi-index notation)

α ¼
X
jIj¼jαj

αIdMxI dMα ¼
Xn
j¼1

X
jIj¼jαj

∂αI
∂xk dMx

k ∧ dMxI

C. Differential geometry on ðM;∂MÞ
The best way to deal with forms in manifolds with

boundaries is to use what we call the relative framework.
Consider the pair ðM;NÞ where N is a submanifold
|∶N ↪ M of codimension 1. Define

ΩkðM;NÞ ≔ ΩkðMÞ ⊕ Ωk−1ðNÞ

and endow it with the following operations

ðα;βÞ∧ðγ;δÞ≔
�
α∧ γ;

ð−1Þjαj
2

ð|�αÞ∧ δþ1

2
β∧ ð|�γÞ

�

dðα;βÞ≔ ðdMα;|�α−dNβÞ ιVðα;βÞ≔ ðιVα;−ιV̄βÞ
LVðα;βÞ≔ ðLVα;LV̄βÞ F�ðα;βÞ≔ ðF�α;ðFjPÞ�βÞ

where V ∈XðMÞ satisfies V̄≔VjN ∈XðNÞ and F∶ðS;PÞ!
ðM;NÞ is a map of pairs. The usual properties hold (see
page 10). In particular, d2 ¼ 0, so we can define the
cohomology of ðΩkðM;NÞ; dÞ. This is known as the
relative cohomology and is denoted as HkðM;NÞ [ [44],
p. 78]. Thus, by definition, ½ðα1; β1Þ� ¼ ½ðα2; β2Þ� if and
only if

α2 ¼ α1 þ dMY β2 ¼ β1 þ |�Y − dNZ
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for some ðY; ZÞ ∈ Ωk−1ðM;NÞ. We can also define the
integral of top-forms as

Z
ðM;NÞ

ðα; βÞ ≔
Z
M
α −

Z
N
β

From now on, we assume that N ⊂ ∂M and, for simplicity,
we will omit the subindex of the exterior derivatives as the
manifolds where they act will always be clear from the
context. This whole framework is still valid when ∂M ¼ ∅.
If we define the relative boundary ∂ðM;NÞ ≔

ð∂MnN; ∂NÞ, which satisfies ∂2ðM;NÞ ¼ ∅, and the
relative inclusion |∶∂ðM;NÞ ↪ ðM;NÞ, we have a relative
version of the Stokes’ theorem

Z
ðM;NÞ

dðα; βÞ ¼
Z
∂ðM;NÞ

|�ðα; βÞ ð2:1Þ

where we have taken into account that the orientation of
∂N ⊂ N is opposite to the orientation of ∂N ⊂ ∂M (see
remark 1 below). Of course, we can take N ¼ ∂M in which
case ∂ðM;NÞ ¼ ∅ and the last integral is zero. This result
conforms to a general trend: results that hold for M with
boundary ∂M also hold for ðM;NÞ with boundary ∂ðM;NÞ.
In particular, results that hold for a manifold without
boundary, hold for ðM; ∂MÞ because ∂ðM; ∂MÞ ¼ ∅.

D. Differential geometry on F

1. Tensor fields

Let F be the space of sections of some bundle E!π M.
We assume that the infinite-dimensional manifold F has a
differential structure and that we also have tensor fields
over F (see Appendix A for a formal definition of these
structures). In particular, we have vector fields X ∈ XðF Þ
and k-form fields α ∈ kðF Þ with the wedge product ⩕.
This graded algebra with the exterior derivative d defines
the complex

0 → 0ðF Þ!d 1ðF Þ!d � � � !d kðF Þ!d kþ1ðF Þ!d � � �
ð2:2Þ

Other important operations that we will use extensively are
the Lie derivative V of any tensor field and the interior
product V of any form field, both of them with respect to a
vector field V ∈ XðF Þ.

2. Closed and exact forms

If α ∈ kðMÞ we say that its degree, denoted by kαk, is
k. A form α ∈ ðF Þ is closed if dα ¼ 0 and exact if dα ¼
β for some β ∈ ðF Þ. As d2 ¼ 0, every exact form is
closed. The converse depends on the cohomology but we
will refrain from defining it here because it is not as

straightforward as in the finite-dimensional case. Besides, it
will not be necessary for our purposes.

3. “Local” description

In this case, there is no exact analog to the coordinates
fxig and their exterior derivatives dxi. However, we can
formally introduce a similar concept. First, recall that ϕ ¼
ðϕ1;…;ϕmÞ ∈ F is a section of a bundle E → M. Each
component ϕI is a section of a subbundle EI ⊂ E so F can
be thought of as a Cartesian product of spaces of fields F I .
Define the Ith evaluation function EvalIp∶F → EI at
p ∈ M as

EvalIpðϕÞ ¼ ϕIðpÞ ∈ EI
p:

Although in general it is quite ill behaved, in the following
we proceed as if it were smooth in order to connect with the
standard physics literature (see Sec. A 4 for the proper
definition in the language of jets). Thus, we can compute its
exterior derivative dEvalIp∶TF → TEI , a 1-form field
of F with coefficients on TEI. If we take a vector

Vϕ ¼ ðV ð1Þ
ϕ ;…;V ðmÞ

ϕ Þ ∈ TϕF , where each component

V ðIÞ
ϕ is given by a curve fϕI

τgτ ⊂ F I with ϕI
0 ¼ ϕI and

∂τj0ϕI
τ ¼ V ðIÞ

ϕ , then

dϕEvalIpðVϕÞ¼
d
dτ

����
τ¼0

EvalIpðϕτÞ¼
d
dτ

����
τ¼0

ϕI
τðpÞ¼V ðIÞ

ϕ ðpÞ:

Thus, if we formally remove the dependence on p, we can
define dϕI as

dϕIðVϕÞ ≔ dϕEvalIðVϕÞ ¼ V ðIÞ
ϕ

E. Differential geometry on M ×F

1. Tensor fields

The differential structure of a product manifold is
defined using the differential structures of the factors.
One can then just consider tensor fields over M × F in
the usual fashion. However, here we have a feature that
complicates everything: the second factor F is defined in
terms of the first one M, they are entangled! In particular,
the dependence on the points of M may appear both
explicitly and implicitly through elements of F . The key
here will be to only consider tensor fields with a local
dependence on the points of M in both senses. Doing that
will allow us to somewhat disentangle the factors.
For simplicity, we focus our attention on the differential

forms because they have more structure and are more
interesting, although similar arguments apply to general
tensor fields. First we define the variational bicomplex
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ð2:3Þ

ðr;sÞðM × F Þ is the space of forms of degree r inM (horizontal part) and s in F (vertical part). These spaces with⩕ define
a bigraded algebra with two exterior derivatives: the horizontal d, increasing r, and the vertical d, increasing s. The wedge
product ⩕ restricted to ðk; 0Þ-forms coincides with ∧. We will often abuse notation and use the latter. If we replace ðM; dÞ
by the relative pair ððM;NÞ; dÞ of Sec. II C and use the relative analogues, we can define the relative bicomplex framework

ðr;sÞððM;NÞ × F Þ ≔ ðr;sÞðM × F Þ ⊕ ðr−1;sÞðN × F Þ

ðα; βÞ⩕ðγ; δÞ ≔
�
α⩕γ;

ð−1Þjαj
2

ð|�αÞ⩕δþ 1

2
β⩕ð|�γÞ

�

dðα; βÞ ≔ ðdα;dβÞ Vðα; βÞ ≔ ðVα; VβÞ
Vðα; βÞ ≔ ðVα;VβÞ F�ðα; βÞ ≔ ðF�α; F�βÞ:

2. From M ×F to M

An element α ∈ ðr;sÞðM × F Þ can be “projected” over
M if we fix some ϕ ∈ F and V1

ϕ;…;Vs
ϕ ∈ TϕF . Let us

define αðϕ;V1
ϕ;…;Vs

ϕÞ ∈ ΩrðMÞ, with the shorthand nota-
tion αðϕ;V i

ϕÞ, as

½αðϕ;V i
ϕÞ�pðV1

p;…;Vr
pÞ

≔αðp;ϕÞðV1
p;…;Vr

p;V1
ϕ;…;Vs

ϕÞ V1
p;…;Vr

p∈TpM: ð2:4Þ

This simply separates the arguments in horizontal and
vertical [27]. However, the base points are not separated
in the sense that the dependence is on the whole field
ϕ∶M → E instead of just ϕðpÞ. From now on, we restrict

ourselves to ðr;sÞ
loc ðM × F Þ. This is defined as the forms α

such that αðϕ;V i
ϕÞ only depends on ðp;ϕðpÞÞ, on V i

ϕðpÞ,
and on finitelymany of the derivatives ofV i

ϕ atp. Finally, it is

not hard to prove that if we project dα ∈ Ωðrþ1;sÞðM × F Þ,
we obtain the exterior derivative of the projection:

ðdαÞðϕ;V i
ϕÞ ¼ dðαðϕ;V i

ϕÞÞ:
This same construction can begeneralized to any other tensor
fields in M and on F with the same concept of bigradation
and the same idea of local tensor fields.

3. Background and dynamical fields

Among the fields we are considering, some of them
might be considered as background objects. It is convenient
to separate them and denote the background fields as ϕ̃ ∈
F̃ and reserve the notation ϕ ∈ F for the dynamical ones.
Of course, the local dependence applies to both types of
fields. In the following, although we should write F × F̃ ,
we will ease the notation and write simply F understanding
that there might be additional dependence on some fixed
fields.
With this notation at hand, a Lagrangian is an element

L ∈ ðn;0Þ
loc ðM × F Þ such that Lðϕjϕ̃Þ ∈ ΩnðMÞ is local in

the usual sense. For instance, consider the following
Lagrangian

LðϕjgÞ ¼ g−1ðdϕ; dϕÞvolg ∈ ΩnðMÞ

where ϕ ∈ F ¼ Ω0ðMÞ is the dynamical field and g ∈
F̃ ¼ MetðMÞ is the fixed field.

4. Properties

Here we summarize the degrees of certain operators over
ðM;NÞ × F
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d d ιX X LX X

ðð1; 1Þ; 0Þ ðð0; 0Þ; 1Þ ðð−1;−1Þ; 0Þ ðð0; 0Þ;−1Þ ðð0; 0Þ; 0Þ ðð0; 0Þ; 0Þ

The usual properties of differential geometry hold over ðM;NÞ × F

d2 ¼ 0 d2 ¼ 0 ð2:5Þ

ðα; βÞ∧ðγ; δÞ ¼ ð−1Þjαjjγjðγ; δÞ∧ðα; βÞ ðα; βÞ⩕ðγ; δÞ ¼ ð−1Þjαjjγjþkαkkγkðγ; δÞ⩕ðα; βÞ ð2:6Þ
LV ¼ ιVdþ dιV V ¼ Vdþ d V ð2:7Þ

dððα; βÞ∧ðγ; δÞÞ ¼ dðα; βÞ∧ðγ; δÞ þ ð−1Þjαjðα; βÞ∧ dðγ; δÞ
dððα; βÞ⩕ðγ; δÞÞ ¼ dðα; βÞ⩕ðγ; δÞ þ ð−1Þkαkðα; βÞ⩕dðγ; δÞ ð2:8Þ

ιVððα; βÞ∧ðγ; δÞÞ ¼ ιVðα; βÞ∧ðγ; δÞ þ ð−1Þjαjðα; βÞ∧ιVðγ; δÞ
Vððα; βÞ⩕ðγ; δÞÞ ¼ Vðα; βÞ⩕ðγ; δÞ þ ð−1Þkαkðα; βÞ⩕Vðγ; δÞ ð2:9Þ

LVd ¼ dLV Vd ¼ dV ð2:10Þ

F�ιF�Vðα; βÞ ¼ ιVF�ðα; βÞ F�F�Vðα; βÞ ¼ VF�ðα; βÞ: ð2:11Þ

Moreover, the operations in F and in M commute. For instance

dd ¼ d d Vd ¼ dV ιVd ¼ dιV: ð2:12Þ

In most of the mathematical literature those objects anti-
commute (see Sec. A 4). This can be reconcile considering
ð−1Þrd instead of d and analogously for the other
operators.

5. Closed and exact forms

We know that a sufficient condition for a closed k-form
of M to be also exact is that HkðMÞ ¼ 0. Of course, this is
not a necessary condition. In fact, we have the following
result:
Theorem 1 (Horizontal exactness theorem). Let r < n

and ðα; βÞ ∈ ðr;sÞ
loc ððM; ∂MÞ × F Þ. If ðα; βÞ is d-closed and

one of the following two conditions holds

ðα; βÞð0;V I
ϕÞ ¼ 0 or s > 0

then there exists ðγ; δÞ ∈ ðr−1;sÞ
loc ððM; ∂MÞ × F Þ such

that dðγ; δÞ ¼ ðα; βÞ.
Proof. From the definition of d, we have on one hand

dα ¼ 0 over M × F. From [45] or [ [13], th.4.4], it follows
(their proofs can be adapted to the case of a manifold with

boundary) that α ¼ dγ for some γ ∈ ðr−1;sÞ
loc ðM × F Þ. On

the other hand, now we have 0 ¼ |�α − dβ ¼ dð|�γ − βÞ,
so applying [45] again leads to the result. ▪

Notice that if s ¼ 0, the non-zero elements of HrðMÞ,
those which are independent of the fields, are non-exact.
This is the reason why we have to include the vanishing
condition for ϕ ¼ 0.

F. M as a space-time

The n-manifold M is chosen so that it represents a
physically reasonable space-time. As usual, we take it
connected and oriented. Moreover, we require thatM admits
a foliation by Cauchy hypersurfaces (although most of the
results only require an arbitrary foliation). Without loss of
generality,M ¼ I × Σ for some interval I ¼ ½ti; tf� and some
(n − 1)-manifold Σ with boundary ∂Σ (possibly empty). If
we denote Σi ¼ ftig × Σ and Σf ¼ ftfg × Σ, we can split
∂M in three distinguished parts

∂M ¼ Σi ∪ ∂LM ∪ Σf

the lids Σi, Σf and the “lateral boundary” ∂LM ≔ I × ∂Σ.
Notice thatM ¼ I × Σ is a manifold with corners ∂Σi ∪ ∂Σf

which is equal, as a set, to ∂ð∂LMÞ. This is not a problem as
most results of differential geometry, like Stokes’ theorem,
hold when the corners are simple enough (as they are here).
The following diagram will be useful to keep track of the
possible embeddings and the induced geometric objects,
especially in Sec. V, where we include some examples with
detailed computations.
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ð2:13Þ

The4-tuples consist of themanifold, the (pullback)metric, its
associated Levi-Civita connection (only for nondegenerate
metrics), and the abstract indices associated with the mani-
fold. The labels of the arrows represent the embedding and
the normal vector field (normalized in the nondegenerate
case). For instance ð{; nαÞ represents the embedding { and the
vector field nα defined over {ðΣÞ and g-normal to it. The
normal vector field is chosen future pointing for the Cauchy
embeddings (vertical arrows in the diagram) and outward to
the boundary (horizontal arrows). Notice that in the bottom
lid Σi, there is a discrepancy as it can be seen as embedded
through {i or as part of ∂M. Most often it appears as the
boundary of M, so we choose the outwards pointing
convention (past pointing). As a reminder to the reader,
most of the objects living completely at the boundary are
denoted with an overline (like ḡ, which in index notation is
ḡᾱ β̄). Some of the objects included in the diagramwill not be
used in this paper but we include them for completion.
Finally, notice that the embeddings | and |̄ are fixed, since the
boundaries are fixed. However { and {̄, which embed ðΣ; ∂ΣÞ
in ðM; ∂MÞ, can be chosen among all the embeddings
satisfying {ð∂ΣÞ ⊂ ∂LM.
As ðM; gÞ is oriented, we define the metric volume form

volg that assigns 1 to every positive orthonormal basis. We
now orient Σ and ∂LM (in the nondegenerate case, the
degenerate case needs a bit more work) with volγ and volḡ
respectively given by

|�ðι
U
!volgÞ¼ναUαvolḡ {�ðι

U
!volgÞ¼−nαUαvolγ ð2:14Þ

for every U
!
. These orientations are the ones that make

Stokes’ theorem hold. Finally, ∂Σ can be oriented as the

boundary of Σ. Thus volγ̄ is given (in the nondegenerate
case, of course) by

|̄�ðι
V
!volγÞ¼μaVavolγ̄ → {̄�ðι

W
!volḡÞ¼þm̄ᾱWᾱvolγ̄:

ð2:15Þ
If we define ν⊥ ≔ −nανα and m⊥ ≔ −nα|αᾱmᾱ, the last
equations follows easily from

να¼ ν⊥nαþm⊥{αaμa |αᾱm
ᾱ¼m⊥nαþν⊥{αaμa: ð2:16Þ

Remark 1. If we use the Stokes’ theorem from ∂LM to
∂ð∂LMÞ ¼ ∂Σi ∪ ∂Σf, a minus sign appears.

III. GEOMETRIC STRUCTURES IN CPS

As in the previous section, we take M, which admits a
foliation, a connected and oriented n-manifold. The values
of the fields of F over ∂LM may or may not be fixed.
Although we will not consider it in the following, these
techniques can be applied to “nice” constrained systems
(submanifolds of the infinite jet bundle J∞E, see
Appendix A and the example in page 40).

A. Lagrangians

Definition 1. We define a pair of Lagrangians as an
element of

LagðMÞ ≔ ðn;0Þ
loc ððM; ∂MÞ × F Þ

From sections II C and II E we know that

½ðL1; l̄1Þ� ¼ ½ðL2; l̄2Þ�≡ ðL2; l̄2Þ ¼ ðL1; l̄1Þ þ dðY; ȳÞ≡ L2 ¼ L1 þ dY

l̄2 ¼ l̄1 þ |�Y − dȳ
ð3:1Þ

B. Action

Definition 2. A local action is a map S∶F → R of the
form

SðϕÞ ¼
Z
ðM;∂MÞ

ðL; l̄ÞðϕÞ ð3:2Þ

for some local Lagrangians ðL; l̄Þ ∈ LagðMÞ.
The previous integral only makes sense if we project the

Lagrangians overM as explained in Sec. II E. Nonetheless,
as it is always clear from the context, sometimes we will
omit the field and write simply expressions like

S ¼
Z
ðM;∂MÞ

ðL; l̄Þ:
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Remark 2. The previous definition can be tweaked to
allow more general actions:

S ¼
Z
ðM;∂LMÞ

ðL; l̄Þ −
Z
∂ðM;∂LMÞ

ðΛ; λ̄Þ ð3:3Þ

with ðL;l̄Þ∈ΩnððM;∂LMÞ×F Þ and ðΛ;λ̄Þ∈Ωn−1ð∂ðM;
∂LMÞ×F Þ. This action is computed by integrating L over
the bulk M, l̄ over the lateral boundary ∂LM, Λ over the

lids Σi ∪ Σf, and λ̄ over ∂Σi ∪ ∂Σf (“corner” terms). These
actions appear for instance in [46–48].
In section II C we mentioned that ðM;NÞ behaves like a

manifold with boundary ∂ðM;NÞ and that, in particular,
ðM; ∂MÞ behaves as a manifold with no boundary.
We can then repeat the argument and consider the pair of
pairs ððM; ∂LMÞ; ∂ðM; ∂LMÞÞ, the relative inclusion
|∶∂ðM; ∂LMÞ ↪ ðM; ∂LMÞ and the analogous relative
boundary, exterior derivative and integral

∂ððM; ∂LMÞ; ∂ðM; ∂LMÞÞ ≔ ð∂ðM; ∂LMÞn∂ðM; ∂LMÞ; ∂2ðM; ∂LMÞÞ ¼ ∅

dððα; β̄Þ; ðγ; δ̄ÞÞ ≔ ðdðα; β̄Þ; |�ðα; β̄Þ − dðγ; δ̄ÞÞZ
ððM;∂LMÞ;∂ðM;∂LMÞÞ

ððα; β̄Þ; ðγ; δ̄ÞÞ ≔
Z
ðM;∂LMÞ

ðα; β̄Þ −
Z
∂ðM;∂LMÞ

ðγ; δ̄Þ:

As this new “manifold” has no boundary, it behaves like a
true manifold without boundary. In fact, theorem 1 holds and
the action (3.3) can be rewritten as

S ¼
Z
ððM;∂LMÞ;∂ðM;∂LMÞÞ

ððL; l̄Þ; ðΛ; λ̄ÞÞ ð3:4Þ

which is formally equivalent to (3.2) which, in turn, is
equivalent to an integral over a manifold without boundary.
We have decided to work with (3.2) to show explicitly the
equivalence with an action over a space with no boundary.
The interested reader will have little problem adapting our
computations to the action (3.4). Moreover, both actions are
equivalent if we consider “Dirichlet” conditions over
∂ðM; ∂LMÞ, i.e., fixing the initial and final values of ϕ ∈ F .
Definition 3. Two pairs of Lagrangians ðLi; l̄iÞ ∈

LagðMÞ are
R
-equivalent, and denoted ðL1; l̄1Þ ðL2; l̄2Þ,

if for every ϕ ∈ F, we have

Z
ðM;∂MÞ

ðL1; l̄1ÞðϕÞ ¼
Z
ðM;∂MÞ

ðL2; l̄2ÞðϕÞ

This is an equivalence relation and each class is associated
with an action S that we denote S ¼ ⟦ðL; l̄Þ⟧. We have two
equivalence relations, (3.1) and (3.8), which in general are
different. Nonetheless, they are equal for contractible
bundles, i.e., fibered bundles with contractible fibers (M
is not necessarily contractible). Within this category we
find vector bundles, affine bundles (e.g., Yang-Mills
theories), some principle bundles (e.g., Dirac monopole
or BPST), and some quotient bundles (e.g., Riemannian
metrics or, up to a topological obstruction given by the
Euler class, the bundle of Lorentzian metrics).
Lemma 1.
(i) If ½ðL1; l̄1Þ� ¼ ½ðL2; l̄2Þ�, then ðL1; l̄1Þ ðL2; l̄2Þ.
(ii) If E → M is a contractible bundle and

ðL1;l̄1Þ ðL2;l̄2Þ, then ½ðL1; l̄1Þ� ¼ ½ðL2; l̄2Þ�.

Proof. The first point is clear from the relative Stokes’
theorem (2.1). The second one is proven in (B.3). ▪
The condition that E → M is a contractible bundle

cannot be removed. To see this, we can consider trivial
Lagrangians, also known as null or closed Lagrangians, in
spaces without boundary. They are nonexact Lagrangians
whose Euler-Lagrange equations are zero. They are char-
acterized by HnðEÞ (see theorem 6). Indeed, in [ [14],
page 207] there are examples of null Lagrangians which are
nonexact Lagrangians L over noncontractible bundles
E → M such that, for every ϕ ∈ F, LðϕÞ ¼ dYϕ for some
Yϕ ∈ Ωn−1ðMÞ. Applying Stokes’ theorem we obtain that
S ¼ ⟦L⟧ ¼ 0 but L ≠ dY because the potential Yϕ is
nonlocal in ϕ i.e., L 0 but ½L� ≠ 0.
The same happens always if M has boundary because

Hn
cðMÞ ¼ 0 [49]. Thus LðϕÞ is always exact but in general,

L is not. As in the previous paragraph, we could evaluate
and use Stokes’ theorem to obtain a boundary integral. Of
course, we still get Euler-Lagrange equations because the
boundary integrand is nonlocal (depends on the whole field
ϕ) and the usual computations of variations are not valid.
Summarizing, for contractible bundles the action S ≔

⟦ðL; l̄Þ⟧ is the initial object from which everything derives
and nothing depends on the choice of representative
Lagrangians. Otherwise, we have to be careful because
one might be using ill-behaved representatives like the ones
mentioned in the previous paragraph. Of course, one can try
to always work with nice representatives, but it is not
straightforward because the Lagrangians L are not the
problem, their potentials Yϕ are. For noncontractible
bundles, it is better to just consider σ ≔ ½ðL; l̄Þ� as the
initial object instead of S and proceed analogously.
Remark 3. From now on, the action S ≔ ⟦ðL; l̄Þ⟧ over

a contractible bundle E → M is our starting point. As
mentioned before, everything holds if one considers a
general bundle E and replaces S by σ ≔ ½ðL; l̄Þ�.
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C. Space of solutions

We define the space of solutions of the action S as the set
of its critical points:

SolðSÞ ¼ fϕ ∈ F=dϕS¼L0g

where¼L means that the equality is up to integral terms over
the lids ∂ðM; ∂LMÞ. Those terms vanish once we fix initial
and final values on the fields. This space will depend on the
functional form of S as well as on the definition of F . We
denote the inclusion S∶SolðSÞ ↪ F .

D. Variations

1. Variation of the Lagrangians

Applying (A12) to the Lagrangian L ∈ ðn;0ÞðM × F Þ,
we see that dL is “decomposable” i.e., there exist unique
EI ∈ ðn;0ÞðM × F Þ and some ΘL ∈ ðn−1;1ÞðM × F Þ, lin-
ear in dϕI and their derivatives, such that

dL ¼ EI ∧ dϕI þ dΘL: ð3:5Þ

In some mathematical references the first term appears as
E ≔ EI ∧ dϕI ∈ ðn;1ÞðM × F Þ, which is a source form
[27], and in some physical references is denoted

EI ∧ dϕI ¼ δL
δϕI δϕ

Idxn:

Wewill stick with the proposed notation EI ∧ dϕI . Now we
want to obtain a decomposition similar to (3.5) but over the
boundary. The same theorem guarantees that dl̄ is decom-
posable but, notice that upon integration of the previous
expression, an additional term |�ΘL appears on theboundary.
We impose the condition that |�ΘL is also decomposable
over the “lateral boundary” ∂LM (this is usually achieved by
including some boundary conditions in the definition of F ,
aswewill see in the examples of Sec. V).With this additional
hypothesis and Eq. (A12), we get that

dl̄ ¼ b̄I ∧ dϕI þ |�ΘL − dθ̄ðL;l̄Þ ð3:6Þ

over ∂LM for some unique b̄I ∈ ðn−1;0Þð∂LM × F Þ and
some θ̄ðL;l̄Þ ∈ ðn−2;1Þð∂LM × F Þ. Notice that (3.6) does not
hold in general over Σi ∪ Σf ⊂ ∂M. However, restricting to
ðM; ∂LMÞ ⊂ ðM; ∂MÞ we have

dðL; l̄Þ ¼ ðEI; b̄IÞ ∧ dϕI þ dðΘL; θ̄ðL;l̄ÞÞ ð3:7Þ

where the wedge here is acting component-wise. Notice
that, in fact, this equality only makes sense over
ðn;1ÞððM; ∂LMÞ × F Þ, as b̄I and θ̄ are only defined over
the lateral boundary ∂LM.

2. Variation of the action

Now, from equations (3.2), (2.2), and (3.7), we can
compute the variation of S ¼ ⟦ðL; l̄Þ⟧ to obtain

dS ¼
Z
ðM;∂LMÞ

ðEI; b̄IÞ ∧ dϕI

þ
Z
∂ðM;∂LMÞ

ð|�ðΘL; θ̄ðL;l̄ÞÞ − ðdl̄; 0ÞÞ ð3:8Þ

where we have used Eq. (2.1) and

Z
ðM;∂MÞ

ðα; β̄Þ ¼
Z
ðM;∂LMÞ

ðα; β̄Þ −
Z
∂ðM;∂LMÞ

ðβ̄; 0Þ:

In order to compute the critical points, we recall that

dϕS¼L0 is equivalent to requiring dϕSðVϕÞ ¼ 0 for every
Vϕ ∈ TϕF vanishing in a neighborhood of the lids. Notice
that the last integral of (3.8) vanishes because it is linear in
Vϕ and a finite number of its derivatives, leading to

0 ¼ dϕSðVϕÞ ¼
Z
ðM;∂LMÞ

ðEIðϕÞV I
ϕ; b̄IðϕÞV̄ I

ϕÞ

¼
Z
M
EIðϕÞV I

ϕ −
Z
∂LM

b̄IðϕÞV̄ I
ϕ:

The first integral vanishes if EIðϕÞ ¼ 0 as, in general, we
assume that Vϕ is arbitrary away from the lids (for con-
strained systems one has to be more careful but usually one
can easily deal with those particular cases). The second
integral is a bit trickier precisely because it is more common
to have some constraints, i.e., boundary conditions. If V̄ I

ϕ is

arbitrary, then b̄IðϕÞ ¼ 0. This is the case, for instance, of
Neumann (natural) boundary conditions. We can also have
V̄ I
ϕ ¼ 0 if F is defined such that ϕI is fixed at the boundary,

i.e., imposing Dirichlet boundary conditions (see for
instance the first two examples of Sec. V for a careful
discussion). In that case, b̄I is arbitrary. Nonetheless, for
convenience, we usually define b̄I ≔ 0 whenever V̄ I

ϕ ¼ 0.
Of course, we can have a point-wise mixture of both cases
or more complicated cases (that have to be studied
individually). With this convention, the space of solutions
is simply

SolðSÞ ¼ fϕ ∈ F=ðEI; b̄IÞðϕÞ ¼ 0g↪SF

This space does not depend on the chosen Lagrangians
ðL; l̄Þ because it is defined as the set of critical points of S
(up to lid-terms). This, together with (3.7), implies in
particular the following result.
Lemma 2. If ðL; l̄Þ ð0;0Þ, then dðL; l̄Þ¼ dðΘL; θ̄ðL;l̄ÞÞ

for some ðΘL; θ̄ðL;l̄ÞÞ ∈ ðn−1;1ÞððM; ∂LMÞ × F Þ.
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A last comment is in order now: although physically the
important objects are the equations of motion with their
boundary conditions, they are not here. The fundamental
object is the action as it is the tool used to build the rest of
the geometric structures. We can find different actions with
the same space of solutions that lead to different symplectic
geometries over the CPS. They all define the same physics
(at least classically) but some formulations are better suited
for our purposes than others. Avery simple example is if we
take L2 ¼ λL1 for some λ ∈ Rnf0; 1g and ∂M ¼ ∅. The
actions and the equations are different, S2 ¼ λS1 and
Eð2Þ ¼ λEð1Þ, although they define the same space of
solutions. Another example is given by trivial
Lagrangians as we mentioned at the end of Sec. III B. In
Sec. V C 2 we will see a more elaborate example.

Let us restate lemma 1 in a more useful way (as we
explained in remark 3, we are only considering contractible
bundles):
Lemma 3. ðL1; l̄1Þ ðL2; l̄2Þ if and only if there exists

ðY; ȳÞ ∈ ðn−1;0ÞððM; ∂MÞ × F Þ with

ðL2; l̄2Þ ¼ ðL1; l̄1Þ þ dðY; ȳÞ≡ L2 ¼ L1 þ dY

l̄2 ¼ l̄1 þ |�Y − dȳ

ð3:9Þ

Notice in particular that, given ðL; l̄Þ ∈ LagðMÞ, if there
exists Y ∈ ðn−1;0ÞðM × F Þ such that l̄þ |�Y is exact,
then ðL; l̄Þ ðLþ dY; 0Þ and we can remove the boundary
term of the action S.

Lemma 4. If ðL1; l̄1Þ ðL2; l̄2Þ, then

ðΘL2 ; θ̄ðL2;l̄2ÞÞ ¼ ðΘL1 ; θ̄ðL1;l̄1ÞÞ þ dðZ; z̄Þ þ dðY; ȳÞ≡ ΘL2 ¼ ΘL1 þ dyþ dY

θ̄ðL2;l̄2Þ ¼ θ̄ðL1;l̄1Þ þ |�y − dz̄þ dȳ

for some ðZ; z̄Þ ∈ ðn−2;1ÞððM; ∂LMÞ × F Þ, ðY; ȳÞ ∈ ðn−1;0ÞððM; ∂LMÞ × F Þ. Moreover, if |�ΘL1 is decomposable, then
so is |�ΘL2 .
Proof. From lemma 3 we know that ðL2; l̄2Þ ¼ ðL1; l̄1Þ þ dðY; ȳÞ for some ðY; ȳÞ ∈ ðn−1;0ÞððM; ∂MÞ × F Þ. Now,

from lemma 2 we have

dðΘL2 − ΘL1 ; θ̄ðL2;l̄2Þ − θ̄ðL1;l̄1ÞÞ ¼ dðL2 − L1; l̄2 − l̄1Þ ¼ d dðY; ȳÞ ¼ðII.12ÞddðY; ȳÞ:

Applying the horizontal exactness theorem 1, we see that there exists ðZ; z̄Þ ∈ ðn−2;1ÞððM; ∂LÞ × F Þ such that

ðΘL2 − ΘL1 ; θ̄ðL2;l̄2Þ − θ̄ðL1;l̄1ÞÞ − dðY; ȳÞ ¼ dðZ; z̄Þ:

Finally, assume that |�ΘL1 is decomposable. As d|�Y is also decomposable according to equation (A12), we see that |�ΘL2

is decomposable. ▪
Notice in particular that even if we consider ðL2; l̄2Þ ¼ ðL1; l̄1Þ in the previous lemma, we obtain that ðΘL1 ; θ̄ðL1;l̄1ÞÞ and

ðΘL2 ; θ̄ðL2;l̄2ÞÞ are only equal up to a d-exact term. However, this is good enough as this implies that they are equal on
cohomology, which is what we need for the following.

E. Symplectic structure

Definition 4. Given a local action S ¼ ⟦ðL; l̄Þ⟧ and a Cauchy embedding { ¼ ð{; {̄Þ∶ðΣ; ∂ΣÞ ↪ ðM; ∂LMÞ, we define its
associated (pre)symplectic form

{
S ≔

Z
ðΣ;∂ΣÞ

d{�ðΘL; θ̄ðL;l̄ÞÞ ∈ 2ðF Þ

As d2 ¼ 0,{
S is clearly closed but it might be degenerate. It will be useful in the following to define the symplectic currents

MARGALEF-BENTABOL and VILLASEÑOR PHYS. REV. D 103, 025011 (2021)

025011-10



ðΩΘ; ω̄ðΘ;θ̄ÞÞ ≔ dðΘL; θ̄ðL;l̄ÞÞ ∈ ðn−1;2ÞððM; ∂LMÞ × F Þ ð3:10Þ

We write ΩΘ instead of ΩðL;ΘLÞ as it is clear that ω depends on L through Θ (analogously for ω̄).
Proposition 1. {

S does not depend on the chosen Lagrangians representatives.
Proof. Consider ðL1; l̄1Þ ðL2; l̄2Þ. Applying lemma 4 and Eqs. (2.1) and (2.5), we have

ð{
SÞ2 ¼

Z
ðΣ;∂ΣÞ

d{�ðΘL2 ; θ̄ðL2;l̄2ÞÞ ¼
Z
ðΣ;∂ΣÞ

{�fdðΘL1 ; θ̄ðL1;l̄1ÞÞ þ ddðZ; z̄Þ þ d2ðY; ȳÞg ¼ ð{
SÞ1:

▪
Proposition 2. The (pre)symplectic structure S ≔ �S

{
S on SolðSÞ is independent of the embedding {∶Σ ↪ M.

Proof. Consider two Cauchy surfaces Σ1 ≔ {1ðΣÞ and Σ2 ≔ {2ðΣÞ, Σ1 in the future of Σ2, that do not intersect (if they do,
we consider a third one not intersecting any of them and repeat the argument twice). Denote by N the manifold bounded by
both Cauchy surfaces. Its boundary is ∂N ¼ Σ1 ∪ ∂LN ∪ Σ2. We denote i∶∂ðN; ∂LNÞ ↪ ðN; ∂LNÞ. The exterior derivate
of the symplectic currents (3.10) is

dðΩΘ; ω̄ðΘ;θ̄ÞÞ ¼ðII.12Þd dðΘL; θ̄ðL;l̄ÞÞ ¼ðIII.13Þ
dðdðL; l̄Þ − ðEI; b̄IÞ ∧ dϕIÞ ¼ðII.5Þ

ðII.8Þ
−dðEI; b̄IÞ⩕dϕI:

Then, we have

−
Z
ðN;∂LNÞ

dðEI; b̄IÞ⩕dϕI ¼
Z
ðN;∂LNÞ

dðΩΘ; ω̄ðΘ;θ̄ÞÞ¼II.1
Z
∂ðN;∂LNÞ

i�ðΩΘ; ω̄ðΘ;θ̄ÞÞ ¼ {1
S − {2

S :

In the last equality we have used that each connected component of ∂ðN; ∂LNÞ ¼ ðΣ1; ∂Σ1Þ ∪ ðΣ2; ∂Σ2Þ has opposite
orientation. Clearly �SdðEI; b̄IÞ ¼ d�SðEI; b̄IÞ ¼ 0, so indeed �S

{1
S ¼ �S

{2
S . ▪

F. Symmetries

1. Definition and main properties

Definition 5. We say that a vector field X ∈ XðF Þ is a
symmetry of the action S if XS¼L0. We denote SymðSÞ
the set of vector fields which are symmetries of S.
A symmetry vector field does not change the action.

Let us prove that, as one might expect, it leaves invariant
SolðSÞ. Notice that the converse is not true in general:
there are symmetries of SolðSÞ that do not give rise to

symmetries of S (e.g., the scaling transformation
[[50], p. 255]).
Proposition 3. If S is a local action and X ∈ SymðSÞ,

then Xϕ ∈ TϕSolðSÞ for every ϕ ∈ SolðSÞ. In particular

X̄ ≔ XjSolðSÞ ∈ XðSolðSÞÞ ð3:11Þ

Proof. We have that SolðSÞ ¼ fðEI; b̄IÞ ¼ 0g. So we
have to prove that those conditions are preserved, i.e.,
Xϕ

ðEI; b̄IÞ ¼ 0 for every ϕ ∈ SolðSÞ. Taking the Lie
derivative of (3.8) with respect to some vector field
Y ∈ XðF Þ, we obtain

YdS ¼
Z
ðM;∂LMÞ

ðY ðEI; b̄IÞ ∧ dϕI þ ðEI; b̄IÞ ∧ YdϕIÞ þ
Z
∂ðM;∂LMÞ

Y ð|�ðΘL; θ̄ðL;l̄ÞÞ − ðdl̄; 0ÞÞ:

The previous expression is an element of 1ðF Þ. Taking as
base point any ϕ ∈ SolðSÞ, so ðEI; b̄IÞðϕÞ ¼ 0, and con-

sidering Y ¼ X ∈ SymðSÞ, so XS¼L0, leads to

0¼L ðdXSÞϕ ¼ðII.10ÞðXdSÞϕ¼L
Z
ðM;∂LMÞ

XðEI;b̄IÞðϕÞ∧dϕI:

As it is usual in variational calculus, we evaluate this 1-
form of F at every vector Z that, as a map overM, vanishes
at a neighborhood of the lids. As this set is dense, we obtain
that XðEI; b̄IÞ ¼ 0 (and, in particular, the last integral
vanishes). ▪
Our goal now is to determine if X ∈ SymðSÞ restricted

to the space of solutions X̄ ≔ XjSolðSÞ ∈ XðSolðSÞÞ is a
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Hamiltonian vector field, i.e., if there exists some function

HS
X̄∶SolðSÞR

!
such that

X̄S ¼ dHS
X̄: ð3:12Þ

It is unlikely that this holds in general, but we can obtain an
interesting subset of symmetries which are also
Hamiltonian.

2. d-symmetries

If X ∈ SymðSÞ, then the inverse of the relative Stokes’
theorem implies that XðL; l̄ÞðϕÞ is d-exact over ðM; ∂MÞ
for every ϕ ∈ F. However, in Sec. III B we saw that this
does not imply that XðL; l̄Þ is d-exact over ðM; ∂MÞ × F.
Moreover, here we do not have the analog of lemma 2, so in
general we cannot expect to obtain a local d-potential for
XðL; l̄Þ. This motivates the following definition.
Definition 6.
(i) X ∈ XðF Þ is a d-symmetry (or infinitesimal varia-

tional symmetry) of ðL; l̄Þ ∈ LagðMÞ if

XðL; l̄Þ ¼ dðSLX; s̄ðL;l̄ÞX Þ ð3:13Þ

for some ðSLX; s̄ðL;l̄ÞX Þ ∈ ðn−1;0ÞððM; ∂MÞ × F Þ.
(ii) X ∈ XðF Þ is a d-symmetry of S ¼ ⟦ðL; l̄Þ⟧ if it is a

d-symmetry of ðL; l̄Þ. We denote SymdðSÞ the set of
vector fields which are d-exact symmetries of S.

The last definition does not depend on the representative
if we consider an additional condition:
Remark 4. From now on, we assume Hn−1ðM;

∂MÞ ¼ 0. Later in Remark 5 we will comment on the
consequences of having Hn−1ðM; ∂MÞ ≠ 0.
Lemma 5. If X ∈ XðF Þ is a d-symmetry of ðL1; l̄1Þ, it

is also a d-symmetry of ðL2; l̄2Þ ðL1; l̄1Þ with

ðSL2

X ; s̄ðL2;l̄2Þ
X Þ ¼ ðSL1

X ; s̄ðL1;l̄1Þ
X Þ þ XðY; ȳÞ þ dðA; āÞ

ð3:14Þ

for some ðA; āÞ ∈ ðn−2;0ÞððM; ∂MÞ × F Þ and ðY; ȳÞ ∈
ðn−1;0ÞððM; ∂MÞ × F Þ.

Proof. From Eqs. (3.9) and (3.13) we obtain

XðL2; l̄2Þ ¼ XðL1; l̄1Þ þ XdðY; ȳÞ ¼ðII.12ÞdððSL1

X ; s̄ðL1;l̄1Þ
X Þ þ XðY; ȳÞÞ:

The result follows from Hn−1ðM; ∂MÞ ¼ 0. Notice that we cannot apply the horizontal exactness theorem 1 because both
ðS; s̄Þð0Þ and ðY; ȳÞð0Þ can be nonzero. ▪
Proposition 4. If S is a local action, then SymdðSÞ ⊂ SymðSÞ.
Proof. Applying the relative Stokes’ theorem (2.1) to (3.13) leads to Definition 5. ▪

3. Currents, charges, and potentials of a d-symmetry

Given X, a d-symmetry of ðL; l̄Þ ∈ LagðMÞ, we define its X-current (or Noether current)

ðJΘX; |̄ðΘ;θ̄ÞX Þ ≔ ðSLX; s̄ðL;l̄ÞX Þ − XðΘL; θ̄ðL;l̄ÞÞ ∈ ðn−1;0ÞððM; ∂LMÞ × F Þ ð3:15Þ

Lemma 6. Let X ∈ SymdðSÞ and ðL1; l̄1Þ ðL2; l̄2Þ two representatives of S, then

ðJΘ2

X ; |̄ðΘ2;θ̄2Þ
X Þ ¼ ðJΘ1

X ; |̄ðΘ1;θ̄1Þ
X Þ þ dððA; āÞ − XðZ; z̄ÞÞ ð3:16Þ

for some ðA; āÞ ∈ ðn−2;0ÞððM; ∂LMÞ × F Þ and ðZ; z̄Þ ∈ ðn−2;1ÞððM; ∂LMÞ × F Þ, so they are equal on cohomology.
Proof. From lemmas 4 and 5, we have

ðJΘ2

X ; |̄ðΘ2;θ̄2Þ
X Þ ¼ ðSL1

X ; s̄ðL1;l̄1Þ
X Þ þ XðY; ȳÞ þ dðA; āÞ − XððΘL1 ; θ̄ðL1;l̄1ÞÞ þ dðZ; z̄Þ þ dðY; ȳÞÞ ¼ðIII.33Þ

ðII.7Þ

¼ ðJΘ1

X ; |̄ðΘ1;θ̄1Þ
X Þ þ dðA − XZ; ā − Xz̄Þ:

▪
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Definition 7. Let S ¼ ⟦ðL; l̄Þ⟧ be a local action and
{ ¼ ð{; {̄Þ∶ðΣ; ∂ΣÞ ↪ ðM; ∂LMÞ some Cauchy embedding.
For every X ∈ SymdðSÞ, we define the X-charge (or
Noether charge)

HS;{
X ≔

Z
ðΣ;∂ΣÞ

{�ðJΘX; |̄ðΘ;θ̄ÞX Þ ∈ 0ðF Þ

Lemma 7. HS;{
X is R-linear in X and it only depends on

S, X, and {∶Σ ↪ M.
Proof. From definition (3.13), if we use that

Hn−1ðM; ∂MÞ ¼ 0 and the fact that X is R-linear in X,
we obtain

ðSLX þ λSLY − SLXþλY ; s̄
ðL;l̄Þ
X þ λs̄ðL;l̄ÞY − s̄ðL;l̄ÞXþλY Þ ¼ dðB; b̄Þ

for some fixed λ ∈ R. From that and the linearity of X in
X, we can easily prove the linearity of HS;{

X from its
definition and the relative Stokes’ theorem (2.1).
The independence of ðL; l̄Þ is a direct consequence of

lemma 6 and the relative Stokes’ theorem. ▪
Proposition 5. HS

X̄ ≔ �SH
S;{
X only depends on S and

on X̄ ≔ XjSolðSÞ.

Proof. On one hand we have

dðJΘX; |̄ðΘ;θ̄ÞX Þ ¼ðIII.28Þ
ðIII.13Þ

XðL; l̄Þ − XðdðL; l̄Þ − ðEI; b̄IÞ ∧ dϕIÞ ¼ðII.7ÞðEI; b̄IÞXϕ
I: ð3:17Þ

We can then mimic the argument of the proof of Proposition 2 to show that �SH
S;{
X does not depend on the embedding.

Consider now X1;X2 ∈ SymdðSÞ with X̄1 ¼ X̄2. Then

d�SðSLX1
− SLX2

; s̄ðL;l̄ÞX1
− s̄ðL;l̄ÞX2

Þ ¼ðIII.28Þ
�SðX1

ðL; l̄Þ − X2
ðL; l̄ÞÞ ¼ðII.11Þ

ðII.7Þ
ðX̄1−X̄2Þ

�
SðL; l̄Þ ¼ 0

where we have used ðSÞ�X̄k ¼ Xk. Thus, from Hn−1ðM; ∂MÞ ¼ 0,

�SðSLX2
; s̄ðL;l̄ÞX2

Þ ¼ �SðSLX1
; s̄ðL;l̄ÞX1

Þ þ dðC; c̄Þ:

Finally

HS
X̄2

¼ �SH
S;{
X2

¼ðII.11Þ
Z
ðΣ;∂ΣÞ

{�ð�SðSLX2
; s̄ðL;l̄ÞX2

Þ − X̄2
ðΘL; θ̄ðL;l̄ÞÞÞ

¼
Z
ðΣ;∂ΣÞ

{�ð�SðSLX1
; s̄ðL;l̄ÞX1

Þ þ dðC; c̄Þ − X̄1
ðΘL; θ̄ðL;l̄ÞÞÞ ¼ðII.1Þ

ðII.11Þ
�SH

{
X2

¼ HX̄2
:

▪
Definition 8. Given X ∈ SymdðSÞ, we say that ðQΘ

X; q̄
ðΘ;θ̄Þ
X Þ ∈ ðn−2;0ÞððM; ∂LMÞ × SolðSÞÞ is the X-potential (or

Noether potential) if

dðQΘ
X; q̄

ðΘ;θ̄Þ
X Þ ¼ �SðJΘX; |̄ðΘ;θ̄ÞX Þ

From (3.16), it follows that

ðQΘ2

X ; q̄ðΘ2;θ̄2Þ
X Þ ¼ ðQΘ1

X ; q̄ðΘ1;θ̄1Þ
X Þ þ ðA; āÞ − XðZ; z̄Þ þ ðB; b̄Þ ð3:18Þ

for some closed ðB; b̄Þ ∈ Ωn−2ðM; ∂MÞ, which might not be exact if Hn−2ðM; ∂MÞ ≠ 0. From the relative Stokes’ theorem
(2.1), the X-charge is zero and so, as we will see in Sec. III G below, X̄ is a gauge vector field. Sometimes we only have a
bulk potential QΘ

X. In that case, the X-charge can be written as a boundary integral.
Remark 5. If Hn−1ðM; ∂MÞ ≠ 0, then we have to replace dðA; āÞ in (3.14) and (3.16) by a closed element ðT; t̄Þ that is

not exact in general. In particular we have

Z
ðΣ;∂ΣÞ

{�ðJΘ2

X ; |̄ðΘ2;θ̄2Þ
X Þ ¼

Z
ðΣ;∂ΣÞ

{�ðJΘ1

X ; |̄ðΘ1;θ̄1Þ
X Þ þ

Z
ðΣ;∂ΣÞ

{�ðT; t̄Þ:
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The last integral is purely topological as it is independent of
the fields. This proves the following: if Hn−1ðM; ∂MÞ ≠ 0,
the X-charges are only defined up to topological terms.
Moreover, there is one topological charge for every nonzero
element ½ðT; t̄Þ� in Hn−1ðM; ∂MÞ. In particular, the vector
field X ¼ 0 has nonzero charges so HS;{

X is not linear in X.
This is unpleasant but not a big problem, as we are actually
interested in the d-exterior derivative dHS;{

X which is linear
in any case.

4. Hamilton equation

We have all the tools to prove, as we wanted, that the
d-exact symmetries restricted to the space of solutions are
Hamiltonian vector fields.
Theorem 2. If X ∈ SymdðSÞ and we denote X̄ ≔

XjSolðSÞ ∈ XðSolðSÞÞ its restriction to the space of solu-
tions, then

X̄S ¼ dHS
X̄

Proof. Let {∶ðΣ; ∂ΣÞ ↪ ðM; ∂LMÞ be a Cauchy embedding. Then, we have

X̄S − dHS
X̄ ¼ X̄

�
S

{
S − d�SH

S;{
X ¼ðII.11Þ�SðX{

S − dHS;{
X Þ ¼ðIII.19Þ

ðIII.36Þ

¼ �S

�Z
ðΣ;∂ΣÞ

Xd{�ðΘL; θ̄ðL;l̄ÞÞ −
Z
ðΣ;∂ΣÞ

d{�ðJΘX; |̄ðΘ;θ̄ÞX Þ
�

¼ðII.7Þ
ðIII.33Þ

¼ �S

�
X

Z
ðΣ;∂ΣÞ

{�ðΘL; θ̄ðL;l̄ÞÞ − d
Z
ðΣ;∂ΣÞ

{�ðSLX; s̄ðL;l̄ÞX Þ
�
:

To prove that the last line is zero for every X ∈ SymdðSÞ and every embedding {, we follow the idea of the proof of
proposition 3. However, instead ofM, we consider the manifoldN bounded by Σi and {ðΣÞ. Notice that the integrals over the
bottom lid Σi are zero following the same idea as in proposition 3 of evaluating this expression over all vectors vanishing at
a neighborhood of the lid. Applying the relative Stokes theorem (2.1), we can rewrite the last line of the previous
computation as

�S

�
X

Z
ðN;∂LNÞ

dðΘL; θ̄ðL;l̄ÞÞ − d
Z
ðN;∂LNÞ

dðSLX; s̄ðL;l̄ÞX Þ
�

¼ðIII.13Þ
ðIII.28Þ

¼ �S

�
X

Z
ðN;∂LNÞ

ðdðL; l̄Þ − ðEI; b̄IÞ ∧ dϕIÞ − d
Z
ðN;∂LNÞ

XðL; l̄Þ
�

¼ðII.10Þ

¼ −�S

Z
ðN;∂LNÞ

ðXðEI; b̄IÞ ∧ dϕI þ ðEI; b̄IÞ ∧ dXϕ
IÞ:

This expression is zero over the space of solutions from proposition 3. ▪

G. Gauge vector fields

A symmetry X ∈ SymdðSÞ has a flow over F which, by
definition, does not change the value of S. It moves points
(fields) around and, if we restrict the flow to the critical
surface SolðSÞ, we know from proposition 3 that it moves
critical points (solutions) to other critical points (solutions).
This latter movement is governed by the X-charge HS

X̄,
which is the Hamiltonian of X̄ over ðSolðSÞ;SÞ.
Definition 9. We say that a nonzero X̄ ∈ XðSolðSÞÞ is a

gauge vector field if

X̄S ¼ 0

We denote GaugeðSÞ ⊂ XðSolðSÞÞ the set of all gauge
vector fields.
A gauge vector field moves along the degenerate

directions of the presymplectic form S. Of course, if
S is truly symplectic, there is no degenerate direction and,
therefore, no gauge vector field.
SymðSÞ ⊂ XðF Þ while GaugeðSÞ ⊂ XðSolðSÞÞ. A

gauge vector field is not a symmetry although it might
be extendable to one. Conversely, X ∈ SymdðSÞ induces
the gauge vector field X̄ ≔ XjSolðSÞ if dHS

X̄ ¼ 0.

H. From M-vector fields to F -vector fields

The purpose of this section is to define a canonical vector
field Xξ ∈ XðF Þ associated with ξ ∈ XðMÞ. We assume
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that ξ is tangent to ∂LM but not necessarily to Σi and Σf

(we can always extend the interval ½ti; tf�). We cannot stress
enough the importance of the different base manifolds, M
and F , of both vector fields. The key feature that we will
exploit is that a field ϕ can be interpreted in two ways:

(i) As a tensor field on M. That is, a section ϕ∶M → E
of some bundle Eπ⃗M such that ϕp ≔ ϕðpÞ ∈
Ep ≔ π−1ðEÞ. In particular, we can take its Lie

derivative ðLξϕÞp ¼ ∂τj0ðφξ
τÞ�ϕp, where fφξ

τgτ ⊂
DiffðMÞ is the flow of ξ. If F is reasonable enough
(in particular, the Lie derivative has to be well

defined as it would happen if E is what is called
natural bundle [51]), we will have Lξϕ ∈ F .

(ii) As a point of F . In particular, a vector fieldXξ∶F →
TF over F is a section of TF . Thus, ðXξÞϕ ≔
XξðϕÞ ∈ TϕF ≅ F . The last isomorphism comes
from the fact that F is linear. The nonlinear case is
not as straightforward but in concrete examples, one
can usually perform analogous constructions (see
example V F where F ¼ Ω1ðMÞ × DiffðMÞ).

With those remarks, we can define

ðXI
ξÞϕ ¼ Lξϕ

I ð3:19Þ

Lemma 8. Given ξ ∈ XðMÞ, we have that

Xξ
ϕI ¼ Lξϕ

I ð3:20Þ

Proof. We recall from Sec. II D that EvalIðϕÞ ¼ ϕI ∈ F I. We consider now a path fϕI
τgτ ⊂ F I such that ϕI

0 ¼ ϕI and
∂τj0ϕI

τ ¼ ðXI
ξÞϕ ∈ Eϕ.

Xξ
ϕI ¼ðII.7ÞXξ

dϕI ¼ ðXξÞϕdϕEvalI ¼
d
dτ

����
τ¼0

EvalIðϕτÞ ¼
d
dτ

����
τ¼0

ϕI
τ ¼ ðXI

ξÞϕ ¼ðIII.45Þ
Lξϕ

I

▪
It is important to stress the very different nature of both sides of (3.20). On the left-hand side (lhs) we have the Lie

derivative of the evaluation function EvalI in the Xξ ∈ XðF Þ direction (computation over F ), while on the right-hand side
(rhs) we have the Lie derivative of ϕ ∈ F in the ξ ∈ XðMÞ direction (computation over M).
One last comment is in order now. If we consider a vector field V ∈ XðMÞ in a finite-dimensional manifold M, we can

write it in some local coordinates fxigi as

V ¼
Xn
i¼1

dxiðVÞ ∂
∂xi :

Sometimes, it is customary to proceed analogously for vector fields V ∈ XðF Þ in an infinite-dimensional manifold F and
write something like

V ¼
Z
M
dϕIðVÞ δ

δϕI in which case Xξ ¼
Z
M
Lξϕ

δ

δϕI

but we strongly advise against this practice. First, because ϕI does not play the same role as the usual coordinates. Second,
because it is hard to give a rigorous meaning to δ=δϕI. Finally, because there is simply no need. For all purposes, we just
need dϕIðVÞ ¼ V I

ϕ.

1. Currents, charges, and potentials of a space-time vector field

In general Xξ is not a d-symmetry, so we can not define HS;{
Xξ
. However, we can still define a ξ-charge Qξ associated with

ξ ∈ XðMÞ. Only under certain circumstances, to be studied at the end of this section, X̄ξ is the Hamiltonian vector field
generated by Qξ.
Definition 10. Given ξ ∈ XðMÞ and ðL; l̄Þ ∈ LagðMÞ, we define the ξ-current and ξ-charge

ðJΘξ ; |̄ðΘ;θ̄Þξ Þ ≔ ðSLξ ; s̄l̄ξ̄ Þ − Xξ
ðΘL; θ̄ðL;l̄ÞÞ QðL;l̄Þ;{

ξ ≔
Z
ðΣ;∂ΣÞ

{�ðJΘξ ; |̄ðΘ;θ̄Þξ Þ ∈ 0ðF Þ

where ðSLξ ; s̄l̄ξ̄ Þ ≔ ιξðL; l̄Þ.
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We say that ðQΘ
ξ ; q̄

ðΘ;θ̄Þ
ξ Þ ∈ ðn−2;0ÞððM; ∂LMÞ × SolðSÞÞ are ξ-potentials (defined up to a closed term which might not be

exact) if

dðQΘ
ξ ; q̄

ðΘ;θ̄Þ
ξ Þ ¼ �SðJΘξ ; |̄ðΘ;θ̄Þξ Þ

Notice that the ξ-charge is associated with a particular pair of Lagrangians ðL; l̄Þ and not with the action S ¼ ⟦ðL; l̄Þ⟧
like the X-charge HS;{

X . Those charges are candidates to relevant quantities, although its precise physical interpretation
depends on the problem at hand.
Lemma 9. Given ðL2; l̄2Þ ðL1; l̄1Þ, we have

ðJΘ2

ξ ; |̄ðΘ2;θ̄2Þ
ξ Þ ¼ ðJΘ1

ξ ; |̄ðΘ1;θ̄1Þ
ξ Þ þ ðLξ − Xξ

ÞðY; ȳÞ − dðιξðY; ȳÞ þ Xξ
ðZ; z̄ÞÞ

QðL2;l̄2Þ;{
ξ ¼ QðL1;l̄1Þ;{

ξ þ
Z
ðΣ;∂ΣÞ

{�ðLξ − Xξ
ÞðY; ȳÞ

Proof. The result follows from (2.7), (2.12), lemmas 3 and 4, and the relative Stokes’ theorem II.1. ▪
The operator Lξ − Xξ

has a very clear interpretation. Recall first that ϕ ∈ F represents the dynamical fields while
ϕ̃ ∈ F̃ denotes the background objects (see Sec. II D). The latter cannot vary over F , i.e., dϕ̃ ¼ 0, however they play a
nontrivial role in the computations overM. To see how, we duplicate all our geometric structures of F into F̃ . For instance,
we consider d̃, ̃, and so on. We also define ðX̃ξÞϕ̃ ¼ Lξϕ̃ ∈ Tϕ̃F̃ . Notice in particular that we have d̃ϕ ¼ 0

and ̃X̃ξ
ϕ̃ ¼ Lξϕ̃.

Lemma 10.

Lξ ¼ Xξ
þ ̃X̃ξ

ð3:21Þ

Proof. From (3.20), we have Xξ
ϕ ¼ Lξϕ and ̃X̃ξ

ϕ̃ ¼ Lξϕ̃. Now applying (2.7)–(2.9) leads to the result. ▪
This result is what one should expect:  is unaware of ϕ̃ ∈ F̃ while ̃ is unaware of ϕ ∈ F . However, L sees equally F

and F̃ . It is important to mention that in some examples there is no clear distinction between the dynamical and background
objects. For instance, one might consider F as the space of metrics on M with some prescribed scalar curvature R.
Nonetheless, on these cases everything works out if one avoids ̃X̃ξ

(and the space F̃ altogether) and uses Lξ − Xξ
instead.

This operator has also been considered before in [52].

2. Flux law

Proposition 6. Let ðL; l̄Þ ∈ LagðMÞ and {1; {2∶ðΣ; ∂ΣÞ ↪ ðM; ∂LMÞ be two nonintersecting embeddings and N the
manifold bounded by those two Cauchy hypersurfaces. Then, we have the following flux law

�SQ
ðL;l̄Þ;{2
ξ − �SQ

ðL;l̄Þ;{1
ξ ¼

Z
ðN;∂LNÞ

̃X̃ξ
ðL; l̄Þ

Proof. We denote i∶∂ðN; ∂LNÞ ↪ ðN; ∂LNÞ. The exterior derivate of the ξ-current is

dðJΘξ ; |̄ðΘ;θ̄Þξ ÞðϕÞ ¼ðIII.48Þ
d ðιξðL; l̄Þ − Xξ

ðΘL; θ̄ðL;l̄ÞÞÞðϕÞ ¼ðII.7ÞðII.12Þ
ðIII.13ÞðIII.51ÞðIII.47Þ

¼ ̃X̃ξ
ðL; l̄ÞðϕÞ þ ðEI; b̄IÞðϕÞLξϕ

I: ð3:22Þ

Notice, by the way, that if ðL; l̄Þ is ξ-invariant, then (3.22) coincides with (3.17). Integrating (3.22)

Z
ðN;∂LNÞ

ð̃X̃ξ
ðL; l̄ÞðϕÞ þ ðEI; b̄IÞðϕÞLξϕ

IÞ ¼
Z
ðN;∂LNÞ

dðJΘξ ; |̄ðΘ;θ̄Þξ ÞðϕÞ ¼ðII.1Þ

¼
Z
∂ðN;∂LNÞ

i�ðJΘξ ; |̄ðΘ;θ̄Þξ ÞðϕÞ ¼ �SQ
ðL;l̄Þ;{2
ξ − �SQ

ðL;l̄Þ;{1
ξ
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where we assume that {2ðΣÞ lies in the future of {1ðΣÞ and
we have taken into account that each connected component
of ∂ðN; ∂LNÞ ¼ ðΣ1; ∂Σ1Þ ∪ ðΣ2; ∂Σ2Þ has opposite ori-
entation. ▪
We see that a ξ-charge might depend on the Cauchy

surface so, in particular, its pullback to the space of
solutions is not a Hamiltonian function in general.
Lemma 11.

dQðL;l̄Þ;{
ξ ¼ Xξ

{
S þ

Z
ðΣ;∂ΣÞ

{�ð{ξðEI; b̄IÞ ∧ dϕIÞ

þ
Z
ðΣ;∂ΣÞ

{�̃X̃ξ
ðΘL; θ̄ðL;l̄ÞÞ

Proof.

dQðL;l̄Þ;{
ξ ¼ðIII.48Þ

ðII.12Þ

¼
Z
ðΣ;∂ΣÞ

{�ðιξdðL; l̄Þ − d Xξ
ðΘL; θ̄ðL;l̄ÞÞÞ ¼ðIII.13ÞðII.7Þ

ðII.1ÞðIII.20Þ

¼
Z
ðΣ;∂ΣÞ

{�ðιξðEI; b̄IÞ ∧ dϕI þ ðLξ − Xξ
ÞðΘL; θ̄ðL;l̄ÞÞ

þ Xξ
ðΩΘ; ω̄ðΘ;θ̄ÞÞÞ

And the results follows from (3.21) and (3.19). ▪

3. When is Xξ a d-symmetry?

We say that ξ ∈ XðMÞ is a symmetry of ðL; l̄Þ ∈
LagðMÞ, or that ðL; l̄Þ is ξ-invariant, if

LξðL; l̄Þ ¼ Xξ
ðL; l̄Þ≡ ̃X̃ξ

ðL; l̄Þ ¼ 0: ð3:23Þ

Notice that, in this case, ðL2; l̄2Þ ¼ ðL; l̄Þ þ dðY; ȳÞ is
ξ-invariant if and only if ðY; ȳÞ is ξ-invariant.
As a final remark, notice that a sufficient (but not

necessary) condition for L to be ξ-invariant is that
Lξϕ̃ ¼ 0 which, in turn, implies that ξ leaves the back-
ground objects invariant. That happens, for instance, when
we take ξ as a Killing vector field of a fixed metric g ∈ F̃ of
the theory.
Proposition 7. If ðL; l̄Þ ∈ LagðMÞ is ξ-invariant, then

Xξ is a d-symmetry of S ¼ ⟦ðL; l̄Þ⟧.
Proof.

Xξ
ðL; l̄Þ ¼ðIII.55Þ

LξðL; l̄Þ ¼ðII.10ÞdιξðL; l̄Þ

where we recall that ξ is tangent to ∂LM. From definition 6
we see that Xξ is a d-symmetry with

ðSLXξ
; s̄ðL;l̄ÞXξ

Þ ¼ ιξðL; l̄Þ ¼ ðSLξ ; s̄l̄ξ̄ Þ: ð3:24Þ

▪

Remark 6. It is plausible that the converse holds.
Indeed, if Xξ is a d-symmetry, then

dðSLXξ
; s̄ðL;l̄ÞXξ

Þ ¼ Xξ
ðL; l̄Þ:

We want now a ξ-invariant ðL2; l̄2Þ ðL; l̄Þ. It is not hard to
prove that this is equivalent, by lemma 3, to solving

̃X̃ξ
ðY; ȳÞ ¼ ðSLXξ

; s̄ðL;l̄ÞXξ
Þ − ιξðL; l̄Þ þ dðM; m̄Þ

for ðY; ȳÞ and ðM; m̄Þ. There are always local solutions and,
under the right topological conditions, we expect that those
solutions can be glued together although we have not
investigated this further.
If ðL; l̄Þ is ξ-invariant, we have seen thatXξ ∈ SymdðSÞ.

Thus we have both the Xξ-charge and the ξ-charge. Let us
see that, in that case, they are the same.
Lemma 12. If ðL; l̄Þ ∈ LagðMÞ is ξ-invariant, then

HS;{
Xξ

¼ QðL;l̄Þ;{
ξ . In particular, �SQ

ðL;l̄Þ;{
ξ is independent of

ðL; l̄Þ and {∶Σ ↪ M.
Proof. Plugging (3.24) on the Xξ-charge Definition 7

leads to the ξ-charge Definition 10. The last statement is
immediate from proposition 5. ▪
It might seem strange that HS;{

Xξ
does not depend on

the choice of Lagrangians while QðL;l̄Þ;{
ξ does. Notice first

that, from lemma 9, we have

QðL2;l̄2Þ;{
ξ ¼ QðL;l̄Þ;{

ξ þ
Z
ðΣ;∂ΣÞ

{�̃Xξ
ðY; ȳÞ:

The dependence on the representative comes from the

fact that ðSL2

ξ ; s̄l̄2
ξ̄
Þ does not transform as Eq. (3.14) unless

ðLξ − Xξ
ÞðY; ȳÞ ¼ 0, in which case the last integral

vanishes. Summarizing: if Xξ is a symmetry, then the
ξ-charge does not depend on the representative but, if we
pick a ξ-invariant pair of Lagrangian, the integrand is
simpler in general.
Corollary 1. If ðL; l̄Þ ∈ LagðMÞ is ξ-invariant

X̄ξ
S ¼ d�SQ

ðL;l̄Þ;{
ξ

I. Diff-invariant theories

From now on, we assume that we have the action of
diffeomorphisms DiffðMÞ × F → F , given by ðψ ;ϕÞ ↦
ψ�ϕ ∈ F through pullbacks and/or push forward according
to the tensorial character of ϕ. If F has no constraints, this
is certainly the case. Otherwise, we might have to restrict
the action to a smaller group Diff0ðMÞ of diffeomorphism
respecting the constraints. If we consider Dirichlet con-
ditions, where the values of the fields are zero at the
boundary, we still have the full group of diffeomorphism
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acting on F . However, for more complicated boundary
conditions such as nonhomogeneous Dirichlet conditions
or constraints in the bulk, things may be a bit more
complicated. For instance, if we consider the space of
metrics with a fixed value at the boundary

F ¼ fg ∈ MetðMÞ=|�g ¼ ḡ0g

then the diffeomorphism acting on F must restrict to a ḡ0-
isometry over the boundary i.e., ψ�ḡ0 ¼ ḡ0.
An action S is Diff-invariant if Sðψ�ϕÞ ¼ SðϕÞ for every

ψ ∈ DiffðMÞ. A form α ∈ ðr;0ÞðM × F Þ is Diff-invariant
if αðψ�ϕÞ ¼ ðψ�αÞðϕÞ. It is important to realize the very

different character of the action of the diffeomorphism in
the last equation. On the lhs we are using the aforemen-
tioned action while on the rhs we use the usual action over
ðr;sÞðM × F Þ, so ψ�α ∈ ðr;0ÞðM × F Þ which, in turn,
implies that ðψ�αÞðϕÞ ∈ ΩrðMÞ according to Eq. (2.4).
If ðL; l̄Þ ∈ LagðMÞ is Diff-invariant, then so is

S ¼ ⟦ðL; l̄Þ⟧. However, the converse is not true: we can
build some ðL2; l̄2Þ ðL; l̄Þ which is not Diff-invariant by
taking ðY; ȳÞ not Diff-invariant in (3.9).
Lemma 13. If ðL; l̄Þ ∈ LagðMÞ is Diff-invariant, then

ðL; l̄Þ is ξ-invariant for every ξ ∈ XðMÞ.
Proof. For a given ξ ∈ XðMÞ, we take fψ tgt a path of

diffeomorphisms with ψ0 ¼ Id and ξ ¼ ∂tj0ψ t. Then

LξðL; l̄ÞðϕÞ ¼
d
dt

����
t¼0

ψ�
t ðL; l̄ÞðϕÞ ¼

d
dt

����
t¼0

ðL; l̄Þðψ�
tϕÞ ¼ dϕðL; l̄Þ

�
d
dt

����
t¼0

ψ�
tϕ

�

¼ dϕðL; l̄ÞðLξϕÞ ¼ðIII.45Þ
dϕðL; l̄ÞðXξÞ ¼ ðXξ

dðL; l̄ÞÞðϕÞ ¼ðII.7ÞXξ
ðL; l̄ÞðϕÞ:

▪

With this last lemma, we can apply all the results of the
previous section.
Proposition 8.
(i) If ðL; l̄Þ ∈ LagðMÞ is Diff-invariant, then Xξ ∈

Symdð⟦ðL; l̄Þ⟧Þ for every ξ ∈ XðMÞ.
(ii) If ðL; l̄Þ ∈ LagðMÞ is Diff-invariant, then so

is S ¼ ⟦ðL; l̄Þ⟧.
Remark 7. Again, it is plausible that some sort of

converse holds. Namely, if S is Diff-invariant, then there
exists a representative ðL; l̄Þ ∈ LagðMÞ that is Diff-invari-
ant. A similar heuristic argument as the one used in
Remark 6 applies here but, again, we have not investigated
this issue further.
Lemma 14.
(i) If L is Diff-invariant, then there exists a ξ-charge

QΘ
ξ ∈ ðn−2;0ÞðM × SolðSÞÞ. In particular,

QðL;l̄Þ;{
ξ ¼

Z
∂Σ

{̄�ðQΘ
ξ − �S|̄

ðΘ;θ̄Þ
ξ Þ ð3:25Þ

(ii) If ðL; l̄Þ is Diff-invariant, then there exist ξ-

charges ðQΘ
ξ ;q̄

ðΘ;θ̄Þ
ξ Þ∈ðn−2;0ÞððM;∂LMÞ×SolðSÞÞ.

In particular,

QS
ξ ¼ 0 ð3:26Þ

Proof. We can view the Noether current as
JΘ• ∈ ðn−1;0ÞðM × ðF ×XðMÞÞÞ, i.e., taking ξ ∈ XðMÞ
as a dynamical field. We now fix ϕ ∈ F , so we have
JΘ• ðϕÞ ∈ ðn−1;0ÞðM × F 0Þ where F 0 ≔ XðMÞ. From
Eqs. (3.22) and (3.23), we deduce

dJΘ• ðϕÞ ¼ EIðϕÞL•ϕ
I ∈ ðn;0ÞðM × F 0Þ:

If ϕ ∈ SolðSÞ we see that JΘ• ðϕÞ is closed and JΘ0 ðϕÞ ¼ 0

so, by the horizontal exactness theorem 1 applied to F 0, it
follows that it is d-exact. The same argument using pairs
applies to the second statement. The values of the ξ-charges
are obtained applying the (relative) Stokes’ theorem. ▪
Remark 8. Notice that in (3.25) we could have con-

sidered the ξ-potential QΘ
ξ þQ0 for some Q0 ∈ Ωn−2ðMÞ

closed but not exact. It might seem that an additional term
appears but in fact it vanishes

Z
∂Σ

{̄�Q0 ¼
Z
Σ
{�dQ0 ¼ 0 → in particular {̄� Q0 is exact

IV. CPS-ALGORITHM

In this section we provide the following four-step
algorithm, that we denote CPS-algorithm, to obtain the
symplectic structure over the space of solutions.
(0) Given an action S∶F → R of a well-defined theory,

choose any Lagrangians ðL; l̄Þ with

S ¼
Z
M
L −

Z
∂M

l̄

(1) Compute dL ¼ EI ∧ dϕI þ dΘL. Choose any ΘL.
(2) Compute dl̄ − |�ΘL ¼ b̄I ∧ dϕI − dθ̄ðL;l̄Þ over ∂LM.

Choose any θ̄ðL;l̄Þ.
(3) Define SolðSÞ ¼ fϕ ∈ F=EIðϕÞ ¼ 0; b̄IðϕÞ ¼ 0g and

the inclusion S∶SolðSÞ ↪ F .
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(4) Compute the presymplectic structure

{
S ¼ d

�Z
Σ
{�ΘL −

Z
∂Σ

{̄�θ̄ðL;l̄Þ
�

→ S ¼ �S
{
S

where {∶Σ ↪ M is a Cauchy embedding and {̄ ≔
{j∂Σ∶∂Σ ↪ ∂LM is its restriction.
Once we have the presymplectic structure, it is

useful to add the following two steps that will provide
a deeper insight into the theory at hand.

(5) Study symmetries. Study ifXξ is a d-symmetry. Obtain
ξ-currents, ξ-charges, and ξ-flux laws.

����
JΘξ ¼ ιξL−Xξ

Θ

|̄ðΘ;θ̄Þξ ¼−ιξ̄l̄−Xξ
θ̄

QðL;l̄Þ;{
ξ ¼

Z
Σ
{�JΘξ −

Z
∂Σ
{̄�|̄ðΘ;θ̄Þξ

(6) If possible, compare with the presymplectic structure
coming from the Hamiltonian formulation.

V. EXAMPLES

Let ðM; gÞ be a connected, oriented, globally hyperbolic
n-space-time with boundary (possibly empty). Let
|∶∂M ↪ M be the inclusion and ḡ ≔ |�g. Without loss
of generality, we define the Lagrangians instead of the
action. Moreover, as we have to perform first the compu-
tations over the bulk and subsequently over the boundary,
we do not use the relative notation. Nonetheless, keep in
mind that several results, like the ξ-charges, admit a very
compact expression using the relative framework.

A. Scalar field with Robin boundary conditions

We consider F ¼ Ω0ðMÞ and define

LðϕÞ¼
�
1

2
g−1ðdϕ;dϕÞþVðϕÞ

�
volg l̄ðϕÞ¼1

2
f ·ϕ̄2volḡ

for some f∶∂M → R. We have defined ϕ̄ ≔ |�ϕ.
(1)

dϕL¼ð∇αϕ∇αdϕþV 0ðϕÞdϕÞvolg
¼∇αðdϕ∇αϕÞvolg−ð□gϕ−V 0ðϕÞÞdϕvolg
¼−ð□gϕ−V 0ðϕÞÞvolgdϕþdðι

V
!volgÞ→ΘLðϕÞ

¼ ι
V
!volg

where we define □g ≔ gαβ∇α∇β and V
!≔ dϕ∇!ϕ.

Notice that in the last equality we have used that, by

definition of divergence, ðdivg V!Þvolg¼L
V
!volg¼

dι
V
!volg.

(2)

dϕl̄ − |�ΘLðϕÞ
¼ fϕ̄dϕ̄volḡ − |�ðι

V
!volgÞ ¼ðII.15Þ

¼ ðfϕ̄dϕ̄ − |�ðναVαÞÞvolḡ
¼ −ð|�∇ ν!ϕ − fϕ̄Þvolḡdϕ̄ → θ̄ðL;l̄ÞðϕÞ ¼ 0

(3)

����
EðϕÞ ¼ −ð□gϕ − V 0ðϕÞÞvolg
b̄ðϕÞ ¼ −ð|�∇ ν!ϕ − fϕ̄Þvolḡ

Solð⟦ðL; l̄Þ⟧Þ ¼ fϕ ∈ Ω0ðMÞ=EðϕÞ ¼ 0; b̄ðϕÞ ¼ 0g

Notice that we obtain the so-called Robin boundary conditions |�∇ ν!ϕ ¼ fϕ̄. As a particular case, if f ¼ 0, we
obtain Neumann boundary conditions |�∇ ν!ϕ ¼ 0.

(4)

ð{
SÞϕ ¼ d

Z
Σ
{�ΘLðϕÞ − d

Z
∂Σ

{̄�θ̄ðL;l̄ÞðϕÞ

¼
Z
Σ
d{�ðι

V
!volgÞ − 0 ¼ðII.15Þ −

Z
Σ
d{�ðnαVαvolγÞ

¼ −
Z
Σ
dðdφ{�∇ n!ϕÞvolγ ¼ðII.8Þ

Z
Σ
dφ⩕d{�ð∇ n!ϕÞvolγ

¼
Z
Σ
dφ⩕{�∇ n!dϕvolγ ¼

Z
Σ
dφ⩕d{�ðL n!ϕÞvolγ
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where n! ∈ XðMÞ is the vector field g-normal to {ðΣÞ ⊂ M and φ ≔ {�ϕ ∈ Ω0ðΣÞ. Recall that d only acts on ϕ and
not to g, as the latter is a fixed background structure of M.

(5) Using (3.23) and Proposition 7, we see thatXξ is a symmetry if and only if Lξg ¼ 0 and Lξ̄f ¼ 0. Using now (2.14),
(2.15), and Definition 10 we obtain

QðL;l̄Þ;{
ξ ðϕÞ ¼

Z
Σ
nαξβ

�
∇αϕ∇βϕ − gαβ

�
1

2
g−1ðdϕ; dϕÞ þ VðϕÞ

��
volγ −

Z
∂Σ

m̄ᾱξ̄β̄

�
ḡᾱ β̄

1

2
f · ϕ̄2

�
volγ̄

The first term in parenthesis is twice the energy-momentum tensor Tαβ given by d̃L ¼ ðTαβvolgÞd̃gαβ. Analogously
for the boundary with d̃ l̄ ¼ ðt̄ᾱ β̄volḡÞd̃ḡᾱ β̄. This leads precisely to the flux law Proposition 6.

(6) Let us now consider the Hamiltonian decomposition. Given an embedding {∶Σ ↪ M, we can break the objects

involved into the tangential and perpendicular part. In this case we have φ ≔ {�ϕ and the metric g ↔ ðγ; N; N
!Þ

where γ ≔ {�g, N is the lapse, and N
!

the shift. The momentum, after identifying the cotangent with the tangent
bundle (so we work with densities), is given [3,41] by

p ¼
v − L

N
!φ

N
¼ {�

�L∂t
ϕ − L

N
!ϕ

N

�
¼ {�L n!ϕ ð5:1Þ

where v ∈ TϕF . The canonical symplectic form of the cotangent bundle is

Ωðφ;pÞððVφ; VpÞ; ðWφ;WpÞÞ ¼
Z
Σ
ðVφWp −WφVpÞvolγ ≡Ωðφ;pÞ ¼

Z
Σ
dφ⩕dpvolγ

while over SolðSÞ we have

ðSÞϕ ¼
Z
Σ
dð{�ϕÞ⩕d{�ðL n!ϕÞvolγ

So, by using Eq. (5.1), we obtain ðP�ΩÞϕ ¼ ðSÞϕ, where P∶SolðSÞ → CDSðΣÞ is the polarization map given the
initial Cauchy data ð{�ϕ; {�L n!ϕÞ ∈ T�Ω0ðΣÞ.

B. Scalar field with Dirichlet boundary conditions

We consider F ¼ Ω0ðMÞ0 i.e., scalar fields ϕ of M with ϕ̄ ≔ |�ϕ ¼ 0 (in particular, dϕ̄ ¼ 0). We define

LðϕÞ ¼
�
1

2
g−1ðdϕ; dϕÞ þ VðϕÞ

�
volg l̄ðϕÞ ¼ 0

(1)

dϕL ¼ −ð□gϕ − V 0ðϕÞÞvolgdϕþ dðι
V
!volgÞ → ΘLðϕÞ ¼ ι

V
!volg

(2)

dϕl̄ − |�ΘLðϕÞ ¼ −|�∇ ν!ϕvolḡdϕ̄ ¼ 0 → θ̄ðL;l̄ÞðϕÞ ¼ 0

(3)

����EðϕÞ ¼ −ð□gϕ − V 0ðϕÞÞvolg
b̄ðϕÞ ¼ 0

Solð⟦ðL; l̄Þ⟧Þ ¼ fϕ ∈ Ω0ðMÞ0=EðϕÞ ¼ 0; b̄ðϕÞ ¼ 0g
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(4)

ð{
SÞϕ ¼

Z
Σ
dφ⩕{�ðLn⃗dϕÞvolγ

(5) This is analogous to the previous case, i.e., Xξ is a
symmetry if and only if Lξg ¼ 0.

(6) This is analogous to the previous case.
Remark 9. From now on, unless otherwise stated, we

consider Neumann boundary conditions, i.e., l̄ ¼ 0 and
ϕ ∈ F is arbitrary over the boundary. Of course, it is easy
to add a Robin term at the boundary or fix the values at the
boundary to obtain Dirichlet conditions.

C. Some curious examples

1. Scalar field derived from Lagrange multipliers

It is interesting to obtain the scalar field equation, with
V ¼ 0 for simplicity, using Lagrange multipliers. For that
we consider F ¼ Ω0ðMÞ ×Ω0ðMÞ.

L1ðϕ; λÞ ¼ −λ□gϕvolg l̄1ðϕ; λÞ ¼ −λ̄|�ð∇ν⃗ϕÞvolḡ

When we vary in λ, we obtain directly the Klein-Gordon
equation with Neumann boundary conditions. However, we
also have to vary in ϕ and for that, it is better to take Y ¼
ι
λ∇⃗ϕvolg in (3.9), to obtain the equivalent Lagrangians

L2ðϕ; λÞ ¼ g−1ðdϕ; dλÞvolg and l̄2 ¼ 0.

(1)

dðϕ;λÞL2 ¼ −ðdϕ□gλþ dλ□gϕÞvolg þ dιW⃗volg → ΘLðϕ; λÞ ¼ ιW⃗volg

where W⃗ ≔ dϕ∇⃗λþ dλ∇⃗ϕ.
(2)

dðϕ;λÞl̄2 − |�ΘLðϕ; λÞ ¼ −ðdϕ̄|�∇ν⃗λþ dλ̄|�∇ν⃗ϕÞvolḡ → θ̄ðL;l̄Þðϕ; λÞ ¼ 0

(3) From the previous computations we obtain

����E1ðϕ; λÞ ¼ −□gλvolg
E2ðϕ; λÞ ¼ −□gϕvolg

���� b̄1ðϕ; λÞ ¼ −|�ð∇ν⃗λÞvolḡ
b̄2ðϕ; λÞ ¼ −|�ð∇ν⃗ϕÞvolḡ

SolðSÞ ¼
�
ϕ ∈ F=

E1ðϕ; λÞ ¼ 0; b̄1ðϕ; λÞ ¼ 0

E2ðϕ; λÞ ¼ 0; b̄2ðϕ; λÞ ¼ 0

�

So this theory actually describes two uncoupled scalar fields with Neumann boundary conditions.

(4) The symplectic structure is given by

ð{
SÞðϕ;λÞ ¼

Z
Σ
ðdφ⩕{�ðLn⃗dμÞ þ dμ⩕{�ðLn⃗dϕÞÞ

× volγ

where μ ≔ {�λ, φ ≔ {�ϕ, and n⃗ is the g-normal
vector field to {ðΣÞ ⊂ M.

(5) Once again,Xξ is a symmetry if and only if Lξg ¼ 0.
(6) This is analogous to the previous cases.
Remark 10. If we had considered L3 ¼ L1 and l̄3 ¼ 0,

we would have obtained the same equations because

dðϕ;λÞL3 ¼ −ðdλ□gϕþ dϕ□gλÞvolg þ dιU⃗volg

where U⃗ ¼ dϕ∇⃗λ − λ∇⃗dϕ. However, now the covariant
derivative of dϕ appears in ΘL3 . Thus

dðϕ;λÞl̄ − |�ΘL3ðϕ; λÞ ¼ ðdϕ̄|�ð∇ν⃗λÞ − λ̄|�ð∇ν⃗dϕÞÞvolḡ:

As ν⃗ is not tangent to the boundary, we cannot “integrate by
parts.” Thus, this expression is not decomposable [see
(3.6)] unless we require both fields to have Dirichlet
boundary conditions or Neumann boundary conditions
(they have to be included in the definition of F ).
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2. Scalar field with no equation of motion

It is interesting to realize that some conditions over ϕ can
be included a priori in the definition F or can arise
a posteriori from the variations of S. Furthermore, the
way to introduce them might change completely the
symplectic form obtained by the CPS algorithm. For simple
conditions such as Robin or Dirichlet boundary conditions,
it is clear how to do that, but for more complicated ones it is
not. To illustrate this problem, let us consider a naive
example where this phenomenon appears in the bulk.
Consider ðM; gÞ with no boundary and F ¼

fϕ ∈ Ω0ðMÞ=□gϕ ¼ 0g. Then we define the Lagrangians

L1ðϕÞ ¼
1

2
g−1ðdϕ; dϕÞ L2ðϕÞ ¼ 0

If we compute the variations we obtain, using the
computations of the previous examples, that

Eð1ÞðϕÞ ¼ −□gϕvolg Eð2ÞðϕÞ ¼ 0

ΘL1ðϕÞ ¼ ιV⃗volg ΘL2ðϕÞ ¼ 0:

Notice that both Eð1Þ and Eð2Þ are satisfied by every ϕ ∈ F,
so we have that

SolðS1Þ ¼ F ¼ SolðS2Þ:

However

ðS1
Þϕ ¼

Z
Σ
dφ⩕{�ðLn⃗dϕÞvolγ ðS2

Þϕ ¼ 0:

These trivial examples show several things.
(i) These two Lagrangians are not equal up to an exact

form and have different equations of motion. How-
ever, they define the same space of solutions.

(ii) The symplectic structure is not always the pullback
of the canonical symplectic structure (they define the
same theory but have different (pre)symplectic
structure).

(iii) The symplectic structureS depends strongly on the
particular form of S and not only on SolðSÞ.

(iv) This example is more useful in the context of
boundary conditions: imposing them on F might
spoil the final structures and the use we can make of
them. So, in general, it is better to obtain them
a posteriori from the variations of S than include
them a priori in the definition of F .

(v) One of the problems with this example is that F is
not an open set in Ω0ðMÞ and the computations of
the variations are more delicate than what we have
shown here. The proper way to deal with it is jet
bundle framework (see Appendix A and [ [20], 11.7
(pag 121)]).

D. Chern-Simons

Let F ¼ Ω1ðMÞ with dimðMÞ ¼ 2kþ 1. If A ∈ F , we denote Ā ≔ |�A ∈ Ω1ð∂MÞ and a ≔ {�A ∈ Ω1ðΣÞ. Now, we
define

LðAÞ ¼ −
1

kþ 1
A ∧ ðdAÞk l̄ðAÞ ¼ 0

where αk ¼ α ∧ � � �ðkÞ ∧ α.
(1)

dAL ¼ −ðdAÞk ∧ dAþ k
kþ 1

dðA ∧ ðdAÞk−1 ∧ dAÞ → ΘLðAÞ ¼ k
kþ 1

A ∧ ðdAÞk−1 ∧ dA

(2)

dAl̄ − |�ΘLðAÞ ¼ −
k

kþ 1
Ā ∧ ðdĀÞk−1 ∧ dĀ → θ̄ðL;l̄ÞðAÞ ¼ 0

(3)

����EðAÞ ¼ −ðdAÞk
b̄ðAÞ ¼ − k

kþ1
Ā ∧ ðdĀÞk−1 SolðSÞ ¼ fA ∈ F=EðAÞ ¼ 0; b̄ðAÞ ¼ 0g
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(4)

ð{
SÞA ¼ðII.8Þ

ðII.12ÞðII.1Þ
k
2

Z
Σ
ððdaÞk−1⩕da⩕daÞ − kðk − 1Þ

2ðkþ 1Þ
Z
∂Σ
ðā⩕ðdāÞk−2⩕dā ∧ dāÞ

(5) In this example we have no background object, so it is clear that Xξ
L ¼ LξL and the theory is invariant under

diffeomorphisms. Thus, Xξ ∈ SymdðSÞ for every ξ ∈ XðMÞ. Moreover

ðXξ
{

SÞA ¼ k
Z
Σ
{�ððdAÞk−1 ∧ LξA ∧ dAÞ − kðk − 1Þ

kþ 1

Z
∂Σ

{̄�ðĀ ∧ ðdĀÞk−2 ∧ Lξ̄Ā ∧ dĀÞ ¼ðII.7Þ
ðII.8ÞðII.9Þ

¼ k
Z
Σ
{�
�
dfðdAÞk−1 ∧ ιξA ∧ dAg − 1

k
dðdAÞk ∧ ιξAþ 1

k
ιξðdAÞk ∧ dA

�

−
k

kþ 1

Z
∂Σ

{̄�ððk − 1ÞðdĀÞk−1 ∧ ιξ̄Ā ∧ dĀ − Ā ∧ dðdĀÞk−1 ∧ ιξ̄Āþ Ā ∧ ιξ̄ðdĀÞk−1 ∧ dĀÞ ¼ðII.1Þ
ðII.14Þ

¼
Z
Σ
{�ððιξEÞ ∧ dA − ðιξAÞdEÞ −

Z
∂Σ

{̄�ððιξ̄b̄Þ ∧ dĀþ ðιξ̄ĀÞdb̄Þ

so X̄ξ ≔ XξjSolðSÞ is a gauge vector field. Its associated ξ-charge is given by

QðL;l̄Þ;{
ξ ðAÞ ¼ 1

kþ 1

Z
Σ
{�ððιξAÞ ∧ ðdAÞk − kA ∧ ðιξdAÞ ∧ ðdAÞk−1 þ kA ∧ ðdAÞk−1 ∧ LξAÞ ¼ðII.7Þ

ðII.8Þ

¼ 1

kþ 1

Z
Σ
{�ððιξAÞ ∧ ðdAÞk − kdðA ∧ ιξA ∧ ðdAÞk−1Þ þ kðιξAÞ ∧ ðdAÞkÞ ¼ðII.14Þ

¼
Z
Σ
{�ðιξAÞ{�Eþ

Z
∂Σ

{̄�ðιξ̄ĀÞ{̄�b̄:

Of course, d�SQ
ðL;l̄Þ;{
ξ ∈ 1ðSolðSÞÞ is zero, giving an alternative proof that X̄ξ ∈ GaugeðSÞ. Consider now the

vector field ðXðλÞÞA ¼ dλ ∈ TAF ≅ F for some λ ∈ Ω0ðMÞ. Notice that it is a constant vector field overF , as it does
not depend on A. Its interior product with the symplectic form gives

ðXðλÞ
{
SÞA ¼

Z
Σ
{�ðλ ∧ dEÞ þ

Z
∂Σ
ð|∘{̄Þ�λ ∧

�
d{̄�b̄þ k

kþ 1
ðdāÞk−1 ∧ dā

�
:

If we consider Dirichlet boundary conditions (then dā ¼ 0) or we assume that |�λ ¼ 0, then the last term vanishes.
However, in general it does not, even when restricted to SolðSÞ. This proves that the inclusion of a boundary can spoil
a gauge freedom.

(6) Let us consider the space-time decomposition A ↔ ðA⊥; A⊤Þ for some fixed foliation and metric g. Those objects are
related by A ¼ n ∧ A⊥ þ A⊤. It is not hard to prove [ [3], ch. 6] that

dA ¼ n ∧ ðdAÞ⊥ þ ðdAÞ⊤
���� ðdAÞ⊥ ¼ ε

L∂t A⊤−LN⃗A
⊤

N − d⊤ðNA⊥Þ
N

ðdAÞ⊤ ¼ d⊤A⊤

where d⊤ ≔ d − εn ∧ ιn⃗, ε ¼ ιn⃗n ¼ −1, N is the lapse, and N⃗ the shift. Thus

1

kþ 1
A ∧ ðdAÞk ¼ 1

kþ 1
n ∧ ðA⊥ ∧ d⊤A⊤ − kA⊤ðdAÞ⊥Þ ∧ ðd⊤A⊤Þk−1:

Identifying L∂tA⊤ as the velocity and using the fact n ¼ εNðdtÞ, it follows [3] that the momenta are given by

P⊥ ¼ 0 P⊤ ¼ k
kþ 1

{�ðA⊤ ∧ ðd⊤A⊤Þk−1Þ: ð5:2Þ
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The canonical symplectic form of the first constraint
manifold (where P⊥ ¼ 0) is

ΩðA⊥;A⊤;P⊤Þ ¼
Z
Σ
dA⊤⩕dP⊤volγ

while over SolðSÞ we have, from the first line of the
computation of 4, that

ðSÞA ¼
Z
Σ
da⩕d

�
k

kþ 1
a ∧ ðdaÞk−1

�
:

Thanks to Eq. (5.2), we see that ðP�ΩÞA ¼ ðSÞPðAÞ
where PðAÞ ¼ ðA⊥; A⊤; P⊤Þ.

E. Yang-Mills

We consider a Lie algebra g with a scalar product
invariant under the adjoint representation (every semi-
simple or Abelian algebra satisfies this condition) and
define F ¼ Ω1ðM; gÞ. We can expand every A ∈ F over
some coordinate patch fxμg as

A ¼ Aμdxμ Aμ ∈ g:

Thanks to the invariant scalar product of g, we can identify
g� with g. In particular, it allows us to define the trace Trg of
two elements of g. If we use fI; J;…g as abstract indices
for the algebra, we have

TrgðA × BÞ ¼ AIBI:

We also have the Lie bracket ½; � of g which induces the Lie
bracket ½∧� of elements of F given by

½A ∧ B� ¼ ½Aμ; Bν�dxμ ∧ dxν

meaning that over the algebra we take the Lie bracket and
over forms the wedge product. This is easily generalized to
forms of any degree (not necessarily the same) with values
in g. In abstract index notation on g, we see that ½∧� is
equivalent to defining some fIJK such that

½A ∧ B�K ¼ fIJKAI ∧ BJ:

The following properties are a direct consequence of the
combined properties of ½; � and ∧

½α ∧ β� ¼ −ð−1Þjαjjβj½β ∧ α� ð5:3Þ

ð−1Þjαjjγj½α ∧ ½β ∧ γ⟧þ ð−1Þjγjjβj½γ ∧ ½α ∧ β⟧

þ ð−1Þjαjjβj½β ∧ ½γ ∧ α�� ¼ 0 ð5:4Þ

Trgðα ∧ ½β ∧ γ�Þ ¼ Trgð½α ∧ β� ∧ γ�Þ ð5:5Þ

Finally, given A ∈ F , we define its covariant derivative and
curvature

Dα ≔ dαþ ½A ∧ α� F ≔ dAþ 1

2
½A ∧ A�

Notice that when computing the variations, the dependence
in A ofD and F has to be taken into account. For instance, it
is easy to prove using the aforementioned properties that

dF ¼ DdA: ð5:6Þ

It will also be useful to have the following properties which
are a direct consequence of the previous definitions,
equation (5.5), and the Leibniz rule

TrgðDα∧βÞ¼ð−1Þjαjþ1Trgðα∧DβÞþdTrgðα∧βÞ ð5:7Þ

D½α ∧ β� ¼ ½Dα ∧ β� þ ð−1Þjαj½α ∧ Dβ� ð5:8Þ

D2α ¼ ½F ∧ α� ð5:9Þ

DF ¼ 0: ð5:10Þ

With all these tools at hand, let us study the Yang-Mills
theory given by the Lagrangian

LðAÞ ¼ −
1

2
TrgðF ∧ ⋆gFÞ l̄ðAÞ ¼ 0

where ⋆g∶ΩkðMÞ → Ωn−kðMÞ is the Hodge star operator.
(1)

dAL ¼ðV.8Þ − TrgðDdA ∧ ⋆gFÞ ¼ðV.9Þ

¼ −TrgðdA ∧ D⋆gF þ dðdA ∧ ⋆gFÞÞ → ΘLðAÞ
¼ −TrgðdA ∧ ⋆gFÞ

(2)

dAl̄−|�ΘLðAÞ¼TrgðdĀ∧|�ð⋆gFÞÞ→ θ̄ðL;l̄ÞðAÞ¼0

(3)

����
EðAÞ ¼ −D⋆gF

b̄ðAÞ ¼ |�ð⋆gFÞ
SolðSÞ ¼ fA ∈ F=EðAÞ ¼ 0; b̄ðAÞ ¼ 0g
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(4)

ð{
SÞA ¼ðII.8Þ

ðV.8Þ

Z
Σ
ðda⩕{�ð⋆gDdAÞÞ

(5) As g as the sole background object, we can prove that Xξ ∈ SymdðSÞ if ξ is a g-Killing vector field. Using that
LξA ¼ ιξF þDιξA and that, by definition, α ∧ ⋆gβ ¼ hα; βigvolg, we obtain

QðL;l̄Þ;{
ξ ðAÞ ¼

Z
Σ
{�
�
−ðιξFÞ ∧ ⋆gF − ðDιξAÞ ∧ ⋆gF −

1

2
ιξðF ∧ ⋆gFÞ

�

¼
Z
Σ
{�
�
−ειn⃗ðn ∧ ðιξFÞ ∧ ⋆gFÞ þ ðιξAÞ ∧ ðD⋆gFÞ −

1

2
hF;Figιξvolg

�
−
Z
∂Σ

|̄�{�ðιξA ∧ ⋆gFÞ ¼ðII.14Þ

¼
Z
Σ
{�
�
−hn ∧ ιξF;Figειn⃗volg −

ε

2
hF;Fignαξαvolγ

�
þ
Z
Σ
{�ððιξAÞ ∧ EÞ −

Z
∂Σ

{̄�|�ðιξA ∧ ⋆gFÞ ¼ðII.11Þ

¼
Z
Σ
nαξα

�
−Fβ

γFαγ −
ε

4
gαβFγδFγδ

�
volγ þ

Z
Σ
{�ððιξAÞ ∧ EÞ þ

Z
∂Σ

{̄�ðιξ̄Ā ∧ b̄Þ:

The first term in parenthesis is twice the energy-momentum tensor Tαβ given by d̃L ¼ ðTαβvolgÞd̃gαβ.
For a fixed λ ∈ Ω0ðMÞ, we define the vector field XðλÞ ∈ XðF Þ given by dAðXðλÞÞ ¼ Dλ. Unlike in the Chern-

Simons case, this vector field is not constant as D depends on A. It is not hard to prove that

ðXðλÞ
{
SÞA ¼ðV.9ÞðV.11Þ

ðV.7ÞðII.14Þ

Z
Σ
{�TrgðλdEÞ −

Z
∂Σ

{̄�Trgðð|�λÞdb̄Þ:

We see that XðλÞjSolðSÞ ∈ GaugeðSÞ for every λ ∈ Ω0ðMÞ.
(6) It is convenient to rewrite now the symplectic structure. Using (5.6), ιn⃗F ¼ Ln⃗A −Dιn⃗A, and gαβ ¼ εnαnβ þ {αa{

β
bγ

ab

(space-time decomposition for {ðΣÞ ⊂ M), we obtain

ð{
SÞA ¼

Z
Σ
ε{�ιn⃗ðn ∧ dA ∧ ⋆gdFÞ ¼

Z
Σ
ε{�ðhn ∧ dA;dFigιn⃗volgÞ ¼ðII.15Þ

¼ ε

Z
Σ
hda;d{�ιn⃗Fiγvolγ ¼ðε¼−1Þ

¼
Z
Σ
hda;d{�ðDιn⃗A − Ln⃗AÞiγvolγ:

Let us now prove that if we break A ↔ ðA⊥; A⊤Þ, then the parenthesis in the last line of the previous computation is
precisely the momentum p associated with a ¼ {�A⊤ (p⊥ turns out to be zero). First, we can adapt the computations
from [ [3], ch. 4] to the non-Abelian case to prove that

F ¼ n ∧ F⊥ þ F⊤
����F⊥ ¼ ε

L∂t A⊤−LN⃗A
⊤

N − D⊤ðNA⊥Þ
N

F⊤ ¼ d⊤A⊤ þ 1
2
½A⊤ ∧ A⊤�

where D⊤ is the covariant derivative associated to A⊤ and d⊤ ≔ d − εn ∧ ιn⃗. Thus

D⊤α ¼ Dα − n ∧ ðιn⃗dαþ ½A⊥ ∧ α�Þ:

Proceeding as in the previous example (see also [3]), it can be checked that F⊥ is precisely the momentum (up to the
corresponding pullback). Finally, using
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n⃗ ¼ ∂t − N⃗
N

n ¼ εNðdtÞ

we can compute

Dιn⃗A − Ln⃗A ¼ εdA⊥ þ ε½A ∧ A⊥� −
1

N
ðL∂t − LN⃗Þðn ∧ A⊥ þ A⊤Þ − dð1=NÞ ∧ Nιn⃗A

¼ ε
NdA⊥ þ ½A ∧ ðNA⊥Þ�

N
−

1

N
L∂t−N⃗ðεdt ∧ NA⊥Þ −

L∂tA⊤ − LN⃗A
⊤

N
þ ε

dN
N

∧ A⊥

¼ ε
dðNA⊥Þ þ ½A ∧ ðNA⊥Þ�

N
−

ε

N
dt ∧ LNn⃗ðNA⊥Þ − εF⊥ − ε

D⊤ðNA⊥Þ
N

− ¼ F⊥ þ ε
ðD −D⊥ÞðNA⊥Þ − n ∧ Ln⃗ðNA⊥Þ

N
¼ F⊥ þ εn ∧ ½A⊥ ∧ A⊥� ¼ F⊥:

So indeed the symplectic form corresponds to the canonical one over the first constraint manifold.

F. Parametrized Yang-Mills

For our last example we consider the Yang-Mills but
allowing the metric to vary in a very specific way, namely,
through pullbacks by diffeomorphisms. We consider again
a Lie algebra g with a scalar product invariant under the
adjoint representation, a globally hyperbolic space-time
ðM; gÞ, the space of fields F ¼ Ω1ðMÞ × DiffðMÞ which is
nonlinear, and

LðA; ZÞ ¼ −
1

2
TrgðF ∧Z�g FÞ l̄ðA; ZÞ ¼ 0

As LðY�A; Z∘YÞ ¼ Y�LðA; ZÞ, from Sec. III I we obtain
that L is invariant under diffeomorphisms.
Let us compute the exterior derivative of gZ ≔ Z�g. For

that, we consider some V ∈ TðA;ZÞF defined by a curve
fðA; ZτÞgτ of F . In particular, V has only component in the

diffeormorphism direction, meaning that dAðVÞ ¼ 0 and
dZðVÞ ¼ V , so in the following we forget about the A
component. Besides, recall that V ∈ TZDiffðMÞ defines a
vector field over Z i.e., such that Vp ∈ TZðpÞM. The fact
that V evaluated at p does not belong to TpM is an
inconvenience that can be solved as follows

dgZðVÞ ¼
d
dτ

����
τ¼0

gZτ
¼ d

dτ

����
τ¼0

Z�
τg

¼ d
dτ

����
τ¼0

ðZ−1
0 ∘ZτÞ�Z�

0g ¼
d
dτ

����
τ¼0

ðZ−1
0 ∘ZτÞ�gZ

ð5:11Þ

where Z0 ¼ Z. Notice that the new curve fZ−1
0 ∘Zτgτ in

DiffðMÞ passes through the identity with velocity

W ¼ d
dτ

����
τ¼0

ðZ−1
0 ∘ZτÞ ¼ ðZ−1

0 Þ�
d
dτ

����
τ¼0

Zτ ¼ ðZ−1
0 Þ�V :

Now Wp ∈ TpM as we wanted. In fact, notice that the last expression of (5.11) is just the Lie derivative

dgZðVÞ ¼ LWgZ ¼ LZ−1� dZðVÞgZ → dgZ ¼ LdZgZ

where we have defined dZ ≔ Z−1� dZ. The expression on the right, where we used LdZ, is just a useful notation and in order
to have full meaning, it has to be evaluated over some V . Although we have to be careful with this notation, it will shorten
the computations. For instance, ιdZιdZ or ½dZ;dZ� are not zero because⩕ is antisymmetric for elements of degree (1, 0) such
as dZ. In fact

ιdZιdZðV ;WÞ ¼ ιdZðVÞιdZðWÞ − ιdZðWÞιdZðVÞ ¼ 2ιdZðVÞιdZðWÞ ½dZ;dZ�ðV ;WÞ ¼ 2½dZðVÞ;dZðWÞ�:
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It is necessary for the following to compute the (0, 2)-form dðdZÞ. To make it clearer, we are going to use different space-
time indices for the domain space and the target space (although they are both the same). Indeed, we consider
Z∶ðM; fα; β;…gÞ → ðM; a; b; f…gÞ so its push forward Z� is denoted Za

α (it also denotes its pullback Z�). We use the
results of the Appendix of [3] together with the well known fact that the tangent vectors of DiffðMÞ are vector fields ofM to
obtain

dðdZÞβ ¼ dððZ−1ÞβbdZbÞ ¼ dðZ−1Þβb⩕dZb ¼ −ðZ−1ÞβaðZ−1ÞγbðdZÞaγ⩕dZb

¼ −ðZ−1ÞβaðZ−1ÞγbZa
α∇γððZ−1ÞαcdZcÞ⩕dZb ¼ −δβα∇γððZ−1ÞαcdZcÞ⩕ððZ−1ÞγbdZbÞ

¼ −∇γðdZÞβ⩕ðdZÞγ ¼ ðdZÞγ⩕∇γðdZÞβ ≕∇dZðdZÞβ

where the last equality is just the definition of the last term. Let us consider V ;W ∈ TðA;ZÞF. We denote
V ≔ dZðVÞ;W ≔ dZðWÞ ∈ XðMÞ, we then have

dðdZÞðV ;WÞ ¼ ∇Z−1� VðZ−1� WÞ −∇Z−1� WðZ−1� WÞ ¼ ½Z−1� V; Z−1� W� ¼ Z−1� ½V;W�

so dðdZÞ is, essentially, the Lie bracket once it is evaluated. It will be very useful to introduce

D ≔ d − LdZ ð5:12Þ

that measures the variation of the quantities once we subtracts the variation due to the diffomorphism. In particular, we have
DgZ ¼ 0. The following properties are immediate from the definition of D and the properties of d and L.

dιdZα ¼ ιð∇dZdZÞα − ιdZdα D2 ¼ 0

Dðα⩕βÞ ¼ ðDαÞ⩕β þ ð−1Þkαkα ∧ ðDβÞ Dð⋆Z�gαÞ ¼ ⋆Z�gðDαÞ
DF ¼ DDA

(1)

dðA;ZÞL ¼ DðA;ZÞLþ LdZL ¼ðII.7Þ − TrgðDF ∧ ⋆Z�gFÞ þ dιdZL ¼ðV.9Þ

¼ −TrgðDA ∧ ðD⋆Z�gFÞÞ þ dðιdZL − TrgðDA ∧ ⋆Z�gFÞÞ

We take ΘLðA; ZÞ ¼ ιdZL − TrgðDA ∧ ⋆Z�gFÞ.
(2)

dðA;ZÞl̄ − |�ΘLðA; ZÞ ¼ TrgðDĀ ∧ |�ð⋆Z�gFÞÞ

where the first term of ΘL vanishes because dZ is tangent to the boundary. We take θ̄ðL;l̄Þ ¼ 0.
(3)

����
E1ðA; ZÞ ¼ E2ðA; ZÞ ¼ −D⋆Z�gF

b̄1ðA; ZÞ ¼ b̄2ðA; ZÞ ¼ |�ð⋆Z�gFÞ
SolðSÞ ¼

�
ðA; ZÞ ∈ F=

E1ðA; ZÞ ¼ 0

b̄1ðA; ZÞ ¼ 0

�

Notice that the parametrization adds no additional equation or boundary condition.
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(4)

ð{
SÞðA;ZÞ ¼

Z
Σ
{�ðιð∇dZdZÞL − ιdZdL − dTrgðDA ∧ ⋆Z�gFÞÞ

¼
Z
Σ
{�ðιð∇dZdZÞL − ιdZTrgðDA ∧ EÞ − ιdZdðιdZL − TrgðDA ∧ bÞÞ − dTrgðDA ∧ bÞÞ ¼ðII.7Þ

ðV.14Þ

¼
Z
Σ
{�ðfιð∇dZdZÞ − ιdZLdZgL − ιdZTrgðDA ∧ EÞ − dιdZTrgðDA ∧ bÞ − DTrgðDA ∧ bÞÞ ¼ðII.14Þ

ðII.11Þ

¼ −
Z
Σ
{�ιdZTrgðDA ∧ EÞ −

Z
∂Σ

{̄�ιdZTrgðDĀ ∧ b̄Þ þ
Z
Σ
{�TrgðDA ∧ ⋆Z�gDDAÞ:

When we integrate by parts, D can be pulled back because dZ is tangent to the boundary. To get to the last line, we
have used that the integral of the term with curly brackets vanishes. Indeed, if we evaluate this term at
V ;W ∈ TðA;ZÞF , where we denote V ≔ dZðVÞ and W ≔ dZðWÞ, we obtain

Z
Σ
{�fιð∇dZdZÞ − ιdZLdZgLðV ;WÞ ¼

Z
Σ
{�fι½V;W� − ιVLW þ ιWLVgL ¼ðII.7Þ

¼
Z
Σ
{�f½LV; ιW � − ιVdιW þ ιWLVgL ¼ðII.7Þ

Z
Σ
{�dιV ιWL ¼

Z
∂Σ

|̄�{�ιV ιWL ¼ðII.14Þ
ðII.11Þ

Z
∂Σ

{̄�ιV̄ ιW̄|�L ¼ 0:

(5) We have dAðXξÞ ¼ LξA. However, DiffðMÞ is not linear so we have to define dZðXξÞ. For that, we take advantage
of the fact that dZðVÞ is a vector field over M to define dZðXξÞ ¼ ξ or, equivalently, dZðXξÞ ¼ Z�ξ. With this
definition, let us check that despite the presence of the background object g, we have that Xξ ∈ SymdðSÞ for every
vector field ξ ∈ XðMÞ. First, notice that

Xξ
DA ¼ Xξ

dA − Xξ
LdZA ¼ LξA − LξA ¼ 0:

Then

Xξ
L ¼ Xξ

dL ¼ dιξL → SLXξ
¼ ιξLð¼ SLξ Þ

Xξ
l̄ ¼ 0 ¼ |�ιξL ¼ |�SLξ → s̄ðL;l̄ÞXξ

¼ 0

So Xξ ∈ SymdðSÞ for every ξ ∈ XðMÞ. We can also check that X̄ξ ≔ XξjSolðSÞ is a gauge vector field.

ðXξ
{

SÞðA;ZÞ ¼ −
Z
ðΣ;∂ΣÞ

{�ιξTrgðDA ∧ E;DĀ ∧ b̄Þ þ
Z
Σ
{�fιð½ξ;dZ�Þ − ιξdιdZ þ ιdZdιξgL ¼ðII.17Þ

¼ −
Z
ðΣ;∂ΣÞ

{�ιξTrgðDA ∧ E;DĀ ∧ b̄Þ þ
Z
Σ
{�f½Lξ; ιdZ� − LξιdZ þ dιξιdZ þ ιdZLξgL

¼ −
Z
ðΣ;∂ΣÞ

{�ιξTrgðDA ∧ E;DĀ ∧ b̄Þ þ
Z
∂Σ

{̄�{�ðιξιdZLÞ

¼ −
Z
Σ
{�ιξTrgðDA ∧ EÞ −

Z
∂Σ

{̄�ιξ̄TrgðDĀ ∧ b̄Þ:

In the passage from the first to the second line we have used ι½V;W� ¼ ½LV; ιW �. To get to the last line we have used that
ξ and dZ are tangent to the boundary. Clearly X̄ξ ∈ GaugeðSÞ. The same computation performed in the previous
example shows that XðλÞ, given by dAðXðλÞÞ ¼ DA and dZðXðλÞÞ ¼ 0, is a d-symmetry.

(6) The symplectic form is, as one should expect, the same one obtained in the Yang-Mills example replacing dA by DA
(recall that D accounts for the variation up to diffeomorphism). Following [2,3,41] and the computation of the
Yang-Mills example, one obtains again the isomorphism between the CPS symplectic structure and the one induced
by the canonical symplectic form of the cotangent Hamiltonian framework.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have unraveled the geometric nature of
the covariant phase space methods in manifolds with
boundary and characterized the ambiguities that arise. To
do that, we have developed the “relative bicomplex
framework”:

(i) We have taken the definition of the relative complex
ðΩkðM;NÞ; dÞ from [44] and we have extended it to
include all the relevant geometric operations. In this
framework, the relative manifold ðM; ∂MÞ has no
relative boundary and the usual results for manifolds
without boundary apply.

(ii) We have taken the definition of the variational
bicomplex [14] and extended it to the relative case.
This allows us to consider fields over relative
pairs ðM;NÞ.

This natural formalism, which also covers the cases with
“corner terms” [46–48], helps to clarify several common
misconceptions regarding the role of some boundary terms.
More specifically, we obtain the (pre)symplectic structure
over the space of solutions which, in general, has a
boundary contribution. We prove that this construction,
in the case of contractible bundles, is intrinsically asso-
ciated with the action and does not depend on the
representative Lagrangians. We also prove that for non-
contractible bundles this is not the case and some care is
due. In any case, many physical applications are modeled
over contractible bundles. For example, the bundle of
connections of a Yang-Mills theory is an affine bundle
or the bundle of metrics is modeled over a contractible
quotient bundle.
We study the symmetries of the action and find an

interesting group of them, called d-symmetry, which are
always Hamiltonian vector fields. We also define a map
ξ ∈ XðMÞ ↦ Xξ ∈ XðF Þ and consider the associated ξ-
currents ðJξ; |̄ξÞ, ξ-charges Qξ, and ξ-potentials ðQξ; q̄ξÞ.
These are candidates to be relevant quantities although its
specific physical meaning will depend on the problem at
hand. We obtain a flux law for the ξ-charges and character-
ize when Xξ ∈ XðF Þ is a symmetry. Finally, we provide
the CPS-algorithm (expressed in the more standard non-
relative language which is useful for concrete computa-
tions) and implement it in some relevant theories. We show
that for the prototypical examples, like Yang-Mills or
Chern-Simons, the CPS symplectic structure is isomorphic
to the canonical one obtained from the cotangent
Hamiltonian framework. However, we also provide a naive
counterexample in V C showing that this is not always the
case. This is relevant especially when one considers
theories with boundaries where some field-dependent
objects are fixed over the boundary in a complicated
manner (like isolated or dynamical horizons in general

relativity). It remains to study in detail the necessary and
sufficient conditions for this equivalence to hold.
We plan to study in the near future several gravity

theories with this powerful formalism. This study could
shed some light on the strategies to follow in order to
quantize those theories. Moreover, those techniques are
very well suited to study some problems that arise in
condensed matter theory, where the boundary plays a
prominent role. For instance, the covariant phase space
formalism provides a suitable framework to study quantum
edge states and the appearance of degrees of freedom in the
boundary. Another approach we plan to study is the
multisymplectic formalism [53] of the CPS methods with
boundary, which is a natural generalization of the theory
that has been developed in this paper.
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APPENDIX A: SPACE OF JETS

1. Motivation

Let E!π M be a fibered manifold of rank r and
dimM ¼ n, and let F be its space of (local) sections. In
this Appendix we consider the nonrelative version but the
same definitions and results apply for the relative formu-
lation introduced in Sec. II C.
(0) An element ϕ ∈ F is a smooth map ϕ∶U ⊂ M → E

such that ϕðpÞ ∈ Ep ≔ π−1ðpÞ. Although unusual,
E can be thought of as all possible values that a field
of F can take at p for every p ∈ M. We can say that
the bundle π∶E → M has the information of F of
degree 0 (no derivatives involved). It will be useful
to denote π0M ≔ π.

(1) An element V ∈ XðF Þ is a map V∶F → TF such
that Vϕ ∈ TϕF . However, it can also be considered
as a map Vϕ∶M → TE such that VϕðpÞ ∈ TϕðpÞEp.
To see that, consider a curve fϕτgτ inF with ϕ0 ¼ ϕ
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and Vϕ ¼ ∂τj0ϕτ. Then fϕτðpÞgτ is a curve in Ep

passing through ϕðpÞ so VϕðpÞ ¼ ∂τj0ϕτðpÞ ∈
TϕðpÞEp. Thus, TE can be thought of as all possible
values that a field F can take at p together with its
possible “velocities” (infinitesimal displacements).
So, loosely speaking, π1M∶TE → M has the infor-
mation of F up to degree 1 (first derivatives
involved).

(2) We want to generalize this concept of information up
to any degree k ∈ N. For that, we are going to define
the k-jet bundle JkE. In analogy to the previous
cases, the sections Wϕ∶M → JkE will show that the
bundle πkM∶JkE → M gathers the information of F
up to degree k (involving derivatives up to order k).

The goal of this Appendix is to give the most important
definitions and results about the spaces of jets without
getting too much into the details. For the interested reader,
we recommend [14,50,54].

2. Definition

We declare that two local sections ϕ1;ϕ2 ∈ F are k-
equivalent at p ∈ M if their Taylor expansions in an
adapted chart (and hence in every adapted chart) are equal
up to order k. This equivalence class, denoted jkpðϕÞ, is
called k-jet of ϕ at p. Loosely speaking, it represents the
coordinate-free expression of the Taylor expansion of ϕ at
p up to order k. Joining all these elements jkpðϕÞ for every
ϕ ∈ F we obtain the k-jet fiber JkpE. Joining all these fibers
JkpE for every p ∈ M we obtain the k-jet fibered bundle
πkM∶JkE → M (with the differential structure induced by E,
analogous to the one of TE). We denote F k the space of its
(local) sections i.e., ϕk∶M → JkE such that ϕkðpÞ ∈ JkpE.
j0pðϕÞ is completely determined by ϕðpÞ ∈ Ep, then

j0ϕ ¼ ϕ, J0E ¼ E and F 0 ¼ F . Meanwhile, j1pðϕÞ is
determined by ϕ ∈ F and its derivatives in the M-direc-
tions. Analogously, J2E gathers all possible values of the
fields, M-derivatives, and second M-derivatives at all the
points p ∈ M. Thus, JkE is indeed a generalization that
achieves the goal we set for ourselves in the previous
section (see also the coordinate expression (A1) below).
Working over some JkE is not always enough. Indeed,

some constructions using elements of order k might result
in objects of higher order. Hence, fixing k a priori restricts
the allowed constructions. It is tempting to consider the
union of all JkE. Unfortunately, the resulting space is ill-
behaved. On the other hand, nothing prevents us from
taking k ¼ ∞ in our previous construction: two local
sections ϕ1;ϕ2 ∈ F are ∞-equivalent at p ∈ M if their
Taylor coefficients at p are the same at all orders. This
defines the ∞-jets j∞p ðϕÞ and the ∞-jet bundle
π∞M∶J∞E → M. The only problem is that J∞E is an

infinite-dimensional manifold, which complicates every-
thing, but it is still very well behaved (e.g., it is para-
compact and it admits partitions of unity). Indeed, it can be
proved [14,54] that J∞E is the projective limit of fJkEgk
and that the notions of smooth functions, vector fields, and
other relevant constructions are well defined in J∞E.
Moreover, they only depend on some finite order (arbitrary
large and it can increase when performing some operations,
but finite nonetheless).
It will be very useful to understand the following: given a

local section ϕ ∈ F , we have j∞p ðϕÞ ∈ J∞p E. Dropping the
dependence on p, we get a map j∞ðϕÞ∶M → J∞E. To
understand j∞ðϕÞ, we introduce some adapted coordinates
fxi; ua; uaJg on J∞E, where fxigi¼1…n is a chart of M,
fuaga¼1…r are coordinates on the fiber Ep, and J is a multi-
index related to the partial derivatives with respect to xJ.
One can think that fxig represent all the base points in
U ⊂ M, fuag all possible values ϕðpÞ of every ϕ ∈ F,
fuajg all xj-derivatives of every ϕ ∈ F, fuaj1j2g all xj1xj2-
derivatives of all the fields ϕ, and so on. Of course, those
coordinates are all independent. The function j∞ðϕÞ maps
p ¼ ðx1;…; xnÞ to the coordinates of J∞E that “match” at
all orders i.e., fuag are the values of ϕðpÞ ¼
ðϕ1ðpÞ;…;ϕrðpÞÞ, fuajg its 1st-derivatives, fuaj1j2g its
2nd-derivatives, and so on. We can write this as

ðj∞ðϕÞÞðxiÞ ≔ j∞p ϕ ¼
�
xi ¼ pi; ua ¼ ϕaðpÞ;

uaj ¼
∂ϕa

∂xj ðpÞ; u
a
j1j2

¼ ∂2ϕa

∂xj1∂xj2 ðpÞ;…
�

ðA1Þ

This is analogous to what happens if we consider TM,
which gathers all possible points and velocities, and a
curve γ∶I → M. There exists a natural lift σ∶I → TM
given by σðtÞ ¼ ðγðtÞ; _γðtÞÞ in which the second compo-
nent of σ “matches” the velocity of the first component.
As a final remark, notice that E can be considered

as the base manifold of the bundles πkE∶JkE → E where
πkEðjkpðϕÞÞ ¼ ϕðpÞ ∈ Ep.

3. Geometric constructions over J∞E

a. Generalized vector fields

From our discussion of section A 1, it follows that E can
be viewed as formed by elements e ¼ ϕðpÞ ∈ Ep for p ∈
M and ϕ ∈ F . Thus, a vector field V ∈ XðF Þ can be
associated with a vector field V∶E → TE on E given by
Ve ≡ VϕðpÞ ≔ VϕðpÞ ∈ TϕðpÞEp. This is equivalent to say
that V is a vector field over π0Eð¼ IdÞ. That is, that the
following diagram commutes
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ðA2Þ

We recall that E has the information of degree 0, so we have
that V is a vector field that only depends on the “degree 0
information”. We can generalize this dependence to allow
that V depends on “higher-order information.” Thus, we
define a generalized vector field of E as a map V∶J∞E →
TE such that the following diagram commutes

ðA3Þ

We denote asX∞
genðEÞ the set of generalized vector fields of

E. Of course, there is a natural inclusion XðEÞ ⊂ X∞
genðEÞ.

Likewise, we can define X∞
genðMÞ as the set of generalized

vector fields on M, maps ξ∶J∞E → TM such that the
following diagram commutes

ðA4Þ

Definition 11.
(i) A vector field V over E such that ðπ1MÞ�V ¼ 0 is

called vertical.

(ii) A generalized vector field V on E which is also
vertical is called an evolutionary vector field. We
denote X∞

evðEÞ the set of evolutionary vector fields.
In some adapted coordinates fxi; ua; uaJg of J∞E, an

evolutionary vector field of E is of the form

V ¼ Vb½xi; ua; uaJ �
∂
∂ub ðA5Þ

It is vertical because it has no “horizontal” components
Vj∂=∂xj. It is generalized because Vb depends on elements
of higher order uaJ. Their importance stems from the fact
that they provide the derivative in the direction of the fields
i.e., the usual variational calculus. Moreover, they are
essential to obtain generalized symmetries and to formalize
Noether’s theorem as we will see at the end of this section.

b. Prolongations and total vector fields

In the previous section we have defined generalized
vector fields V∶J∞E → TE and ξ∶J∞E → TM. Although
they depend on J∞E, they are vector fields of E and M
respectively. This section is devoted to constructing natural
vector fields over J∞E.
First recall that given a (local) section ϕ ∈ F , we have

the map j∞ϕ∶M → J∞E given by (A1). Therefore, its push
forward ðj∞ϕÞ�∶TM → TðJ∞EÞ allows us to lift vectors
from M to J∞E.
Definition 12. Given ξ ∈ XðMÞ and ϕ ∈ F , we define

the ϕ-lift of ξ as ðj∞ϕÞ�ξ∶ðj∞ϕÞðMÞ ⊂ J∞E → TðJ∞EÞ.
As ϕ is a section, the projection of ðj∞ϕÞ�ξ over M is

again ξ, so it is a true lift of ξ. Consider some coordinates
fxi; ua; uaJg and a curve xðtÞ ¼ ðxiðtÞÞ such that xð0Þ ¼ p
and ξp ≔ ∂tj0x, then

ðj∞ϕÞ�ξp ¼ d
dt

����
0

ðj∞ϕÞðxiðtÞÞ ¼ðA.1Þ d
dt

����
0

�
xiðtÞ; uaðtÞ ¼ ϕaðxiðtÞÞ; uaj ðtÞ ¼

∂ϕa

∂xj ðx
iðtÞÞ;…

�

¼
�
ξip;

∂ϕa

∂xm ðxið0ÞÞ d
dt

����
0

xmðtÞ; ∂2ϕa

∂xj∂xm ðxið0ÞÞ d
dt

����
0

xmðtÞ;…
�

¼ ðδim; uamðpÞ; uaJmðpÞÞjϕξmp :

Acting over a smooth function G∶J∞E → R, we obtain

ðj∞ϕÞ�ξpðGÞ ¼ dGððj∞ϕÞ�ξpÞ

¼ ∂G
∂xi dx

iððj∞ϕÞ�ξpÞ þ
∂G
∂ua du

aððj∞ϕÞ�ξpÞ þ
∂G
∂uaJ du

a
Jððj∞ϕÞ�ξpÞ

¼
�
ξip

∂
∂xi þ ξmp ðuamjϕÞ

∂
∂ua þ ξmp ðuaJ∪fmgjϕÞ

∂
∂uaJ

�
ðGÞ:

Thus, the ϕ-lift of ξ can be written as ðj∞ϕÞ�ξ ¼ ξiðDijϕÞ where
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Di ≔
∂
∂xi þ uai

∂
∂ua þ uaJ∪fig

∂
∂uaJ ðA6Þ

is a vector field of J∞E called the total i-derivative. This is
actually very similar to the well-known material derivative
of fluid mechanics D ¼ ∂t þ u⃗ ·∇ ¼ ∂t þ ux∂x þ uy∂yþ
uz∂z. Locally, the fDig span a subspace H of “horizontal”
vector fields (they are not vertical). H in fact provides the
canonical split

TðJ∞EÞ ¼ H ⊕ V; ðA7Þ

where V is the bundle of π∞M-vertical vectors of J
∞E. This

decomposition is not possible on any JkE. This is another
important reason to work with the infinite-dimensional
manifold J∞E. Notice that H defines a connection on the
bundle π∞M∶J∞E → M, which turns out to be flat. In order
to properly define H, we need to introduce the following
concept:
Definition 13. A form α ∈ ΩðJ∞EÞ is a contact form if

ðj∞ϕÞ�α ¼ 0 for every ϕ ∈ F. We denote the set of contact
forms as C�ðJ∞EÞ.
The most important example of 1-contact form, in

coordinates fxi; ua; uaJg, is

θaJ ≔ duaJ − uaJ∪fmgdx
m → θaJððj∞ϕÞ�ξÞ

¼
�
uaJm −

∂uaJ
∂xm

�����
ϕ

ξm ¼ðA.1Þ0:

In fact, these contact forms allow us to identify which
sections of J∞E → M come from a section ϕ of E → M
because they force the coordinates to “match” as we
explained when we derived equation (A1). In fact, loosely
speaking, they provide a true chain rule in M

duaJ“ ¼ ”
∂uaJ
∂xm dxm:

Recall that the coordinates are independent so, in general,
this is not true (hence the quotation marks). It is then
interesting to consider vector fields of J∞E that belong to
the kernel of theses contact forms. In that way, we obtain
total derivatives that satisfy the chain rule.
Definition 14. The total vector field of ξ ∈ X∞

genðMÞ is
the (unique) vector field totðVÞ ∈ XðJ∞EÞ such that

(i) It is a lift of ξ i.e., ðπ∞MÞ�ðtotξÞ ¼ ξ.
(ii) It annihilates all contact 1-forms i.e., ιtotðξÞβ ¼ 0 for

every β ∈ C1ðJ∞EÞ.
As its name suggested, it can be proved that the total i-

derivative Di is the total derivative of ∂i:

Di ≔ tot

� ∂
∂xi

�
→ If ξ ¼ ξi

∂
∂xi then totðξÞ ¼ ξiDi:

Total vector fields are elements of XðJ∞EÞ lifted from
elements of X∞

genðMÞ annihilating the contact 1-forms (and
they actually generate all the vector fields killing the
contact forms). We proceed now to define elements of
XðJ∞EÞ lifted from elements of X∞

genðEÞ and preserving
the contact forms.
Definition 15. The prolongation of V ∈ X∞

genðEÞ is the
(unique) vector field prolðVÞ ∈ XðJ∞EÞ such that
(1) It is a lift of V i.e., ðπ∞E Þ�ðprolVÞ ¼ V.
(2) It preserves C�ðJ∞EÞ i.e., LprolðVÞβ ∈ C�ðJ∞EÞ for

every β ∈ C�ðJ∞EÞ.
The idea behind this definition is that the flow φt∶E → E

of a vector field V ∈ X∞
genðEÞ can be lifted, or prolonged, to

a flow prolðφtÞ∶J∞E → J∞E (see [14,50] for more
details). The vector field associated to prolðφtÞ is precisely
prolðVÞ. This equivalent definition, although geometrically
more clear, it is less useful in practice because, in general, it
is quite hard to compute the prolongation of a vector field.
However, for V ∈ X∞

evðEÞ, we have a simple expression. If
V ¼ Va∂=∂ua in some coordinates fxi; ua; uaJg, then

prolðVÞ ¼
X∞
jJj¼0

ðDJVaÞ ∂
∂uaJ ðA8Þ

The fact that the sum is infinite posses no convergence
problem. This is so because for any vector field W ∈
XðJ∞EÞ and any real map f ∈ C∞ðJ∞EÞ, the mapWðfÞ ∈
C∞ðJ∞EÞ involves only finitely many terms i.e., f depends
only on finitely many uaJ.

c. de Rham complex

The exterior derivative of the de Rham complex
ðΩðJ∞EÞ; dÞ decomposes into its horizontal and vertical
part d ¼ dH þ dV . Likewise, with the help of (A7), we have
the following direct sum decomposition which is only valid
for k ¼ ∞

ΩpðJ∞EÞ ¼ ⨁
rþs¼p

Ωðr;sÞðJ∞EÞ ðA9Þ

and a bicomplex diagram analogous to (2.3). Notice that, as
d2 ¼ 0, the maps

dH∶Ωðr;sÞðJ∞EÞ → Ωðrþ1;sÞðJ∞EÞ
dV∶Ωðr;sÞðJ∞EÞ → Ωðr;sþ1ÞðJ∞EÞ

satisfy d2H ¼ 0, d2V ¼ 0, and dVdH þ dHdV ¼ 0.
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Theorem 3 (Evolutionary vector fields). Given W ∈
X∞

evðEÞ and β ∈ Ωðr;sÞðJ∞EÞ, then LprolðWÞβ ∈ Ωðr;sÞðJ∞EÞ
and the following properties hold

LprolðWÞ ¼dV ιprolðWÞþ ιprolðWÞdV LprolðWÞdH¼dHLprolðWÞ
0¼dHιprolðWÞþ ιprolðWÞdH LprolðWÞdV¼dVLprolðWÞ

We proceed to define some operators with the help of
coordinates. For an intrinsic definition see [14].
Definition 16. A total differential operator of order k ∈

N is a map P∶X∞
evðEÞ → Ωðr;sÞðJ∞EÞ that, locally, has the

form

PðWÞ ¼
Xk
jJj¼0

ðDJWaÞPJ
aPJ

α ∈ Ωðr;sÞðJ∞EÞ

with PJ
a ≠ 0 for jJj ¼ k.

This definition is somewhat dual to Eq. (A8).
Theorem 4 (Integration by parts). Let P∶X∞

evðEÞ →
Ωðn;sÞðJ∞EÞ be a k-order total differential operator with
k ≤ 2. Then, there exists a unique globally defined, zeroth
order operator Q∶X∞

evðEÞ → Ωðn;sÞðJ∞EÞ and a globally
defined first order differential operator R∶X∞

evðEÞ →
Ωðn−1;sÞðJ∞EÞ satisfying

PðWÞ ¼ QðWÞ − dHRðWÞ ðA10Þ

Equation (A10) also holds globally for k ≥ 3, but the
operator R cannot be canonically constructed from P. As a
corollary, it is possible to derive a global first variational

formula: given L ∈ Ωðn;0ÞðJ∞EÞ, then ιprolðWÞdVL ∈
Ωðn;0ÞðJ∞EÞ defines a differential operator. In [14] it is
proved that

ιprolðWÞdVL ¼ ιprolðWÞEðLÞ − dHðιprolðWÞΘÞ
¼ðA.15Þ

ιprolðWÞðEðLÞ þ dHΘÞ: ðA11Þ

This formula is only valid for the prolongation of evolu-
tionary vector fields. In order to remove this dependence,
we use that, for s ≥ 1, we can obtain the following
decomposition

Ωðn;sÞðJ∞EÞ ¼ IðΩðn;sÞðJ∞EÞÞ ⊕ dHðΩðn;sÞðJ∞EÞÞ

where I is the so called interior Euler operator [ [14],
page 45]. Therefore

dVL ¼ EðLÞ þ dHΘ ðA12Þ

globally on J∞E. EðLÞ is related to the EL equations. To
see how, let us first make a small digression.
If we consider the subset E0 ⊂ J∞E where EðLÞ van-

ishes, we are just considering some algebraic conditions
over the coordinates of e ∈ E0. This is not enough as the
following example shows: consider the algebraic equation
ux ¼ u with E ¼ R × R. This corresponds to the differ-
ential equation u0 ¼ u which, in turn, implies u00 ¼ u0,
u000 ¼ u00, and so on. However, algebraically ux ¼ u does
no imply uxx ¼ ux, uxxx ¼ uxx, etc., because the coordi-
nates are independent. That is why those differential
consequences have to be included by hand. We define
the space of solutions of the theory given by L as

E ¼ fe ∈ J∞E=EðLÞ and all its differential consequences vanish at eg

with the inclusion |L∶E ↪ J∞E. If we consider a manifold
with boundary, once we have (A12), we could apply the
same argument that led to Eq. (3.6). It is important to
realize that, in general, the operator q̄ analogous to Q (or b̄
in the notation of Sec. III D) is not defined over J∞ð∂EÞ but
over a slightly more general bundle over ∂M. Indeed, some
boundary conditions involve derivatives in directions trans-
versal to ∂M while J∞ð∂EÞ can only account for those
tangent to ∂M.

d. Symmetries and Noether’s theorem

A dH-symmetry (or infinitesimal variational symmetry)
of the Lagrangian L ∈ Ωðn;0ÞðJ∞EÞ is an evolutionary
vector field W ∈ X∞

evðEÞ satisfying

LprolðWÞL ¼ dHSLW ðA13Þ

for some SLW ∈ Ωðn−1;0ÞðJ∞EÞ. In that case, we define the
W-current as

JΘW ≔ SLW þ ιWΘ ∈ Ωðn−1;0ÞðJ∞EÞ ðA14Þ

Theorem 5 (Noether’s theorem). The W-current is
conserved over the space of solutions E:

dHð|�LJΘWÞ ¼ 0
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Proof.

dHJΘW ¼ðA.22Þ
ðA.21Þ

LprolðWÞLþ dHιprolðWÞΘ

¼ðA.15Þ
ιprolðWÞðdVL − dHΘÞ ¼ðA.20Þ

ιprolðWÞE

▪

4. Connection with the standard physical formalism

In the main body of the article we have dealt with objects
in M × F (the following discussion applies as well for the
relative version). For that, we have considered that F has
nice properties and we have performed computations in the
usual fashion. However, we have just learned that the
proper way is to consider ϕðpÞ ∈ Ep instead of ϕ ∈ F ,
which allows us, in particular, to consider higher-order
derivatives with the help of the jet bundles (it is not always
clear to what space the derivatives of ϕ belong to). The
manipulations are roughly speaking the same, but con-
ceptually both approaches are very different.
Let us focus for a moment in the forms ðr;sÞðM × F Þ

over M × F. We have the (horizontal) exterior derivative d
ofM and the (vertical) exterior derivative d ofF that define
a natural bigraded structure: the one associated with the
product structure ofM × F and with the exterior derivative
d ≔ dþ d. From d2 ¼ 0 we deduce that dd ¼ −dd which
is (2.12) upon considering the change of sign mentioned
after (2.12). The same happens with the interior product
with vertical fields and the horizontal exterior derivative,
which anti-commute according to Theorem 3. Of course,
this is just a matter of convention and the important results
remain the same.
In order to connect this bigraded complex ðM × F Þ

with the de Rham complex ΩðJ∞EÞ, we use the evaluation

map Eval∞∶M × F → J∞E given by Eval∞ðp;ϕÞ ¼
j∞p ðϕÞ [27]. It allows us to define the sub-bicomplex of
ðM × F Þ
locðM × F Þ ≔ ðEval∞Þ�ΩðJ∞EÞ → p

locðM × F Þ
≔ ⨁

rþs¼p
ðr;sÞ

loc ðM × F Þ:

From [13] we have that ðEval∞Þ�∶ΩðJ∞EÞ → ðM × F Þ
is injective, so ΩðJ∞EÞ is isomorphic to its image,
locðM × F Þ. This identification provides a dictionary to
rewrite this paper in the jet language. For instance, dϕa can
be properly written, in some coordinates fxi; ua; uaJg, as
dua. Likewise, a Lagrangian L ∈ ðn;0ÞðM × F Þ can be
understood as a horizontal element L ∈ ΩnðJ∞EÞ i.e., in
coordinates it is of the form L ¼ fðxi; ua; uaJÞdx1 ∧ � � � ∧
dxn (with no du term). The action S ∈ Ω0ðF Þ and the
symplectic form Ωϕ ∈ Ω2ðF Þ are given by

SðϕÞ ¼
Z
M
ðj∞ϕÞ�L Ω{

ϕ ¼
Z
Σ
{�ðj∞ϕÞ�dVΘ: ðA15Þ

The relevant formulas for the computations, in the
fxi; ua; uaJg coordinates, are

dHF ¼ ðDiFÞdxi dVF ¼ ∂F
∂uaJ θ

a
J ðA16Þ

dHxi ¼ dxi dVxi ¼ 0 ðA17Þ

dHuaJ ¼ uaJ∪figdx
i dVuaJ ¼ θaJ ðA18Þ

dHθaI ¼ dxi ∧ θaI∪fig dVθαI ¼ 0: ðA19Þ

APPENDIX B: SOME IMPORTANT RESULTS

1. Stokes’ theorems

In this section we assume that M is an oriented and connected n-manifold with boundary ∂M↪
|
M, possibly empty, with

the induced orientation.

Stokes If ∂M ¼ ∅ and ω ¼ dα ∈ Ωn
cðMÞ, then

Z
M
ω ¼ 0

Inverse Stokes If ∂M ¼ ∅ and ω ∈ Ωn
cðMÞ such that

Z
M
ω ¼ 0

then ∃ α ∈ Ωn−1
c ðMÞ with ω ¼ dα.

Stokes with boundary If ω ¼ dα ∈ Ωn−1
c ðMÞ,

β̄ ¼ |�α − dγ̄ ∈ Ωn−1
c ð∂MÞ, then

Z
M
ω ¼

Z
∂M

β̄

Inverse Stokes with boundary If ω ∈ Ωn
cðMÞ and β̄ ∈ Ωn−1

c ð∂MÞ
are such that

Z
M
ω ¼

Z
∂M

β̄

then ∃ α ∈ Ωn−1
c ðMÞ; γ̄ ∈ Ωn−2

c ð∂MÞ with ω ¼ dα and
β̄ − |�α ¼ dγ̄.
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The Stokes’ theorems with and without boundary are standard results. The top-right theorem follows from the
isomorphism

R
M ∶HnðMÞ → R given by de Rham’s theorem [49]. The last one is a consequence of the fact that if M has

nonempty boundary, thenHnðMÞ ¼ 0 [ [49], 8.4.8]. Thus ω is exact and we can apply de Rham’s theorem to the boundary.
Following the theory developed in Sec. II C, we can state their relative versions.

Relative Stokes If ðω; β̄Þ ¼ dðα; γ̄Þ ∈ Ωn
cðM; ∂MÞ, then

Z
ðM;∂MÞ

ðω; β̄Þ ¼ 0

Inverse relative Stokes If ðω; β̄Þ ∈ Ωn
cðM; ∂MÞ such that

Z
M
ðω; β̄Þ ¼ 0

then ∃ ðα; γ̄Þ ∈ Ωn−1
c ðM; ∂MÞ with ðω; β̄Þ ¼ dðα; γ̄Þ.

Relative Stokes with boundary If ððω; β̄Þ; ðα; γ̄ÞÞ ¼
dðða; b̄Þ; ðc; d̄ÞÞ then

Z
ðM;NÞ

ðω; β̄Þ ¼
Z
∂ðM;NÞ

ðα; γ̄Þ

Inverse relative Stokes with boundary If ððω; β̄Þ; ðα; γ̄ÞÞ ∈
Ωn

cððM;NÞ; ∂ðM;NÞÞ are such that

Z
ðM;NÞ

ðω; β̄Þ ¼
Z
∂ðM;NÞ

ðα; γ̄Þ

then ∃ ðða; b̄Þ; ðc; d̄ÞÞ ∈ Ωn−1
c ððM;NÞ; ∂ðM;NÞÞ with

ððω; β̄Þ; ðα; γ̄ÞÞ ¼ dðða; b̄Þ; ðc; d̄ÞÞ.

The first row is equal to the second row of the previous table. The second row of this table follows from remark 2.

2. Cohomological results

Consider M a connected and oriented n-manifold with boundary ∂M (possibly empty).

H0ðMÞ ≅ R H0
cðMÞ ≅

�
R if M is compact
0 if M is noncompact Hn

cðMÞ ≅
�
R if ∂M ¼ ∅
0 if ∂M ≠ ∅

HkðM × RÞ ≅ HkðMÞ Hk
cðM ×RÞ ≅ Hk−1

c ðMÞ Hn
cðM; ∂MÞ ≅ R

Recall that ðM;∅Þ ¼ M. Moreover, if M is compact, then
Hk

cðMÞ ¼ HkðMÞ. All these results can be found in [49]
except the last one, which follows from the Lefschetz
duality [55]. We also have the following important
result

HkðM ×R; ∂M × RÞ ≅ HkðM; ∂MÞ ðB1Þ

which is the relative analog to HkðM ×RÞ ≅ HkðMÞ. The
isomorphism holds if we restrict to those n-pair of forms
which are integrable over ðM; ∂MÞ but not necessarily
over ðM ×R; ∂M ×RÞ.

3. Other results

We consider the space of null Lagrangians, i.e., those
with no Euler-Lagrange equations

LagnullðMÞ¼fðL;l̄Þ∈ΩnðJ∞E;J∞ð∂EÞÞ=½dVðL;l̄Þ�¼0g:

We denote Hn
nullðMÞ the space formed by the cohomolog-

ical (horizontal) classes of null Lagrangians.

Theorem 6.
(i) If E → M is a bundle over the n-manifold M, then

Hn
nullðMÞ ≅ HnðE; ∂EÞ, where ∂E → ∂M is the

induced bundle.
(ii) If E → M is a contractible bundle over the n-

manifold M, then Hn
nullðMÞ ≅ HnðM; ∂MÞ.

Proof. The first result follows adapting the proof of
[ [14], theorem 5.9] to the relative case. Everything works
out as the proof relies on cohomological techniques (see
also [13]). The second point follows from (B1) and the fact
that the fibers are contractible. ▪
Theorem 7. Let F be the space of sections of a

contractible bundle and ðL; l̄Þ ∈ LagðMÞ. If ðL; l̄Þ 0, then
½ðL; l̄Þ� ¼ 0
Proof. The action obtained from ðL; l̄Þ is identically

zero, so it provides no EL equation. That means that
½ðL; l̄Þ� ∈ Hn

nullðMÞ. From the previous theorem we have
Hn

nullðMÞ ≅ HnðM; ∂MÞ and the latter space is generated,
according to the table in Sec. B 3, just by one element
which will be of the form ½ðvolM; vol∂MÞ� ≠ 0. Now notice
that ðπ∞MÞ�ðvolM; vol∂MÞ ∈ ΩnðJ∞E; J∞ð∂EÞÞ is indepen-
dent of the fields, so its vertical derivative is zero i.e., it has
no EL equation either. This means that
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½ðπ∞MÞ�ðvolM; vol∂MÞ� ∈ Hn
nullðMÞ:

Let us prove that it is nonzero. Assume that
ðπ∞MÞ�ðvolM; vol∂MÞ were exact, then its pullback through
j∞ϕ had to be also exact. But this would be a contradiction
because

ðj∞MÞ�ðπ∞MÞ�ðvolM; vol∂MÞ
¼ ðπ∞M∘j∞ϕÞ�ðvolM; vol∂MÞ¼† Id�ðvolM; vol∂MÞ
¼ ðvolM; vol∂MÞ

which is nonexact. Notice that in † we have used that j∞ϕ
is a section of the bundle π∞M∶J∞E → M.
As Hn

nulðMÞ has dimension 1, then ðπ∞MÞ�ðvolM; vol∂MÞ
alone forms a generating system. In particular, there exists
some α ∈ R such that ½ðL; l̄Þ� ¼ α½ðπ∞MÞ�ðvolM; vol∂MÞ�.
Integrating this expression, which only depends on the
cohomology, and using that by hypothesis ðL; l̄Þ 0,
leads to

0 ¼
Z
ðM;∂MÞ

ðL; l̄ÞðϕÞ ¼
Z
ðM;∂MÞ

αððπ∞MÞ�ðvolM; vol∂MÞÞðϕÞ ¼ðA.24Þ

¼ α

Z
ðM;∂MÞ

ðj∞ϕÞ�ðπ∞MÞ�ðvolM; vol∂MÞ ¼ α

Z
ðM;∂MÞ

ðπ∞M∘j∞ϕÞ�ðvolM; vol∂MÞ

¼ α

Z
ðM;∂MÞ

Id�ðvolM; vol∂MÞ ¼ α

Z
ðM;∂MÞ

ðvolM; vol∂MÞ:

The last integral is nonzero applying the inverse relative Stokes’ theorem, stated in Sec. B 1, to ½ðvolM; vol∂MÞ� ≠ 0.
Therefore, α ¼ 0 which shows that ½ðL; l̄Þ� ¼ 0. ▪
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