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In this work, we study modifications of the spectrum of fermions interacting with kinklike structures in
two-dimensional spacetime. We consider the Yukawa coupling between fermions and scalar fields that
engender nontrivial internal structure and investigate how the fermion spectra change in terms of the
parameters that control the kinklike configuration and the Yukawa coupling. We consider models that allow
the internal structure of the kinklike solution to respond to the presence of a geometrical constriction and
show the fermion spectra may also appear directly affected by the constriction. The main results are of
current interest and may be used to propose the construction of electronic devices capable of engendering
new effects at the nanometric scale.
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I. INTRODUCTION

The study of localized structures with a topological
character has several implications in physics. In high
energy physics, in particular, we can list a group of
topological solutions whose stability also depends on the
dimension of the background spacetime [1,2]. As one
knows, there are kinks in the line, vortices in the plane,
and magnetic monopoles in three spatial dimensions. In the
simplest case, in (1, 1) spacetime dimensions, kinks are
generated by real scalar fields and can be used in a diversity
of applications; see, e.g., [3–8] and references therein. In
the presence of two real scalar fields, in particular, there are
several interesting possibilities, as the ones considered in
[9,10], for instance, where the second field may contribute
to describe internal structure [11]. More recently, several
works have appeared, focused on the study of the asymp-
totic behavior of kinks to analyze what sort of effects may
appear in interkink interactions [12–16] and in the scatter-
ing of kinks [17–23].
The presence of kinks has inspired several other pos-

sibilities, a recent one considering the case of scalar fields
in the presence of impurity [24,25]. The subject is of
current interest and in [26], for instance, the authors found a
family of impurity models such that the self-dual sector is
exactly solvable, for any spatial distribution of the impurity,

both in the topologically trivial case and for kink configu-
rations. Moreover, in [27], an interesting procedure is
described, in which a first order equation for static kink
is solved iteratively, also leading to the construction of
exact solutions. Another line of investigation concerns the
use of kinks and domain walls to describe specific proper-
ties of magnetic materials. One issue of current interest here
is the possibility to construct high performance memory
devices [28] and their interplay with skyrmions [29,30].
Another subject that engenders important applications of

kinks, in which we will pay closer attention in this work, is
related to the Jackiw-Rebbi (JR) model [31]. The issue here
concerns the use of kinks as background to study the
fermion spectrum. In the JR model, one can show that,
when introducing topological solutions in the Dirac equa-
tion, the symmetry breaking required by the scalar potential
to construct the topological structure implies the fraction-
alization of the fermion number due to the nontrivial
background described by the scalar field. Some standard
works on this subject are in Refs. [32–36] and there are
recent developments in [37–39] and in references therein.
Since in the context of fermion-kink interactions the
properties of the fermion field depend on how the scalar
field behaves, it is natural that topological solutions with
different properties, either in the asymptotic behavior or in
the internal structure, induce changes in the distribution of
the fermion modes, which has been recently explored in
some specific setups in Refs. [40–43].
Motivated by the possibility to study models that obey

first-order equations with solutions saturating the
Bogomol’nyi-Prasad-Sommerfield bound [44,45], a new
class of kinklike structures where the scalar field acquires
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nontrivial internal structure has been proposed [46]. The
underlying mechanism is assembled with two real scalar
fields that interact through a potential and the modification
of the kinematics of the first field, while the second field
develops standard evolution. The general procedure engen-
ders first-order differential equations that can be solved
analytically. Compared with the JR model, in the novel
model, the symmetry is enhanced to accommodate the
second field, which is adjusted to have a kink profile that
induces the appearance of distinct behavior on the first
field, simulating a geometric constriction as the one
investigated before in [47]. The richness of the procedure
has suggested that we further explore how the internal
structures emerging from the kinklike configuration may
affect the behavior of the fermion spectrum when the scalar
field interacts through the Yukawa coupling. The idea here
is to build a connection with the experimental result
described in Ref. [48], where an electric current is used
to modify the polarity of a localized structure nested inside
a magnetic nanowire.
To focus on this issue, we organize the work as follows.

In Sec. II, we present the scalar and fermion Lagrangian
densities that compose the model under study and discuss
the formation of kinks with internal structure and the
equations of motion of the fermion in the background of
the scalar configurations. There we also investigate some
specific models within the above context, with the focus on
the spectrum of fermions, and in Sec. III we end up the
work with some conclusions and comments. In particular,
we discuss possibility to construct electronic devices at the
nanometric scale, suggested to identify the new effect
captured by the presence of geometric constrictions in
nanowires.

II. FERMION-KINK SYSTEM

Let us now analyze a model with a fermion field
interacting with a bosonic one with a kink profile via
Yukawa coupling, described by the LagrangianL¼LfþLb,
where

Lf ¼ 1

2
ψ̄iγμ∂μψ − gϕψ̄ψ ; ð2:1aÞ

Lb ¼
1

2
fðχÞ∂μϕ∂μϕþ 1

2
∂μχ∂μχ − Vðϕ; χÞ: ð2:1bÞ

In the above system,ψ stands for theDirac field and the scalar
field ϕ is used to describe a background kinklike solution
coming from the Lagrangian density in (2.1b), where we
have two interacting real scalar fields, the second scalar field
denoted by χ. Here, fðχÞ is in principle an arbitrary non-
negative function, and the potential has the form

Vðϕ; χÞ ¼ 1

2fðχÞ ð1 − ϕ2Þ2 þ 1

2
α2ð1 − χ2Þ2: ð2:2Þ

The bosonic model was used recently in [46] to generate
kinklike solutions with interesting internal structures. We
consider that α is a real and non-negative parameter, and for
χ ¼ �1 and fð�1Þ ¼ 1 we recover the original JR model
[31]. In this sense, in this work, the χ field will be used as an
independent field: it will act as a geometric constriction,
contributing to distort the localized structure described by the
ϕ field, which will then modify the fermion behavior due to
the Yukawa coupling that appear in (2.1). Note that dimen-
sionless fields, coupling constants, and coordinates have
been used in the present work.
The interesting point about this model is that the field χ

acts independently and entraps a nontrivial kink configu-
ration for the scalar field ϕ, while the α parameter controls
the geometry of the kink by making the entrapment more or
less expressive. The net effect of this arrangement is that
one of the scalar solutions acquires internal structures that
can, in turn, reflect on aspects of the fermion spectrum in
the above fermion-kink model. Here we consider three
distinct models with fðχÞ given by

fðχÞ ¼
8
<

:

1=χ2;

1=cos2ðnπχÞ;
1=sin2ðð2kþ 1ÞπχÞ;

ð2:3Þ

with n ¼ 1; 2; 3… and k ¼ 0; 1; 2;… [46]; notice that
fðχ ¼ �1Þ ¼ 1 in all the three cases.

A. Bosonic system

The bosonic model which appears in Eq. (2.1b) was first
investigated in [46], so here we briefly review some results
there obtained. In the case of static solutions, the equations
of motion for χ and ϕ are

d2χ
dx2

−
1

2

df
dχ

�
dϕ
dx

�
2

¼ ∂V
∂χ ; ð2:4Þ

d
dx

�

fðχÞ dϕ
dx

�

¼ ∂V
∂ϕ ; ð2:5Þ

and the energy density has the form

ρðxÞ ¼ 1

2

�
dχ
dx

�
2

þ 1

2
fðχÞ

�
dϕ
dx

�
2

þ Vðϕ; χÞ: ð2:6Þ

As shown in [46], the choice

Vðϕ; χÞ ¼ W2
ϕ

2fðχÞ þ
W2

χ

2
; ð2:7Þ

where W¼Wðϕ;χÞ, and Wϕ¼∂W=∂ϕ and Wχ ¼ ∂W=∂χ,
allows that we write the first order equations
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dχ
dx

¼ �Wχðϕ; χÞ;
dϕ
dx

¼ �Wϕðϕ; χÞ
fðχÞ ; ð2:8Þ

which turn the energy density into a surface term, with
the energy minimized to the value E ¼ jΔWj, where
ΔW ¼ Wðϕð∞Þ; χð∞ÞÞ −Wðϕð−∞Þ; χð−∞ÞÞ. The above
results are important because solutions of the first order
equations solve the equations of motion and are minimum
energy configurations. Moreover, from the first order
equations above, we see that when Wðϕ; χÞ can be written
as Wðϕ; χÞ ¼ gðϕÞ þ hðχÞ, they become

dχ
dx

¼ � dhðχÞ
dχ

;
dϕ
dx

¼ � 1

fðχÞ
dgðϕÞ
dϕ

: ð2:9Þ

This means that the χ field is independent and can be solved
independently. However, it acts to modify the behavior of ϕ
under the presence of the function fðχÞ. The bosonic model
then has the power to describe kinklike structures in the
presence of geometrical constrictions, depending on the
form of the functions fðχÞ, gðϕÞ, and hðχÞ that we choose
to describe the model. This was stressed before in Ref. [46],
where the choices displayed in Eqs. (2.2) and (2.3) were
considered.
In order to further illustrate this, let us use the potential in

Eq. (2.2) to write the above first order equations as, taking
the positive sign, for simplicity,

dχ
dx

¼ αð1 − χ2Þ; dϕ
dx

¼ ð1 − ϕ2Þ
fðχÞ : ð2:10Þ

The equation for χ is well known and can solved immedi-
ately; it gives the solution χðxÞ ¼ tanhðαðx − x0ÞÞ, where x0
is an integration constant which informs us the position of
the center of the kinklike configuration, such that χðx0Þ ¼ 0.
Due to translational invariance, it is usually taken to be zero,
and we will also take x0 ¼ 0, for simplicity. To solve the
equation for ϕ, we change variable from x → yðxÞ such that
dy=dx ¼ 1=fðχÞ. This allows that we write the first order
equation for ϕ in the much simpler form

dϕ
dy

¼ 1 − ϕ2; ð2:11Þ

which has the solution ϕðyÞ ¼ tanhðy − y0Þ, such that
ϕðy0Þ¼0. We now consider the model with fðχÞ¼1=χ2,
the first possibility that appears in Eq. (2.3). In this case,
we have dy=dx ¼ tanh2ðαxÞ, which implies that yðxÞ ¼
x − ð1=αÞ tanhðαxÞ, with yð0Þ ¼ 0. This gives

ϕðxÞ ¼ tanh

�

x −
1

α
tanhαx − y0

�

; ð2:12Þ

such that when x → 0we have ϕð0Þ ¼ − tanhðy0Þ, showing
that the center of the kinklike structure described by ϕ may

be shifted along the vertical axis. The other two cases
displayed in Eq. (2.3) work similarly.
In the present work, we want to investigate the fermion

behavior guided by the Lagrangian in Eq. (2.1a), to
compare the results with the standard results obtained
before in the JR model [31]. For this reason, we further
impose that y0 in Eq. (2.12) vanishes, such that the kinklike
configuration described by ϕ now engenders the behavior
ϕð−xÞ ¼ −ϕðxÞ which is present in the JR model. The
same behavior must be considered for the other two choices
of fðχÞ, as shown in Eq. (2.3).

B. Fermionic system

We now turn attention to the fermion system. One
defines as ansatz for the fermion field ψðx; tÞ ¼
e−iEtψðxÞ, with ψðxÞ ¼ ðψþðxÞ;ψ−ðxÞÞT , and uses the
representation ðγ0; γ1; γ5Þ ¼ ðσ1; iσ3; σ2Þ for the Dirac
gamma matrices, the equations of motion for the fermion
components are given by

Eψþ þ ψ 0
− − 2gϕψ− ¼ 0; ð2:13aÞ

Eψ− − ψ 0þ − 2gϕψþ ¼ 0; ð2:13bÞ

and the decoupled Schrödinger-like equations become

�

−
d2

dx2
þU�ðxÞ

�

ψ∓ ¼ E2ψ∓; ð2:14Þ

where U�ðxÞ ¼ ∓2gdϕ=dxþ 4g2ϕ2, with ϕ ¼ ϕðxÞ. It is
easy to find the fermion zero mode, given by

ψðxÞ ¼ N
�
e−2g

R
x
ϕðx0Þdx0

0

�

; ð2:15Þ

with normalization factor N . Beyond that, the half-bound
fermion energies separating the bound and continua spectra
are at Ehb ¼ �2gϕðx → ∞Þ and since for all the three
background models in (2.3) one has ϕðx → ∞Þ → 1 (see
below), we end up with Ehb ¼ �2g.
The three models presented so far have parity symmetry

meaning that, regardless of the value of the parameters α, n,
and k, the upper and lower components of the fermion field
have opposite parities. Moreover, the models have charge
and energy-reflection symmetries. From the latter follows
that the fermion energy spectrum is symmetric with respect
to the line E ¼ 0. The charge conjugation operator is
representation dependent and with the representation
adopted here is σ3, together with the complex conjugation
of the wave function. Moreover, the energy-reflection and
parity operators are representation independent and are
both γ1, along with E → −E and x → −x, respectively.
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C. Specific models

We now concentrate on some specific bosonic models,
which allow obtaining distinct kinklike structures that serve
as background for the charged fermions. The main aim is to
see how the internal structure of the kink may induce the
presence of fermion bound states.

1. First model

First, let us consider the model with fðχÞ ¼ 1=χ2. The
solution for ϕðxÞ in this model is given by Eq. (2.12) with
y0 ¼ 0. It has the form

ϕαðxÞ ¼ tanh

�

x −
1

α
tanhðαxÞ

�

: ð2:16Þ

The solution is shown in Fig. 1(a) considering several
values of α. The plateau in the solution around zero
diminishes as α increases. For α > 0, the slope of the kink
at the center is zero and α can be used to control the size of
the plateau in the kinklike configuration. This behavior was

firstly noticed in [40] and can be used in applications of
practical interest.
By substituting the kink solution (2.16) as the back-

ground field ϕðxÞ in Eq. (2.14), one finds for the fermion
potential

U�ðxÞ ¼ �2sech2yðxÞ tanh2ðαxÞ þ 4 tanh2 yðxÞ; ð2:17Þ

where yðxÞ ¼ x − ð1=αÞ tanhðαxÞ. The potential U− which
responds for the entrapment of the fermion bound states is
shown in Fig. 1(b) for several values of α. As the parameter
α increases, the depth of the fermion potential below zero
increases, leading to the higher absolute value of the
fermion bound energy. This phenomenon can be seen in
Fig. 2(a). There could also appear more bound states;
however, this is not the case in this model in contrast with
that similar model in [40]. The fermion bound states as a
function of the coupling constant g is shown in Fig. 2(b). As
one can note, the only fermion bound state is the zero mode
for small coupling g but as the value of g increases, more
fermion bound states arise. The fermion spectrum is
completely symmetric in positive and negative energies

(a)

(b)

FIG. 1. (a) Kink profile and (b) fermion potential for the first
model, with g ¼ 0.4 and distinct values of α.

(a)

(b)

FIG. 2. Fermion spectra in the first model, with (a) g ¼ 0.4 and
continuous α and with (b) α ¼ 0.5 and continuous g. In both
cases, the dashed lines show the half-bound state energy.
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reflecting the energy-reflection symmetry discussed before.
Finally, we have to have in mind that when dealing with
models in fermion-kink setups, one must take some care
since for large values of the coupling constant the kink used
as the background field may not be a good approximation.

2. Second model

The second model we consider in this work is repre-
sented by fðχÞ ¼ 1=cos2ðnπχÞ and n ¼ 1; 2; 3;…, which
yields the solution

ϕα;nðxÞ ¼ tanh
1

2

�

xþ 1

2α
ðCiðyþn Þ − Ciðy−n ÞÞ

�

; ð2:18Þ

where CiðyÞ denotes the cosine integral function and
y�n ¼2nπð1� tanhðαxÞÞ; see [46]. In Figs. 3(a) and 3(b),
we display the profile of the solution (2.18) considering
some values of n and α. We can observe that when
increasing the values of n, more plateaux appear connecting
the asymptotic limits of the solution, counting as 2n.
Besides that, increasing the value of the parameter α from

zero leads to constrained structures concentrated around the
center. We also notice that the slope of the kink at the center
is nonzero and equals unit independent of the values of the
parameters n and α, differently from what occurs in the
model presented in the previous subsection.
The fermion potential U−ðxÞ is shown in Fig. 4 for

several values of the parameters n and α. In contrast with
the potential presented for the previous model, the depth of
the potential here is independent of the parameters of the
model, making the fermion spectrum less sensitive to the
variations of these parameters as one can see in Fig. 5,
where the fermion bound spectrum is depicted in terms of
the three parameters of the system, n, α, and g. Again, the
spectrum is symmetric around the line E ¼ 0, as expected.
The dependence of the bound spectrum on g is similar to
the one arising in the previous model.

3. Third model

We now consider the third model, which is described by
the function fðχÞ¼1=sin2ðð2nþ1ÞπχÞ and n ¼ 0; 1; 2;….
Here the solution [46] is yet given by Eq. (2.18), but now

(a)

(b)

FIG. 3. Kink profile for the second model, with g ¼ 0.4 (a) for
α ¼ 0.5 and n ¼ 1, 2 and (b) for n ¼ 1 and α ¼ 0.5, 1.

(b)

(a)

FIG. 4. Fermion potential for the second model, with g ¼ 0.4
(a) for α ¼ 0.5 and n ¼ 1, 2 and (b) for n ¼ 1 and α ¼ 0.5, 1.
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we have to use y�n ¼ ð2nþ 1Þð1� tanhðαxÞÞ instead. The
kink profile is similar to the previous one, shown in Fig. 3;
however, it now includes another plateau at its center,
making the total number of plateaux to be an odd integer,
counted as 2nþ 1. In this case, the fermion spectra also
change, as displayed in Fig. 6.

III. DISCUSSION

In this work, we investigated the behavior of fermions in
the background of kinklike structures that appeared

recently in [46]. In the bosonic portion of the model, the
field χ gives rise to a standard kink, which directly
interferes in the profile of the field ϕ, engendering an
internal structure which depends on the choice of the
function fðχÞ. This function encodes modifications on
the elastic properties of the medium where the field ϕ
evolves in the real line. The presence of the internal
structure in the first model, which is shown in Fig. 1(a),
is very much similar to the kinklike profile found before in
Ref. [47], in the study of the magnetization in micrometer-
sized Fe20Ni80 material in the presence of geometrical

(a)

(b)

(c)

FIG. 5. Fermion spectra for the second model, in terms of (a) α,
for g ¼ 0.4 and n ¼ 1; (b) n, for g ¼ 0.4 and α ¼ 0.5; and (c) g,
for α ¼ 0.5 and n ¼ 1.

(a)

(b)

(c)

FIG. 6. Fermion spectra for the third model, in terms of (a) α,
for g ¼ 0.4 and n ¼ 1; (b) n, for g ¼ 0.4 and α ¼ 0.5; and (c) g,
for α ¼ 0.5 and n ¼ 1.
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constrictions in the magnetic element. In this sense, we may
say that the χ kink, together with the function fðχÞ ¼ 1=χ2,
provides a way to modulate the geometrical constriction
present in the magnetic element used in the experimental
setup described in Ref. [47]. As we have shown in the
present investigation, the inclusion of fermions with the
standard Yukawa coupling to the scalar field ϕ leads us to
the fermion spectra displayed in Figs. 2(a) and 2(b). If we
now recall that in the standard JR model, which can be
obtained from the model here considered imposing that
χ ¼ �1, the fermion spectrum only depends on g and varies
in a way similar to the case displayed in Fig. 2(b). In fact, it
contains the zero mode and some other massive states
depending on the value of g. In this way, the first model is
richer than the JR model, at least in the sense that the
parameter α also contributes to the presence of massive
bound states inside the gap in the fermionic spectrum, and
this certainly modifies the fermion behavior in the presence
of this new kinklike structure.
Inspired by the result of the first model, we decided to

investigate two other possibilities, the second and third
models, in which the internal structure of the kinklike
configuration is richer than before. In the second model, for
instance, the main effect comes from the presence of the
new function fðχÞ ¼ 1=cos2ðnπχÞ and leads to a more
involved kinklike profile which is depicted in Figs. 3(a) and
3(b). This modifies the spectra of fermions as shown in
Figs. 5(a)–5(c), in terms of the parameters α, n, and gwhich
are present in this new model. Since the presence of
massive states inside the fermion gap modifies the elec-
tronic behavior of electrons in the magnetic material, we
then realized that an interesting study on the subject was
already implemented experimentally in Ref. [48], on the
control of domain wall polarity by current pulses. We
notice that if we add geometric constrictions in a way
similar to the case described in [47], in accordance with the
results obtained above for the second model, we then
expect that the presence of electric pulses will make the
polarity of the wall to respond in a different way, and this
would certainly modify the fermion response of such
nanowires. In this sense, the above results seem to be of
current interest to the area of nanoelectronics and may
contribute to the fabrication of new electronic devices.
We now recall the experimental construction used in

Ref. [48] and think of a nanowire of the form shown in
Fig. 7, with the light violet and light red standing for the
magnetization pointing to the right and left along the
horizontal axis, respectively. When the magnetization starts
leaving the horizontal axis, it slowly starts becoming green
or blue, if it changes to the positive or negative vertical axis,
slowly going darker and darker. These two possibilities
identify the two polarities of the wall structure. In this
sense, the above results tell us that if we add the two
geometrical constrictions also displayed in Fig. 7, the
electronic current is modified by the presence of massive

modes identified in Fig. 5 and may contribute to change the
mechanism for the inversion of polarity, unveiling another
effect of current interest at the nanometric scale. This is in
direct connection with Ref. [47]: as we can read from its
experimental results, the length and width of the constric-
tion have approximately the same size of 500 nm. Also,
from Fig. 5 of [47], the plateaux in the kinklike configu-
ration has the size which is also around 500 nm. Thus, if
one uses the second model, we see from the kinklike profile
displayed in Fig. 3 that it is possible to set n ¼ 1 and adjust
α to determine the length, width, and distance between the
two constrictions which are illustrated in Fig. 7. The two
parameters α and n that appear in the second model seem to
be adequate to put this model in good connection with the
experimental implementation suggested in this work.
The presence of geometric constrictions modifies the

topological structure and changes the fermion behavior,
adding distinct massive bound states to the spectrum of
excitations, which may play a role in the construction of
electronic devices at the nanometric scale. The theoretical
result strongly suggests further experimental investigation,
using techniques of direct imaging of the wall structure with
high-resolution spin-polarized scanning electron micros-
copy [49] to understand the possibility of quantitatively
measuring the importance and control of the new effect
suggested in the present work. Due to the recent techno-
logical advancements [49–52], the manipulation of mag-
netic domain walls in nanowires has increased considerably
and may also foster new experimental studies in the subject.
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(a)

(b)

FIG. 7. Illustration of the nanowire with the two geometric
constrictions suggested from the second model with n ¼ 1, with
the magnetization with the (a) up (dark green) and (b) down (dark
blue) polarities.
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