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Supersymmetric Yang–Mills theory is formulated in six dimensions, without the use of anticommuting
variables. This is achieved using a new Nicolai map, to third order in the coupling constant. This is the
second such map in six dimensions and highlights a potential ambiguity in the formalism.
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I. INTRODUCTION AND NOTATION

Supersymmetric theories may be formulated without the
use of anticommuting variables [1,2]. In this approach,
supersymmetric gauge theories are characterized by a
Nicolai map—a transformation of the bosonic fields such
that the Jacobian determinant of the transformation exactly
cancels against the product of the Matthews-Salam-Seiler
(MSS) [3,4] and Faddeev-Popov (FP) determinants [5,6].
This formalism offers an alternate perspective on the
physics of supersymmetric gauge theories.
The Nicolai map, for Yang-Mills theory, was explicitly

constructed to second order in the coupling constant in [7]
and derived from a rigorous R prescription in [8–11]. It
was subsequently shown [12] that this construction holds in
all the critical dimensions D ¼ 3, 4, 6, 10 where super-
symmetric YangMills theories exist [13]. The map and the
framework itself were extended to third order in the
coupling constant in [14].
In this paper, we present a stand-alone result—a new

map, also to third order in the coupling constant, but valid
exclusively in six dimensions. The map presented here,
arrived at by trial and error (starting with an educated
guess), is simpler than the one in [14]. This highlights a
potential ambiguity in the R prescription approach, an
aspect of which was also discussed in [14]. For N ¼ 1
Yang Mills theories, alternate Nicolai maps are known to
exist in four and six dimensions [15,16]. These maps in
light cone gauge, not constructed from a R prescription,
work to all orders in perturbation theory.

Supersymmetric gauge theories, in D dimensions, are
characterized by the existence of a Nicolai map T g of the
Yang–Mills fields

T g∶Aa
μðxÞ ↦ A0a

μ ðx; g;AÞ;

such that
(i) The Yang–Mills action without gauge-fixing terms

is mapped to the Abelian action

S0½A0� ¼ Sg½A�; ð1Þ

where Sg½A� ¼ 1
4

R
dxFa

μνFa
μν is the Yang–Mills ac-

tion with gauge coupling g and Fa
μν ≡ ∂μAa

ν −
∂νAa

μ þ gfabcAb
μAc

ν is the field strength.
(ii) On the gauge surface1Ga½A�≡ ∂μAa

μ ¼ 0, the Jacobi
determinant of T g is equal to the product of the MSS
and FP determinants, order by order in perturbation
theory.

det

�
δA0a

μ ðx; g;AÞ
δAb

νðyÞ
�

¼ ΔMSS½A�ΔFP½A�: ð2Þ

(iii) The gauge fixing function

Ga½A� is a fixed point of T g: ð3Þ

A new expression for A0a
μ ðxÞ up to order g3 is presented in

this paper and shown to satisfy all three requirements above
only in D ¼ 6.Published by the American Physical Society under the terms of
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1The gauge surface restriction will prove unnecessary for this
particular map.
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We work in Euclidean space using the Landau gauge

Ga½Aμ� ¼ ∂μAa
μ: ð4Þ

The results presented below may be adapted to other
gauges (the light-cone gauge being of particular interest
given potential links to [17,18]). The free scalar propagator
is (□≡ ∂μ∂μ)

CðxÞ ¼
Z

dDk
ð2πÞD

eikx

k2
⇒ −□CðxÞ ¼ δðxÞ: ð5Þ

The free fermion propagator is (spinor indices suppressed)

γμ∂μS0ðxÞ ¼ δðxÞ ⇒ S0ðxÞ ¼ −γμ∂μCðxÞ; ð6Þ

S0ðx − yÞ ¼ −S0ðy − xÞ. In a gauge-field dependent back-
ground

γμðDμSÞabðxÞ≡ γμ½δac∂μ − gfacdAd
μðxÞ�ScbðxÞ ¼ δabδðxÞ:

ð7Þ
II. RESULT

The new result in this paper is the following explicit
expression for T g to Oðg3Þ.

ðT gAÞaμðxÞ ¼ Aa
μðxÞ þ gfabc

Z
dy∂λCðx − yÞAb

μðyÞAc
λðyÞ þ

3

2
g2fabcfbde

Z
dydz∂ρCðx − yÞAc

σðyÞ∂ ½ρCðy − zÞAd
μðzÞAe

σ�ðzÞ

þ 3

2
g3fabcfbdefdmn

Z
dydzdw∂ρCðx − yÞAc

λðyÞfþ∂λCðy − zÞAe
σðzÞ∂ ½μCðz − wÞAm

ρ ðwÞAn
σ�ðwÞ

þ ∂μCðy − zÞAe
σðzÞ∂ ½σCðz − wÞAm

ρ ðwÞAn
λ�ðwÞ þ ∂ρCðy − zÞAe

σðzÞ∂ ½σCðz − wÞAm
λ ðwÞAn

μ�ðwÞg

− g3fabcfbdefdmn

Z
dydzdw∂ρCðx − yÞAc

λðyÞfþ∂σCðy − zÞAe
σðzÞ∂ ½μCðz − wÞAm

λ ðwÞAn
ρ�ðwÞ

þ ∂σCðy − zÞAe
ρðzÞ∂ ½σCðz − wÞAm

λ ðwÞAn
μ�ðwÞ þ ∂σCðy − zÞAe

μðzÞ∂ ½σCðz − wÞAm
ρ ðwÞAn

λ�ðwÞ
þ ∂σCðy − zÞAe

λðzÞ∂ ½μCðz − wÞAm
ρ ðwÞAn

σ�ðwÞg; ð8Þ

where ½μνρ� ¼ 1
6
½μνρ − μρνþ νρμ − νμρþ ρμν − ρνμ�.

It is important to note that this result differs from the one in [14]. All terms above have the base structure ∂CA∂CA∂CAA
at Oðg3Þ, while the result in [14] also includes the structures ∂C∂CAA∂CAA, ACA∂CAA, and ∂C∂ðACÞA∂CAA.
Further, terms that overlap with those in [14], appear here with different coefficients. As a consequence, the expression

above is not a subset of the result in [14].
Finally, while the result in [14] was valid in all the critical dimensions, we will see that the result in (8) constitutes a map

only in six dimensions.

III. CHECKS OF THE RESULT

In this section, we prove that expression in (8) satisfies all three requirements, (1), (2), and (3), necessary for it to be a
map. The calculations up to Oðg2Þ are identical to those in [12,14], so the focus here will be on Oðg3Þ.

A. Gauge condition

We begin with the third requirement, listed in (3). We need to show that ∂μA0a
μ ðxÞ ¼ ∂μAa

μðxÞ þOðg4Þ.
We apply ∂μ to the terms of order g3 in (8). This gives us a symmetric ∂μ∂ρ at the beginning of the expression so we

eliminate all terms that are antisymmetric under the exchange μ ↔ ρ and find

∂μA0a
μ ðxÞjOðg3Þ ¼

3

2
g3fabcfbdefdmn

Z
dydzdw∂μ∂ρCðx − yÞAc

λðyÞfþ∂μCðy − zÞAe
σðzÞ∂ ½σCðz − wÞAm

ρ ðwÞAn
λ�ðwÞ

þ ∂ρCðy − zÞAe
σðzÞ∂ ½σCðz − wÞAm

λ ðwÞAn
μ�ðwÞg − g3fabcfbdefdmn

Z
dydzdw∂μ∂ρCðx − yÞAc

λðyÞ

× fþ∂σCðy − zÞAe
ρðzÞ∂ ½σCðz − wÞAm

λ ðwÞAn
μ�ðwÞ þ ∂σCðy − zÞAe

μðzÞ∂ ½σCðz − wÞAm
ρ ðwÞAn

λ�ðwÞg: ð9Þ
The first two terms cancel each other under the interchange of μ and ρ. Similarly, the other two terms also cancel out
confirming that

∂μA0a
μ ðxÞ ¼ ∂μAa

μðxÞ þOðg4Þ: ð10Þ
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B. Free action

We now move to the first requirement in (1) which states that the transformed gauge field must satisfy

1

2

Z
dxA0a

μ ðxÞð−□δμν þ ∂μ∂νÞA0a
ν ðxÞ ¼

1

4

Z
dxFa

μνðxÞFa
μνðxÞ þOðg4Þ: ð11Þ

Because of the invariance of the gauge function, we ignore the second term on the left-hand side (lhs) and the corresponding
term on the right-hand side (rhs) of this equation [12]. At third order, (11) has two contributions

0¼!
Z

dxðA0a
μ ðxÞjOðg3Þ□A0a

μ ðxÞjOðg0Þ þ A0a
μ ðxÞjOðg2Þ□A0a

μ ðxÞjOðg1ÞÞ: ð12Þ

This expression reads
Z

dxðA0a
μ ðxÞjOðg3Þ□A0a

μ ðxÞjOðg0Þ þ A0a
μ ðxÞjOðg2Þ□A0a

μ ðxÞjOðg1ÞÞ

¼ 3

2
g3fabcfbdefdmn

Z
dxdydzdw∂ρCðx − yÞAc

λðyÞfþ∂λCðy − zÞAe
σðzÞ∂ ½μCðz − wÞAm

ρ ðwÞAn
σ�ðwÞ□Aa

μðxÞ

þ ∂μCðy − zÞAe
σðzÞ∂ ½σCðz − wÞAm

ρ ðwÞAn
λ�ðwÞ□Aa

μðxÞ þ ∂ρCðy − zÞAe
σðzÞ∂ ½σCðz − wÞAm

λ ðwÞAn
μ�ðwÞ□Aa

μðxÞg

− g3fabcfbdefdmn

Z
dxdydzdw∂ρCðx − yÞAc

λðyÞfþ∂σCðy − zÞAe
σðzÞ∂ ½μCðz − wÞAm

λ ðwÞAn
ρ�ðwÞ□Aa

μðxÞ

þ ∂σCðy − zÞAe
ρðzÞ∂ ½σCðz − wÞAm

λ ðwÞAn
μ�ðwÞ□Aa

μðxÞ þ ∂σCðy − zÞAe
μðzÞ∂ ½σCðz − wÞAm

ρ ðwÞAn
λ�ðwÞ□Aa

μðxÞ
þ ∂σCðy − zÞAe

λðzÞ∂ ½μCðz − wÞAm
ρ ðwÞAn

σ�ðwÞ□Aa
μðxÞg

þ 3

2
g3fabcfbde

Z
dxdydzdw∂ρCðx − yÞAc

λðyÞ∂ ½ρCðy − zÞAd
μðzÞAe

λ�ðzÞ□ðfamn∂σCðx − wÞAm
μ ðwÞAn

σðwÞÞ:

We simplify the rhs to obtain

¼ 3

2
g3fabcfbdefdmn

Z
dxdzdw∂ρAa

μðxÞAc
λðxÞfþ∂λCðx − zÞAe

σðzÞ∂ ½μCðz − wÞAm
ρ ðwÞAn

σ�ðwÞ

þ ∂μCðx − zÞAe
σðzÞ∂ ½σCðz − wÞAm

ρ ðwÞAn
λ�ðwÞ þ ∂ρCðx − zÞAe

σðzÞ∂ ½σCðz − wÞAm
λ ðwÞAn

μ�ðwÞg

− g3fabcfbdefdmn

Z
dxdzdw∂ρAa

μðxÞAc
λðxÞfþ∂σCðx − zÞAe

σðzÞ∂ ½μCðz − wÞAm
λ ðwÞAn

ρ�ðwÞ

þ ∂σCðx − zÞAe
ρðzÞ∂ ½σCðz − wÞAm

λ ðwÞAn
μ�ðwÞ þ ∂σCðx − zÞAe

μðzÞ∂ ½σCðz − wÞAm
ρ ðwÞAn

λ�ðwÞ
þ ∂σCðx − zÞAe

λðzÞ∂ ½μCðz − wÞAm
ρ ðwÞAn

σ�ðwÞg

þ 3

2
g3fabcfbdefamn

Z
dxdzdwAc

λðxÞ∂ ½ρCðx − zÞAd
μðzÞAe

λ�ðzÞ∂ρ∂σCðx − wÞAm
μ ðwÞAn

σðwÞ:

This is further simplified with some rewriting [for example, ∂ρAa
μðxÞAc

λðxÞ → 1
2
∂ρðAa

μðxÞAc
λðxÞÞ based on the symmetries

a ↔ c and μ ↔ λ]. The rhs simplifies to

¼ 3

4
g3fabcfbdefdmnAa

μðxÞAc
λðxÞAe

σðxÞ∂ ½σCðx − wÞAm
λ ðwÞAn

μ�ðwÞ: ð13Þ

There is a symmetry to these terms: the ∂CAA blocks are invariant under a cyclic permutation of the Lorentz indices. This
motivates rewriting the term as

1

4
g3fabcfbdefdmn½Aa

μðxÞAc
λðxÞAe

σðxÞ þ Aa
σðxÞAc

μðxÞAe
λðxÞ þ Aa

λðxÞAc
σðxÞAe

μðxÞ�∂ ½σCðx − wÞAm
λ ðwÞAn

μ�ðwÞ

¼ 1

4
g3½fabcfbde þ febafbdc þ fcbefbda�fdmnAa

μðxÞAc
λðxÞAe

σðxÞ∂ ½σCðx − wÞAm
λ ðwÞAn

μ�ðwÞ: ð14Þ
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We now find, for the first time in this computation, that for
(14) to vanish we need to invoke the Jacobi identity

fabcfbde þ febafbdc þ fcbefbda ¼ 0: ð15Þ

Thus (11) holds up to Oðg3Þ.

C. Jacobians, fermion, and ghost determinants

Finally, we turn to (2), the second requirement. This is, in
some sense, the most constraining of the three require-
ments, demanding that the bosonic Jacobian determinant
equal the product of the MSS and FP determinants. Again,
this check up toOðg2Þwas performed in [7,12] allowing us
to concentrate here on Oðg3Þ.

log det

�
δA0a

μ ðxÞ
δAb

νðyÞ
�
jOðg3Þ¼! log ðΔMSS½A�ΔFP½A�ÞjOðg3Þ: ð16Þ

It is this nontrivial requirement which results in a dimen-
sional dependence. We prove that the map in (8) satisfies
(16) only for D ¼ 6.

1. Fermion determinant

To compute the fermion determinant, we need to
evaluate the following quantity

det ½γμðδab∂μ − gfabmAm
μ Þ� ¼ det=∂ · detð1 − YÞ; ð17Þ

where the relevant functional matrix reads

Yabðx; y;AÞ ¼ gfabmγμγν∂μCðx − yÞAm
ν ðyÞ: ð18Þ

For the treatment of the γ-matrices we only need the
Clifford algebra relation fγμ; γνg ¼ 2δμν and the trace

Tr1 ¼ r; ð19Þ

where r counts the number of off-shell fermionic degrees of
freedom. These relations fully define the trace of the
product of any number of γ-matrices and it will not be
necessary to explicitly distinguish between Majorana,
Weyl, and Majorana-Weyl spinors. Even though r is related
to the number of dimensions D via

r ¼ 2ðD − 2Þ ð20Þ

we will treat them as independent for now. The relation
above is only invoked at the very last step, to highlight the
crucial fact that the Nicolai map presented here only works
in six dimensions. Furthermore, we use

log detð1 − YÞ ¼ Tr logð1 − YÞ ¼ −
X∞
n¼1

1

n
TrYn; ð21Þ

and taking into account an extra factor of 1
2
for the on-shell

degrees of freedom, we find

1

2
log detð1 − YÞ ¼ 1

6
g3TrðγαγβγργσγλγτÞfabmfbcnfcap

Z
dxdydzf∂αCðx − yÞAm

β ðyÞ∂ρCðy − zÞAn
σðzÞ∂λCðz − xÞAp

τ ðxÞg;

ð22Þ

From the relations above the trace over six γ-matrices can be computed recursively and reads

TrðγαγβγργσγλγτÞ ¼ −rðδαβδλτδρσ − δαβδλσδρτ þ δαβδλρδστ þ δαλδβτδρσ − δαλδβσδρτ þ δαλδβρδστ þ δασδβλδρτ þ δαρδβτδλσ

þ δαρδβσδλτ − δαρδβλδστ þ δατδβσδλρ − δασδβτδλρ − δασδβρδλτ − δατδβρδλσ − δατδβλδρσÞ: ð23Þ

Equation (22) then yields the following five independent terms at order g3

g3fabmfbcnfcap
Z

dxdydzf−r∂ρCðx − yÞAm
ρ ðyÞ∂λCðy − zÞAn

σðzÞ∂λCðz − xÞAp
σ ðxÞ

þ r
3
∂ρCðx − yÞAm

λ ðyÞ∂λCðy − zÞAn
σðzÞ∂σCðz − xÞAp

ρ ðxÞ

þ r
2
∂ρCðx − yÞAm

λ ðyÞ∂λCðy − zÞAn
ρðzÞ∂σCðz − xÞAp

σ ðxÞ

−
r
6
∂ρCðx − yÞAm

λ ðyÞ∂σCðy − zÞAn
ρðzÞ∂λCðz − xÞAp

σ ðxÞ

þ r
2
∂ρCðx − yÞAm

λ ðyÞ∂σCðy − zÞAn
ρðzÞ∂σCðz − xÞAp

λ ðxÞg: ð24Þ
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2. Ghost determinant

For the ghost determinant, we compute

detðDμ∂μÞ ¼ det ð½δab∂μ − gfabmAm
μ �∂μÞ ¼ detð□Þ · detð1 − XÞ; ð25Þ

where

Xabðx; y;AÞ ¼ gfabm∂μCðx − yÞAm
μ ðyÞ: ð26Þ

Up to Oðg3Þ this yields

þ 1

3
g3fabmfbcnfcap

Z
dxdydz∂ρCðx − yÞAm

ρ ðyÞ∂λCðy − zÞAn
λðzÞ∂σCðz − xÞAp

σ ðxÞ: ð27Þ

3. Bosonic Jacobian

At Oðg3Þ the logarithm of the Jacobian determinant schematically consists of three terms

log det
�
δA0a

μ ðxÞ
δAb

νðyÞ
�����

Oðg3Þ
¼ Tr

�
δA0

δA

����
Oðg3Þ

�
−
�
2 ·

1

2

�
Tr
�
δA0

δA

����
Oðg2Þ

δA0

δA

����
Oðg1Þ

�
þ 1

3
Tr
�
δA0

δA

����
Oðg1Þ

δA0

δA

����
Oðg1Þ

δA0

δA

����
Oðg1Þ

�
; ð28Þ

and the final trace involves setting μ ¼ ν; a ¼ b; x ¼ y and
integrating over x.
All terms at Oðg3Þ are of the form ∂CA∂CA∂CAA. The

functional derivative on the very first field, in this structure,
vanishes trivially [12]. The functional differentiation of
the field in the middle block produces the structure
∂CA∂C∂CAA not seen elsewhere. These terms vanish as
described in the Appendix. Functional differentiation of
either field from the last block produces terms with the
same structure as those from the fermion and ghost
contributions. The table below offers a summary of the
various contributions to the Jacobian from (28).

4. Jacobian table

In the table, columns 2–5 capture bosonic contributions,
summed up in column 6. Column 7 contains the sums of the
fermion and ghost contributions. The detailed breakdown
for the bosonic contributions is as follows: Column 2
contains the contributions from OðgÞ terms when “cubed.”
Column 3 lists contributions fromOðgÞ ×Oðg2Þ. Column 4
has contributions from the 9 terms in the bosonic result
[first three lines ofOðg3Þ from (8)]. In column 5, we present
contributions from the next four lines of (8) (12 terms).
In column 7, we now set [12]

r ¼ 2ðD − 2Þ: ð29Þ

The main result is that columns 6 and 7 are equal only
for D ¼ 6.

This completes our proof of (1), (2), and (3). It is curious
that we have not had to invoke the gauge condition, which
was needed in [14], in this proof.

Group ðgÞ3 ðgÞ × ðg2Þ 9 Terms 12 Terms Boson MSSþ FP

1 0 1−D
2

5−2D
2

2
3
ð3 −DÞ 30−13D

6
−r

2 D−3
3

1
2

D−3
2

0 5D−12
6

rþ1
3

3 1 D−3
2

1
2

D−3
3

5D−6
6

r
2

4 − 1
3

0 0 3−D
3

2−D
3

− r
6

5 0 1
2

D−3
2

2D−6
3

7D−18
6

r
2

IV. A POTENTIAL ALGORITHM TO GENERATE
THE MAP TO THIRD ORDER AND BEYOND

In this section we outline an algorithmic approach to
determining the map Tg. This involves perturbatively
generating higher order expressions in a manner reminis-
cent of that in [8]. However, the approach presented here
comes with the potential advantage of yielding the map
directly as opposed to generating the inverse map T−1

g .
As mentioned already below Eq. (8), we first note that

the structure of the map presented in this paper is simple
compared to that in [14]. The entire map in (8), at order g3,
involves a single structure. We present below an algorithm
that generates exactly this structure and suggesting a simple
all-order generalization of our results.
We start by noting that the “base” structure—the order g

result—has the form: ∂CAA. Our claim is that there exists a
realization of the map Tg, to all orders, generated entirely
by linking a series of ∂CA structures to this base structure.
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We illustrate this first at order g2. The map, at this order,
requires one ∂CA in addition to the base structure.

T ðg2Þ ∼ g2∂CA∂CAA:
We now follow the algorithm below.

(i) Sprinkle Lorentz indices on the base ∂CAA block,
such that the indices are all distinct. A set of three
terms having the same “external” structure but with
the three indices on the base-block permuted cycli-
cally constitute a “triplet.”

(ii) Choose the two Lorentz indices on the first “block”
to be different, for example without loss of general-
ity we can choose them to be ρ and λ respectively.

(iii) Discard all terms with μ on the ∂ of the first block
(Note thatAμ□ acting on such terms trivially vanish).

For

T ðg2Þ ∼ g2∂CA∂CAA; ð30Þ
we distribute Lorentz indices on the ∂CAA block. We have
three sets of indices at this order: ρ, λ which are summed
over and μ which is the free index. There is only one
“triplet” possible at this order, with μ, ρ and λ all sprinkled
on the last block. Hence, at this order, the algorithm
generates three terms in the map Tg:

Tg∶g2∂ρCAλ∂ ½ρCAλAμ�: ð31Þ
Moving to order g3, our procedure asks that we add two
∂CA structures to the base structure. So we have

Oðg3Þ ¼ g3∂CA∂CA∂CAA: ð32Þ
We again distribute Lorentz indices on the ∂CAA block. At
this order,we have four sets of indices toworkwith: ρ, σ, λ all
summed over and μ which is free. There are 4 ways of
selecting 3 different indices (triplets) from the available set.
Without loss of generality we choose the Lorentz indices on
the first block to be ρ and λ respectively. This leaves us with
two indices and two slots, which is two arrangements for
each triplet, except for one, wherewe have the same index (σ
in this convention), and hence only one arrangement. This
gives us seven triplets, or 21 terms at order g3, and the map

Tg∶g3 ∂ρCAλ∂λCAσ∂ ½μCAρAσ�
∂ρCAλ∂σCAλ∂ ½μCAρAσ�

∂ρCAλ∂μCAσ∂ ½σCAρAλ�
∂ρCAλ∂σCAμ∂ ½σCAρAλ�

∂ρCAλ∂ρCAσ∂ ½σCAλAμ�
∂ρCAλ∂σCAρ∂ ½σCAλAμ�

∂ρCAλ∂σCAσ∂ ½μCAλAρ�; ð33Þ
exactly matching the structures that appear in (8).

This algorithm generates the terms in sets that conven-
iently satisfy the gauge condition. The coloured sets above
satisfy the gauge constraint when taken together, while the
uncolored ones satisfy the gauge constraint by themselves.
However, although this algorithm reproduces the map
structure correctly, it does not predict the overall coefficients
in front of these terms. These need to be determined by the
calculations for the three checks. For example, the coef-
ficient of one set of terms is fixed by the requirement that it
cancels the contribution from A0a

μ ðxÞjOðg2Þ□A0a
μ ðxÞjOðg1Þ.

It is fairly straightforward to write down the structures
expected at order g4, following this algorithm, however
performing the relevant checks becomes technically involved.
We conclude that (8) represents an alternate Nicolai map

in six dimensions, up to Oðg3Þ, distinct from the map in
[14]. This raises the possibility that there exists a dimen-
sion-dependent map that differs for each critical dimension.
However, we note that the checks to this order for this
particular map do not guarantee that this map will work at
next/higher order.2 The result in [14] is different because it
is derived from the R-prescription and is limited to Oðg3Þ
only because the procedure becomes technically involved
at higher orders.
There is a third and rather unlikely outcome: that six

dimensions is special for yet unknown reasons. For another
curious result within this formalism that singles out six
dimensions, see Eq. (3.10) in [19]. D ¼ 6 is also home to
the mysterious N ¼ ð2; 0Þ theory [20–23] which still lacks
a complete Lagrangian description [24].
A natural question to ask is how the symmetries in the

theory are reflected in the new formalism. How supersym-
metry is captured by the resulting bosonic theory was
discussed in [19], where explicit calculations were performed
for N ¼ 4 super-Yang-Mills theory. In particular, it was
shown that correlators from the standard perturbative com-
putation agree entirelywith the corresponding correlators that
result from the “mapped” theory.A related issue, thatwe hope
to return to, is the relationship between division algebras and
supersymmetry [25] within the framework of the map.
There is an intriguing relationship between supersym-

metric theories that admit Nicolai maps and integrable
systems. In particular, the existence of integrable structures
such as Backlund transformations for supersymmetric
Liouville and sine-Gordon theories, and their ties with
Nicolai maps [26] is curious and deserving of further study.
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APPENDIX: JACOBIAN CALCULATION

We present below a part of the calculation referred to below Eq. (28).

1. First set of terms at Oðg3Þ
These are the details for the first nine terms in (8).

a. Line 3 in (8)

Functional differentiation of the middle block field in each of the first three lines yields

δAa
μ
0ðxÞ

δAp
ν ðvÞ ¼

1

2
g3fabcfbdefdmn

Z
dydzdw∂ρCðx − yÞAc

λðyÞ∂λCðy − zÞδνσδepδðz − vÞ

× f∂μCðz − wÞAm
ρ ðwÞAn

σðwÞ þ ∂ρCðz − wÞAm
σ ðwÞAn

μðwÞ þ ∂σCðz − wÞAm
μ ðwÞAn

ρðwÞg;
tracing over here involves setting μ ¼ ν, a ¼ p, x ¼ v and integrating over x. This is then

1

2
g3fabcfbdafdmn

Z
dxdydw∂ρCðx − yÞAc

λðyÞ∂λCðy − xÞ

× f∂μCðx − wÞAm
ρ ðwÞAn

μðwÞ þ ∂ρCðx − wÞAm
μ ðwÞAn

μðwÞ þ ∂μCðx − wÞAm
μ ðwÞAn

ρðwÞg:
The first and third terms above cancel against each other while the middle terms vanishes (symmetry argument) so these
three lines do not contribute to the Jacobian trace.

b. Line 4 in (8)

After Functional differentiation and tracing over we have

1

2
g3fabcfbdafdmn

Z
dxdydw∂ρCðx − yÞAc

λðyÞ∂σCðy − xÞ

× f∂σCðx − wÞAm
ρ ðwÞAn

λðwÞ þ ∂ρCðx − wÞAm
λ ðwÞAn

σðwÞ þ ∂λCðx − wÞAm
σ ðwÞAn

ρðwÞg:
Note that ∂y

σCðy − xÞ ¼ −∂x
σCðx − yÞ meaning that the first line above is symmetric in ρ, σ while the bracket is anti-

symmetric in the same two indices. Hence this contribution vanishes.

c. Line 5 in (8)

After differentiating and tracing this reads

1

2
g3fabcfbdafdmn

Z
dxdydw∂ρCðx − yÞAc

λðyÞ∂ρCðy − xÞ

× f∂μCðx − wÞAm
λ ðwÞAn

μðwÞ þ ∂λCðx − wÞAm
μ ðwÞAn

μðwÞ þ ∂μCðx − wÞAm
μ ðwÞAn

λðwÞg:

These three terms vanish by the same arguments that applied to the terms in line 4 of (8).

2. Second set of terms at Oðg3Þ
We have twelve remaining terms in (8). Functional differentiation and trace in the middle block yields

3 −D
3

g3fabcfbdafdmn

Z
dxdydw∂ρCðx − yÞAc

λðyÞ∂σCðy − xÞ

× f∂σCðx − wÞAm
ρ ðwÞAn

λðwÞ þ ∂ρCðx − wÞAm
λ ðwÞAn

σðwÞ þ ∂λCðx − wÞAm
σ ðwÞAn

ρðwÞg:

These three term vanish by using ∂y
σCðy − xÞ ¼ −∂x

σCðx − yÞ as the first line above is symmetric in ρ, σ while the bracket is
antisymmetric in the same two indices. So this contribution vanishes.
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