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We investigate chiral zero modes and winding numbers at fixed points on 72 /Z, orbifolds. It is shown
that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula n, —n_ =
(=V, + V_)/2N, where n. are the numbers of the + chiral zero modes and V. are the sums of the
winding numbers at the fixed points on T?/Z,. This formula is complementary to our zero-mode counting
formula on the magnetized orbifolds with nonzero flux background M # 0, consistently with substituting
M = 0 for the counting formula n, —n_ = (2M -V, + V_)/2N.
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I. INTRODUCTION

Superstring theory is known as a unique candidate of the
unified theory between gauge interactions and quantum
gravity. In its formulation, the theory requires the presence
of extra dimensions due to conformal anomaly cancella-
tion. A key issue in the long history has been to show that
the theory can involve the Standard Model (SM) of particle
physics. Indeed in the context of string phenomenology and
string cosmology, many frameworks have been used to
construct phenomenological models, e.g., heterotic strings
[1-5], type I setups [6-8], type IIA/B setups [9-14], and
F-theory [15-17].

In higher dimensions, irreducible representations of
spinors are vectorlike in the unit of four-dimensional (4d)
Weyl spinors. In the stringy frameworks above as well as
higher-dimensional model constructions, a crucial difficulty
is to obtain chiral spectra like the SM quarks and leptons. As
found in the literature, there are powerful mechanisms to
realize the chirality in 4d spacetime: orbifold projections
[18,19], background magnetic fluxes and Wilson lines
[6,20-22], and both [23-25]. Phenomenological models
including compact extra dimensions have been widely
expected to solve the problems behind the SM. In terms
of the mechanisms above, the higher-dimensional models
are found to lead to three-generation models [26-34], the
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quark/charged-lepton mass hierarchy [35-43], CP violation
[44,45], and so on. These mechanisms have played impor-
tant roles also in model constructions of the superstring
theory [1,10,13,46,47] as well as higher-dimensional grand
unified theories, e.g., [48-50].

A smart way to discriminate whether a given setup is
chiral or not, is to check the index

Ind(ip) =n, —n_, (1.1)

where n are the number of + chiral zero modes for a Dirac
operator /) on extra dimensions. This is the notion of the
Atiyah-Singer index theorem [51]. The index is a topo-
logical invariant and takes nonzero values if the setup
contains lowest-lying states with chirality. The index
theorem was applied to a two-dimensional (2d) torus with
background magnetic flux [21,52],

q
—n_=_— F=M, 1.2
hy—n 27 [ (1.2)

where M denotes the flux quanta. For M # 0, the index is
nonzero and it is easily confirmed that the lowest-lying
states are chiral and degenerate (e.g., n, =M and n_ =0
for M > 0) thanks to the presence of magnetic flux.

In our previous paper [53], we have discovered a zero-
mode counting formula on magnetized orbifolds 72/Z,
(N =2,3,4,6) for M > 0,

M_V+
=—+41 1.

ny —n_
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where V denotes the total w1nd1ng numbers for positive
chirality modes at fixed pomts Interestingly, both M/N
and V_ /N are not integers, in general, but the combination
(M —V_)/N becomes an integer in any pattern. Thus, the
winding numbers at the fixed points are especially impor-
tant for the index on the orbifolds.

One would suppose that on the magnetized orbifolds, the
index should be affected by two sources, i.e., the flux
background M # 0 and the orbifold projections. Let us
separate Eq. (1.3) into the flux-dependent part M /N and
independent one —V /N + 1. This makes us suppose that
the former originates from the total flux on the orbifolds,
where the fundamental area is 1 /N as much as that on the
torus. In this paper, we further pursuit what the flux-
independent term —V_/N + 1 implies. Considering the
index theorem on 72/Z,, for M = 0, we will derive another
expression of our zero-mode counting formula

1

- Vy+V_ 1.4
ny—n- = (=Vy+ Vo), (1.4)

and empirically discover
V,+V_=2N. (1.5)

Here V. denotes the total winding numbers for + chirality
modes at fixed points.

We prove the formula (1.4) as the index theorem. To this
end, we use the trace formula

Ind(lp) =n,—n_= limtr[63e¢2//’2]_

pP—0

(1.6)

Then, we find that Eq. (1.6) leads to the index formula (1.4).
Our derivation clearly shows that the index n, —n_ on
T?/Zy is determined by the winding numbers at the fixed
points. The proof is the main result of this paper.

In the original papers that proposed the orbifolds [18,19],
a zero-mode counting formula is given in terms of the Euler
characters. Our new formulas, proved later, should corre-
spond to another expression in terms of the winding
numbers of mode functions at the orbifold fixed points.
The winding numbers are mathematically easier quantities.
Thanks to that, we can easily compare Eq. (1.4) with the
other known relations. In particular, Egs. (1.4) and (1.5)
keep a consistency by substituting Eq. (1.3) for M = 0. In
addition, the formula (1.4) is a generic expression because
both its sides are antisymmetric under the exchange of +.

This paper is organized as follows. In Sec. II, we start
with the Lagrangian of a six-dimensional (6d) Weyl spinor

'To be precise, the formula (1.3) has not been established as
the index theorem. This is because in [53] the equality in Eq. (1.3)
has been verified by computing n, —n_ and (M —V_)/N + 1
separately and then comparing their values. Thus, it is not still
clear what leads to the formula (1.3).

on a 2d torus 7. In Sec. III, we explicitly construct mode
functions on orbifolds 72/Z,. The values of n, for each
Zy parity n, the Scherk-Schwarz twist phase (a;, a,) and N
are computed in Sec. III. In Sec. IV, we evaluate the trace
formula (1.6) by using a complete set of the mode
functions, and then confirm the relation (1.4) to the index
theorem from the viewpoint of winding numbers V. in
Sec. V. Section VI is devoted to conclusion and discussion.
In the Appendix, we derive a formula used in our
discussion.

II. SIX-DIMENSIONAL WEYL FERMION ON 72

First, we briefly discuss the mode expansion of a 6d
Weyl fermion on a 2d torus T2.

A. Setup
We start with the Lagrangian of a 6d Weyl fermion on 72:

‘Cﬁd — l‘i’Flal‘P (F7"P — +‘P>, (21)

where I (=0,1,2,3,5,6) is the 6d spacetime index and
%, 1!, ...,T"® denotes the 6d gamma matrices satisfying

{Fl FJ} IJ

e AT (1=0),
(F)T_{—F’ (I1#0).

(1.J=0,1,2,3,5.6), (2.2)

(2.3)

with "/ = diag(—1,1,1,1,1,1). T is the 6d chiral operator
defined by —I'°T"'T2I3°T.

For our analysis, it is convenient to take the following
representation of gamma matrices:

el I=p=0,123,
FI = Ys ® iGl I = 5, (24)
]/5®i02 126,

where 6, (a = 1, 2, 3) denotes the Pauli matrices, I, is the

2 x 2 unit matrix, and ys = iy%'y?y>. The 6d chiral

operator ['; is defined by y5 ® o5.
With this representation of the 6d gamma matrices, the

6d Weyl fermion ¥(x, z) can be decomposed into 4d Weyl
left-/right-handed fermions 1/11(44/)R(x) as

Z{WR n

x) @yt () + i) @ vh(2)}
(2.5)

where x* (u =0, 1, 2, 3) denotes the 4d Minkowski
coordinate and 7z = x5 + ixg is the complex coordinate
on the 2d torus 7?. Since the 2d Weyl fermions l//f)n(z) are

chosen as
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o), =+, (2.6)

2
We can express y/(i)n

v2ie=(7 *'g(z’), V2= f_’f@), 27)

where n labels the Kaluza-Klein (KK) levels.
The 2d torus 77 is defined by the identification

as the form

Z~z+l~z4t (zeC,Imt>0) (2.8)
under torus lattice shifts.”> The 2d Weyl fermions wgn(z)

[or f,(z)] are required to satisfy the boundary conditions

2 2ra 2
p2 (2 +1) = ey ? (), (2.9)
p? (z+7) = ey (2), (2.10)

where a; (j = 1, 2) corresponds to a Scherk-Schwarz (SS)
twist phase.

B. Mode functions on 72

The mode functions f. ,(z) on T2 are taken as eigen-
functions of the differential operator —40,0:, i.e.,

—40:0:f 1 n(2) = mf o n(2). (2.11)
—40.0:f_u(2) = myf_,(2). (2.12)

Here, 0, and O- are defined by
0, = %(85 — i0g), 0, = % (05 + i0s). (2.13)

We then require that the mode functions obey the so-called
supersymmetry relations [54,55]

282f+,,,(z) = _mnf—,n(z)’

20.f_n(2) = +m,f1.(2)

(2.14)
(2.15)
without loss of generality.

It follows from Egs. (2.11)—(2.15) that the 6d Dirac

equation for W(x, z) reduces to the 4d Dirac equations

(4)

i 0w (x) + muy) (x) = 0, (2.16)
iy 0, (x) + mupie) (x) = 0. (2.17)

*Since the compactification scale of the torus is irrelevant for
our analysis, we will take a radius of T2 to be 1. The complex
parameter 7 of T? specifies the shape of 72

Thus, the KK mass eigenvalue m,, corresponds to the mass

of the 4d Dirac fermion 1//514) = l//g ),1 + I/IS 21 for m, # 0.

The mode functions satisfying the equations (2.11),
(2.12) and the boundary conditions (2.9), (2.10) are
found as

fj:.n+a(z) = A:I:,n+a“n+a(z)’ (2'18)

Upra(2) = pi2n{(nmi+a))y+(np+a)y} (n,n€Z), (2.19)
where A, ,,, are normalization constants and y = (yy,y,)

is the oblique coordinate defined by

2=yt (0<yLy<l1).  (220)
The mass eigenvalue m2_, is then given by
Rer
My i = (27)? {("1 +ap)?+ <_m(”1 +ay)
1 2
+E(l’12 +a2)) :|, (221)

which comes from

0 \? Rer 0 1 02
40.0. = (= 9L 9NV 02
9:0; <8y1> * < Imz Jy, M ime 8y2> (222)

It follows from Eq. (2.21) that only when n = a = 0,
there exist the chiral zero-mode solutions such that my = 0.
This shows

1 for (a;,a,) = (0,0) mod 1,
" :n_:{ (a1, a2) = (0,0) (2.23)
0 for (aj,a) #(0,0) mod 1.
Then the index on 77 is given as
nd(ip) =n, —n_ = 0. (2.24)

Namely, the lowest-lying states are always vectorlike.
Therefore, model constructions on T2 are less interesting
from an index theorem point of view. As we will see, the
index for 72/ Zy(N = 2, 3,4,6) orbifold setups, however,
can be nontrivial due to winding numbers at fixed points on
T?/Zy. Our main motivation of this paper is to show it.

III. MODE FUNCTIONS ON 7?/Z, ORBIFOLDS

A. Zy eigenmode functions

Let us now proceed to 72/Z, orbifolds. The T?/Zy
orbifold is defined by the torus identification (z ~z + 1 ~
z+ ) and an additional Zy one
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i2x/NY). (3.1)

7~ wz (w=e

It has already been known that there exist only four kinds
of the orbifolds: 7% /Z (N = 2,3,4,6). For N = 2, there is
no limitation on 7 except for Imz > 0. For N = 3,4 and 6, =
must be equivalent to @ because of crystallography [56].
For convenience, we will use both 7 and w. It should be
noticed that in order to be consistent with the orbifold
identification (3.1), the SS twist phase (a;,a,) has to be

quantized [25] such that

(0,0),(1/2,0),(0,1/2),(1/2,1/2) forT?/Z,,
(0,0),(1/3,1/3),(2/3,2/3) for T2/ Z5,

(ar,ap) = 2
(0,0),(1/2,1/2) forT%/2,,
(0,0) for T2/ Z.
(3.2)

Mode functions on the 72/Z, orbifold are classified by
Zy eigenvalues n = o* (k=0,1,...,N — 1) under the Z
rotation 7 — wz such as

f+,n+a(wz) = 'If+.n+a(z)’ (3-3)

f—.n+a(a)Z) = a)”lf—,nJra(Z)' (34)

We emphasize that if the Z,; eigenvalue of f, , 4(z) is 7,
then that of f_,,, ,(z) has to be wy. This additional factor @
comes from a rotation matrix acting on 2d spinors [25], and
is necessary to be compatible with the supersymmetry
relations (2.14) and (2.15).

In terms of the mode functions on 72, those on 7%/Z
can be constructed as

N-1
Z+a(z) = An+a z ﬁlunﬂx(wlz)v (35)
=0
which belongs to the Z, eigenvalue #:
Enra(®z) = n&y 4(2). (3.6)

Here, A, is a normalization constant.

and

A:{{n +a(n,n, €2)}

{n(ny,ny €Z)jn #0} forn#1

{n+a(n,nmeZ)n+a~ovm+a)} forn=1 or
{n(n,n,€Z)n~wn and n#0}

We can show that the mode function u,,4(z) on T2
satisfies the relations

un+a(a)l(z + 1)) = ei2;m1 un+a(wlz)’ (37)

(3.8)

“n+a(a)l(z + T)) = el un+a(wlz)

for/=0,1,...,N — 1. Note that Egs. (3.7) and (3.8) hold
only when the SS twist phase (a,a,) is quantized as
Eq. (3.2). From Egs. (3.7) and (3.8) the Z, eigenmode
function &, ,(z) on T?/Zy satisfies the same boundary
conditions as the mode functions on 72, i.e.,

€Z+a(z + 1) = ei2”al§z+a(z)7
§Z+¢x(z + T) = ei2ﬂaz§Z+a(Z)'

Under the Z, rotation, the mode function u,,4(z)
satisfies the relation

(3.9)
(3.10)

(3.11)

Upta ((I)Z) = Up(n+a) (Z) ’

where w(n +a) is an abbreviation of the following
quantity:

(—I’ll —al,—nQ—az) for TZ/ZQ,
(n2+a2,—n] —al—nz—aQ) for TZ/Z3,
on+a) = 5
(ny+ay,—n; —ay) for 7°/2,,
(ny, —n; +n,) for T2/ Z.
(3.12)

Here, notice that a = 0 for 7°/Z,.
Note that &1, ,(z) are not always independent of all
ny,ny, € Z. Since &', ,(z) obeys the relation

A, )
52)(n+a) (Z) = 7]( Ai:;a)> ZH»a(Z), (313)
the independent set of &1 ,(z) is given by
{&ia(d)n +aeN/Zy}, (3.14)
where
a#0,
? (3.15)
forn#1 and a=0,
forn=1 or a#0,
! : (3.16)
and a=0.

Notice that n = 0 has to be removed from A/Zy (and A) for n # 1 and & = 0, because &;(z) always vanishes. Explicit

examples of A/Z, are shown in Fig. 1.
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FIG. 1.

The set {&1, 4(2)|n + @ € A/Zy} of the Z), eigenmodes
satisfies the complete orthonormal condition:

/  d2E1a(2) g () =G (3.17)
T%/Zy
with the normalization constant
(Imz)~!  formn#0 or a#0,
A sal® = { . (3.18)
(NImz)™' forn =a =0.

We point out that the normalization constant (3.18) is
important to derive Eq. (4.5) in Sec. IV.

B. Number of zero modes on T2/Z,,
The mode functions f. ,,,(z) on 7%/Zy with the Zy
transformation properties (3.3) and (3.4) are written in
terms of &1 ,(z) as

finra(2) = Enial2), (3.19)

= nza(z)'

f-n+a(2) (3.20)

TABLE I. The number of the zero modes f o on T?/Z, such
that m,, ., = 0.

7, Twist The number of zero modes Index
n (ar,a) n, n_ n, —n_
+1 (0,0) 1 0 1
(3.0) 0 0 0
(0%) 0 0 0
(3:2) 0 0 0
-1 (0,0) 0 1 -1
(% 0) 0 0 0
(0%) 0 0 0
2(%%) 0 0 0

b)n#1l,a=0,N=2

(c)n==41,a=(1/2,1/2), N =2

Examples of A/Z,. The black dots denote elements belonging to A/Z,.

The eigenvalue m2., of fi,.(z) is still given by
Eq. (2.21). Thus, the chiral zero modes such as m,,, =
0 can appear only when n + a = 0. The lists of the zero
modes are summarized in Tables I-IV.

TABLE II.  The number of the zero modes f, 4 on T?/Z5 such
that m,, ., = 0.
Z; Twist The number of zero modes Index
n (ay,a) n, n_ n,—n_
0,0) 1 0 1
(% , %) 0 0 0
(% , %) 0 0 0
0] (0,0) 0 0 0
@ 0 0 0
G-3) 0 0 0
” (0,0) 0 1 -1
(% , %) 0 0 0
(% , %) 0 0 0

TABLE III.  The number of the zero modes f . ¢ on T?/Z, such
that m, ., = 0.

Z, Twist The number of zero modes Index

n (a1, @) ny n- ny —n-
(0,0) 1 0 1
(3:7) 0 0 0

0) (0,0) 0 0 0
(2:2) 0 0 0

’ (0,0) 0 0 0
(3:3) 0 0 0

’ 0,0) 0 1 -1
(3.7 0 0 0

025009-5
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TABLEIV. The number of the zero modes f. ¢ on T?/Z such as an index theorem. Its nontriviality is that even if n, and/
that m,, ., = 0. or n_ take zero, the sum of the winding numbers V. can
take nonzero values. Our derivation clearly shows that the

Z Twist Th ber of d Ind . .
n ° (aIWLZ) ennum o on e I;Llo es n n_ez index n, —n_ on T?/Zy can only be determined by the
) (O’O) 1+ 0_ - " - winding numbers at the fixed points, as we will see.
o 00 0 0 0
®* (0,0 0 0 0 IV. INDEX THEOREM ON T?/Z, ORBIFOLDS
3
24 88; 8 8 8 In Secs. IV and V, we derive the index formula (3.21) by
o’ (0’0) 0 1 -1 use of the trace formula
Ind(ip) = limtro;e?/7), (4.1)
p—0c0

From Tables I-1V, we find that the index n, — n_ can be
nonzero and the lowest-lying state in the KK spectrum is
chiral. This property has been used to construct phenom-
enologically semirealistic models [18,19,57-59]. We will
prove a nontrivial formula:

following the known computations of chiral anomaly on
S1/Z,y and S,/(Z, x Z}) [60,61]. This is our main subject
of this paper.

In terms of the complete orthonormal sets of the mode
1 functions {f. ,.4(z)}, the trace li p_,ootr[@e?‘z/pz] can be

—-n_ Vv V_ 3.21
R TN v Vet Vo), ( ) represented as

limtrfose? /7] = im 3" (N e = Nopyg)e™el”’

— n—
pme ! oorH»aEA/ZN

=lim > P (E)1a(2)) Eh1al2) = (E1a(2))"Ela(2) e hral 7, (42)

— 2
P raen/zy Y T 2y

where N, , ., denote the numbers of the mode functions f ,., and n. = N_ . The right-hand side in the second line of
(4.2) can reduce to n, — n_ because of the relation N, , ., = N_, .4 forn +a #0.
By using the relation

_4azaié:lt+a(z) = mr2t+a‘fz+a(z) (43)

and the fact that the integration measure @’z and ( :7,(4:”,;7 ()" Z(j’,;”

can be rewritten as

limose#/7] = lim < [ @elime 00 3 {8 (& W)~ SN E) . (44)

—00 —00 2 7
’ ’ T e n+acN/Zy

(z) are invariant under the Z rotation z — wz, Eq. (4.2)

where we have replaced [ /7y d?z by (1/N) [;2 d’z Inserting the relation (3.5) into Eq. (4.4) and taking Egs. (3.15) and
(3.18) into account, we find

lim trfo3e#/7'] = lim aﬂzhme‘w"/” N 2’7 (1= @)ty s (2) (s (@0'2))* (4.5)

p—co p—oo NImrz 7>z nEZ meZ 1=0

Eq. (4.5) is proved in the Appendix.

In the limit of p — co and 7’ — z, the [ = 0 term could diverge like 5>(0), but it actually vanishes thanks to the coefficient
(1 — @'). Therefore, we can take the limit of p — oo and 7/ — z without any divergence or singularity. Then, taking the limit
leads to

timtlose? ) = [ dyidy - ZZn (1= )ity () (0 (012))" (4.6)

p=e0 ez mez 1=

Here, we have replaced the integral [} d*z by Imz sz dy,dy,, where Imz corresponds to the area of the 2d torus 72.
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One may take the integral sz dy,dy, to be
Jo dyy [} dy,, as usual. However, it is more convenient
to choose the fundamental domain of 72, as depicted in
Fig. 2, in order to avoid troublesome treatment of delta
functions appearing on y; =0, 1 or y, =0, 1.2

To sum up n; and n, in Eq. (4.6), it is useful to introduce

y =\ M@ =0,1,...N=1) as

o'z=y + o). (4.7)
—> Y1
For I =1, (y{", y{") is explicitly given by 0 1
) FIG. 2. The gray area (—¢ < y;,y, < 1 —¢) denotes the fun-
(=y1:=¥2) for 7%/ 2, damental domain of 77 with a small positive number &.
2
(1) (=y2.y1 —y2) for T2/Z3,
O y) = (4.8)
b (=y2,31) for 72/2,, Then, after summing up n; and n, in Eq. (4.6), the index
(=y2.y1 4+ y2) for T2/ Z. n, —n_ is expressed as

1
N I RCTE 3PS Zn (1= @)errlomsens(y 3 —m)s(v =3y —ma).  (49)

mEeZ mye”Z l=

where we have used the formula

ZeiZﬂny — Zé(y — m) (410)

nez mez
To evaluate Eq. (4.9) further, we will examine 7%/Zy orbifolds with N = 2, 3, 4, and 6, separately.

A. Index for T?/7,

Let us first discuss the T2/Z, orbifold. In this case, (ygl), yél) ) is given by (—y;, —y,). Inserting it into Eq. (4.9) with
N =2 and w = —1, we have

1
ny—n_= 4/ dyld)hz Z neramtam) sy, —my/2)5(y, — my/2). (4.11)

mEZ myeZ

Since the fundamental domain of 72 has been taken to be —& < y;,y, < 1 — &, the values of (m;, m,), which remain in
the summation of Eq. (4.11) after the y-integration, are given by (m,m,) = (0,0), (1,0), (0, 1), and (1,1). Then, we find

! / dy,dy, (n5(1)3(y2) + 7€ 5(y, — 1/2)5(y,)

n,—n_=
4 72
+ne? 2 5(y)8(yy = 1/2) +ne @5y, — 1/2)6(y, — 1/2)}
1 4
— 2 f

j=1

where y/ (j = 1,2, 3, 4) are defined by

30f course, we can reach the same results even if we take the fundamental domain of 72 to be 0 <y, y, < 1.
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{ = (0,0), y§ = (1/2,0), TABLE V. The coefficients in front of the delta functions in
: Eq. (4.12).
¥, =1(0,1/2),  y,=(1/2,1)2). (4.13)
Z, Twist Coefficients of the delta functions
An important observation is that y{ givenin Eq. (4.13)is  y (ar, ) W, W, Ws Wy
just the position of the fixed points on 72/Z,, as explained 1 (0,0) 1 1 1 1
below. Fixed points on 7?/Z, in the complex plane (1/2,0) 1 -1 1 -1
Z =y + 7y, are defined by (0,1/2) 1 1 -1 -1
; (1/2,1/2) 1 -1 -1 1
= fi V4 4.14
Iy = wzy +my +mpr for “my,my € Z, ( ) -1 (0,0) _1 -1 1 -1
where @ = ¢27/N for the T2/Z orbifold (N = 2, 3, 4, 6). (1/2, (2)) -1 1 -1 L
The orbifold fixed points, which are invariant under the Z, (1((/)’21{ /%) :i _11 i _11
rotation up to torus lattice shifts, are found as ’
0,1/2,7/2,(14+1)/2 onT?/Z,,
0,(2+7)/3,(1+27)/3 onT?/Z5, meaning of W is less clear. In the next section, we reveal a
= 0,(1 +7)/2 on TQ/Z4, (4.15) geometrical meaning of W .
0 onT?/Z.

B. Index for T?%/7;

Let us next discuss the index for the T?/Z5 orbifold. In

this case, (y(l ,y2 ) (I=1, 2) is given by

Thus, y; (j=1,2,3,4) in Eq. (4.13) corresponds to the
position of the fixed points on 72/Z, in the complex
coordinate. This fact implies that the index n, —n_ can
only be determined by information on the fixed points.
The explicit values of W; (j = 1, 2, 3, 4) are summarized (v
in Table V. We can then confirm that the formula (4.12) (y
correctly gives the index n, — n_ in Table I, as it should be.
However, in the derivation of Eq. (4.12), the physical  Inserting Eq. (4.16) into Eq. (4.9) with N = 3, we have
|

(1 ) (—)’2,)’1—)’2)’
@ ) = (=y1 + y2.=31)- (4.16)

. 1
Ind(ip) = / dy,dy, z Z {n(1 = w)e2rlamtamls(y, + yy —my)5(=yi + 2y, — my)
meZ myeZ
(1 — @?)e?remtam) g2y, — vy —my)8(y, 4y —my)}. (4.17)

After the integration of sz dy,dy,, the delta functions
(1 +yy —=m)8(=y1 + 2y, —my)  and  S(2y; =y, — W,
my)8(y, + y; —m,) in Eq. (4.17) remain only when ;
(my,my) = (0,0),(1,0),(1,1), and (m;,m,)=(0,0),
(1,1),(0,1), respectively. Then, it follows that
Eq. (4.17) can be written into the form

2 . )
_ 3{’7(1 _ w)ezzn(a1+a2) 4 ’72(1 _ w2)et2mxz}_ (4_21)

Here, yf (j =1, 2, 3) are identified with the position of the
fixed points on T%/Z;, i.e.,

: 1 : 2 f
nd(iP) =335 /.. dy'dyzjgwjé b=yi) (I8 50,0, ¥=(2/3.1/3).  ¥=(1/3.2/3).
(4.22)
where
which correspond to the fixed points given in Eq. (4.15).
2 o . . . _ . .
=2l —w) + '72(1 _ a)z)}, (4.19) The explicit values of W; (j = 1, 2, 3) are summarized in
3 Table VI. We can then confirm that the formula (4.18)
correctly gives the index n, — n_ in Table II, as it should
2 ; ; be. In the next section, we reveal the relation between W ;
_ = 1= 2y 2(1 = w? 27(a+ay) , 4.20 > J
{n(1 —w)e il —ar)e b ) and the winding numbers at the fixed points (4.22).
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TABLE VI. The list of the coefficients in front of the delta
functions in Eq. (4.18).

Zs Twist Coefficients of the delta functions
N (ay, @) W, W, W
1 (0,0) 2 2 2
(1/3,1/3) 2 0 -2
(2/3,2/3) 2 -2 0
1) (0,0) 0 0 0
(1/3,1/3) 0 -2 2
(2/3,2/3) 0 2 -2
w? (0,0) -2 -2 -2
(1/3,1/3) -2 2 0
(2/3,2/3) -2 0 2

C. Index for T?/7,

Let us discuss the index for the T2/Z, orbifold. In this
case, (y§ ,y2 Y (1=1, 2, 3) is given by

(y(ll)vygl)) = (=y2, 1)
G5 = (=31, =32).
017 357) = (2. =) (4.23)

Inserting Eq. (4.23) into Eq. (4.9) with N = 4, we have

tnd(p) = [ v Y 3 1 -0

m€Z myeZ
m)8(yy — yi —my)
)eiZﬂ(a1m1+a2mz)5(2yl _ ml)

)ei27z((1]m|+(12m2)

127z (aym+aymy)

X 8(y; +y, =
(1 - o?
X 8(2y, = my) + (1 — &

X 6(y1 —yo —my)d(y, +y1 —my)}. (4.24)

After the integration of [} dy,dy,, the delta functions
S(y1+y2—m)o(y2—yi—my),  8(2y; —m)6(2y; —my),
and 6(y; — y, —m;)8(y, + y1 — m») in Eq. (4.24) remain
only when (m;,m,)=(0,0),(1,0), (m;,my)=(0,0),
(1,0),(0,1),(1,1), and (m;,m,) = (0,0), (0, 1), respec-
tively. Then, it follows that Eq. (4.24) can be written into
the form

4
d)’1d)’2 Z W;6%(y —)’f),

Ind(ip) = T4 2. (4.25)
where
1
Wy =n(l —o)+ 51 -o?) + (1 -o?),  (4.26)

. 1 .
W2 — ;7(1 _ a))eﬂmll + 5’72(] _ w2)6127r(a|+(12)

(1 — @?)el?™®, (4.27)
W (1 — w?)e>™, (4.28)

L 2 ,i2
Wo = S1P(1 - w?)eee (4.29)

Here, yf (=1, 2,3, 4)in Eq. (4.25) are defined by

¥h=(1/2.1/2),
¥, =(0,1/2).

¥y} = (0.0),

= (1/2.0), (4.30)

The y{ and y‘é correspond to the fixed points on 7%/Z,
given in Eq. (4.15). Interestingly, we found additional
contributions from the points y§ and yf: . Since the Z, group
includes Z, as its subgroup, there are additional two “Z,
fixed points" that are not invariant under the Z, rotation but
invariant under such a subgroup Z, (z — @’z = —z) up to
torus lattice shifts. Indeed, yj; and y£ are the “Z, fixed
points”.

The explicit values of W; (j = 1, 2, 3, 4) are summarized
in Table VII. We can then confirm that the formula (4.25)
correctly gives the index n, — n_ in Table III, as it should
be. In the next section, we show that W; is related to the
winding numbers at the fixed points (4.30).

D. Index for T2/Z,
Letus finally discuss the index for the 72/ Z orbifold. In
this case, (y1 ,y2 ) (I1=1,2,3,4,5)is given by

TABLE VII. The list of the coefficients W j in front of the delta
functions in Eq. (4.25).

Zy Twist Coefficients of the delta functions

n (a1, a7) W, W, W W,

1 0,0) 3 3 1 1
(1/2,1/2) 3 -1 -1 -1

@ (0,0) 1 1 -1 -1
(1/2,1/2) 1 -3 1 1

@’ (0,0) -1 -1 1 1
(1/2,1/2) -1 3 -1 -1

’ (0,0) -3 -3 -1 -1
(1/2,1/2) -3 1 1 1
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O ,yz D) = (=y2.31 + 32,

S ’)’2 )= (=1 = y230),

O ,yz ) = (=y1.-»).

(" ,yz ) = (2. =31 = y2).

()’1 ,y2 ):(}’14')’27 1) (4.31)

Inserting Eq. (4.31) into Eq. (4.9) with N =6 and
computing in the same way, we arrive at

. 1 - 2 S
Ind(ip) =556 ). dyldyQ;Wjé v-yh). (432)
where
Wy =21 — o) +=n*(1 —0*) + (1 — &*)
2
+30t (1= ) + 27 (1 - o), (4.33)
W2 = W’; —7’]2(1 - wz) + = 4(1 - ) (434)
W4 = W5 = W6 = —173(1 —_ a)3). (435)

Here, yf(j =1,2,...,6) in Eq. (4.32) are defined by

=(0.0). =(1/3,1/3). ¥} =1(2/3.2/3).
=(1/2,0),  yi=(0.1/2), = (1/2.1/2).
(4.36)

The y{ corresponds to a single fixed point on T2/Z given
in Eq. (4.15). Since the Z4 group includes its subgroups Z4
and Z,, there are additional two “Z5 fixed points” and three
“Z, fixed points" that are not invariant under the Zg
rotation but invariant under such Z; and Z, rotations up
to torus lattice shifts, respectively. The two Z5 and three Z,

TABLE VIII.  The list of the coefficients W in front of the delta
functions in Eq. (4.32). Here, we omit the SS twist phase because
of a 1 = 0y = 0.

Zg Coefficients of the delta functions

n W, W, Ws W, Ws W
1 5 2 2 1 1 1

1) 3 0 0 -1 -1 -1
@’ 1 -2 -2 1 1 1

3 -1 2 2 -1 -1 -1
o* -3 0 0 1 1 1

@ -5 -2 -2 -1 -1 -1

fixed points are just given by yg, yg and yﬁ, y’sc, yé in
Eq. (4.36), respectively.

The explicit values of W;(j =1,2,...,6) are summa-
rized in Table VIII. We can then confirm that the for-
mula (4.32) correctly gives the index n, — n_ in Table 1V,
as it should be. In the next section, we show that W; is
related to the winding numbers at the fixed points (4.36).

V. WINDING NUMBERS AT FIXED
POINTS ON T2/Zy

In this section, we compute the winding numbers at fixed
points on 72/ Z,, and clarify the geometrical meaning of the
coefficients W; in front of the delta functions in Egs. (4.12),
(4.18), (4.25), and (4.32).

Let us define the winding number for the Z, eigenmodes

4l

n+a (Z) as

pina) =5 dl-Vieg(Eha(@).  (5.)

]

where C; denotes a sufficiently small circle encircled
anticlockwise around a fixed point z = p;. The line integral
along the contour C; gives a winding number (or occa-
sionally called vortex number), i.e., how many times
! .a(z) wraps around the origin, as illustrated in Fig. 3.
Note that if &, ,(z) does not vanish at z = p;, the winding
number y;(n, &) obviously takes zero due to the “Cauchy
integral formula” in & space. The important properties of
! .e(z) in Eq. (5.1) are determined only by the Zy
transformation (3.6) and the boundary conditions (3.9)
and (3.10).

We are now ready to define the winding numbers for the
mode functions f, ,,4(z) and f_,4(z). Then, we define
the winding numbers y ; for the mode functions f; ,,4(2)

around the fixed point z = p;, as*

X+j E)(j(’%“) for f nias (5.2)

x-j=xj(@n,—a) for f_, 4 (53)

One might define the winding number y_; for f_, 4 by
xj(wn, @), instead of y;(@i, —a), since f_,.q =&,
This is not, however, the case. As we will see later, the

definition (5.3) for y_; leads to the expected result

Wi=—xyj+x- (5.4)

otherwise we will not obtain any meaningful relation.

“In the previous paper [53], we have introduced the winding
number only for the mode function f,. Here, we need to define
that for f_ also in order to show the formula (3.21).
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Im z
A

> Rez

FIG. 3.

Another reason to adopt the definition (5.3) may be
explained as follows. To this end, let us consider the 6d
charge conjugation C to the 6d fermion ¥(x, z):

P(x,z) SO (x,z) = O (x, 2). (5.5)

The 6d charge conjugation matrix C is represented as

C=C% Q® io,, (5.6)

where C*) is the 4d charge conjugation matrix. Under
this charge conjugation, the mode functions f , ., trans-
form as

Fimia L e = 5nra) (5.7)

Then fﬁw(z) = (f_nia(z))* satisfies
Frial@z) = @7 1) 4 (2), (5.8)
Forazt )= (). (59)
izt =eafl) L(2). (5.10)

The above transformation properties bring another reason
to adopt Eq. (5.3) as the winding number for f_, ,.

In the following, we will define the winding numbers y . ;
on the fundamental domain of T? even for the orbifold
T?/Zy. If one defines the winding numbers on the
fundamental domain of the orbifold Tz/ Zy, instead of
T2, the sum of the winding numbers y ; at fixed points
should be divided by N, i.e., > -, x+;/N dueto 1/N reduced

>The transformation (5.7) is consistent with the supersym-
metry relations (2.14) and (2.15).

Im¢

A L§

()
N

> Re ¢

C; denotes an anticlockwise contour around the fixed point z = p;. In this example, the winding number is equal to +2.

area and the deficit angles around the fixed points in
comparison with that of the torus.

A. Winding numbers for T2/7,

In the following, we examine the winding numbers y . ;

for the mode functions on T2/Z, at the fixed points (4.13),
which correspond to

1 T 1 =z
p1=0, P2=5, P3=5; p4=§+§ (5.11)

in the complex plane.
Under the Z, rotation z — wz(@ = —1) around the fixed
points p j (=1, 2, 3, 4), the Z, eigenmode function

! (2) is found to satisfy the relations

&(wz) = 0*&(2), (5.12)
§wz+1/2) = "2 (z+1/2),  (5.13)
&l wz +1/2) = @20 (7 4 1/2), (5.14)

ENwz +1/2 +1/2) = @} P20 20E1(7 4 1/2 +7/2),
(5.15)

where § = @* (k = 0, 1). Since the label n + a of the mode
function & ,(z) is irrelevant for the analysis below, we
omit it, unless otherwise stated.

By plugging z = 0 into the relations (5.12)—(5.15), the
Z, eigenmode function £(z) takes zeros at the following
fixed points [62,63]:

&'(p1) =0 forn=-1,

(@) = (0.0).(1/2.0).(0.1/2).(1/2.1/2), (5.16)
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TABLEIX. The winding numbers y. ; at the fixed points p; on T%/Z, and their sums V.. = > x+j- All the values of (=V, +V_)/4

exactly agree with the index n, — n_ for the chiral zero modes.

Z, Twist Winding number E_,— yas Index
n (a,a) X+ X2 X+3 X4 X1 X2 X3 X4 vV, V_ (=V +V_)/4
1 (0,0) 0 0 0 0 1 1 1 1 0 4 1
(1/2,0) 0 1 0 1 1 0 1 0 2 2 0
(0,1/2) 0 0 1 1 1 1 0 0 2 2 0
(1/2,1/2) 0 1 1 0 1 0 0 1 2 2 0
—1 0,0 1 1 1 1 0 0 0 0 4 0 -1
(1/2,0) 1 0 1 0 0 1 0 1 2 2 0
(0,1/2) 1 1 0 0 0 0 1 1 2 2 0
(1/2,1/2) 1 0 0 1 0 1 1 0 2 2 0
n=1, (ar,a7)=(1/2,0),(1/2,1/2), B. Winding numbers for 7?%/7;

&'(p2) =0 for{or,?:_l, (ay,2) = (0,0),(0,1/2),

(5.17)

n=1, (a1, 2)=(0,1/2),(1/2,1/2),
orn=-1, (a;,a;)=(0,0),(1/2,0),
(5.18)

&"(p3) =0 for {

n=1, (‘11’02):(1/270)7(0’1/2),
orn=-1, (a;,a,)=1(0,0),(1/2,1/2).
(5.19)

&"(pa) =0 for {

These relations imply that the winding numbers at the fixed
points become nontrivial for the above zeros of the Z,
eigenmode function £7(z). From Egs. (5.12)—(5.15) we can
compute the winding numbers y ; around the fixed points
p;- The results are summarized in Table IX. From Tables V
and IX, we can see that the coefficient W; in Eq. (4.12) is
related to the winding numbers y . ; as

W;=—yyi+x (j=1,2,3,4) (5.20)
for any n = %1 and (o, ) = (0,0),(1/2,0),(0,1/2),
and (1/2,1/2). This implies that the index formula on
T?/7, is given by

1

Z(—V+ +V_), (5.21)

n,—n_=

where V. are the sums of the winding numbers y, ; at the
fixed points Pj (or y{), i.e.,

J

(5.22)

In the following, we examine the winding numbers y . ;
for the mode functions f, (z) = &'(z) and f_(z) = £”"(z)
on T?/Z at the fixed points (4.22), which correspond to

2 7 1 2z
—0, =42, — 42, (523
Pi P2=3713 Pz =313 (5.23)
in the complex plane.
Under the Z5 rotation z — wz(w = ¢’>"/3) around the

fixed points p;, the Z; eigenmode function &"(z) is found
to satisfy the relations

&(wz) = 0*&(2), (5.24)

Ewz+2/3+1/3) = @*B0E1(z4+2/3+17/3), (5.25)

Ewz +1/3 +21/3) = B30 H30E1(7 +1/3 + 27/3),
(5.26)

where n = o* (k =0, 1, 2).

The relations (5.24)—(5.26) tell the phase shifts to the Z3
eigenmode function &7(z) when rotated by 2z/3 around
each fixed point. To evaluate the winding number (7, a)
around the fixed point p;, all we should do is to utilize the
relations (5.24)—(5.26) three times repeatedly. Then, we
obtain

x1(n,@) =k mod 3, (5.27)
x2(n,@) = k+3a; mod 3, (5.28)
x3(n, @) = k+3a; +3a, mod 3, (5.29)

where 5 = . From Egs. (5.27)—(5.29) the winding
numbers y., ; = y;(n,&) and y_; = y;(@#, —a) can be read
off and are summarized in Table X. From Tables VI and X,
we can see that the relation
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TABLE X. The winding numbers y.; at the fixed points p; on 7%/Z; and their sums V, = > jX+j- All the values of (=V, +V_)/6

exactly agree with the index n, — n_ for the chiral zero modes.

Z3 Twist Winding number Zj X+j Index
n (a,a) X+ X 42 43 -1 X2 X-3 vV V_ (=V, +V_)/6
1 0,0) 0 0 0 2 2 2 0 6 1
(1/3,1/3) 0 1 2 2 1 0 3 3 0
(2/3,2/3) 0 2 1 2 0 1 3 3 0
® (0,0) 1 1 1 1 1 3 3 0
(1/3,1/3) 2 0 1 0 2 3 3 0
(2/3.2/3) 0 2 2 0 3 3 0
@’ (0,0) 2 2 2 0 0 0 6 0 -1
(1/3,1/3) 2 0 1 0 2 1 3 3 0
(2/3,2/3) 2 1 0 0 1 2 3 3 0
W, =—yij+x-j (j=1,2,3) (5.30) The winding numbers not only at the Z, fixed points (5.32)
but also at the “Z, fixed points” (5.33) contribute to the
holds for any 5=1,w,0*> and (a;,a)=(0,0), formula (4.25).

(1/3,1/3), and (2/3,2/3). Thus, the index formula on
T?/Z5 is found to be

1
n,—n_ :6(—V++V_). (5.31)

We would like to make two comments on the winding
numbers y, ;. As found from Table X, v ; is equal to 0,1, or
2, as discussed in [53]. The second comment is that we here
consider the fundamental domain of 72 in order to define
the winding numbers y.;. We have defined the winding
number y j(;y, a) in Eq. (5.1), where the contour C ; is taken
to be a circle encircling the fixed point p;. If the winding
number is defined on the fundamental domain of 72/Z;, it
should be divided by N = 3 due to deficit angles around the
fixed points.

C. Winding numbers for 72/7,

In the following, we examine the winding numbers y ;
for the mode functions f, (z) = &"(z) and f_(z) = £""(z)
on T?/Z, at the fixed points.

As noted in the previous section, there are two Z4
fixed points

1 =z
=0, ==+, 5.32
Pi P2=5%5 (5.32)
and additionally two “Z, fixed points”
) . 1 T
Z, fixed points: p; = X Pa =5 (5.33)

which are not invariant under the Z, rotation but invariant
under the Z, one (z = w?z = —z) up to torus lattice shifts.

Under the Z, rotation z — wz around the fixed points p,
and p,, and under the Z, rotation z — @”z around the fixed
points p3 and p,, the Z, eigenmode function &7(z) is found
to satisfy the relations

&' (wz) = 0'&(2), (5.34)

El(wz 4 1/2+1/2) = @kHmgn(z +1/24+¢/2),  (5.35)
'z +1/2) = (@)Hag(z 4 1/2),  (5.36)
g(@’z+1/2) = (@) P28 (2 +1/2),  (5.37)

where 1 = o* (k =0, 1, 2, 3).
From Egs. (5.34)~(5.37) the winding number y;(n, a)
around the fixed point p; is found as

xi(n.a) =k mod 4, (5.38)
x2(n.@) = k+4a; mod 4, (5.39)
x3(n,@) = k+2a; mod 2, (5.40)
xa(m @) =k +2a, mod 2, (5.41)

where 7 = w*. Equations (5.38)—(5.41) show that the
winding numbers y ; can be read off and are summarized
in Table XI. From Tables VII and XI, we can see that the
relation

W;=—=xij+tx- (j=1.273.4) (5.42)
holds for any y = o* (k =0, 1, 2, 3) and (a;,a,) = (0,0)
and (1/2,1/2). Thus, we find the index formula on
T?/7, as
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TABLE XI.  The winding numbers y.; at the fixed points p; on 7%/Z, and their sums V. = > jx+j- All the values of (=V, +V_)/8
exactly agree with the index n, — n_ for the chiral zero modes.

Z, Twist Winding number Z_,— Atj Index
N (a1, a)) X+1 X2 X+3 X+4 X-1 =) X-3 X4 Vi V_ (V. +V.)/8
1 (0,0) 0 0 0 0 3 3 1 1 0 8 1
(1/2,1/2) 0 2 1 1 3 1 0 0 4 4 0
0] (0,0) 1 1 1 1 2 2 0 0 4 4 0
(1/2.1/2) 1 3 0 0 2 0 1 1 4 4 0
@” (0,0) 2 2 0 0 1 1 1 1 4 4 0
(1/2,1/2) 2 0 1 1 3 0 0 4 4 0
o’ (0,0) 3 3 1 1 0 0 0 0 8 0 -1
(1/2,1/2) 3 1 0 0 0 2 1 1 4 4 0
1 The winding numbers not only at the Z¢ fixed point (5.44)
e T -7y (=Vi+ Vo). (5:43) but also at the “Z; fixed points” (5.45) and the “Z, fixed

points” (5.46) contribute to the formula (4.32).

As one can see from Table X1, v,y and ., (y+3 and y.4) Under the Z (Z5 and Z,) rotation z — @z (z = w’z and
are equal to 0,1,2,3(0,1), as discussed in [53]. In fact, the

3 .
z = w’z) around the fixed points , and py, ps,
numbers in Table XI lead to the formula (5.43). ) P P1 (b2 P P4 Ps

Do), the Z4 eigenmode function &"(z) is found to satisfy the
relations
D. Winding numbers for T?/Z

i — ke
In the following, we examine the winding numbers y . ; §llwz) = 0e(z). (5.47)
for the mode functions f, (z) = £"(z) and f_(z) = £”"(z) o’z + p;) = (@) & (z+p;) (j=2.3). (5.48)
on T?/Z at the fixed points.
As noted in the previous section, there is only asingle Zg  &/(w’z + p;) = (0*)*&"(z + p;) (j =4.5.6), (5.49)
fixed point
where n = 0* (k=0,1,...,5).
p1 =0, (5.44) From Egs. (5.47)-(5.49), the winding numbers y;

(n,a = 0) around the fixed points p; are found to satisfy
and there are additionally two “Z; fixed points” and three

“Z, fixed points” given by 71(na=0)=k mod 6, (5.50)
' . I 2 2t o o
Z3f1xed pOll’ltS: p2:§+§, p3:§+?, (545) )(J(I’],a—())—k mod 3 (]*273)7 (551)
1 T 1z yina=0)=k mod2 (j=4,56). (552)
Zzﬁxedpoints:p4:§, Ps =75 P6:§+§.

Note that the SS twist phase is restricted to @ =0 on
(5.46) T?/Z¢. From Egs. (5.50)—(5.52) the winding numbers y j

TABLE XII.  The winding numbers y ; at the fixed points p; on T?/Z¢ and their sums V. = Z_i X+j- Here, we omit the column of
(a;,@,) due to the fact that (a;,@,) = (0,0) for the T?/Z; orbifold. All the values of (—=V_ + V_)/12 exactly agree with the index
n, — n_ for the chiral zero modes.

Zs Winding number > Iyay Index

n X1 X+2 X3 Xe4  X+s o Xve X1 X2 X3 X4 X5 X6 V., V_ (=V,+V_)/12
1 0 0 0 0 0 0 5 2 2 1 1 1 0 12 1

o) 1 1 1 1 1 1 4 1 1 0 0 0 6 6 0

@? 2 2 2 0 0 0 3 0 0 1 1 1 6 6 0

®° 3 0 0 1 1 1 2 2 2 0 0 0 6 6 0

w* 4 1 1 0 0 0 1 1 1 1 1 1 6 6 0

’ 5 2 2 1 1 1 0 0 0 0 0 0 12 0 -1
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can be read off and are summarized in Table XII. From
Tables VIII and XII, we can see that the relation

holds for any n = * (k=0,1,...,5) with @ = 0. Thus,

we find the index formula on 72/Z as
1
S 12
As one can see from Table XIL, y. (y1o, y+3 and y14, ¥ +5,
¥+¢) are equal to 0,1,2,3,4,5 (0, 1, 2 and 0,1), as discussed

in [53]. In fact, the winding numbers in Table XII lead to
the formula (5.54).

(=V,.+ V). (5.54)

ng—n_

VI. CONCLUSION AND DISCUSSION
In this paper, we have derived the index formula

1
_W<

on the T?/Zy orbifold from the trace formula (4.1). In
Sec. III, we have explicitly constructed the mode functions
on T?/Zy and counted the numbers n of the chiral zero
modes. In Secs. IV and V, we have succeeded in evaluating
the trace formula (4.1) and clearly shown that the index
n, — n_is determined by the winding numbers at the fixed
points on 72/Z,.

We have emphasized that the dependence of n. on N, n
and (@, a,) is rather simple, as shown in Tables I-1V, but
the equality in Eq. (6.1) is nontrivial. This is because the
values of V. (or y ;) can be nonvanishing even if n, and/
or n_ are zero, as seen in Tables IX—XII. Furthermore,
V1 /2N are not integer-valued in general, but the difference
(=V,. 4 V_)/2N becomes an integer in any case.

It is interesting that from Tables IX—XII the sums V. of
the winding numbers at the fixed points satisfy

—V,+V.) (6.1)

ng—n_

V,+V_=2N, (6.2)
which is here an empirical formula, but it might be regarded
as an expression of the index theorem. Then, from
Egs. (6.1) and (6.2) we have

(6.3)

—n_=——+1.
n,—n N+

This can be understood as a special case of M = 0 in the

zero-mode counting formula [53]

M - V+
N

n,—n_= + 1. (6.4)

There the formula (6.4) with the quantized magnetic flux M
has been confirmed only for M > 0. Since we can show that

the relation (6.2) holds also for M # 0, the formula (6.4)
can be rewritten as

1
ng—n_=—©0M-V_+V_),

=y (6.5)

which leads to a generalization of the formula (6.1)
to M #0.

In this paper, we found that the orbifold projections bring
the chirality of the massless level in the KK tower from the
viewpoint of the index theorem (even if no flux is turned
on). In addition, the orbifold fixed points and zero points
there play important roles in the trace theorem, as we
expected from the previous paper [53]. Thus, these evi-
dences let us conclude that the term -V, /N 41 or
(=V . 4 V_)/2N reflects the contribution from the orbifold
geometry, i.e., the singularity of the fixed points.

There are two possibilities to interpret the term
-V, /N+1or (-=V,+ V_)/2N. Indeed, there have been
attempts in string theory that connect localized sources with
the index, e.g., [64,65]. One is that the term originates from
some singular spin connection or curvature at the orbifold
fixed points, which should be regarded as “geometric flux”.
Another possibility is that there exist localized Wilson-line
sources at the fixed points, as discussed in [62,63]. In this
case such sources should be regarded as “gauge flux”. Our
result suggests that the two-dimensional orbifolds 72/Z
are equivalently described by setups with localized fluxes at
fixed points.

A remaining task is to derive the formula (6.5) for M # 0
from the trace formula. In order to evaluate the trace
formula, we may need a complete orthonormal set of Zy
eigenmode functions on the magnetized T?/Z, orbifold, as
we have done in this paper. That, however, seems to be hard
since mode functions on the magnetized T2/Z, are given
by Jacobi theta functions [12] and their Z transformation
property is quite complicated [25,66].
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APPENDIX: PROOF OF EQ. (4.5)

In this Appendix, we prove the relation

Z {éz-&-a( )( n+a<zl>>* - fj—a(z)( :ll)j-a Z/ Im Z Z Z’/I (1 —(1) un+a( )(un-&-a(a)lzl))*’ (Al)

n+aeh/Zy n€Z nyeZ 1=0

which is used in deriving Eq. (4.5). To prove Eq. (A1), we separately discuss the following four cases:

(1) a #0.

2)a=0 and n#1, on#l,
3)a=0 and n=1, wn#l,
4)a=0 and n#1l, wn=

l.a#0
For ¢ # 0, the left-hand side of Eq. (A1) can be evaluated as follows:

1(z2)= Y A&a()Ea@) = &lal2) (&)}

n+ach/Zy

(3.5) N-1 N-1

S. _ 1 _ U 4

= Z |An+a|2 Z Z n Hl ak )un—Hx (a)lZ>(un+a(a)l Z/>)*
n+achN/Zy 1=0 I'=0

I'=1"+1 2 Nl Z// 1L 1\ *

= Z |An+a| Z Z n ”n+a<w Z) (”n+a(w < ))
n+a€N/Zy =0 1"=0

Z > Zn’” (1= 0" )ity 1 (2) (tysa(@'7))", (A2)

n,EZ nEZ I"=0

where in the last equality, we have used Egs. (3.11), (3.18), and the formula

Z iF(a)l(n—i—a)): ZF(n—i—a):ZZF(;H_a) (A3)

n+ael/Zy =0 n+acA n€Z nyeZ

for a¢ # 0.

2.a=0and n# 1, on # 1
In this case, A/Zy should not include n = 0 [see Eq. (3.15)]. Hence, we can write A/Zy explicitly as

N/Zy={n(n;,n,€Z)jn~wn and n #0} (A4)
and
= {n(n;,n, € Z)|n # 0}. (A5)

Then, we find
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I(z.2)= )Y {&@EE) -&a"(@)E"@)}

nelN /Zy
(3 N—-1 N-1
= AP D (1 = o Yy (0'2) (u (0! 2))
neN /Zy =0 I'=0
= 1 " " Nl
. ZHI ZZ " 1y (2) (1 (0! 2))* < (3.11).(3.18) and > Y F(e'n)= an)
mz neN "= neN/zy =0 neN
Z > Zn’”(l — 0" )y (2) (uy (0" 2))", (A6)
nleaneZ "=

where in the last equality, we have used ug(z) = 1 and
N-1
> =S (onr =0, (A7)
l” 0 l// 0
forn # 1 and wn # 1.

J.a=0and n=1, won #1
In this case, 1(z,7') is expressed in terms of A/Zy and A'/Zy as

I(z.2)= ) &)l - ) &@E)

nen/Zy nelN /Zy
(3 N—-1 N— 1 , N
= D P 0~ ity (@12) (10 (@ D)) 1 (= LA = (VIme) ™ ug(2) = 1)
neN ] Zy 1=0 1/:0 mz
N N—-1
1" . [ —
ZZ (1 = 0" )ity (2) (1t (0" 2))* + — < (3.11),(3.18) and ) ZF(a)n) = ZF(n))
neA "= neN /7y =0 nen
Im,ZZ (1= @)@ ) () = 1 Z(l ~of) =)
nel "= =
Z > Z (1= 0" )y (2) (n (0" 2))". (A8)
nleZnZGZl”

4. x=0and n# 1, on=1

We can prove the relation (A1) in the same way as the case (3) fora =0 and 1 # 1, wn = 1.
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