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We investigate the existence of double copy structure, or the lack thereof, in higher derivative operators
for Nambu-Goldstone bosons. At the leading Oðp2Þ, tree amplitudes of Nambu-Goldstone bosons in the
adjoint representation can be (trivially) expressed as the double copy of itself and the cubic biadjoint scalar
theory, through the Kawai-Lewellen-Tye bilinear kernel. At the next-to-leading Oðp4Þ there exist four
operators in general, among which we identify one operator whose amplitudes exhibit the flavor-
kinematics duality and can be written as the double copy of Oðp2Þ Nambu-Goldstone amplitudes and the
Yang-Millsþ ϕ3 theory, involving both gluons and gauged cubic biadjoint scalars. The specific operator
turns out to coincide with the scalarOðp4Þ operator in the so-called extended Dirac-Born-Infeld theory, for
which the aforementioned double copy relation holds more generally.
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I. INTRODUCTION

The nonlinear sigma model (NLSM) [1–3] is an effective
field theory (EFT) of Nambu-Goldstone bosons (NGB’s)
arising from spontaneously broken symmetries. Recent
developments in the modern S-matrix program have led
to renewed interest in the NLSM, which is frequently
referenced. In particular, the NLSM can be formulated in an
entirely on-shell way, by imposing the consistency con-
dition of the Adler’s zero [4,5]. This powerful on-shell
property, related to a shift symmetry at the Lagrangian level
[6–9], leads to a wealth of constructions from totally
different perspectives, including soft bootstrap [10–12]
and single soft scaling or double soft theorems [13–16].
Furthermore, the NLSM is also a key element of the

color-kinematics duality and the ensuing Bern-Carrasco-
Johansson (BCJ) double copy [17], as well as the Cachazo-
He-Yuan (CHY) formalism for S-matrix [18–21]. These
formalisms have demonstrated a remarkable unity among
naively distinct theories, by expressing for instance gravity
as the double copy of Yang-Mills (YM), or Born-Infeld as
the double copy between YM and the NLSM [21]. At the
leading Oðp2Þ, the requirement of flavor-kinematics dual-
ity, together with locality and cyclic invariance of flavor-
ordered amplitudes, can even uniquely constrain tree
amplitudes in the NLSM [22].

More generally, in the space of consistent quantum
theories, the NLSM can be related to YM through trans-
mutation operators and dimensional reduction [23–25] or to
a biadjoint scalar through soft limits [9,26–28]. These
fascinating aspects are somewhat hidden in the traditional
Lagrangian formulation. Finally, through a subset of higher
derivative corrections starting fromOðp6Þ, it also makes an
appearance in string theory, as symmetrized sums over
Z-theory amplitudes, which are objects carrying the α0
dependence of the superstring theory [29,30]. The origin in
string theory ensures the BCJ relation derived at Oðp2Þ is
satisfied by all higher derivative operators in the Z-theory.
From the effective field theory perspective, a natural

puzzle arises when one includes generic higher dimen-
sional and higher derivative corrections to the leading
renormalizable interactions: do any of the fascinating
features, such as the double copy relation, continue to
work in these cases? Some preliminary studies showed that
for the NLSM, direct applications of the BCJ relations from
Oðp2Þ fail at Oðp4Þ [11,31].
However, recently new ingredients for constructing the

color-kinematics duality are introduced at the level of four-
point amplitudes [32–34], which involve new color (flavor)
kinematic objects as linear combinations of color (flavor)
structures with coefficients given by Mandelstam invari-
ants. In this paper we extend the results on color-kinematics
duality beyond the four-point amplitudes, to higher multi-
plicity, and investigate whether it is possible to construct
double copy relations for the NLSM at Oðp4Þ.
It is also instructive to consider the double copy

relation from the Kawai-Lewellen-Tye (KLT) bilinear form,
which for the NLSM at the leadingOðp2Þ can be expressed
as [21,35]
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NLSMð2Þ ¼ NLSMð2Þ ⊗
KLT

ϕ3;

where ϕ3 denotes the cubic biadjoint scalar theory, and the

universal KLT kernel matrix ⊗
KLT

is the inverse of a matrix
whose entries are doubly ordered amplitudes of ϕ3. How is
the bilinear form modified after including higher derivative
corrections in the NLSM? Naively, when we includeOðp4Þ
corrections to the left-hand side, it is conceivable that there
is a version of higher derivative corrections to the cubic
biadjoint scalar theory that could make the double copy
relation work nontrivially. We will see that, for a particular
choice of Oðp4Þ operator, there is indeed a theory that
would form the double copy relation for the NLSMð4Þ,

NLSMð4Þ ¼ NLSMð2Þ ⊗
KLTðYMþ ϕ3Þ;

where YMþ ϕ3 is a theory of biadjoint scalars with gauge
interactions [35].
The paper is organized as follows. In Sec. II we begin

with a discussion on the color structure of the NLSM at
Oðp2Þ and Oðp4Þ. In Sec. III we review the color
kinematics duality, including its recent modification, and
how it applies to the Oðp4Þ single and double trace
amplitudes at four points. In Sec. IV we then extend to
six points, and find a flavor-kinematic solution that matches
theOðp4Þ double trace amplitude. In Sec. V we identify the
double copy relation involving the NLSM amplitudes at
Oðp4Þ and YMþ ϕ3. We end with conclusions and future
directions in Sec. VI.

II. THE NLSM UP TO Oðp4Þ
The NLSM effective Lagrangian can be parametrized as

the following:

LNLSM ¼ f2Λ2L̃
�∂
Λ
;
π

f

�
; ð1Þ

where πa are the NGB fields with flavor indices a, and Λ
and f are constants of mass dimension 1, with f=Λ < 1.
The low energy effective Lagrangian is a perturbative
expansion of ∂=Λ, which is predictive when the energy
scale of interest is much smaller thanΛ. Because of Lorentz
invariance, there are only even powers of ∂=Λ in the series
expansion when we work in four spacetime dimensions.

The leading order Oðp2Þ Lagrangian Lð2Þ
NLSM contains all

the terms in Eq. (1) with two derivatives, and the subleading

Oðp4Þ Lagrangian Lð4Þ
NLSM contains all the terms of four

derivatives, and so on. In other words,

LNLSM ¼ Lð2Þ
NLSM þ Lð4Þ

NLSM þO
�

1

Λ4

�
; ð2Þ

with Lð2Þ
NLSM ¼ Oð1=Λ0Þ and Lð4Þ

NLSM ¼ Oð1=Λ2Þ. At each
order in the derivative expansion, the Lagrangian also
admits an expansion of π=f, to all orders in 1=f.
An n-point tree amplitude has the low energy expansion:

MNLSM
n ¼ Mð2Þ

n þMð4Þ
n þO

�
1

Λ4

�
; ð3Þ

and at tree level, we have MðmÞ
n ¼ Oðf2−nΛ2−mÞ. All

vertices in LðmÞ
NLSM up to n-point will enter MðmÞ

n . We
review the Lagrangian and amplitudes of NLSM up to
Oðp4Þ in the following.

A. The Lagrangian

Let us consider a general NLSM where the NGB fields
πa furnish some representation R of a Lie group H. Using
the bra-ket notation, jπia ¼ πa, the Oðp2Þ Lagrangian is
[6,36]

Lð2Þ
NLSM ¼ f2

2
hdμdμi; ð4Þ

where

jdμi ¼
1

f
F1ðT Þj∂μπi; ð5Þ

F1ðT Þ ¼ sin
ffiffiffiffi
T

p
ffiffiffiffi
T

p ; ð6Þ

ðT Þab ¼
1

f2
ðTiÞacðTiÞdbπcπd; ð7Þ

with Ti being the generators of H in the representation R,
written in a purely imaginary and antisymmetric basis:
ðTiÞab ¼ −ðTiÞ�ab ¼ −ðTiÞba. The form of Eq. (4) is fixed
by the requirement that the on-shell amplitudes vanish in
the single soft limit. This implies a shift symmetry in the
Lagrangian [6,36],

jπi → jπi þ
ffiffiffiffi
T

p
cot

ffiffiffiffi
T

p
jεi; ð8Þ

where ðjεiÞa ¼ εa represents an infinitesimal constant
“shift” in πa, as well as a “closure condition” that the
generators Ti need to satisfy:

ðTiÞabðTiÞcd þ ðTiÞacðTiÞdb þ ðTiÞadðTiÞbc ¼ 0: ð9Þ

Such a condition means that the NLSM can be embedded
into a symmetric coset G=H. In other words, it can be
generated by the spontaneous symmetry breaking of some
group G, with the coset G=H being symmetric. The
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generators of G include the “unbroken generators” Ti

associated with the group H, and “broken generators”
Xa associated with the coset G=H. Then we can identify
Ti
ab ¼ −ifiab, where fiab is the structure constant of group

G, so that ½Xa;Xb� ¼ ifiabTi. Other commutation relations
in G include ½Ti;Xa� ¼ ifiabXb and ½Ti;Tj� ¼ ifijkTk,
while fija ¼ 0 as H is a subgroup of G, and fabc ¼ 0
because we require G=H to be symmetric. Then the
Lagrangian can be rewritten as [2,3]

Lð2Þ
NLSM ¼ f2

8
trð∂μU†∂μUÞ; U ¼ expð2iπaXa=fÞ: ð10Þ

The interactions given by Eq. (10) are even powers of πa

contracted with a single trace of generators Xa.
The Lagrangian at the subleading order of Oðp4Þ in

general contains four independent Parity-even operators:

Lð4Þ
NLSM ¼ f2

Λ2

X4
i¼1

CiOi; ð11Þ

where

O1 ¼ ½trðdμdμÞ�2; O2 ¼ ½trðdμdνÞ�2;
O3 ¼ trð½dμ; dν�2Þ; O4 ¼ trðfdμ; dνg2Þ; ð12Þ

and dμ ¼ daμXa. In four spacetime dimensions, there can
also be a Wess-Zumino-Witten term [37,38], which we will
not consider for now.

B. Flavor ordering of the amplitudes

The on-shell method to construct the NLSM interactions
for a general symmetric coset is soft bootstrap [10–12],
where we consider flavor-ordered partial amplitudes. For
the NLSM atOðp2Þ, which we will denote as NLSMð2Þ, the
partial amplitudes are similar to the color-ordered ampli-
tudes of the YM theory [39], where the interactions involve
the structure constant fijk, which for NLSM can be
identified with ðTiÞab as in Eq. (4). From the perspective
of the unbroken group H, ðTiÞab is a group generator in
some general representation; however, from the perspective
of broken group G and coset G=H, ðTiÞab ¼ −ifiab is the
structure constant of G, i.e., the generator of G in the
adjoint representation. Similarly, the gauge bosons in YM
theories furnish the adjoint representation as well.
Therefore, the color decomposition of YM theories

can be directly applied to general NLSMð2Þ. The flavor
structure of the full amplitude can be expanded in the trace
basis as

Mð2Þ;a1���an
n ðp1;…; pnÞ
¼

X
α∈Sn−1

trðXa1Xaαð1Þ � � �Xaαðn−1Þ ÞMð2Þ
n ð1; αÞ; ð13Þ

where α is a permutation of f2; 3;…; ng and Mnð1; αÞ is
the single-trace flavor-ordered amplitude. The right-hand
side of Eq. (13) is a sum of ðn − 1Þ! terms.
The lesson we learn from YM theories is that the flavor

expansion in Eq. (13) is over-complete, and can be further
reduced to the Del Duca-Dixon-Maltoni (DDM) basis [40]
as a sum of ðn − 2Þ! terms:

Mð2Þ;a1���an
n ðp1;…; pnÞ

¼
X

α∈Sn−2

ð−1Þn=2−1fa1aαð1Þi1
� Yn=2−2

j¼1

fijaαð2jÞbjfbjaαð2jþ1Þijþ1

�

× fin=2−1aαðn−2ÞanMð2Þ
n ð1; α; nÞ

¼
X

α∈Sn−2

Ti1
a1aαð1Þ

� Yn=2−2
j¼1

T
ij
aαð2jÞbjT

ijþ1

bjaαð2jþ1Þ

�

× T
in=2−1
aαðn−2ÞanM

ð2Þ
n ð1; α; nÞ; ð14Þ

where α is a permutation of f2; 3;…; n − 1g. This implies
the flavor-ordered amplitudes need to satisfy ðn − 1Þ! −
ðn − 2Þ! Kleiss-Kuijf (KK) relations [41]. The true number
of independent flavor-ordered amplitudes is further reduced
to ðn − 3Þ! by the BCJ relations [17].
We can express the flavor factors in Eq. (14) diagram-

matically, where the broken indices a and the unbroken
indices i are represented by solid and dashed lines,
respectively. The generator ðTiÞab and the structure con-
stant fijk are then vertices given by Fig. 1. Under this
notation, the flavor factor of each term in Eq. (14) is given
by a half-ladder graph shown in Fig. 2.
For amplitudes in the higher orders of the derivative

expansion, flavor structures which are products of multiple
traces can appear. The most general multitrace flavor
decomposition is the following:

Ma1���an
n ðp1;…; pnÞ

≡ Xbn=2c
t¼1

X
l

X
σ∈Sn=Sn;l

�Yt
i¼1

trðXaσðli−1þ1Þ � � �XaσðliÞ Þ
�

×Mσ;lðp1;…; pnÞ; ð15Þ

FIG. 1. The graphic presentation of ðTiÞab and respectively fijk
as vertices.
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where l ¼ fl0;…; ltg labels possible partition of ordered
indices f1; 2;…; ng into t subsets, with the requirement of
l0 ¼ 0, lt ¼ n and liþ1 − li ≤ liþ2 − liþ1, i ¼ 0; 1;…;
t − 2; Sn;l are the permutations of f1; 2;…; ng that
leave the flavor factor invariant. We can denote
Mσ;lðp1;…; pnÞ as

Mnðσð1Þ;…; σðl1Þjσðl1 þ 1Þ;…; σðl2Þj � � � jσðlt−1 þ 1Þ;
� � � σðnÞÞ: ð16Þ

The amplitude

Mnð1; 2;…l1jl1 þ 1;…; l2j � � � jlt−1 þ 1;…; nÞ ð17Þ

is invariant when we do the cyclic permutations separately
for the sets of indices f1; 2;…; l1g, fl1 þ 1;…; l2g and so
on. Furthermore, if liþ1 − li ¼ liþ2 − liþ1, exchanging the
sets fli þ 1;…; liþ1g and fliþ1 þ 1;…; liþ2g will also
leave the amplitude invariant, as the flavor factors asso-
ciated with the amplitudes remain the same. In general, the

Oðp4Þ tree amplitude Mð4Þ
n can only have single and

double trace flavor factors, which is easy to see from the
observation that at Oðp4Þ the NLSM Lagrangian contains
only single- and double-trace operators.

III. FLAVOR-KINEMATICS DUALITY
AT FOUR POINTS

The color-kinematics duality of scattering amplitudes
was first discovered for YM theories, the n-point tree
amplitudes of which can be written in the following
form [17,42]:

MYM
n ¼

X
g∈fgng

cgng
dg

; ð18Þ

where the sum is over all distinct n-point cubic graphs
fgng, while cg, ng and dg are the color numerators,
kinematic numerators and denominators of each cubic
graph. The denominators dg are given by the propagators
associated with the cubic graphs, ng only contains kin-
ematic information (Mandelstam invariants and polariza-
tion vectors), while the color structures are isolated in cg.
The gauge fields are in the adjoint representation, and cg
are constructed using structure constants, thus they satisfy

antisymmetry and the Jacobi identity. The duality for color
and kinematics manifests in the fact that it is possible to
find a representation for ng so that they satisfy antisym-
metry and the Jacobi identity as well.
It is known that such a duality also exists for the tree

amplitudes of NLSMð2Þ [29,43,44]. However, as an EFT by
construction, the NLSM admits a derivative expansion, as
shown in Eq. (3). A priori it is not clear whether the higher
order contributions in the derivative expansion have the
same property as well. For the next-to-leading order, i.e.,
Oðp4Þ, previous works of directly applying theOðp2Þ BCJ
relations fail to hold [11,31]. It turns out that, for the flavor-
kinematics duality to work atOðp4Þ, we need to generalize
our definitions for the color/flavor numerators.

A. Building four-point numerators

We start with the lowest multiplicity, which is n ¼ 4 for
the NLSM amplitudes. Recently new ways to construct
four-point numerators have been proposed [32,33], and we
will discuss them systematically in the following.
At four points, we can define a function with three

indices jð1; 2; 3Þ and associate it with the four-point cubic
graph in Fig. 3. If we impose antisymmetry and the Jacobi
identity, then it can be used as the numerator for four-point
amplitudes. Specifically, we want

jð1; 2; 3Þ ¼ −jð2; 1; 3Þ;
jð1; 2; 3Þ þ jð2; 3; 1Þ þ jð3; 1; 2Þ ¼ 0: ð19Þ

It is also convenient to define

js ≡ jð1; 2; 3Þ; jt ≡ jð2; 3; 1Þ; ju ≡ jð3; 1; 2Þ; ð20Þ

with

FIG. 2. The flavor factors in the DDM basis. The internal lines represent the indices that are contracted and summed over.

FIG. 3. The s-channel four-point cubic graph.
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s≡ s12; t≡ s23; u≡ s13; ð21Þ

satisfying sþ tþ u ¼ 0, where sij ≡ ðpi þ pjÞ2.
Let us first consider color/flavor numerators that do not

contain any kinematic information. For YM, the color
numerator is given by

cð1; 2; 3Þ ¼ fia1a2fia3a4 ; ð22Þ

where fiab are structure constants of some Lie group H.
More generally, for generators of H in some representation
R, this can be generalized to

fRð1; 2; 3Þ ¼ ðTiÞa1a2ðTiÞa3a4 ; ð23Þ

assuming the closure condition given by Eq. (9). This is the
flavor numerator for an NLSMð2Þ amplitude for a general
group H. The color numerator c ¼ fA is just a special case
where the representation is the adjoint A.
Another valid flavor numerator is given by

fδð1; 2; 3Þ ¼ δa1a3δa2a4 − δa1a4δa2a3 ; ð24Þ

where the indices can be in any representation for any
group: δab is always an invariant tensor. It is easy to check
that fδ satisfies antisymmetry and the Jacobi identity. One
can also identify that

fδð1; 2; 3Þ ∝ fRð1; 2; 3Þ ð25Þ

when R is the fundamental representation of SOðNÞ. The
above is the consequence of the completeness relations of
the generators in the fundamental representation of SOðNÞ:

ðTiÞabðTiÞcd ¼
1

2
ðδadδbc − δacδbdÞ; ð26Þ

and it is known that NLSM of fundamental SOðNÞ can be
embedded to the symmetric coset SOðN þ 1Þ=SOðNÞ. In
other words, for the SOðNÞ fundamental representation, fδ
is not a new building block but is identical to fR. For other
group representations, it is indeed new.
Next, let us consider numerators containing kinematic

invariants. For simplicity we will restrict ourselves to
numerators that are local. At the lowest mass dimension,
we have the following numerator that only contains
momenta:

nssð1; 2; 3Þ ¼ t − u; ð27Þ

which is the kinematic numerator for single-flavor YM
scalar theory.
We can use the simple building blocks discussed in the

above to construct more complicated numerator j’s. One
way is to just multiply existing numerators with

permutation invariant objects. There are two such objects
that encode the internal symmetry:

dabcd4 ¼
X
σ∈S3

trðTaσð1ÞTaσð2ÞTaσð3ÞTa4Þ;

dabcd2 ¼ 1

2

X
σ∈S3

δaσð1Þaσð2Þδaσð3Þa4 : ð28Þ

For nonadjoint representations, d4 can be generalized to
any rank-4 totally symmetric tensor d4, which may or may
not exist. There are also two permutation invariant building
blocks that only contain kinematic invariants:

X ≡ stu; Y ≡ s2 þ t2 þ u2: ð29Þ

The other way to generate new numerators is to take
two existing numerators j and j0, and define Jðj; j0Þ ¼
jtj0t − juj0u. Then j00ð1; 2; 3Þ ¼ Jðj; j0Þ is a perfectly valid
new numerator.
Now let us build more numerators only containing

momenta. We have

Jðnss; nssÞ ∝ nnlð1; 2; 3Þ ¼ 1

3
sðt − uÞ; ð30Þ

which is the kinematic numerator for the NLSMð2Þ [29,44].
We also have

Jðnss; nnlÞ ¼ 1

6
Ynsss ; Jðnnl; nnlÞ ¼ −

1

6
ðXnsss þ Ynnls Þ:

ð31Þ

This means that all numerators that only contain momenta
can be written as a linear combination of nss and nnl,
each dressed with powers of permutation invariant objects
X and Y [22].

B. Four-point soft blocks at Oðp4Þ for the NLSM

The full four-point amplitude for NLSMð2Þ is [17,42]

Mð2Þ
4 ¼ 1

f2

�
fR;snnls
s

þ fR;tnnlt
t

þ fR;unnlu
u

�
; ð32Þ

where we have suppressed the flavor indices. Here fR;s=t=u is
the flavor factor defined in Eq. (23) for the s=t=u channel,
while nnl is defined in Eq. (30). We can rearrange the
amplitude to the DDM basis [40] using fR;t ¼ −fR;s − fR;u:

Mð2Þ
4 ¼ 1

f2

�
fR;s

�
nnls
s

−
nnlt
t

�
þ ð−fR;uÞ

�
nnlt
t
−
nnlu
u

��
; ð33Þ

where the two terms correspond to the flavor-ordered
partial amplitudes:
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Mð2Þ
4 ð1; 2; 3; 4Þ ¼ 1

f2

�
nnls
s
−
nnlt
t

�
¼ −

1

f2
u;

Mð2Þ
4 ð1; 3; 2; 4Þ ¼ 1

f2

�
nnlt
t
−
nnlu
u

�
¼ −

1

f2
s: ð34Þ

Now let us consider the Oðp4Þ contributions in the
NLSM, which in general are given by the operators O1;…;4

in Eq. (12). Their contributions to the four-point flavor-
ordered amplitudes in the trace basis can be characterized
by the following four soft blocks [12]:

Single-trace∶ Sð4Þ
1 ð1; 2; 3; 4Þ ¼ 1

Λ2f2
u2; Sð4Þ

2 ð1; 2; 3; 4Þ ¼ 1

Λ2f2
st; ð35Þ

Double-trace∶ Sð4Þ
1 ð1; 2j3; 4Þ ¼ 1

Λ2f2
s2; Sð4Þ

2 ð1; 2j3; 4Þ ¼ 1

Λ2f2
tu: ð36Þ

The full four-point amplitude can be written as

M4 ¼ Mð2Þ
4 þ

X
σ∈S3

trðTaσð1ÞTaσð2ÞTaσð3ÞTa4Þ½c1Sð4Þ
1 ðσ; 4Þ þ c2S

ð4Þ
2 ðσ; 4Þ�

þ 1

2

X
σ∈S3

δaσð1Þaσð2Þδaσð3Þa4 ½d1Sð4Þ
1 ðσð1Þ; σð2Þjσð3Þ; 4Þ þ d2S

ð4Þ
2 ðσð1Þ; σð2Þjσð3Þ; 4Þ� þO

�
1

Λ4

�
; ð37Þ

where the dimensionless constants ci and di are related to the Wilson coefficients in Eq. (11) by

c1 ¼ C3 þ 3C4; c2 ¼ 2ðC3 − C4Þ; d1 ¼ 2C1 þ C2; d2 ¼ 2C2: ð38Þ

Now we want to construct a four-point amplitude at
Oðp4Þ that is local and exhibits flavor-kinematics duality,
using numerators that satisfy the antisymmetry and Jacobi
identity in Eq. (19). One natural possibility is to replace the
Oðp2Þ kinematic numerator nnl in Eq. (32) with Oðp4Þ
kinematic invariants while leaving the flavor factors fR
intact. In this case the coefficients of fR in the DDM basis
simply correspond to flavor-ordered partial amplitudes,
cf. Eq. (33), and satisfy KK and BCJ relations. However, it
was shown in Refs. [11,31] that such local kinematic
numerators do not exist at Oðp4Þ.
An alternative possibility is to leave theOðp2Þ kinematic

numerator nnl unchanged and modify the flavor factor
f → f̂,

Mð4Þ
4 ¼ 1

f2

�
f̂snnls
s

þ f̂tnnlt
t

þ f̂unnlu
u

�
; ð39Þ

where f̂ is now Oðp2Þ in order for the full amplitudes
to be Oðp4Þ. Assuming the flavor-kinematics duality,
f̂u ¼ −f̂t − f̂s, the full amplitude can be written as

Mð4Þ
4 ¼ 1

f2
ðf̂sMð2Þ

4 ð1; 2; 3; 4Þ − f̂uM
ð2Þ
4 ð1; 3; 2; 4ÞÞ; ð40Þ

where we have plugged in Eq. (34). We see the ansatz in
Eq. (40) amounts to expanding theOðp4Þ full amplitudes in

terms of Oðp2Þ partial amplitudes. We will present four
different possibilities for f̂.
The first possibility is

f̂1ð1; 2; 3Þ ¼
1

Λ2
JðfR; nssÞ ¼

1

Λ2
½fR;tðu − sÞ − fR;uðs − tÞ�:

ð41Þ

This gives us a local full amplitude, and we can rewrite it in
the DDM basis:

Mð4Þ
f̂1;4

¼ −
1

Λ2f2
ðf̂1;su − f̂1;usÞ

¼ −
1

Λ2f2
½fR;sð−u2 − 2stÞ þ ð−fR;uÞð−s2 − 2tuÞ�:

ð42Þ

Therefore, we obtain a partial amplitude in the single-trace
basis:

Mð4Þ
f̂1;4

ð1; 2; 3; 4Þ ¼ 1

Λ2f2
ðu2 þ 2stÞ ¼ Sð4Þ

1 ð1; 2; 3; 4Þ

þ 2Sð4Þ
2 ð1; 2; 3; 4Þ; ð43Þ

which is the unique single-trace soft block at four points
that satisfies KK relations [41].

IAN LOW, LAURENTIU RODINA, and ZHEWEI YIN PHYS. REV. D 103, 025004 (2021)

025004-6



The second modified flavor numerator is

f̂2ð1; 2; 3Þ ¼
1

Λ2
da1a2a3a44 nsss ¼ 1

Λ2
da1a2a3a44 ðt − uÞ: ð44Þ

Again, the corresponding full amplitude is local, while this
time we write it in the trace basis:

Mð4Þ
f̂2;4

¼ 6

Λ2f2
da1a2a3a4Y

¼ 1

Λ2f2
X
σ∈S3

trðTaσð1ÞTaσð2ÞTaσð3ÞTa4ÞY: ð45Þ

Then the partial amplitude is

Mð4Þ
f̂2;4

¼ 1

Λ2f2
Y ¼ 2

Λ2f2
ðu2 − stÞ

¼ 2½Sð4Þ
1 ð1; 2; 3; 4Þ − Sð4Þ

2 ð1; 2; 3; 4Þ�: ð46Þ

This is the unique single-trace soft block at four points that
is permutation invariant.
To obtain flavor-ordered partial amplitudes correspond-

ing to the two double trace soft blocks we just need to
replace fR in Eq. (41) with fδ, and d4 in Eq. (44) with d2.
Recall that the full double-trace amplitude is given by

M4 ¼ δa1a2δa3a4M4ð1; 2j3; 4Þ þ δa1a3δa2a4M4ð1; 3j2; 4Þ
þ δa1a4δa2a3M4ð1; 4j2; 3Þ: ð47Þ

Let us first replace fR in Eq. (41) with fδ:

f̂3ð1; 2; 3Þ ¼
1

Λ2
Jðfδ; nssÞ ¼

1

Λ2
½fδ;tðu − sÞ − fδ;uðs − tÞ�:

ð48Þ

The corresponding full amplitude is

Mð4Þ
f̂3;4

¼ −
1

Λ2f2
½fδ;sð−u2 − 2stÞ þ ð−fδ;uÞð−s2 − 2tuÞ�

¼ 1

Λ2f2
½δa1a2δa3a4ðs2 þ 2tuÞ þ δa1a3δa2a4ðu2 þ 2stÞ

þ δa1a4δa2a3ðt2 þ 2suÞ�; ð49Þ

which gives the partial amplitude

Mð4Þ
f̂3;4

ð1; 2j3; 4Þ ¼ 1

Λ2f2
ðs2 þ 2tuÞ

¼ Sð4Þ
1 ð1; 2j3; 4Þ þ 2Sð4Þ

2 ð1; 2j3; 4Þ: ð50Þ

On the other hand, replacing d4 in Eq. (44) with d2 leads to

f̂4ð1; 2; 3Þ ¼
1

Λ2
da1a2a3a42 nsss ¼ 1

Λ2
da1a2a3a42 ðt − uÞ; ð51Þ

so that the full amplitude becomes

Mð4Þ
f̂4;4

¼ 1

2Λ2f2
X
σ∈S3

δaσð1Þaσð2Þδaσð3Þa4Y

¼ 1

Λ2f2
½δa1a2δa3a4 þ δa1a3δa2a4 þ δa1a4δa2a3 �Y; ð52Þ

where Y is defined in Eq. (29). Then the partial amplitude is

Mð4Þ
f̂4;4

ð1; 2j3; 4Þ ¼ 1

Λ2f2
Y ¼ 2

Λ2f2
ðs2 − tuÞ

¼ 2½Sð4Þ
1 ð1; 2j3; 4Þ − Sð4Þ

2 ð1; 2j3; 4Þ�: ð53Þ

In the end, the four different modified flavor factors give
rise to flavor-ordered partial amplitudes corresponding to
the four soft blocks.

IV. FLAVOR-KINEMATICS DUALITY
AT HIGHER MULTIPLICITY

Inspired by the four-point results discussed in the last
section, we assume the following ansatz for the n-point full
amplitude of the NLSM at Oðp4Þ,

Mð4Þ
f̂i;n

¼ 1

fn−2
X

g∈fgng

f̂i;gnnlg
dg

; ð54Þ

where dg ¼ Oðp2n−6Þ, nnlg ¼ Oðp2n−4Þ, and f̂i;g ¼ Oðp2Þ.
Again using the Jacobi relations among f̂i;g the full
amplitude in the DDM basis is an expansion in the

NLSMð2Þ partial amplitudes Mð2Þ
n :

Mð4Þ
f̂i;n

¼
X
σ∈Sn−2

f̂i;hlð1;σ;nÞM
ð2Þ
n ð1; σ; nÞ; ð55Þ

where σ is a permutation of f2; 3;…; n − 1g, hlð1; σ; nÞ is
the corresponding half-ladder graph with 1 and n at two
ends, as shown in Fig. 2. On the other hand, we can also

expand Mð4Þ
f̂i;n

in the trace basis:

Mð4Þ
f̂i;n

¼
X
σ

fi;σM
ð4Þ
f̂i;n

ðσÞ; ð56Þ

where σ corresponds to all the distinct trace structures, fi;σ
is the flavor factor which is either a single trace or a product

of two traces, and Mð4Þ
f̂i;n

is the flavor-ordered amplitude of

the NLSMð4Þ in the trace decomposition. That both Eq. (55)
and Eq. (56) are true means that
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Mð4Þ
f̂i;n

ðInÞ ¼
X
σ∈Sn−2

cðiÞσ Mð2Þ
n ð1; σ; nÞ; ð57Þ

where cðiÞσ ¼ Oðp2Þ is a function of the momentum
invariants. In other words, the Oðp4Þ flavor-ordered ampli-
tudes can be expanded in terms of theOðp2Þ flavor-ordered
amplitudes; the expansion coefficients come from f̂i and are
at Oðp2Þ.
Therefore, to find f̂i for higher multiplicity amplitudes,

all we need to do is solve the coefficients cðiÞσ in Eq. (57),
plug in the solution to Eq. (56), and use Eq. (55) to find
f̂i;hlð1;σ;nÞ. Once this is done, all the other f̂i;g can be uniquely
determined using the Jacobi relations. In the most general

case, without imposing any constraints on cðiÞσ , the number

of solutions are infinite. Instead, we will assume that cðiÞσ ,
and consequently f̂i;g, are local, and proceed to look for
solutions.
Let us illustrate this in the simplest case of four-point

amplitudes. Take the single trace amplitude

Mð4Þ
f̂2;4

ð1; 2; 3; 4Þ ¼ 2

Λ2f2
ðu2 − stÞ ð58Þ

as an example, and expand it as in Eq. (57). The two

NLSMð2Þ amplitudes we need are Mð2Þ
4 ð1; 2; 3; 4Þ and

Mð2Þ
4 ð1; 3; 2; 4Þ, which are given in Eq. (34). The solutions

for cð2Þσ in

Mð4Þ
f̂2;4

ð1; 2; 3; 4Þ ¼
X
σ∈S2

cð2Þσ Mð2Þ
4 ð1; σ; 4Þ ð59Þ

is

cð2Þ2;3 ¼ −
1

Λ2
½2uþ ð1þ αÞs�;

cð2Þ3;2 ¼ −
1

Λ2
½2sþ ð1 − αÞu�; ð60Þ

where α is an arbitrary constant. The degree of freedom in
the solution, which is characterized by α, is a consequence

of the single BCJ relation of Mð2Þ
4 :

sMð2Þ
4 ð1; 2; 3; 4Þ − uMð2Þ

4 ð1; 3; 2; 4Þ ¼ 0: ð61Þ

We can then work out the modified flavor factor f̂2 by
plugging Eq. (59) into the full amplitude:

Mð4Þ
f̂2;4

¼
X
σ∈S3

trð1σÞMð4Þ
f̂1;4

ð1; σÞ

¼ f̂2;sðαÞMð2Þ
4 ð1; 2; 3; 4Þ − f̂2;uðαÞMð2Þ

4 ð1; 3; 2; 4Þ;
ð62Þ

with

f̂2;sðαÞ ¼
2

Λ2
ftrð1234Þ½ð1þ αÞt − ð1 − αÞu�

þ½trð1324Þ þ trð1342Þ�½ð1 − αÞt − ð1þ αÞu�g;
ð63Þ

f̂2;uðαÞ ¼
2

Λ2
ftrð1234Þ½ð1þ αÞs − ð1 − αÞt�

þ½trð1324Þ þ trð1342Þ�½ð1 − αÞs − ð1þ αÞt�g;
ð64Þ

where we have used the shorthand notation for the traces:

trð123 � � �Þ≡ trðXa1Xa2Xa3 � � �Þ: ð65Þ

To arrive at Eq. (62) we have used the cyclic and reverse

ordering invariance of tr(1234) and Mð2Þ
4 ð1234Þ, as well as

the four-point KK relation for Mð2Þ
4 :

Mð2Þ
4 ð1342Þ ¼ −Mð2Þ

4 ð1234Þ −Mð2Þ
4 ð1324Þ: ð66Þ

Equations (63) and (64) give the most general modified

flavor factors that work for Mð4Þ
f̂2;4

. If we also want them to

be relabeling symmetric, in this case exchanging 2 ↔ 3

resulting in f̂2;s ↔ −f̂2;u, the constant αmust be set to 0: we
have

f̂2;sð0Þ ¼
1

Λ2
da1a2a3a44 ðt − uÞ; ð67Þ

which is exactly what we know from Eq. (44).
At six points there are no local solutions of cσ when all

four Oðp4Þ operators are turned on with their respective
(arbitrary) Wilson coefficients. We do find a solution,
however, for the six-point Oðp4Þ amplitude that is soft-

bootstrapped from the soft block Sð4Þ
2 ð1; 2j3; 4Þ, which is

written as

Mð4Þ
d2;6

ð1; 2j3; 4; 5; 6Þ ¼ 1

Λ2f4

�
s46

�
s13s23
P2
123

þ s15s25
P2
125

�

þ s35

�
s14s24
P2
124

þ s16s26
P2
126

�

− ðs15 þ s13Þðs25 þ s23Þ þ s12s35

�
;

ð68Þ

where P2
ijk��� ≡ ðpi þ pj þ pk þ � � �Þ2. From Eq. (38) we

see that this contribution corresponds to the following
values for the Wilson coefficients in the Lagrangian:
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C1 ¼ −
1

4
; C2 ¼

1

2
; C3 ¼ C4 ¼ 0: ð69Þ

Wewill denote such a theory as NLSMd2 . At four points, we
learned from Eqs. (50) and (53) that the associated modified
flavor factor which gives this contribution is ð2f̂3 − f̂4Þ=6.
Equation (68) can be expanded in the form of Eq. (57):

Mð4Þ
d2;6

ð1; 2j3; 4; 5; 6Þ ¼
X
σ∈S4

cd2σ Mð2Þ
4 ð1; σ; 6Þ; ð70Þ

where the coefficients cd2σ corresponding to the 24 orderings
of σ are given in Table I. Just like the four-point case in

Eq. (60), the above is the unique solutionmoduloOðp2ÞBCJ
relations among Mð2Þ

n ð1; σ; nÞ, which in general have the
form

X
σ∈Sn−2

cðBCJÞσ Mð2Þ
n ð1; σ; nÞ ¼ 0; ð71Þ

with cðBCJÞσ ¼ Oðp2Þ being local. For example, the “funda-
mental BCJ relation” is [17,45]

s12M
ð2Þ
n ðInÞ þ

Xn−1
i¼3

�Xi

j¼1

s2j

�

×Mð2Þ
n ð1; 3; 4;…; i; 2; iþ 1;…; n − 1; nÞ ¼ 0: ð72Þ

There are ðn − 2Þ! − ðn − 3Þ! independent relations.
The full amplitude corresponding to Mð4Þ

d2;6
is

Mð4Þ
d2;6

¼
X5
i¼1

X6
j¼iþ1

X
σ∈S4=Z4

δaiaj tr½Xaσð1ÞXaσð2ÞXaσð3ÞXaσð4Þ �

×Mð4Þ
d2;6

ði; jjσÞ; ð73Þ

where σ are permutations of f1; 2;…; 6gnfi; jg modulo
cyclic permutations. From Eq. (70) we know that the above
can be expanded in the form of Eq. (55), where the
modified flavor numerators f̂d2;g1 for the half-ladder graph
given in Fig. 4(a) has the following relabeling symmet-
ric form:

f̂d2;g1 ¼
1

4Λ2
fðs13 þ s23Þ½2Ti

a1a2ðTi
a3a6 − Ti

a4a5 þ Ti
a4a6Þ − Ti

a5a6ðTi
a1a3 − Ti

a2a3 þ 2Ti
a3a4Þ

þ Ti
a3a5ðTi

a2a4 − Ti
a1a4Þ − Ti

a3a6ðTi
a2a4 − Ti

a1a4Þ�
þ s12½Ti

a1a2ð2Ti
a3a6 − Ti

a4a5 þ Ti
a4a6 − 2Ti

a5a6Þ þ Ti
a5a6ðTi

a1a3 þ 2Ti
a1a4 − Ti

a2a3 − 2Ti
a2a4Þ

þ Ti
a1a3ðTi

a4a6 − Ti
a4a5Þ þ Ti

a1a4ðTi
a3a6 − Ti

a3a5Þ þ Ti
a2a3ðTi

a4a5 − Ti
a4a6Þ

þ Ti
a2a4ðTi

a3a5 − Ti
a3a6Þ� − ðs45 þ s46Þ½2Ti

a1a2ðTi
a3a6 þ Ti

a4a6 − Ti
a5a6T

i
a4a5Þ

− Ti
a1a3ðTi

a5a6 − Ti
a4a6 þ Ti

a4a5Þ þ Ti
a2a3ðTi

a4a5 − Ti
a4a6 þ Ti

a5a6Þ�
− 2Ti

a1a2T
i
a3a4s46 − 2Ti

a1a2T
i
a3a5s56g; ð74Þ

where Ti
akal ≡ ðTiÞakal is the matrix entry of the group

generator Ti in the antisymmetric basis. Note that we have
omitted factors of δaiaj , which can easily be restored from
the two missing flavor labels in each term. The modified
flavor factor of the other kind of six-point cubic graph, as
shown in Fig. 4(b), can then be directly calculated using the
Jacobi relations.
We checked that the two kinds of eight-point partial

amplitudes Mð4Þ
d2;8

ð1; 2j3; 4; 5; 6; 7; 8Þ and Mð4Þ
d2;8

ð1; 2; 3; 4j

5; 6; 7; 8Þ, computed in [46] and given by the NLSMd2 also
admit expansions in the form of Eq. (57), with local coeffi-

cients cðd2Þσ . In other words,Mð4Þ
d2;8

also can be expanded as in

Eq. (55) with modified flavor factors f̂d2;g that are local. To
obtain them, one has to use an ansatz of the form

Mð4Þ
8 ¼

X
i;σ∈S6

xi;σsiM
ð2Þ
8 ð1; σ; 8Þ ð75Þ

TABLE I. The solutions for cd2σ , which has a common factor of
1=ð4Λ2Þ.
σ ð4Λ2Þcd2σ
2345 2ðs23 − s13Þ
2354, 2534, 3254, 3524, 5234, 5324 0
2435, 2453 2ðs14 − s24Þ
2543 2ðs25 − s15Þ
3245 −2s13
3425 s56 − 2s13
3452 s14 þ s34 − s26
3542, 5342 −P2

135

4235, 4253 2s14
4325 2s14 − s56
4352, 4532 s14 þ s26
4523 2s14 − s36
5243 −2s15
5423 s35 − 2s15
5432 s23 þ s36 − s15
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where fsig ¼ fs12; s13;…g is the list of 20 independent
Mandelstam invariants at eight points. This ansatz, which
contains 14400 unfixed parameters xi;σ , requires significant
computation time to solve. Once this expansion is estab-
lished, finding the correspondingmodified flavor numerators
f̂d2;g is straightforward. The resulting expressions are long
and not particularly illuminating. They will not be presented
here but can be available upon request to the authors.

V. THE DOUBLE COPY RELATIONS

Given the flavor-kinematics duality demonstrated for a
particular linear combination of the Oðp4Þ operator, it is
natural to ask if there is a double copy relation. At Oðp2Þ,
the n-point NLSMð2Þ amplitudes can be written as the
following:

Mð2Þ
n ¼ 1

fn−2
X

g∈fgng

fR;gnnlg
dg

; ð76Þ

where fR;g are flavor factors corresponding to cubic graph g
and expressed in terms of generators in the representation
R, the four-point example of which is given in Eq. (23). For
the specific case of R to be the adjoint representation A, fA;g
is the same as the color factor in the YM amplitude cg, as in
Eq. (18). Replacing the NLSMð2Þ kinematic numerator nnlk;g
in Eq. (76) with another copy of color factor c̃g (of a
different group), we arrive at (up to coupling constants)

Mϕ3

n ¼
X

g∈fgng

cgc̃g
dg

; ð77Þ

which is the tree amplitude for the cubic biadjoint scalar
theory ϕ3, generated by the Lagrangian

Lϕ3 ¼ 1

2
∂μϕ

aã∂μϕaã −
λ

6
ϕaãϕbb̃ϕcc̃fabcf̃ã b̃ c̃; ð78Þ

where each scalar field ϕaã carries two labels, a for the
adjoint of group G and ã is for the adjoint of group G̃; fabc

and f̃ã b̃ c̃ are the structure constants for G and G̃,
respectively. It is well understood that there is an intimate
connection between the double copy structure and the KLT

relations [42], and Eqs. (76) and (77) leads to the (trivial)
KLT relation for the NLSMð2Þ [20,21]:

Mð2ÞðInÞ ¼
X
α;β

Mð2Þð1; α; n − 1; nÞSnðαjjβÞ

×Mϕ3ð1; α; n; n − 1jjInÞ; ð79Þ

whereMϕ3ðσ1jjσ2Þ is the doubly ordered amplitudes for ϕ3,
and

SnðαjjβÞ ¼ ½Mϕ3

n ð1; α; n − 1; njj1; β; n; n − 1Þ�−1 ð80Þ
is the KLT kernel [20]. Equation (79) is trivial in the sense
that we are multiplying the NLSMð2Þ amplitudes by unity,
as SnðαjjβÞ is the inverse of the cubic biadjoint amplitudes.
What is less trivial is the fact that there is a universal KLT
kernel for theories of adjoint fields, which subsequently is
identified with the inverse of the cubic biadjoint amplitudes
[20]. Notice that in the partial amplitude Mϕ3

we use the
double line “jj” to separate the orderings of two different
groups, in contrast to the double trace structure of a
single group, where we use a single line “j” to denote
the separation of the two traces. Equation (79) can be
written more compactly as

NLSMð2Þ ¼ NLSMð2Þ ⊗
KLT

ϕ3: ð81Þ

For the Oðp4Þ operator that exhibits flavor-kinematic
duality

Mð4Þ
d2;n

¼ 1

fn−2
X

g∈fgng

f̂d2;gn
nl
g

dg
; ð82Þ

the natural question to ask is what happens when we
replace nnlg with c̃g in the above?1 In other words, can the
object

X
g∈fgng

f̂d2;gc̃g
dg

ð83Þ

(a) (b)

FIG. 4. Two kinds of cubic graphs at six points. (a) Half-ladder graph g1. (b) “Star” graph g2.

1The other possibility of replacing f̂d2;g by c̃g simply gives back
the NLSMð2Þ amplitudes.
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be interpreted as the S-matrix elements of a consistent
quantum field theory?
First of all, such a theory, if one exists, would contain

amplitudes where all external states are scalars that trans-
form under two symmetry groups. Secondly, since f̂d2;g ¼
Oðp2Þ, the amplitude is Oðp8−2kÞ and has a mass dimen-
sion higher by 2 compared to that of ϕ3. For example, the
four-point amplitude from Eq. (83) is (up to coupling
constants)

− fδ;sc̃s − fδ;tc̃t − fδ;uc̃u þ
δa1a2δa3a4ðt − uÞc̃s

s

þ δa2a3δa1a4ðu − sÞc̃t
t

þ δa1a3δa2a4ðs − tÞc̃u
u

; ð84Þ

which contains poles in the s, t and u channels. This
suggests nonvanishing three-point vertices in the theory.
However, a massless scalar three-point vertex can be
nonzero on-shell only if it does not carry momentum
dependence, which in turn would not give the correct mass
dimension Oðp0Þ in Eq. (84). We are thus led to the
conclusion that the poles in Eq. (84) must come from
intermediate vector state.
The s-channel residue of Eq. (84) is

δa1a2δa3a4ðt − uÞc̃s ¼ ½iδa1a2fĩã1ã2ðp1 − p2Þ�
· ½iδa3a4fĩã3ã4ðp3 − p4Þ�; ð85Þ

which leads us to deduce that the three-point vertex in this
theory is

iδa1a2fã1ã2ã3ðp1 − p2Þμ3 ; ð86Þ
where legs 1 and 2 are scalars ϕaã carrying two adjoint
indices, a of group G and ã of group G̃, while leg 3 is the
vector boson Aã

μ carrying the adjoint representation of G̃, as
well as a Lorentz index μ3. Such a vertex naturally arises in
the following gauged kinetic term of the scalars:

1

2
t̃rðDμϕ

aDμϕaÞ; ð87Þ

whereDμ ¼ ∂μ þ igAã
μX̃

ã is the gauge covariant derivative,
X̃ is the generator for G̃, g being the gauge coupling, and
ϕa ≡ ϕaãX̃ã. Therefore we will call G the flavor group and

G̃ the gauge group.
Assuming the three-point vertex given in Eq. (86), the

four-point contact term in Eq. (84) can come from the
following interaction:

−fã1ã2b̃fã3ã4b̃ϕaã1ϕbã2ϕaã3ϕbã4 ¼ t̃rð½ϕa;ϕb�2Þ: ð88Þ

Including the propagators for the massless vector states, we
arrive at the following Lagrangian by examining the four-
point amplitude in Eq. (85),

LYMS ¼ t̃r

�
1

4
FμνFμν þ

1

2
Dμϕ

aDμϕa −
g2

4
½ϕa;ϕb�2

�
;

ð89Þ
where Fμν ¼ Fã

μνX̃
ã is the field strength tensor of the gauge

bosons. This is the Lagrangian for the well-known Yang-
Mills scalar (YMS) theory, which can be seen as a
dimensional reduction of the YM theory. Consequently,
at the four-point level we are led to the observation that the
following KLT relation holds (up to coupling constants):

Mð4Þ
d2;4

ð1; 2j3; 4Þ ¼ tu ¼ ðuÞðsÞ
�
t
s

�
¼ Mð2Þ

4 ð1; 2; 3; 4Þ

× S4ð2jj2ÞMYMS
4 ð1; 2j3; 4jj1; 2; 4; 3Þ;

ð90Þ
with MYMS

n ðαjβjjσÞ being the partial amplitudes of YMS
that is ordered in both the flavor and color groups.
Beyond the four-point level, it is important to recall that

the four-point Oðp4Þ amplitude Mð4Þ
d2;4

cannot exist on its
own in a consistent quantum field theory; it is part of the
derivative expansion in the 2 → 2 scattering amplitude that
starts at Oðp2Þ,

MNLSMd2
n ¼ Mð2Þ

n þMð4Þ
d2;n

þOðp6Þ; ð91Þ

where the NLSMd2 is a quantum field theory containing
Oðp2Þ NLSM amplitudes and the Oðp4Þ amplitudes soft-

bootstrapped from the soft block Sð4Þ
2 ð1; 2j3; 4Þ. Recall at

Oðp2Þ the amplitudes already have the double copy relation
involving the cubic biadjoint scalars in Eq. (81). This
suggests a consistent double copy relation must also
include the cubic biadjoint scalar vertex in Eq. (78), in
addition to those in Eq. (89).
It turns out a theory with the LagrangianLYMS þ Lϕ3 has

been studied previously and dubbed the YMþ ϕ3 theory
[35], also called “generalized Yang-Mills scalar theory” in
[21], which is generated by the following Lagrangian:

LYMþϕ3 ¼ t̃r

�
1

4
FμνFμν þ

1

2
Dμϕ

aDμϕa −
g2

4
½ϕa;ϕb�2

�

−
λ

6
ϕaãϕbb̃ϕcc̃fabcf̃ã b̃ c̃: ð92Þ

The above can be seen as a specific “higher derivative”
extension of the cubic biadjoint scalar theory ϕ3, where the
group G̃ is gauged. So the conjectured double copy
structure has the following KLT bilinear relation:

Mð4Þ
d2;n

ðαjβÞ ¼
X
σ1;σ2

Mð2Þ
n ð1; σ1; n − 1; nÞSnðσ1jjσ2Þ

×MYMþϕ3

n ðαjβjj1; σ2; n; n − 1Þ; ð93Þ
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whereMYMþϕ3

n ðαjβjjσÞ is the doubly ordered amplitude for
YMþ ϕ3 with scalar external states. In YMþ ϕ3, when all
external states are scalars, the n-point amplitude at the
lowest order in the derivative expansion, which is
Oðp6−2nÞ, coincides with the “pure” biadjoint scalar theory
amplitude Mϕ3

n . On the other hand, YMþ ϕ3 scalar
amplitudes of higher orders in the derivative expansion
actually coincide with the NLSM ⊕ ϕ3 theory discussed in
Refs. [26,27], when all external scalars are biadjoint. Using
the six-point amplitudes provided in Ref. [27], we have
checked explicitly that the KLT relation in Eq. (93) holds
at n ¼ 6.
From the KLT relation in Eq. (93) one may be tempted to

conclude that NLSMd2 is a double copy of NLSMð2Þ and
YMþ ϕ3,

NLSMd2¼? NLSMð2Þ ⊗
KLTðYMþ ϕ3Þ: ð94Þ

However, this is clearly not true as YMþ ϕ3 is a theory
which also contains gluons as external particles. There are
also trace and flavor structures in YMþ ϕ3 that are not
present in the NLSM and Eq. (83) only covers a subset of
scalar amplitudes in YMþ ϕ3. In Eq. (83) each flavor trace
always involves an even number of generators. However,
the double-trace components in MYMþϕ3

also include
nonvanishing terms where each flavor trace contains an
odd number of generators. The theory of the NLSMd2 does
not generate modified flavor factors f̂d2;g of these kinds, but
YMþ ϕ3 does. Therefore, the double copy relation of
Eq. (94) holds only in the limited sense of relations between
partial amplitudes as in Eq. (93), where the orderings α and
β both contain an even number of labels.
So, more precisely, the double copy relation should read

NLSMd2 ⊂ NLSMð2Þ ⊗
KLTðYMþ ϕ3Þ: ð95Þ

What is the theory that is the double copy of NLSMð2Þ and
YMþ ϕ3 then? It turns out the question has been studied
using the CHY formalism in Ref. [21] and the theory is an
EFT called the extended Dirac-Born-Infeld (eDBI) theory
[21], which involves scalars πa with flavors, and also a U(1)
gauge boson Aμ. The Lagrangian of eDBI is given by

LeDBI

¼−
f2Λ2

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det

�
ημν −

2

Λ2
ðhdμdνiþFμνþWμνÞ

�s
− 1

#
;

ð96Þ

where Fμν ¼ ∂μAν − ∂νAμ, and jdμi is the same as that in
the NLSM defined in Eq. (5). On the other hand, Wμν is an
infinite sum of terms, each being a single trace of odd

powers of πaXa=f with two derivatives ∂μ and ∂ν acting on
it;Wμν is also antisymmetric in μ and ν.2 It has been proved
using the CHY formalism that

eDBI ¼ NLSMð2Þ ⊗
KLTðYMþ ϕ3Þ: ð97Þ

Brief overviews of the CHY formalism and the above
double copy relation are provided in the Appendixes.
For our purpose, it is instructive to expand LeDBI to

Oðp4Þ,

LeDBI ¼ Ld2
NLSM þ f2

2Λ2
ðFμν þWμνÞ2 þO

�
1

Λ4

�
; ð98Þ

where Ld2
NLSM is exactly the Lagrangian of the NLSMd2 :

Ld2
NLSM ¼ Lð2Þ

NLSM þ f2

Λ2

�
−
1

4
O1 þ

1

2
O2

�
: ð99Þ

At Oðp4Þ, the difference between Mð4Þ
eDBI;n where all

external particles are scalars, and Mð4Þ
d2;n

, is that the former
also contains double trace flavor structures where each
trace contains odd powers of Xa: these are contributions of
the term ðFμν þWμνÞ2, and there can exist internal photons
in the Feynman diagrams of these amplitudes. They are
naturally generated in the KLT relation from YMþ ϕ3, but
are absent in NLSMd2 . However, if we restrict to the partial
amplitudes with an even number of NGB’s in each trace,
then the contributions of Ld2

NLSM and LeDBI are exactly the
same. Therefore, we can write down the CHY formulas for
these amplitudes, as the CHY representation of eDBI is
known [21]:

Mð4Þ
d2;n

ðαjβÞ ¼
I

dμnCðαÞCðβÞPf 0Πnðα ∪ βÞðPf 0AnÞ2;

ð100Þ
up to coupling constants.

VI. CONCLUSION AND DISCUSSIONS

In this work we have explored the possibility of
extending the flavor-kinematics duality to Oðp4Þ operators
in the NLSM, by using new modified flavor numerators
that mix flavor and kinematic factors. While at four points
all four operators have such a flavor-dual representation, we
find that at six points this is true only for one particular
operator, corresponding to double-trace amplitudes.

2The exact form of Wμν is not relevant for this work.
Reference [21] contains an expression for Wμν in the Cayley
parametrization [13] of the scalars; this cannot be used here as
we are working in the exponential parametrization as shown in
Eq. (10). To our knowledgeWμν in the exponential representation
has not been written down.
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Furthermore, these specific amplitudes are seen to coincide
with a subset of amplitudes given by eDBI, which is the
double copy of the NLSM and YMþ ϕ3.
It remains an open question whether there are further

modifications that must be made to numerators in order to
accommodate the remaining operators at Oðp4Þ. We have
assumed that the modified flavor factors are local; such a
constraint may be relaxed in a well-defined way. For
example, what happens if we do not require the flavor
factors to be local, but still satisfy relabeling symmetry?
Also, these nonlocal flavor factors should not lead to
physical amplitudes in the (reversed) double copy pro-
cedure discussed in Sec. V, though the end products of this
procedure may still have a CHY representation. In known
cases it seems there is an intimate connection between
theories having a CHY representation and having a double
copy relation. Then, are there CHY representations the
Oðp4Þ NLSM amplitudes of other operators?
In principle, scattering amplitudes may be expressed as

linear combinations between different pairs of numerators.
For instance, the most general possibility is given by

Mð4Þ
6 ¼

X
g∈fgng

f̂ð0Þg nð10Þg þ f̂ð2Þg nð8Þg þ � � � þ f̂ð8Þg nð2Þg

dg
ð101Þ

where f̂ðkÞg and nðkÞg are modified flavor/color and kinematic
numerators of mass dimension k (note that dg has mass
dimension 6 at six points). From a bootstrap perspective,
such an ansatz is allowed, but would be very difficult
to solve already even at six points for Oðp4Þ. A related
question is then whether partial amplitudes constructed via
modified color/flavor factors satisfy BCJ-like relations, as
these are typically much simpler to solve and would indicate
the existence of a color-kinematic duality. It would also be
interesting to understand whether all trace structures present
in YMþ ϕ3 amplitudes have color-dual representations.
Also notice that in our work we have always assumed the

“cubic adjoint” properties for the flavor structures: they
correspond to cubic graphs that satisfy antisymmetry and
Jacobi relations. This is truewhen all interactions are dressed
with structure constants fabc, as in the YM theory. For the
NLSMð2Þ, this is guaranteed by the closure condition Eq. (9)
for the generators Ti

ab, while more general flavor structures
appear at Oðp4Þ. It is then natural to ask whether some
version of flavor-kinematics duality can exist for these more
general structures, perhaps involving theories beyond the
cubic graphs.
Finally, these considerations can be explored beyond the

Oðp4Þ operators investigated in this work. Composition
rules such as those used in Eqs. (30) that generate
color-kinematic solutions can be extended to higher multi-
plicity [34], and it would be fascinating to see how they can
be used to bootstrap the infinite tower of corrections to
the NLSM.
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APPENDIX: REVIEW OF THE CHY
REPRESENTATION

The formalism proposed by Cachazo, He and Yuan
[18–21] can express the tree amplitudes of many theories in
an integral of the following form:

Mn ¼
I

dμnILðfp; ε; σgÞIRðfp; ε̃; σgÞ; ðA1Þ

where fpg are the on-shell external momenta, fεg are the
polarization vectors, fσg ¼ fσ1; σ2;…; σng are n dimen-
sionless complex variables. The integral in the above are
evaluated as residues at the poles of fσg given by the
scattering equations

Ej ≡
X
i≠j

pi · pj

σij
¼ 0 ðA2Þ

where σij ¼ σi − σj. This is realized by the measure

dμn ≡ ðσijσjkσkiÞðσpqσqrσrpÞ
Y

a≠i;j;k
E−1
a

Y
b≠p;q;r

dσb: ðA3Þ

The choice of fi; j; kg does not affect the value of the
integral, which can be treated as some “gauge invariance.”

1. The CHY integrands for relevant theories

Now let us discuss different integrands IL=R for the
theories relevant in our paper. The CHY formula for the
doubly ordered partial amplitudes for the cubic biadjoint
scalar theory ϕ3 is

Mϕ3

n ðαjjβÞ ¼
I

dμnCnðαÞCnðβÞ; ðA4Þ

where Cn is the Parke-Taylor factor:

CnðInÞ ¼
1

σ12σ23 � � � σn−1;nσn;1
: ðA5Þ
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Notice that Cn is not permutation invariant and contains the
ordering for the trace basis. The flavor-ordered amplitudes
for the NLSMð2Þ is

Mð2Þ
n ðαÞ ¼

I
dμnðPf 0AnÞ2CnðαÞ; ðA6Þ

where the antisymmetric matrix An is given by

½An�ab ¼
� pa·pb

σab
; a ≠ b;

0; a ¼ b:
; ðA7Þ

and the reduced Pfaffian Pf 0 is defined as Pf 0An ¼
ð−Þaþb

σab
PfA½a;b�

n , with A½a;b�
n being the matrix An with rows

and columns of labels a and b removed. Again, the choice
of a and b does not affect the value of the CHY integral.
The extended DBI is a theory involving scalars and

photons, the flavor-ordered amplitudes of which are given
by

MeDBI
n ðα1jα2j � � � jαmÞ ¼

I
dμn

�Ym
i¼1

CðαiÞ
�

×Pf 0Πnðα1 ∪ α2 ∪ � � � ∪ αmÞðPf 0AÞ2:
ðA8Þ

The above is an n-point amplitude with m traces, and α1 ∪
α2 ∪ � � � ∪ αm contain labels for the scalars, as they carry
flavors and admit orderings; the rest of the labels, in
V ¼ f1; 2;…; ngnðα1 ∪ α2 ∪ � � � ∪ αmÞ, are for the pho-
tons. In the following, we will denote the size of V (i.e., the
number of external photons) as v, use a, b to denote labels
in V, and i, j to denote labels for the traces, i.e.,
i; j ¼ 1; 2;…; m. The 2ðmþ vÞ × 2ðmþ vÞ antisymmetric
matrix Π in Eq. (A8) is given by

Πnðα1 ∪ α2 ∪ � � � ∪ αmÞ

¼

0
BBB@

A −½Pð1Þ�T −CT −½Pð4Þ�T
Pð1Þ Pð2Þ Pð3Þ −½Pð5Þ�T
C −½Pð3Þ�T B −½Pð6Þ�T
Pð4Þ Pð5Þ Pð6Þ Pð7Þ

1
CCCA; ðA9Þ

where A, B and C are v × v square matrices determined by
the information of the photons, with A defined in Eq. (A7),
and

½B�ab ¼
� εa·εb

σab
; a ≠ b;

0; a ¼ b:
;

½C�ab ¼
8<
:

εa·pb
σab

; a ≠ b;

−
P

c∈V;c≠a

2εa·pc
σab

; a ¼ b: ; ðA10Þ

Pð1;3;4;6Þ are v ×mmatrices that have both photon and trace
indices:

½Pð1Þ�ia ¼
X
r∈αi

pr · pa

σra
;

½Pð3Þ�ia ¼
X
r∈αi

pr · εa
σra

; ½Pð4Þ�ia ¼
X
r∈αi

σrpr · pa

σra
;

½Pð6Þ�ia ¼
X
r∈αi

σrpr · εa
σra

; ðA11Þ

Pð2;5;7Þ are m ×m matrices of trace indices:

½Pð2Þ�ij ¼
X

r1∈αi;r2∈αj

pr1 · pr2

σr1r2
;

½Pð5Þ�ij ¼
X

r1∈αi;r2∈αj

σr1pr1 · pr2

σr1r2
; ðA12Þ

½Pð7Þ�ij ¼
X

r1∈αi;r2∈αj

σr1σr2pr1 · pr2

σr1r2
: ðA13Þ

It is understood in the above that r1 ≠ r2 is applied in the
sum for the diagonal elements of these matrices. The

reduced Pfaffian Pf 0 for Π is defined as Pf 0Πn ¼ PfΠ½i;j�
n ,

where the row i belongs to those rows involving Pð2Þ in
Eq. (A9), the column j belongs to those involving Pð7Þ, and
they are deleted from Π in the reduced Pfaffian.
For the special case when m ¼ 2 and v ¼ 0, i.e., the

double trace amplitudes of no external photons, the matrix
Π in Eq. (A8) is reduced to the following 4 × 4 matrix:

Πnðα ∪ βÞ ¼
�
Pð2Þ −½Pð5Þ�T
Pð5Þ Pð7Þ

�
: ðA14Þ

This is what appears in the CHY formula for NLSMd2.
The YMþ ϕ3 theory involves scalars of both colors and

flavors, as well as gauge bosons with colors. In the
following amplitude, the left orderings are for the flavor
indices and the right orderings are for the color indices:

MYMþϕ3

n ðα1jα2j � � � jαmjjβÞ

¼
I

dμn

�Ym
i¼1

CðαiÞ
�
Pf 0Πnðα1 ∪ α2 ∪ � � � ∪ αmÞCðβÞ;

ðA15Þ

where α1 ∪ α2 ∪ � � � ∪ αm contains labels for the bi-index
scalars, and the rest are the gauge bosons. When there are
no external gauge bosons, the above formula coincides with
the theory of the NLSM ⊕ ϕ3 [26,27] when all external
states are biadjoint scalars.
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2. KLT relations

In the CHY representation, if an amplitude of theoryX is
given by

MX
n ¼

I
dμnILIR; ðA16Þ

we can rewrite it as

MX
n ¼

X
α;β

�I
dμnILCð1; α; n − 1; nÞ

�

× SnðαjjβÞ
�I

dμ0nIRCð1; α; n; n − 1Þ
�
; ðA17Þ

where

SnðαjjβÞ ¼ ½Mϕ3

n ð1; α; n − 1; njj1; β; n; n − 1Þ�−1: ðA18Þ
If we can identify in Eq. (A17) that

M
XL=R
n ðαÞ ¼

I
dμnIL=RCðαÞ ðA19Þ

where MXL=RðαÞ are the ordered amplitudes of some
theories XL=R, then we have the KLT relation:

MX
n ¼

X
α;β

MXLð1;α; n − 1; nÞSnðαjjβÞMXRð1; α; n; n − 1Þ:

ðA20Þ

In other words, the theory X is a KLT double copy of XL

and XR: X ¼ XL ⊗
KLT

XR.
In the two examples involved in this paper, for

NLSMð2Þ ¼ NLSMð2Þ ⊗
KLT

ϕ3 ðA21Þ

we have

IL ¼ ðPf 0AnÞ2; IR ¼ CnðαÞ; ðA22Þ

for

eDBI ¼ NLSMð2Þ ⊗
KLTðYMþ ϕ3Þ ðA23Þ

we have

IL ¼ ðPf 0AnÞ2;

IR ¼
�Ym
i¼1

CðαiÞ
�
Pf 0Πnðα1 ∪ α2 ∪ � � � ∪ αmÞ: ðA24Þ

When we restrict the ordering structure of IR in Eq. (A24)
to m ¼ 2, with both α1 and α2 containing an even number
of labels, the double copy relation is reduced to

NLSMd2 ¼ NLSMð2Þ ⊗
KLTðYMþ ϕ3Þ: ðA25Þ

[1] M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960).

[2] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,
2239 (1969).

[3] J. Callan, G. Curtis, S. R. Coleman, J. Wess, and B. Zumino,
Phys. Rev. 177, 2247 (1969).

[4] S. L. Adler, Phys. Rev. 137, B1022 (1965).
[5] L. Susskind and G. Frye, Phys. Rev. D 1, 1682 (1970).
[6] I. Low, Phys. Rev. D 91, 105017 (2015).
[7] I. Low, Phys. Rev. D 93, 045032 (2016).
[8] I. Low and Z. Yin, Phys. Rev. Lett. 120, 061601 (2018).
[9] I. Low and Z. Yin, J. High Energy Phys. 10 (2018)

078.
[10] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, and J. Trnka,

Phys. Rev. Lett. 116, 041601 (2016).
[11] H. Elvang, M. Hadjiantonis, C. R. Jones, and S. Paranjape,

J. High Energy Phys. 01 (2019) 195.
[12] I. Low and Z. Yin, J. High Energy Phys. 11 (2019) 078.
[13] K. Kampf, J. Novotny, and J. Trnka, J. High Energy Phys.

05 (2013) 032.
[14] N. Arkani-Hamed, L. Rodina, and J. Trnka, Phys. Rev. Lett.

120, 231602 (2018).

[15] L. Rodina, J. High Energy Phys. 09 (2019) 084.
[16] L. Rodina, Phys. Rev. Lett. 122, 071601 (2019).
[17] Z. Bern, J. Carrasco, and H. Johansson, Phys. Rev. D 78,

085011 (2008).
[18] F. Cachazo, S. He, and E. Y. Yuan, Phys. Rev. D 90, 065001

(2014).
[19] F. Cachazo, S. He, and E. Y. Yuan, Phys. Rev. Lett. 113,

171601 (2014).
[20] F. Cachazo, S. He, and E. Y. Yuan, J. High Energy Phys. 07

(2014) 033.
[21] F. Cachazo, S. He, and E. Y. Yuan, J. High Energy Phys. 07

(2015) 149.
[22] J. J. M. Carrasco and L. Rodina, Phys. Rev. D 100, 125007

(2019).
[23] C. Cheung and C.-H. Shen, Phys. Rev. Lett. 118, 121601

(2017).
[24] C. Cheung, C.-H. Shen, and C. Wen, J. High Energy Phys.

02 (2018) 095.
[25] C. Cheung, G. N. Remmen, C.-H. Shen, and C. Wen,

J. High Energy Phys. 04 (2018) 129.
[26] F. Cachazo, P. Cha, and S. Mizera, J. High Energy Phys. 06

(2016) 170.

DOUBLE COPY IN HIGHER DERIVATIVE OPERATORS OF … PHYS. REV. D 103, 025004 (2021)

025004-15

https://doi.org/10.1007/BF02859738
https://doi.org/10.1007/BF02859738
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2247
https://doi.org/10.1103/PhysRev.137.B1022
https://doi.org/10.1103/PhysRevD.1.1682
https://doi.org/10.1103/PhysRevD.91.105017
https://doi.org/10.1103/PhysRevD.93.045032
https://doi.org/10.1103/PhysRevLett.120.061601
https://doi.org/10.1007/JHEP10(2018)078
https://doi.org/10.1007/JHEP10(2018)078
https://doi.org/10.1103/PhysRevLett.116.041601
https://doi.org/10.1007/JHEP01(2019)195
https://doi.org/10.1007/JHEP11(2019)078
https://doi.org/10.1007/JHEP05(2013)032
https://doi.org/10.1007/JHEP05(2013)032
https://doi.org/10.1103/PhysRevLett.120.231602
https://doi.org/10.1103/PhysRevLett.120.231602
https://doi.org/10.1007/JHEP09(2019)084
https://doi.org/10.1103/PhysRevLett.122.071601
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1007/JHEP07(2015)149
https://doi.org/10.1007/JHEP07(2015)149
https://doi.org/10.1103/PhysRevD.100.125007
https://doi.org/10.1103/PhysRevD.100.125007
https://doi.org/10.1103/PhysRevLett.118.121601
https://doi.org/10.1103/PhysRevLett.118.121601
https://doi.org/10.1007/JHEP02(2018)095
https://doi.org/10.1007/JHEP02(2018)095
https://doi.org/10.1007/JHEP04(2018)129
https://doi.org/10.1007/JHEP06(2016)170
https://doi.org/10.1007/JHEP06(2016)170


[27] S. Mizera and B. Skrzypek, J. High Energy Phys. 10 (2018)
018.

[28] Z. Yin, J. High Energy Phys. 03 (2019) 158.
[29] J. J. M. Carrasco, C. R. Mafra, and O. Schlotterer, J. High

Energy Phys. 06 (2017) 093.
[30] J. J. M. Carrasco, C. R. Mafra, and O. Schlotterer, J. High

Energy Phys. 08 (2017) 135.
[31] M. C. González, R. Penco, and M. Trodden, Phys. Rev. D

102, 105011 (2020).
[32] J. J. M. Carrasco, L. Rodina, Z. Yin, and S. Zekioglu, Phys.

Rev. Lett. 125, 251602 (2020).
[33] I. Low and Z. Yin, Phys. Lett. B 807, 135544 (2020).
[34] J. J. M. Carrasco, L. Rodina, and S. Zekioglu (to be

published).
[35] M. Chiodaroli, M. Günaydin, H. Johansson, and R. Roiban,

J. High Energy Phys. 01 (2015) 081.

[36] I. Low, Phys. Rev. D 91, 116005 (2015).
[37] J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971).
[38] E. Witten, Nucl. Phys. B223, 422 (1983).
[39] L. J. Dixon, in Theoretical Advanced Study Institute in

Elementary Particle Physics (TASI 95): QCD and Beyond
(1996), pp. 539–584 [arXiv:hep-ph/9601359].

[40] V. Del Duca, L. J. Dixon, and F. Maltoni, Nucl. Phys. B571,
51 (2000).

[41] R. Kleiss and H. Kuijf, Nucl. Phys. B312, 616 (1989).
[42] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and

R. Roiban, arXiv:1909.01358.
[43] G. Chen and Y.-J. Du, J. High Energy Phys. 01 (2014) 061.
[44] Y.-J. Du and C.-H. Fu, J. High Energy Phys. 09 (2016) 174.
[45] B. Feng, R. Huang, and Y. Jia, Phys. Lett. B 695, 350 (2011).
[46] J. Bijnens, K. Kampf, and M. Sjö, J. High Energy Phys. 11

(2019) 074.

IAN LOW, LAURENTIU RODINA, and ZHEWEI YIN PHYS. REV. D 103, 025004 (2021)

025004-16

https://doi.org/10.1007/JHEP10(2018)018
https://doi.org/10.1007/JHEP10(2018)018
https://doi.org/10.1007/JHEP03(2019)158
https://doi.org/10.1007/JHEP06(2017)093
https://doi.org/10.1007/JHEP06(2017)093
https://doi.org/10.1007/JHEP08(2017)135
https://doi.org/10.1007/JHEP08(2017)135
https://doi.org/10.1103/PhysRevD.102.105011
https://doi.org/10.1103/PhysRevD.102.105011
https://doi.org/10.1103/PhysRevLett.125.251602
https://doi.org/10.1103/PhysRevLett.125.251602
https://doi.org/10.1016/j.physletb.2020.135544
https://doi.org/10.1007/JHEP01(2015)081
https://doi.org/10.1103/PhysRevD.91.116005
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0550-3213(83)90063-9
https://arXiv.org/abs/hep-ph/9601359
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1016/0550-3213(89)90574-9
https://arXiv.org/abs/1909.01358
https://doi.org/10.1007/JHEP01(2014)061
https://doi.org/10.1007/JHEP09(2016)174
https://doi.org/10.1016/j.physletb.2010.11.011
https://doi.org/10.1007/JHEP11(2019)074
https://doi.org/10.1007/JHEP11(2019)074

