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We show that the predictions of commonly used spatially smeared particle detectors coupled to quantum
fields are not generally covariant outside the pointlike limit. This lack of covariance manifests itself as an
ambiguity in the time-ordering operation. We analyze how the breakdown of covariance affects typical
detector models in quantum field theory such as the Unruh–DeWitt model. Specifically, we show how the
violations of covariance depend on the state of the detectors-field system, the shape and state of motion
of the detectors, and the spacetime geometry. Furthermore, we provide the tools to explicitly evaluate the
magnitude of the violation and identify the regimes where the predictions of smeared detectors are either
exactly or approximately covariant in perturbative analyses, thus providing limits of validity of smeared
particle detector models.
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I. INTRODUCTION

Particle detector models [1–3] have become an ubiqui-
tous concept in the study of fundamental problems in
quantum field theory (QFT). They provide a way of
circumventing some of the conceptual and technical issues
associated with the notion of measurement of localized
field observables [4–7], and also yield an operationally
appealing approach to common phenomenology in QFT in
curved spacetimes such as the Unruh and Hawking effects
(see, e.g., [1,2,8–10]). Beyond their value as a fundamental
tool, particle detector models are commonly employed in
concrete setups in relativistic quantum information and
quantum optics to model the light-matter interaction in
relativistic regimes (see, e.g., [11,12]).
Common desired features of particle detector models

include being localized, controllable, and measurable non-
relativistic quantum systems that couple to a quantum field
in a finite region of spacetime. Historically [3], particle
detectors have been typically considered to be pointlike
objects which interact with a quantum field along timelike
curves representing their trajectories. There are, however,
good reasons to extend the model beyond pointlike detec-
tors, thus including some spatial extension to the system.
One reason is to regularize UV divergences in the predictions
of the theory by introducing a finite length scale for the size

of the detector [13,14]. Smeared detectors are also more
appealing from the point of view of algebraic quantum
field theory, where field observables are directly linked to
field operators that are smeared in both time and space [15],
and to which it is natural to couple our detectors. Finally, one
could also argue for the need for smeared particle detector
models due to the fact that in all physically realistic
scenarios, the device being used as detector—for instance,
an atom coupling to the electromagnetic field [11,12,16]—is
not a pointlike object, but has in fact some nontrivial spatial
extension.
Smeared particle detectors, however, are not devoid of

their own issues. In particular, coupling a single non-
relativistic degree of freedom of the detector to a region of
spacetime with finite spatial extension implies “faster than
light” coupling of the internal constituents of the detector.
In other words, one single detector’s degree of freedom
“feels” the interaction with the field simultaneously at
spacelike separated points. This does not mean that
smeared detectors should be avoided in a relativistic
description of measurement in QFT. Rather, this seems
intuitively compatible with the assumption that the detector
is a nonrelativistic system. Indeed, particle detector models
do not intend to provide a fundamental description of
reality, but rather, to yield an approximate description of
measurements in quantum fields that is valid under certain
regimes. The effects that the detector’s “nonlocality” of the
coupling may have on the causal behavior of the detector
model were analyzed in [17], where it was shown that
as long as predictions are taken at times longer than the
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light-crossing time of the detectors’ length scales, smeared
particle detector models cannot signal faster than light.
Furthermore, following on this, in recent work [18], it was
discussed that there are ways to covariantly prescribe the
coupling between smeared detectors and fields. However,
even when the detector-field Hamiltonian density is cova-
riantly prescribed, one may wonder whether there may still
be issues with the covariance of the time evolution
generated by this Hamiltonian density due to the nonlocal
nature of the coupling of smeared detectors.
Indeed, taking the common Hamiltonian formulation for

particle detector physics, we can ask how these nonlocality
issues affect the time-evolution operator given by the time-
ordered exponential of the Hamiltonian for the system.
Although in nonrelativistic physics time is an external
absolute parameter, when considering relativistic scenarios,
one has to address the issues and subtleties that arise from
different possible choices of time parametrization. In
particular, each observer has their own rest spaces and
proper times and, therefore, the notion of time order may
become frame dependent. Namely, the ordering of events in
spacetime according to different time coordinates will only
be unambiguous if the events are timelike or null separated.
If, on the other hand, two events are spacelike separated,
one can find observers that see either event happening
before or after the other.
In the case of particle detectors, first principle argu-

ments tell us that it is physically justified to prescribe the
interaction in the reference frame of the detector’s center
of mass [12,18]. However, if the interaction between the
field and the detector is spatially smeared, there will be
spacelike separated events in the “world tube” of the
detector. This means that the ambiguity in time ordering
will impact smeared detector setups, since certainly time
ordering with respect to the detector’s center of mass
proper time will in general not be equivalent to time
ordering with respect to a different frame. If taken at
face value, this would be catastrophic for a detector
model of a quantum field theory: suddenly, time evo-
lution and all its predictions would be reference frame
dependent.
General covariance is an important foundational point

of modern theoretical physics: fundamental theories must
be independent of the (strictly mathematical) choice of the
coordinates used to describe the laws of physics. Even
though the detector based approach for probing quantum
fields is not intended to be a fundamental description of
nature, it is still important that its predictions are generally
covariant if we are to give them physical meaning in terms
of features of the quantum field. Moreover, particle detec-
tors are used in scenarios where covariance plays an
important role, such as entanglement harvesting (see,
e.g., [19–28]), where multiple detectors are present and
the causal relations between the interactions of the many
detectors are relevant.

In the present paper, we study in detail how the spatial
smearing of an Unruh–DeWitt (UDW) detector breaks
covariance. First, we show that all predictions made for
a system of pointlike detectors with covariant Hamiltonian
densities (prescribed as in [18]) are coordinate independent.
In other words, systems of many pointlike particle detectors
in general spacetime backgrounds are fully covariant.
We then explicitly analyze the time-evolution operator

for smeared detectors and calculate (up to lowest nontrivial
order) the magnitude of the violation of covariance due to
the detector’s finite size. In particular, we show how
predictions made in different coordinate systems with
different notions of time ordering deviate from each other
as a function of the field-detector state, the size and shape
of the detector, as well as the geometry of spacetime. We
will show that if the detector is initially in a statistical
mixture of states of well-defined energy (eigenstates of the
free Hamiltonian, thermal states, etc.), then the violations of
covariance are of third order (and in many cases fourth
order) in the coupling strength between the detector and
field. This means that predictions associated to different
choices of time parameters are equivalent at the order in
perturbation theory where many important phenomena
manifest (e.g., entanglement harvesting, detection of the
Unruh effect, etc.). Furthermore, for the cases where the
violations of covariance are of leading order, we discuss in
what regimes they can be made negligible. Namely,
approximate covariance is restored when several require-
ments are met: (1) the relative motion of the detectors with
respect to the frame in which we are computing should not
be extreme; (2) the curvature around the detectors should
also be small enough; and (3) the predictions are only taken
for times much longer than the light-crossing time of each
of the detectors in their respective proper frames, as well as
in the coordinate frame we use to calculate.

II. REVIEW OF SPACETIME INTERVALS
IN CURVED SPACETIMES

For the purposes of this work, it is convenient to review
the notions of timelike, null, and spacelike separation in
curved spacetimes. In Minkowski spacetime it is easy to
define the notion of spacelike and timelike separation of
two events p and q. If we let Δx ¼ p − q, we say that the
two events are spacelike separated in the case in which
ημνΔxμΔxν > 0 and that they are timelike separated if
ημνΔxμΔxν < 0, where ημν stands for the metric in inertial
coordinates. If p and q are spacelike separated in
Minkowski spacetime, it is always possible to find an
inertial timelike observer that sees both events simulta-
neously. If they are timelike separated, there is always an
inertial timelike trajectory that goes through both of the
events. Also, we say that two events are null separated if the
norm of Δx is zero. Null separated events are connected by
a ray of light.
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These concepts provide very useful insight about the
causal structure of Minkowski spacetime, in the sense that
events that are spacelike separated have no causal influence
over one another. In the context of quantum field theory,
this fact manifests itself as the microcausality condition:
the commutator of quantum fields in spacelike separated
regions vanishes. In Minkowski spacetimes, we can simply
say timelike are those events that can be connected by
timelike separated events curves, and the analogous holds
for null separated events. The points that are spacelike
separated are the ones that do not fit any of the categories
before.
In curved spacetimes, however, defining global notions

analogous to timelike, null, and spacelike separations is
more delicate [29]. First, we assume that we have a
spacetime M with a metric g that is globally hyperbolic
and time orientable. Given a point p, we then define the set
of chronological events related to p as the set of all points
that can be connected to p by a timelike curve. We denote
the set of chronological events related to p by IðpÞ. This can
be shown to be an open set [29], and it corresponds to the
interior of the light cone in Minkowski spacetime.
We then define the set of null separated events NðpÞ ¼

IðpÞnIðpÞ as the boundary of the closure of IðpÞ. In
Minkowski NðpÞ corresponds to the set of points that
are in the boundary of the light cone of p. It should be
noted, however, that in general this set might contain points
that are not causally connected to p (see again [29] for an
example). However, all null curves that go through p are
contained in NðpÞ. Note that as NðpÞ is the boundary of a
region, it possesses one dimension less than the spacetime
it is contained in, and volume integrals performed over it
yield zero.
We then define the set of nonchronological events related

to p as SðpÞ ¼ MnIðpÞ. In Minkowski this is equivalent to
the region outside the light cone of p. This set is always
open since it is the complement of a closed set, and no event
in SðpÞ is causally connected to the point p.
Having generalizations of spacelike and timelike sepa-

ration, we notice that q ∈ IðpÞ ⇔ p ∈ IðqÞ, so that we can
define the relation between events “belonging to the
chronological set of one another” that we notate p ♮ q.
This relation is what we define as timelike separation.
Analogously, q ∈ NðpÞ ⇔ p ∈ NðqÞ so that we can define
the relation between events “belonging to the null set of one
another” that we denote by p p. This is what we will call
null separation here, although it should be noted that not
all null separated events can be connected by a lightlike
curve [29].
Consider two future-oriented timelike differential forms

dt and dt0 which foliate spacetime by achronal surfaces and
are associated to two coordinate systems R≡ ðt; xÞ and
R0 ≡ ðt0; x0Þ. Now, take two events p and q of coordinates
ðp0; piÞ; ðp00 ; pi0 Þ and ðq0; qiÞ; ðq00 ; qi0 Þ, respectively, in R

and R0. If or p p, we have that the sign of p0 − q0

and p00 − q0
0
is the same. Also, we will only have p0 − q0

(or p00 − q0
0
) equal zero if p ¼ q. Therefore, the notion of

time ordering for these events is unambiguous and coor-
dinate independent (hence reference frame independent),
provided that the surfaces of constant t and t0 are achronal.
This will be particularly useful for the discussion of the
meaning of the time-ordering operation in quantum
mechanics in curved spacetimes.
We also define the relation p pin the case in which

q ∈ SðpÞ ⇔ p ∈ SðqÞ. Relevant to this paper, notice that
since in this case the points p and q are not causally
connected, the microcausality condition imposes that the
commutator of a scalar quantum field evaluated at them
must vanish.

III. THE UDW MODEL
IN CURVED SPACETIMES

To model the interaction of a particle detector and a
quantum field in curved spacetimes, we use a smeared
UDW detector [2,3]. That is, a two-level system interacting
with a free scalar field through a minimally coupled (for
simplicity) action. The UDW model captures most of the
fundamental features of the light-matter interaction (barring
the exchange of angular momentum [12,30]), and hence
one could think of this detector as modeling the interaction
of atomic probes and the electromagnetic field [11,12].
To describe the quantum field and detector, we assume

that we have a globally hyperbolic D ¼ nþ 1 dimensional
spacetime M. Under these assumptions, the action for a
(minimally coupled) classical real scalar field can be
written as

S½ϕ� ¼
Z

dV
�
−
1

2
∇μϕ∇μϕ −

1

2
m2ϕ2

�
; ð1Þ

where dV is the invariant volume element of spacetime,
given by

dV ≡ ffiffiffiffiffiffi
−g

p
dDx ¼ ffiffiffiffiffiffi

−ḡ
p

dDx̄: ð2Þ

When extremized, the action in Eq. (1) yields the Klein–
Gordon equation of motion for the field ϕ,

∇μ∇μϕ −m2ϕ ¼ 0: ð3Þ

At this point we can pick a complete set of solutions to
Eq. (3), fukðxÞg which is orthonormal with respect to the
Klein–Gordon inner product [9,31]. That is,

ðuk; uk0 Þ ¼ δðk − k0Þ; ð4Þ

ðu�k; u�k0 Þ ¼ −δðk − k0Þ; ð5Þ
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ðuk; u�k0 Þ ¼ 0: ð6Þ

This allows one to write any classical solution ϕðxÞ as a
linear combination of the ukðxÞ and u�kðxÞ:

ϕðxÞ ¼
Z

dnkða�ku�kðxÞ þ akukðxÞÞ; ð7Þ

where ak ¼ ðuk;ϕÞ. Notice that the field ϕðxÞ can be
completely determined from the coefficients ak, which can
be calculated in any Cauchy surface Σ provided that both ϕ
and its normal derivative to the surface are specified in Σ.
This procedure is independent of the mode expansion
performed and of the Cauchy surface chosen to prescribe
the initial conditions.
To canonically quantize the field ϕðxÞ, one must first

define the conjugate momentum to the field, πðxÞ.
The form of πðxÞ depends explicitly on the choice of
foliation by Cauchy surfaces Es and a time translation
direction s that connects the different sheaves, so that it can
be written as

πðxÞ ¼ δS
δð∂sϕðxÞÞ

: ð8Þ

Having the momentum associated to this given foliation of
spacetime, it is then possible to upgrade ϕðxÞ and πðxÞ to
operators and impose the “equal time” canonical commu-
tation relations

½ϕ̂ðxÞ; π̂ðx0Þ� ¼ δEsðx; x0Þ1;
½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ 0;

½π̂ðxÞ; π̂ðx0Þ� ¼ 0; ð9Þ

where δEsðx; x0Þ is the Dirac delta distribution associated to
each of the surfaces Es.
We can then build the usual Fock representation for field

states by promoting the coefficients ak and a�k from Eq. (7)
to operators. This gives rise to the creation and annihilation
operators associated to the mode expansion in terms of the
basis of solutions fukðxÞg. That is, the quantum field ˆϕðxÞ
can be written in any point of spacetime as

ϕ̂ðxÞ ¼
Z

dnkðâ†ku�kðxÞ þ âkukðxÞÞ: ð10Þ

The canonical commutation relations (9) force the standard
bosonic commutation relations for the creation and anni-
hilation operators

½âk; â†k0 � ¼ δðnÞðk − k0Þ1;
½âk; âk0 � ¼ 0;

½â†k; â†k0 � ¼ 0: ð11Þ

With this, a vacuum state j0i associated to this quantization
is defined as the state annihilated by all the annihilation
operators âk. The Hilbert space associated to the field is
built by successive applications of the creation operators â†k
on the vacuum state.
Notice that the choice of orthonormal set fukðxÞg is not

unique, and indeed there are an infinite number of ways of
representing the field in terms of a sum of modes. If two
different representations are unitarily equivalent, then the
annihilation operators âk and â†k associated to the two
different set of modes annihilate the same vacuum.
However, even in the simplest scenarios there are nonuni-
tarily equivalent ways of quantizing the field. A typical
example is the Rindler quantization. The vacuum associ-
ated to a quantization in terms of Minkowski modes
corresponds to thermal states in the right and left wedges
of a Rindler quantization [9,32].
The choice of modes determines the explicit spacetime

dependence of the field and, therefore, fixes its free
dynamics. In this manuscript we will assume that this
choice has been made at the level of field quantization, and
the free quantum field is already given as in Eq. (10) for
every point of spacetime. It is important to remark that this
is a common assumption when using the UDW model in
curved backgrounds, and it is the assumption that yields
covariant predictions for pointlike detectors as we will see.
Same as in (among others) [18], we assume our detector

to be localized as a smeared (Fermi–Walker rigid) two-level
first quantized system. We notate zðτÞ, the trajectory of the
detector’s center of mass, parametrized by proper time τ.
We denote jgi and jei, the ground and excited state of the
detector according to the detector’s free Hamiltonian Ĥτ

d
(which generates translations with respect to τ),

Ĥτ
d ¼ Ωσ̂þσ̂− ¼ Ω

2
ðσ̂z þ 1Þ; ð12Þ

where Ω is the proper energy gap of the detector and
σ̂þ ¼ jeihgj ¼ ðσ̂−Þ†.
In a given coordinate system the interaction Hamiltonian

density ĥIðxÞ can be written in terms of a scalar Hamiltonian
weight ĥIðxÞ according to ĥIðxÞ¼ ffiffiffiffiffiffi−gp

ĥIðxÞ, where g is the
determinant of the metric in the corresponding coordi-
nates. This will simplify the analysis because, unlike the
Hamiltonian density, the Hamiltonian weight is a scalar and,
therefore, can be used without the need to explicitly mention
coordinate systems. The Hamiltonian weight associated to
the interaction of a two-level system with a scalar quantum
field in the UDW model takes the following shape,
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ĥIðx̄Þ ¼ λχðτÞfðx̄Þμ̂ðτÞϕ̂ðx̄Þ; ð13Þ

where—following the prescription from [18]—we pick
Fermi normal coordinates x̄ ¼ ðτ; x̄Þ, associated to the center
of mass of the detector, and the monopole moment operator
takes the form

μ̂ðτÞ ¼ eiΩτσ̂þ þ e−iΩτσ̂−: ð14Þ
Note that χðτÞ and fðx̄Þ are the switching and smearing
functions, respectively. Notice that, by construction, in the
proper frame of the detector we can factor a switching
function and a spatial smearing function in the interaction
Hamiltonian. This is associated to the assumption that the
detector is Fermi–Walker rigid, that is, it keeps its shape in its
own reference frame. In a general coordinate system there is
no factorization of a switching and a smearing function and
the Hamiltonian weight will be characterized instead by a
spacetime smearing ΛðxÞ, that is,

ĥIðxÞ ¼ λΛðxÞμ̂ðτðxÞÞϕ̂ðxÞ: ð15Þ
As stated in [18], the integral of the above quantity in

spacetime is fully covariant and coordinate independent.
The Hamiltonian that generates time evolution with respect
to the proper time τ of the detector is then defined as the
integral over the constant τ surfaces Στ, according to

Ĥτ
IðτÞ ¼ λ

Z
Στ

dnx̄
ffiffiffiffiffiffi
−ḡ

p
χðτÞfðx̄Þμ̂ðτÞϕ̂ðx̄Þ; ð16Þ

while the Hamiltonian generating translations with respect
to an arbitrary time coordinate t can be written as

Ĥt
IðtÞ ¼ λ

Z
Et

dnx
ffiffiffiffiffiffi
−g

p
ΛðxÞμ̂ðtÞϕ̂ðxÞ; ð17Þ

where Et denotes the constant t spacelike surfaces in the
coordinates x ¼ ðt; xÞ.
The time-evolution operator is then defined as the time-

ordered exponential

Û ¼ T τ exp

�
−i

Z
M
dVĥIðxÞ

�
¼ T τ exp

�
−i

Z
R
dτĤτ

IðτÞ
�
;

ð18Þ

where we have made it explicit that the time-ordering
operator T τ represents time ordering with respect to the
proper time of the detector’s center of mass τ.
It is important to notice that the UDW model has

historically been prescribed at the Hamiltonian level and
not from a “first-principle” action. It is indeed an effective
model built to bypass the need for a full relativistic
description of the detector’s internal dynamics. It is never-
theless possible to obtain the interaction Hamiltonians in
(16) and (17) from the following interaction action:

SI ¼
Z

dDx̄
ffiffiffiffiffiffi
−ḡ

p
LIðx̄Þ; ð19Þ

where LI is a scalar interaction Lagrangian weight. From
this action, an interaction energy-momentum tensor can be
assigned:

Tab
I ¼ −

2ffiffiffiffiffiffi−gp δSI
δgab

: ð20Þ

Now assume that the interaction Lagrangian does not
explicitly depend on the metric. This is true for common
potential and interaction terms in scalar field theories and
certainly true for the common UDW detector models as
introduced in previous literature [1–3]. Then, the only
dependence on the metric in (19) comes from the volume
element, so that we obtain

Tab
I ¼ −LIðx̄Þgab: ð21Þ

The interaction Hamiltonian (23) can then be obtained as

Hτ
I ¼

Z
Στ

dΣ naTab
I ξb; ð22Þ

where ξa ¼ ð∂τÞa, dΣ is the induced volume element on
the spacelike surfaces Στ with unit normal na, and we
complete the identification from (22) to (23) by recogniz-
ing hIðx̄Þ ¼ −LIðx̄Þ.
We will take as an assumption of the setup that, once

the free quantization of the field has been performed, its
spacetime dependence in the interaction picture is fully
determined. In particular, this implies that any local
interaction term in an interaction action between the fields
in our setup will correspond to an interaction Hamiltonian
weight ĥIðxÞ that is a foliation-independent scalar function
of the coordinates. This is a nontrivial assumption, insofar
as it is hard to justify it in general from first-principle
arguments based on a careful description of the free and
interacting Hamiltonians arising from splitting the full
energy-momentum tensor of the theory as a “free” and
an “interacting” part. Nevertheless, this has certainly been
taken for granted in the standard approaches based on
particle detector models with detectors in trajectories that
may not correspond to the trajectories of fiducial observers
according to which canonical quantization (and in particu-
lar, the definition of the vacuum) has been performed.
Notice again that this choice yields covariant predictions
for pointlike detectors. Since the model has been remark-
ably successful in QFT in many scenarios, where the
nontriviality manifests (for example predicting the Unruh
effect [1,2,9]), and our objective is to highlight the
limitations that are intrinsic to the usual strategy employed
in smeared particle detector models. We find this a fair
assumption upon which to base our following remarks.
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IV. THE TIME-ORDERING OPERATION

The notion of time ordering is fundamental in our
understanding of time evolution in quantum theory.
When a given coordinate system is chosen, x ¼ ðt; xÞ,
the time ordering of events associated to this coordinate
system is understood as an ordering with respect to the
coordinate time t. For timelike or null separated events,
time ordering is independent of the coordinate system
picked. However, for spacelike events this is not the case. In
this section, we will study under which conditions the time-
ordered exponential of a Hamiltonian density is indepen-
dent of the time parameter used to order it. Wewill do so for
a scalar quantum field theory in a globally hyperbolic
spacetimeM of dimensionD ¼ nþ 1with metric g, in the
context of the UDW model discussed in Sec. III.
Consider the UDW model, as presented in Sec. III. In the

Fermi normal coordinates associated to the detector’s center
of mass worldline, we have seen that the Hamiltonian and
unitary time-evolution operator are respectively given by

Ĥτ
IðτÞ ¼

Z
dnx̄

ffiffiffiffiffiffi
−ḡ

p
ĥIðx̄Þ; ð23Þ

Ûτ ¼ T τ exp

�
−i

Z
R
dτ Ĥτ

IðτÞ
�
: ð24Þ

This time-evolution operator should then be thought to
evolve initial data, encoded in general as a state operator
ρ̂0, and prescribed at an initial Cauchy surface Στ0 to a
final future Cauchy surface Στ1 . Throughout our discussion,
we will in general assume ðτ0; τ1Þ → ð−∞;þ∞Þ. Notice
that any finite nature of the interaction would be imple-
mented through the possibly finite spacetime support in the
Hamiltonian.
Under the assumptions outlined in Sec. III, one can

alternatively compute the time evolution prescribed by a
different coordinate time t by assigning an interaction
Hamiltonian given by

Ĥt
IðtÞ ¼

Z
Et

dnx
ffiffiffiffiffiffi
−g

p
ĥIðxÞ; ð25Þ

where x are spacelike coordinates on Et, which are the
surfaces of simultaneity defined by constant t. When
comparing the time evolution generated by (23) and
(25), one should keep in mind that we are implicitly
assuming that the past and future Cauchy surfaces corre-
sponding to ðt0; t1Þ coincide with the ones associated to
ðτ0; τ1Þ—otherwise, the comparison would be meaningless
since it would involve comparing observables located in
different spatial slices. Again, this does not mean that we
cannot model finite-time interactions since the finiteness
will be encoded in the spacetime support of Ĥt

IðtÞ.
Having a covariantly defined Hamiltonian as in (25) is,

however, not enough to guarantee that the time-evolution
operator itself will be independent of the time parameter

chosen to prescribe it. This will only be true if the time-
ordering operation with respect to τ were actually truly
independent of the time coordinate chosen. If this is
not the case, it is easy to see that issues with time ordering
will appear in every order OðλnÞ with n ≥ 2 of the
Dyson expansion of Ûτ. Namely, if we write the Dyson
expansion as

Ûτ ¼ 1þ Ûð1Þ
τ þ Ûð2Þ

τ þOðλ3Þ; ð26Þ

then the time-ordering prescription T τ associated to the
detector’s proper time yields for the second-order term

Ûð2Þ
τ ≔ ð−iÞ2

Z þ∞

−∞
dτ

Z
τ

−∞
dτ0Ĥτ

IðτÞĤτ0
I ðτ0Þ

¼ ð−iÞ2
Z
M×M
dVdV 0ĥIðx̄ÞĥIðx̄0Þθðτ − τ0Þ: ð27Þ

If we now try to perform a coordinate transformation to
another coordinate system x ¼ ðt; xÞ, then we get

Ûð2Þ
τ ¼ ð−iÞ2

Z
M×M
dVdV 0ĥIðxÞĥIðx0ÞθðτðxÞ − τ0ðx0ÞÞ

≠ ð−iÞ2
Z þ∞

−∞
dt
Z

t

−∞
dt0Ĥt

IðtÞĤt0
I ðt0Þ ¼ Ûð2Þ

t ; ð28Þ

where θðτÞ is the Heaviside step function. Because there
can be spacelike separated events in the integral in (28), we
do not get the nested integration that one would expect from
carrying out time ordering T t with respect to the time
coordinate t instead of τ.
Note, however, that we can split the integration region

M ×M into four subregions:

T ≔ fðx̄; x̄0Þ ∈ M ×M∶x̄ ♮ x̄0g; ð29Þ

N ð30Þ

S and

ð31Þ

S and

ð32Þ

where corresponds to timelike, x x corresponds to
null, and x corresponds to spacelike separation
between x and x0.
With this splitting we can write Ûð2Þ in (27) as a sum of

integrals over the different regions
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Ûð2Þ
τ ¼ ð−iÞ2

Z
T∪N∪S>

dVdV 0ĥIðx̄ÞĥIðx̄0Þθðτ − τ0Þ

þ ð−iÞ2
Z
S≤

dVdV 0ĥIðx̄ÞĥIðx̄0Þθðτ − τ0Þ: ð33Þ

For timelike and null separation, the time ordering
between two events is the same for every observer, which
means that for points on regions T and N, τðxÞ − τ0ðx0Þ >
0 ⇔ t − t0 > 0 as per the discussion in Sec. II. This allows
us to equate θðτðxÞ − τðx0ÞÞ ¼ θðt − t0Þ in these regions.
The same reasoning is true for the points in the S> region,
by construction, since we defined S> to be the region
composed of spacetime events that preserved the previous
time ordering.
The only region where the coordinate transformation

may cause problems is S≤ since it changes the time
ordering between the two events. In this region, we can
write θðτðxÞ − τðx0ÞÞ ¼ θðt0 − tÞ, which allows us to
rewrite the integral as

Z
S≤

dVdV 0ĥIðxÞĥIðx0ÞθðτðxÞ − τðx0ÞÞ

¼
Z
S≤

dVdV 0ĥIðxÞĥIðx0Þθðt0 − tÞ; ð34Þ

then, writing ĥIðxÞĥIðx0Þ ¼ ĥIðx0ÞĥIðxÞ þ ½ĥIðxÞ; ĥIðx0Þ�,
we get

Z
S≤

dVdV 0ĥIðxÞĥIðx0Þθðt0 − tÞ

¼
Z
S≤

dVdV 0ĥIðx0ÞĥIðxÞθðt0 − tÞ

þ
Z
S≤

dVdV 0½ĥIðxÞ; ĥIðx0Þ�θðt0 − tÞ: ð35Þ

Renaming the integration variables x and x0 in the first
integral of the right hand side above, we recover the same
integrand as in Eq. (28). Adding the integrals over the
regions T, N, S> and S≤, we finally get

Ûð2Þ
τ ¼ð−iÞ2

Z
M×M
dVdV 0ĥIðx̄ÞĥIðx̄0Þθðτ−τ0Þ

¼ ð−iÞ2
Z
M×M
dVdV 0ĥIðxÞĥIðx0Þθðt− t0Þ

þð−iÞ2
Z
S≤

dVdV 0½ĥIðxÞ; ĥIðx0Þ�θðt0− tÞ

¼ Ûð2Þ
t þð−iÞ2

Z
S≤

dVdV 0½ĥIðxÞ;ĥIðx0Þ�θðt0− tÞ; ð36Þ

where we recall T t represents time ordering with respect to
t and Û t the associated time-evolution operator. The second

summand in (36) ultimately threatens the covariance of the
time-ordering prescription. This term is proportional to
the commutator of the Hamiltonian densities at spacelike-
separated points.
To generalize the result above to higher orders, notice

that the Nth term in the Dyson series can be written as

ÛðNÞ
τ ¼ ð−iÞN

N!

Z
MN
dV1…dVNT τĥIðx̄1Þ…ĥIðx̄NÞ

¼ ð−iÞN
N!

Z
MN
dV1…dVNT τĥIðx1Þ…ĥIðxNÞ

≠
ð−iÞN
N!

Z
MN
dV1…dVNT tĥIðx1Þ…ĥIðxNÞ; ð37Þ

where T τ applied to the Hamiltonian densities time orders
the product according to the detector’s center of mass
proper time τ. As the second and third line of (37) shows,
we could switch from the x̄ ¼ ðτ; x̄Þ coordinates to arbitrary
coordinates x ¼ ðt; xÞ without picking any extra terms, but
we need to keep the time ordering with respect to τ.
Expressing the time ordering with respect to τ in terms of
time ordering in the coordinates ðt; xÞ is, in general, a
nontrivial task but it is, in general, different from time
ordering with respect to t.
We would like to highlight that the noncoincidence of

time ordering with respect to different coordinate systems
can be bypassed in many common scenarios. If the
Hamiltonian weight is microcausal, that is, it satisfies

x x x x ð38Þ

then the ambiguity in time ordering of spacelike-separated
events will have no impact in the calculation of the time-
evolution operator. In other words, when (38) is satisfied,
the time evolution operator is the same with respect to any
time parameter. There are many relevant interactions where
the Hamiltonian density is microcausal. The postulate of
microcausality in QFT implies that field operators evalu-
ated at spacelike-separated points commute. If the inter-
action Hamiltonian weight ĥIðxÞ is local in the quantum
fields (that is, only couples the detector to field degrees of
freedom evaluated at a single point in each spatial slice) the
Hamiltonian weight is microcausal. This is why in (most
of) high-energy physics, where all fields are microcausal
and the interactions are local, there is no need to specify a
privileged time ordering, and the time evolution is always
covariant. This is also why a detection scheme based on the
Fewster–Verch QFT measurement framework [6,33,34]
would not have any problems with covariance. However,
smeared particle detectors such as the smeared UDW
model involve nonlocal couplings to quantum fields, and
hence will suffer from time-ordering ambiguities as we
will see.
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V. BREAKING OF COVARIANCE BY A SINGLE
SMEARED DETECTOR

In Sec. IV we have seen that local quantum field
theories that satisfy microcausality (observables commute
at different spacelike separated points) would produce
time-evolution operators that do not depend on the time
parameter chosen for time ordering. When we take ĥIðxÞ to
be the Hamiltonian weight associated to a single pointlike
detector undergoing an arbitrary timelike trajectory in a
fixed background, the interaction is local. That is, the
detector’s degree of freedom only couples to a single point
in each space slice. This translates into the fact that the
support of the Hamiltonian weight ĥIðxÞ consists of a single
point in each spatial slice, which in turn implies that ĥIðxÞ
satisfies a microcausality condition: it commutes with itself
at spacelike separated points. In summary: predictions of
the time evolution of pointlike UDW detectors coupled
through Hamiltonian weights of the form (15) are fully
covariant.
However, in the smeared UDW detector model

employed in the literature, the Hamiltonian weight
(and, therefore, the Hamiltonian density) can be shown
to violate microcausality. Namely, the commutator of the
UDW interaction Hamiltonian densities for a single
smeared detector evaluated at spacelike-separated points
is not identically zero due to the smearing. To the authors’
knowledge, this has not been taken into account in pre-
vious literature. This represents an important limitation
of the theory that must be accounted for even for the
simplest cases of inertial detectors in flat spacetimes (as we
will show in an example later). This violation of general
covariance can then be used to stipulate a limit of
validity and better clarify under which conditions the
predictions of particle detector models can be trusted.
This violation (that would yield coordinate dependence
of the model’s predictions) is deeply linked to the fact
that the spatially smeared UDW Hamiltonian itself enc-
odes an interaction of a single degree of freedom of the
detector with a field observable in a region with finite
spatial extension and is, therefore, inherently nonlocal.
The goal of this subsection is, therefore, to quantify
the degree to which this nonlocality of the interaction
hinders the covariant nature of predictions prescribed
in different coordinate systems. In other words, evaluate
how good an approximation we are taking when we
consider a smeared UDW detector to model the underlying
covariant theory describing the interaction of field and
detectors.
To quantify the break of covariance introduced by the

smearing, we make use of the results of Sec. IV by taking
the coordinates x̄ ¼ ðτ; x̄Þ to be the Fermi normal coor-
dinates associated to the detector’s center of mass, and
we take x ¼ ðt; xÞ to be a different arbitrary frame. We
recall that time ordering is unambiguous for the timelike

and null regions T and N. Furthermore, the only region
where time ordering can cause covariance problems
is S≤ since, by definition, it contains all the events for
which time ordering is not the same in both frames.
Considering that the quantum field theory satisfies micro-
causality (½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ 0 for x ), we can write the
commutator of the Hamiltonian weights in (36) in terms of
the commutator of the monopole operator at different times
in S≤ as

½ĥIðxÞ; ĥIðx0Þ� ¼ λ2ΛðxÞΛðx0Þ½μ̂ðτðxÞÞ; μ̂ðτðx0ÞÞ�ϕ̂ðxÞϕ̂ðx0Þ;
ð39Þ

where the ΛðxÞ is the spacetime smearing function. From
(14) we can explicitly evaluate the monopole moment
commutator for a qubit UDW detector as

½μ̂ðτÞ; μ̂ðτ0Þ� ¼ 2i sinðΩðτ − τ0ÞÞσ̂z: ð40Þ

Notice that this commutator vanishes only for specific
times, namely, when τ ¼ τ0 þ πn=Ω for integer values of n,
hence the smeared UDW detector interaction Hamiltonian
density breaks microcausality. It is important to remark that
this issue is present even in the simplest scenarios already
studied in the literature, such as inertial motion of particle
detectors in flat spacetimes.
As mentioned in Sec. IV, when an interaction

Hamiltonian does not satisfy microcausality, the time
ordering associated to different notions of time translations
might impacts the result for the time evolution operator.
This implies that the uses of smeared particle detectors not
relying on a quantum field theoretical description of the
detector (i.e., particle detector models except for the
Fewster–Verch approach [6,33,34]) implicitly assume a
notion of time translation with respect to which the
calculations are performed, and, in principle, different
choices of such notions might have yielded different
predictions. However, a mathematical model that represents
reality cannot yield different results depending on the
coordinate system used to perform computations. It is thus
important to quantify the difference that the different
choices of coordinates introduce in the time-evolution
operator. If these differences were to be relevant, they
may cast doubt on the accuracy of the predictions made by
particle detector models.
To study the possible coordinate dependence of the

predictions of particle detector models, let us start by
comparing the time ordering associated to the proper
time of the detector’s frame τ with the time ordering with
respect to a different parameter t, associated to a foliation
Et. We make use of the result of Eq. (39), where the
commutator of ĥIðxÞ with itself at different events was
explicitly evaluated. Concretely, consider two time-ordered
exponentials that define two different time-evolution
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operators Ûτ and Û t. On the one hand, Ûτ is associated to
the Hamiltonian generating time evolution with respect to
the proper time of the detector Ĥτ

IðτÞ, that is

Ûτ ¼ T τ exp

�
−i

Z
dτ Ĥτ

IðτÞ
�
: ð41Þ

On the other hand, the time-evolution operator Û t is
associated to the time order of the Hamiltonian Ĥt

IðtÞ
generating translations with respect to another time
parameter t:

Ût ¼ T t exp

�
−i

Z
dt Ĥt

IðtÞ
�
: ð42Þ

In a covariant formalism we should have Ûτ ¼ Û t, so
that the predictions do not depend on the choice of
coordinates. While this is not going to be the case for
non-pointlike detectors, it is possible to precisely quantify
the difference between the two time-ordering prescriptions
in a general smearing scenario. As discussed in Sec. IV, for
the first-order Dyson expansion term in the time evolution,

we verify that Ûð1Þ
τ ¼ Ûð1Þ

t and, therefore, the first deviation
from using the two coordinate systems appears in the
second order of the Dyson expansion. From (36) we get

Ûð2Þ
t − Ûð2Þ

τ ¼ −
Z
S≤

dVdV 0½ĥIðxÞ; ĥIðx0Þ�θðt0 − tÞ: ð43Þ

If we expand the integral above using the expression of
the Hamiltonian weight ĥIðxÞ in terms of the field and
monopole operators and equation (40), we obtain

Ûð2Þ
t − Ûð2Þ

τ ¼ −2iλ2σ̂z
Z
S≤

dVdV 0ΛðxÞΛðx0Þϕ̂ðxÞϕ̂ðx0Þ

× sin½Ωðτ − τ0Þ�θðt0 − tÞ: ð44Þ

We then define an operator Ê that acts only on the Hilbert
space of the field as

Ê ≔ −2i
Z
S≤

dVdV 0ΛðxÞΛðx0Þϕ̂ðxÞϕ̂ðx0Þ

× sin½Ωðτ − τ0Þ�θðt0 − tÞ; ð45Þ

so that we can write the difference betweenÛð2Þ
t and Ûð2Þ

τ as

Ûð2Þ
t − Ûð2Þ

τ ¼ λ2σ̂zÊ: ð46Þ

Taking the adjoint of Eq. (45) and using the fact that the
field operators commute when evaluated at points in S≤,
one sees that Ê† ¼ −Ê.
We can evaluate the exact magnitude of the violation

of covariance by choosing a particular initial state for

detector and field. In particular, in the reasonable scenario
that field and detector are initially uncorrelated, the initial
joint state is

ρ̂0 ¼ ρ̂d;0 ⊗ ρ̂ϕ: ð47Þ

After the interaction, the state of the field-detector system
will be given by

ρ̂τ ¼ Ûτρ̂0Û
†
τ : ð48Þ

The time-evolved state of the detector is obtained after
tracing over the field degrees of freedom: ρ̂d ¼ Trϕρ̂.
If one decides to prescribe the interaction using any

other coordinate system, then general covariance would
demand that the time evolution implemented by Û t

should coincide with that of Ûτ. For Û t, the density
operator used to describe the system after the interaction
will be given by

ρ̂t ¼ Û tρ̂0Û
†
t : ð49Þ

Since the spacetime region of interaction is given by the
support of the spacetime profile ΛðxÞ, which is coor-
dinate invariant, we can then use Eq. (46) to compare ρ̂t

with ρ̂τ. We obtain

ρ̂t ¼ Ûτρ̂0Û
†
τ þ λ2ðσ̂zÊρ̂0Û†

τ þ Ûτρ̂0σ̂zÊ
†Þ þOðλ3Þ

¼ ρ̂τ þ λ2ðσ̂zρ̂d;0 ⊗ Êρ̂ϕ þ ρ̂d;0σ̂z ⊗ ρ̂ϕÊ
†Þ þOðλ3Þ:

ð50Þ

The covariance breaking introduced in the detector
evolved states can be evaluated by partial tracing the
field. Using the cyclic property of the trace and that
Ê ¼ −Ê†, we can write ρ̂td ¼ Trϕρ̂t as

ρ̂td ¼ ρ̂τd þ λ2ðσ̂zρ̂d;0TrÊρ̂ϕ þ ρ̂d;0σ̂zTrρ̂ϕÊ
†Þ þOðλ3Þ

¼ ρ̂τd þ λ2ðσ̂zρ̂d;0TrÊρ̂ϕ − ρ̂d;0σ̂zTrρ̂ϕÊÞ þOðλ3Þ
¼ ρ̂τd þ λ2½σ̂z; ρ̂d;0�Trρ̂ϕÊþOðλ3Þ; ð51Þ

where Trρ̂ϕÊ can be written in terms of the field state
Wightman function as

Trρ̂ϕÊ ¼ −2i
Z
S≤

dVdV 0ΛðxÞΛðx0ÞW ρ̂ϕðx; x0Þ

× sin½Ωðτ − τ0Þ�θðt0 − tÞ: ð52Þ

We, therefore, obtain that the difference between both
descriptions is given by

ρ̂td − ρ̂τd ¼ λ2½σ̂z; ρ̂d;0�Trρ̂ϕÊþOðλ3Þ: ð53Þ
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Equation (53) quantifies how much the standard smeared
UDW particle detector model changes if one decides to
perform the calculations in another reference frame. It is
important to remark that the predictions of such models
can only be trusted up to the point where the difference
between the states ρ̂td and ρ̂τd is negligible. For example,
smeared UDW models provide an accurate approximation
for the description of a probe coupling to a quantum field
up to second order if the initial state of the detector
commutes with its free Hamiltonian, a common choice in
many previous works.
Recall that we discussed in Sec. IV that the break of

covariance is linked to the nonlocal coupling of a single
quantum degree of freedom of the detector to multiple
spacelike separated points. Indeed, we can check from
Eq. (53) that Ê is identically zero for a pointlike detector
due to the fact that the pointlike smearing (a delta function)
has no points in the region S≤. Furthermore, if the initial
state of the field is a Gaussian state with vanishing one-
point function—i.e., hϕ̂ðxÞiρ̂ϕ ¼ 0, which includes not only
the vacuum or any thermal state but also any squeezed
thermal state—there is no breakdown of covariance even
at order Oðλ3Þ. This can be seen by noting that the
corrections of order λ3 are proportional to integrals of
the three point function hϕ̂ðx1Þϕ̂ðx2Þϕ̂ðx3Þiρ̂ϕ , which is zero
for any Gaussian state with vanishing one-point function.
It is also worth pointing out that in the cases where there

is violation of covariance at leading order, this violation is
due to the smearing of the detector and is, therefore,
suppressed with the smearing decay in spacetime as can
be seen from Eq. (45). This is congruent with the causality
violations found in early literature associated to the
smearing of particle detectors [17]. There, the causality
violations were deemed controllable if they decayed at least
as fast as the detector’s smearing function tails. Therefore,
in the event where the predictions of the model are taken for
proper timescales and length scales much larger than the
light-crossing time of the detector’s smearing, the differ-
ence between the two time-ordered evaluations should be
negligible when the frames are related by nonextreme
accelerations and curvatures, providing regimes for which
the model’s violations of covariance is negligible. These
regimes are precisely the regimes where using particle
detectors is meaningful according to other relativistic
considerations [18] and are well within the regimes where
phenomena such as the Unruh effect should become
observable. We explicitly illustrate this with an example
in Sec. VII.

VI. COVARIANCE OF MULTIPLE DETECTORS

After the analysis of the covariance violations in the
time ordering for a single detector, one can wonder what
happens when we have scenarios with multiple detectors
where, arguably, covariance could be more subtle. These

scenarios can combine detectors whose proper times are
radically different and where identifying regimes of time-
like or spacelike separation between them is crucial (for
example in entanglement harvesting [19–28]).
One can work out the deviation between the time-

evolution operators defined by different time coordinates
in the case of multiple detectors as a straightforward
generalization of what was done in Sec. V. Assume we
have N detectors, labelled by j ¼ 1;…; N whose centers of
mass undergo trajectories zjðτjÞ parametrized by the proper
time of each detector’s center of mass, τj. We then prescribe
the interaction Hamiltonian densities (or equivalently their
weights) in the Fermi normal coordinates associated to each
of the detectors’ worldlines, x̄j ¼ ðτj; x̄jÞ, according to

ĥI;jðx̄jÞ ¼ λjχjðτjÞμ̂jðτjÞfjðx̄jÞϕ̂ðx̄jÞ; ð54Þ

where fj is the smearing function for the jth detector,
μ̂jðτjÞ is its monopole moment, and λj the coupling
strength.
In Sec. IV we obtained results for a general interaction

Hamiltonian weight. We can now apply those results to the
multiple detectors case where the Hamiltonian weight is

ĥIðxÞ ¼
XN
j¼1

ĥI;jðxÞ: ð55Þ

The time-evolution calculations can get quite complicated
if the detectors are in different states of motion. This is
because to obtain the total Hamiltonian or the time-
evolution operator, in general, we need to recast all the
summands in (55) in terms of a common set of coordinates
different from at least some of the detector’s proper frames.
Notice, however, that in the case of pointlike detectors
and, therefore, with Dirac deltas as smearings fjðx̄jÞ, the
Hamiltonian weight from Eq. (55) commutes with itself
at spacelike separated points. This is due to the fact that
the different monopole moment operators act in different
Hilbert spaces and the field operator is assumed to satisfy
the axiom of microcausality. Therefore, we conclude that
for a system of pointlike detectors, the time-evolution
operator can be written as

Û ¼ T exp

�
−i

Z
M

dVĥIðxÞ
�
; ð56Þ

with no necessity to explicitly indicate with respect to
which time parameter the ordering happens. In other words,
as anticipated in previous sections, the formalism for
(an arbitrary number of) pointlike UDW detectors is fully
covariant.
Same as in the single-detector case, violations of

covariance will appear when smeared detectors are con-
sidered. In lieu of full covariance for one detector, one may
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be tempted to privilege the time ordering with respect to the
proper time of the detector’s center of mass due to the fact
that interaction is prescribed in the Fermi–Walker reference
frame of the detector’s center of mass. However, when
multiple detectors are considered we are mixing different
Hamiltonian weights prescribed with respect to different
Fermi–Walker frames. The results, therefore, would be
different if we time order the full interaction with respect to
any of the many proper time parameters involved in the
many-detector problem. In plain words, should we time
order the global Û with respect to Alice’s detector’s proper
time? or Bob’s? Or Charles’s? Or none? Each prescription
would yield quantitatively different predictions. Obviously,
this is a problem: there is no unique way of writing the
time-evolution operator for a system of N smeared particle
detectors.
Since the UDW model is an effective model, we do not

necessarily expect that it is fully covariant, as all funda-
mental models must be. The breakdown of covariance just
responds to the usage of the effective model beyond the
regimes in which it can be used to properly model the
(covariant) physical reality. With this in mind, we will show
that there are physically reasonable regimes where the
covariance breakdown can be minimized and provide
approximate results that can be used to define limits of
validity of the theory.
To quantify the dependence of the predictions of the

smeared UDW model on the coordinate system used, let us
first consider an arbitrary choice of time parameter s
associated to a foliation Es, yielding the following time-
evolution operator:

Ûs ¼ T s exp

�
−i

Z
M

dVĥIðxÞ
�
: ð57Þ

In the case of multiple detectors, we can adapt the
calculation done in Sec. V to prove a similar result:
choosing an initial detector’s state that commutes with
their free Hamiltonian cancels the violations of covariance
atOðλ2Þ. Moreover, if the field state is Gaussian with a zero
one-point function, then the difference in the predictions
for Û with respect to different time parameters is cancelled
also at Oðλ3Þ.
Furthermore, for arbitrary states, the offending deviation

can be calculated at leading order from Eq. (36) by
plugging in the Hamiltonian weight (55). Let us consider
the second-order term in the Dyson expansion prescribed
with respect to two notions of time ordering, t and s, that do
not necessarily agree. We then obtain two time-evolution
operators, Û t and Ûs, with their associated second-order

terms being Ûð2Þ
t and Ûð2Þ

s . Recalling that in the region S≤
the field operators commute, and so do the monopole
operators associated to different detectors, we have that
½ĥI;iðxÞ; ĥI;jðx0Þ� ¼ 0 for i ≠ j in S≤, and Eq. (36) yields

Ûð2Þ
t − Ûð2Þ

s ¼ −
XN
i¼1

Z
S≤

dVdV 0½ĥI;iðxÞ; ĥI;iðx0Þ�θðt0 − tÞ:

ð58Þ

This gives us

Ûð2Þ
t − Ûð2Þ

s ¼ λ2
XN
i¼1

σ̂z;iÊi; ð59Þ

where Êi corresponds exactly to the Ê defined in (45) for
each detector. If the system starts in an uncorrelated state
of the form

ρ̂0 ¼
�
⊗
N

i¼1
ρ̂0;i

�
⊗ ρ̂ϕ; ð60Þ

the same procedure outlined in Sec. V leads to two different
density operators for the detector part of the system, ρ̂sd
associated to time evolution with respect to the parameter s,
and ρ̂td associated to the parameter t. Their difference will
then be given by

ρ̂td − ρ̂sd ¼ λ2
XN
i¼1

�
⊗
j≠i
ρ̂0;j

�
½σ̂z;i; ρ̂0;i�Trρ̂ϕÊi þOðλ3Þ:

ð61Þ

It is, therefore, clear that if all detectors start in a product
state, with the state of each detector being a statistical
mixture of eigenstates of the respective free Hamiltonian,
then the deviation up to second order in the coupling
vanishes, allowing the model to be used within these
regimes.
This means that although there is no unique nonpertur-

bative way of writing a given time-evolution operator for
smeared detectors, we do not see any difference in pre-
dictions for different time ordering at leading order in the
coupling. It is important to remark that the standard results
obtained from techniques and setups that are dependent on
multiple UDW detectors, such as entanglement harvesting
and quantum energy teleportation, are dominated by second-
order dynamics and often use initial states for which the
second-order violation cancels. In all those cases there is no
violation of covariance in the final result.
Moreover, same as in the case of a single detector, the

violations of covariance scale with the size of the detectors
as it can be seen from the definition of the Êi operators.
This means that the violation of covariance can be made
small under the following three conditions:
(1) the relative motion of the detectors with respect to

the frame in which we are computing Û is not
extreme,

(2) the curvature around the detectors is also not
extreme, and
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(3) the predictions are going to be considered for times
much longer than the light-crossing time of the
length scale of each of the detectors in their
respective proper frames.

In those cases, making the detector smaller suppresses the
covariance violations very fast. For atomic-sized detectors
one would expect these three assumptions to hold even for
regimes where the Unruh effect is detectable, paralleling
the discussion about orders of magnitude where these
effects are relevant found in [18]. We will illustrate this
decay of the violations of covariance with an example in the
next section.

VII. EXAMPLE: SMEARED INERTIAL
DETECTOR IN FLAT SPACETIME

Even the simplest possible dynamics for the detector and
field—inertial motion in flat spacetimes—already suffers
from the covariance violation studied in this paper. That is,
the UDW model for an inertial detector (of center of mass
proper time τ) moving with respect to the frame used for the
quantization of a scalar quantum field ðt; xÞ (that we call
the lab frame) still yields different predictions if the time
ordering is taken with respect to τ or t. Evaluating Eq. (45)
explicitly for this simple case will provide intuition on the
scales that play a role in determining the regimes where the
breaking of covariance can be neglected.
Without loss of generality, we can take the detector’s

center of mass to be moving in the x direction with positive
speed v relative to the lab frame. We make the choice of
Fermi–Walker coordinates for the detector ðτ; x̄; x̄⊥Þ so that
x̄⊥ comprises the coordinates in the spatial directions that
are orthogonal to the detector’s velocity. The lab time Δt
elapsed between two events with coordinates ðτ; x̄; x̄⊥Þ and
ðτ0; x̄0; x̄0⊥Þ is simply given by a Lorentz transformation:

Δt ¼ γðΔτ þ vΔx̄Þ;

γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð62Þ

where Δτ ¼ τ − τ0, Δx̄ ¼ x̄ − x̄0. Time ordering is different
in the two frames only for events in the region S≤ since in
that region Δτ > 0 and Δt < 0. This happens when

Δx̄ < −
Δτ
v
: ð63Þ

Therefore, in this case, the region S≤ can be written in the
Fermi normal coordinates of the detector as the points
ðx̄; x̄0Þ parametrized by

x̄ ¼ ðτ; x̄; x̄⊥Þ;
x̄0 ¼ ðτ − σ; x̄ − ξ; x̄0⊥Þ ð64Þ

with σ > 0, ξ < −σ=v, and x̄⊥; x̄0⊥ arbitrary.

One primary consistency check for our previous claims
is to see that Eq. (45) vanishes when we set the smearing
function to be fðx̄; x̄⊥Þ ¼ δðx̄Þδðn−1Þðx̄⊥Þ, which would
correspond to the case of a pointlike detector. With this
choice of smearing and the parametrization of the region S≤
according to Eq. (64), the integrals over x̄; x̄⊥; x̄0⊥ in
Eq. (45) can be trivially computed in the case of a stationary
state of the field so that we are left with

Trρ̂ϕÊ ¼ 2i
Z

∞

0

dσ
Z

−σ=v

−∞
dξ δðξÞ sinðΩσÞW ρ̂ϕðξ; σÞ

×
Z
R
dτχðτÞχðτ − σÞ; ð65Þ

where

W ρ̂ϕðξ; σÞ ≔ hϕ̂ðxð0; 0; 0ÞÞϕ̂ðxð−σ;−ξ; 0ÞÞiρ̂ϕ ð66Þ

is obtained from the field’s Wightman function hϕ̂ðxÞϕ̂ðx0Þi
assuming stationarity and after carrying out all the spatial
integrals but ξ using the delta smearing.
Since the domain of integration in ξ never crosses the

origin, the integral in Eq. (65) yields zero. This is consistent
with what we showed in Sec. V: pointlike detectors do not
introduce any covariance problems.
We now compute explicitly the deviation from predic-

tions between time ordering with detector’s proper time and
an arbitrary inertial frame. For concreteness, let us consider
the vacuum state of the field in three spatial dimensions.
The vacuum Wightman function of a massless scalar field
evaluated between spacelike points is given by:

h0jϕ̂ðxÞϕ̂ðx0Þj0i ¼ 2

ð2πÞ2
1

jΔxj2 ; ð67Þ

where jΔxj2 ¼ ημνðΔxÞμðΔxÞν is the invariant spacetime
interval between the events x and x0. In the coordinates
associated to the frame of the detector, jΔxj2 can be
written as

jΔxj2 ¼ −σ2 þ ξ2 þ jx̄⊥ − x̄0⊥j2: ð68Þ

We consider Gaussian switching and smearing functions
with timescale T and length scale l, respectively:

χðτÞ ¼ 1ffiffiffiffiffiffi
2π

p exp

�
−

τ2

2T2

�
;

fðx̄Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
l3

exp

�
−
jx̄j2
2l2

�
: ð69Þ

With these choices for switching and smearing, the integrals
over τ and x̄ in (45) can be computed in closed form.
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The integrals in the perpendicular directions can be evaluated by changing variables from x̄⊥; x̄0⊥ to r ¼ x̄⊥ − x̄0⊥ and
R ¼ x̄⊥ þ x̄0⊥. By doing so, Eq. (45) takes the following form:

Trρ̂ϕÊ ¼ 4i
ð2πÞ2

Z
R2

d2x̄⊥
Z
R2

d2x̄0⊥
Z
R2

dτdx̄
Z

∞

0

dσ
Z

−σ=v

−∞
dξ

χðτÞχðτ − σÞ sinðΩσÞfðx̄; x̄⊥Þfðx̄ − ξ; x̄0⊥Þ
ð−σ2 þ ξ2 þ jx̄⊥ − x̄0⊥j2Þ

¼ iT
2π2l3

Z
∞

0

dσ
Z

−σ=v

−∞
dξ e−σ

2=4T2

e−ξ
2=4l2 sinðΩσÞ

Z
R2

d2r
e−jrj2=4l2

ξ2 − σ2 þ jrj2

¼ iT
πl3

Z
∞

0

dσ
Z

−σ=v

−∞
dξ e−σ

2=4T2

e−ξ
2=4l2 sinðΩσÞ

Z
∞

0

dr
re−r

2=4l2

ξ2 − σ2 þ r2

¼ iT
2πl3

Z
∞

0

dσ
Z

−σ=v

−∞
dξ exp

�
−σ2

�
1

4T2
þ 1

4l2

��
sinðΩσÞEi

�
−ξ2 þ σ2

4l2

�
ð70Þ

¼ i
π

�
T
l

�
3

v
Z

∞

0

ds
Z

−s

−∞
dζ exp

�
−
s2v2

4

�
1þ T2

l2

��
sinðΩTvsÞEi

�
ð−ζ2 þ s2v2Þ T2

4l2

�
; ð71Þ

where EiðxÞ is the exponential integral function [35], and we
get Eq. (71) from (70) by performing the change of variables
s ¼ σ=vT, ζ ¼ ξ=T. Analysis on (71) shows that for fixed v,
the violation of covariance computed above goes to zero
as the duration of the interaction T becomes much longer
than the light-crossing time of the detector l. Numerical
results show that for values of T=l⪆103 the error becomes
negligible for speeds below v ≤ 0.9. As a summary, in the
limit of T=l → ∞, the whole integrand in Eq. (71) vanishes
and, therefore, so does the covariance breaking term as
expected from the discussion in previous sections.

VIII. CONCLUSION

We have studied the breakdown of covariance that the
time-ordering operation introduces in smeared particle
detector models (such as the UDW model) used in QFT
in general spacetimes.
We have first shown how for pointlike detectors, the

time-ordering operation does not introduce any coordinate
dependence: all predictions of properly prescribed pointlike
UDW detectors are covariant. Namely, we have explicitly
shown how, for the predictions of a system of N pointlike
particle detectors on arbitrary trajectories in curved space-
times, all possible choices of time ordering are equivalent.
We highlighted that all predictions are covariant even when
the multiple pointlike detectors are relatively spacelike
separated. This can be traced back to the fact that a)
pointlike detectors only see the field along timelike
trajectories—so the time ordering of the events making
up each detector’s worldline is unambiguous—and b) the
individual Hamiltonian densities coupling each detector to
the field mutually commute when the detectors are space-
like separated.
In contrast, we have shown that, for smeared detectors,

the fact that the detectors couple to the field at multiple
spacelike separated points introduces a break of covariance

in time ordering. This is problematic because different
choices of time-ordering parameter can, in principle, yield
radically different predictions. This is aggravated for
systems of many detectors in arbitrary states of motion
since there is no physical reason in those setups to privilege
one particular notion of time order.
With this in mind, we explicitly evaluated the magnitude

of this break of covariance and concluded that if a detector
starts in a statistical mixture of eigenstates of its free
Hamiltonian (such as ground, excited, or thermal state),
then the deviations from a fully covariant prediction are
of third order in the detector’s coupling strength (and in
most cases even fourth order), hence subleading for many
interesting phenomena (e.g., the thermal response of
detectors in the Unruh and Hawking effects [1,2,8–10]
and typical scenarios of entanglement harvesting [19–28]).
Furthermore, in the cases where the breakdown of covari-
ance is of leading order, we have argued that it is of the
same magnitude as the causality violation already intro-
duced by the mere fact of smearing a detector degree of
freedom [17] and showed that these deviations from
covariance are suppressed with the smearing length scales.
Analogously to the discussion in [18], the difference
between predictions in different coordinates can be negli-
gible in scenarios where the duration of the interaction is
much longer than the light-crossing time of the detector’s
smearing length scale in all the detectors’ center of mass
frames and in the coordinate frame used to perform
calculations. We have also shown a particular example
of this in flat spacetime.
The analysis on this paper quantifies the coordinate

dependence of predictions for particle detector models in a
very general setting as a function of the initial states, the
shape and state of motion of the detectors, and the geometry
of the spacetime they move in. Thus, these results establish
the limits of validity of smeared particle detector models to
covariantly extract information from a quantum field.
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