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We formulate four-dimensional N ¼ 1 supersymmetric nonlinear sigma models on Hermitian
symmetric spaces with higher derivative terms, free from the auxiliary field problem and the Ostrogradski’s
ghosts, as gauged linear sigma models. We then study Bogomol’nyi-Prasad-Sommerfield equations
preserving 1=2 or 1=4 supersymmetries. We find that there are distinct branches, that we call canonical
(F ¼ 0) and noncanonical (F ≠ 0) branches, associated with solutions to auxiliary fields F in chiral
multiplets. For the CPN model, we obtain a supersymmetric CPN Skyrme-Faddeev model in the canonical
branch while in the noncanonical branch the Lagrangian consists of solely the CPN Skyrme-Faddeev term
without a canonical kinetic term. These structures can be extended to the Grassmann manifold
GM;N ¼ SUðMÞ=½SUðM − NÞ × SUðNÞ × Uð1Þ�. For other Hermitian symmetric spaces such as the
quadric surface QN−2 ¼ SOðNÞ=½SOðN − 2Þ ×Uð1Þ�Þ, we impose F-term (holomorphic) constraints for
embedding them into CPN−1 or Grassmann manifold. We find that these constraints are consistent in the
canonical branch but yield additional constraints on the dynamical fields, thus reducing the target spaces in
the noncanonical branch.
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I. INTRODUCTION

Nonlinear sigma models are typical examples of low-
energy effective theories. When a global symmetry G is
spontaneously broken down to its subgroupH, there appear
massless Nambu-Goldstone bosons dominant at low
energy, and their low-energy dynamics can be described
by nonlinear sigma model whose target space is a coset
space G=H [1,2]. If one wants to study physics at higher
energy, one needs higher derivative correction terms,
typically appearing in the chiral perturbation theory of
QCD [3]. Other examples of higher derivative terms can be
found in various contexts such as the Skyrme model, low-
energy effective theories of superstring theory, and world
volume theories of topological solitons and branes such as
Nambu-Goto and Dirac-Born-Infeld actions.
In supersymmetric theories, higher derivative terms often

bring us troubles. It is known that constructing derivative
terms in the form of ∂mΦ suffers from a technical issue

called the auxiliary field problem [4,5]. This stems from the
fact that the equation of motion for the auxiliary field F in
the chiral superfield Φ ceases to be an algebraic equation
and becomes a kinematical one. As a consequence, it is
hard to integrate out the auxiliary field and the interactions
of physical fields are not apparent. Supersymmetric exten-
sions of the Wess-Zumino-Witten term [6] and the Skyrme-
Faddeev model [7,8] are such examples with the auxiliary
field problem, while low-energy Lagrangians for super-
symmetric gauge theories in Refs. [9–11] (see also
Refs. [12–14]), and supersymmetric extensions of Dirac-
Born-Infeld action [15,16] and K-field theories [17,18] are
free from this problem. A broad class of supersymmetric
derivative terms free from the auxiliary field problem and
the Ostrogradski’s ghost [19] was found as four-dimen-
sional N ¼ 1 supersymmetric higher derivative chiral
models formulated in terms of superfields [20–32].1
The model consists of a Kähler potential K and a super-
potential W together with a (2,2) Kähler tensor Λ that
determines derivative corrections. It was applied to a new
mechanism of supersymmetry breaking in modulated vacua
[36] (see also Ref. [37]). The general formulation was
extended for other superfields: the most general ghost-free
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1Another possibility is to gauge them away [33] if there are
Ostrogradski’s higher derivative ghosts [34,35].
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(and tachyon-free) higher derivative N ¼ 1 supersymmet-
ric Lagrangian for vector multiplets (1-form gauge fields)
[38] and 3-form gauge field [39]. As for nonlinear sigma
models of chiral superfields, only known examples are the
supersymmetric CP1 model (or baby Skyrme model)
[24,25,27,40–42] and the supersymmetric Skyrme model
[30]. When one solves the auxiliary field equations of
motion for the auxiliary field F, it in general allows more
than one solution F ¼ 0 and F ≠ 0. The former is called
the canonical branch and the latter the noncanonical
branch. The bosonic part of the Lagrangian of the canonical
branch consists of a canonical kinetic term and a four-
derivative term for the CP1 model [43]. This admits lump
(sigma model instanton) solutions identical to those in the
CP1 model without a higher derivative term [44], as
Bogomol’nyi-Prasad-Sommerfield (BPS) states preserving
1=2 supersymmetric charges among the original supersym-
metry [27]. On the other hand, in the noncanonical branch,
the bosonic part of the Lagrangian consists of only the four-
derivative term of the Skyrme-Faddeev type [43] (that is
without fourth order time derivatives) without any canoni-
cal kinetic term. This admits a compact baby Skyrmion [45]
which is a BPS state preserving 1=4 supersymmetry [27].
While the general Lagrangian in superspace [20] can be
defined on any Kähler target spaces, solving auxiliary field
equations consisting of more than one chiral multiplet is
still an open problem, except for a single matrix chiral
superfield [30].
The purpose of this paper is to present higher derivative

supersymmetric nonlinear sigma models with a wider class
of target spaces—Hermitian symmetric spaces,

CPN−1 ¼ SUðNÞ=½SUðN − 1Þ ×Uð1Þ�;
GM;N ¼ UðMÞ=½UðM − NÞ ×UðNÞ�;
QN−2 ¼ SOðNÞ=½SOðN − 2Þ ×Uð1Þ�;
SOð2NÞ=UðNÞ; SpðNÞ=UðNÞ;
E6=½SOð10Þ ×Uð1Þ�; E7=½E6 ×Uð1Þ�; ð1:1Þ

for which we solve auxiliary field equations. In the case
without higher derivative terms, supersymmetric nonlinear
sigma models on Hermitian symmetric spaces can be
constructed by imposing supersymmetric constraints on
gauged linear sigma models [27]. This formulation is found
to help us to solve auxiliary field equations even with higher
derivative terms.We employ the gauged linear sigmamodels
with higher derivative terms for chiral multiplets [29] and
then take the strong gauge coupling (nonlinear sigmamodel)
limit. Solving auxiliary field equations yields the canonical
and noncanonical branches for the on-shell actions. For the
CPN model, we obtain a supersymmetric extension of the
CPN Skyrme-Faddeev model [46–49] in the canonical
branch, while the on-shell Lagrangian in the noncanonical
branch consists solely of the CPN Skyrme-Faddeev term

(the term without fourth order time derivatives). We then
study BPS states in these models and find that lumps (sigma
model instantons) identical to those without higher deriva-
tive terms remain 1=2 BPS states in the canonical branch,
while compact baby skyrmions are 1=4 BPS states in the
noncanonical branch.
The organization of this paper is as follows. In the next

section, we introduce the supersymmetric higher derivative
term in the gauged chiral models. We show that a derivative
term determined by a (2,2) Kähler tensor provides super-
symmetric higher derivative terms free from the auxiliary
field problem. We will see that there are two on-shell
branches associated with the solutions to the auxiliary field
in the chiral multiplets. In Sec. III, we study the sigmamodel
limit of thegauged chiralmodels.We first focus on the sigma
models whose target spaces are the Hermitian symmetric
spaces CPN−1 and GM;N . They are defined only by the
D-term constraints. We examine the limit in the two distinct
branches and write down the higher derivative terms in
the nonlinear sigma models. In Sec. IV, we discuss the
nonlinear sigmamodels defined by the F-term constraints in
addition to D-term constraints, which include the
target spaces QN−2, SOð2NÞ=UðNÞ, SpðNÞ=UðNÞ,
E6=½SOð10Þ ×Uð1Þ�, E7=½E6 ×Uð1Þ�. We will show that
the F-term constraints give additional conditions on
the target spaces in the nocanonical branch thus reduc-
ing the target spaces, while they do not in the canonical
branch. This distinguishes the situation from theCPN−1 and
GM;N cases.
In Sec. V, we discuss the BPS states in the nonlinear

sigma models, and in Sec. VI, we mention fermionic terms
in the models. Section VII is devoted to conclusion and
discussions. As for a superfield notation, we follow the
Wess-Bagger convention [50].

II. SUPERSYMMETRIC HIGHER DERIVATIVE
TERMS IN THE CHIRAL MODEL

In this section, we briefly introduce the supersymmetric
higher derivative term to the chiral model that is free from the
auxiliary field problem. The Lagrangian is given by [20,29]

L¼
Z

d4θKðΦ;Φ†Þ

þ 1

16

Z
d4θΛij̄kl̄;ab

cdðΦ;Φ†ÞDαΦiaDαΦkbD̄ _αΦ
†j̄
c D̄ _αΦ†l̄

d

þ
�Z

d2θWðΦÞþH:c:

�
; ð2:1Þ

where KðΦ;Φ†Þ is a Kähler potential, WðΦÞ is a super-
potential, andΛij̄kl̄ðΦ;Φ†Þ is a (2,2)Kähler tensor defined by
the chiral superfields Φ;Φ† and their derivatives DαΦ,
D̄ _αΦ†, ∂mΦ, and ∂mΦ†. We assume that the chiral super-
fields Φiaði ¼ 1;…; dimG; a ¼ 1;…; dimG0Þ belong to
the fundamental representations of the global and gauge
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symmetries G and G0, respectively. The four-dimensional
N ¼ 1 chiral superfield is expanded, in the chiral basis
ym¼xmþiθσmθ̄, as

Φia ¼ φiaðyÞ þ θψ iaðyÞ þ θ2FiaðyÞ: ð2:2Þ

We stress that the pure bosonic component in the fourth
derivative part

DαΦiaDαΦkbD̄ _αΦ
†j̄
c D̄ _αΦ†l̄

d ð2:3Þ

saturates the Grassmann coordinates, and only the bosonic
fields in the Kähler tensor Λij̄kl̄ contribute to this pure
bosonic term [20]. Indeed, the component expansion of
the term (2.3) can be evaluated as

DαΦiαDαΦkbD̄ _αΦ
†j̄
c D̄ _αΦ†l̄

d

¼ 16θ2θ̄2½ð∂mφ
ia∂mφkbÞð∂nφ̄

j̄
c∂nφ̄l̄

dÞ

−
1

2
ð∂mφ

iaFkb þ Fia∂mφ
kbÞð∂mφ̄j̄

cF̄l̄
d þ F̄j̄

c∂mφ̄l̄
dÞ

þ FiaF̄j̄
cFkbF̄l̄

d� þ � � � : ð2:4Þ

Here � � � are terms involving fermions.Due to this remarkable
structure, a large class of supersymmetric models with
derivative corrections can be realized by the Lagrangian
(2.1). For example, theN ¼ 1 supersymmetric Dirac-Born-
Infeld model is given by the Kähler tensor (scalar) [15,16]

ΛðΦ;Φ†Þ ¼ 1

1þ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þAÞ2 −B

p ; A ¼ ∂mΦ∂mΦ†;

B ¼ ∂mΦ∂mΦ∂nΦ†∂nΦ†: ð2:5Þ

A supersymmetric Skyrme-Faddeev model is given by the
Kähler metric Kφφ̄ð1þ jφj2Þ−2 and the Kähler scalar [27],

ΛðΦ;Φ†Þ¼ð∂mΦ∂mΦ∂nΦ†∂nΦ†Þ−1 1

ð1þΦΦ†Þ4
× ½ð∂mΦ†∂mΦÞ2−∂mΦ∂mΦ∂nΦ†∂nΦ†�: ð2:6Þ

The other examples include the Galileon inflation and the
ghost condensation models [21,22] and a superconformal
higher derivative nonlinear sigma model [51].
Now we make the global symmetry G0 be gauged

by introducing the N ¼ 1 vector multiplet V ¼
VâTâðâ ¼ 0; 1;…; dimG0Þ,

V ¼ −ðθσmθ̄ÞAmðxÞ þ iθ2θ̄ λ̄ðxÞ − iθ̄2θλðxÞ þ 1

2
θ2θ̄2DðxÞ:

ð2:7Þ

Here we have employed the Wess-Zumino gauge and Tâ

are the generators of G0 satisfying the normalization
TrðTâTb̂Þ ¼ kδâ b̂. In the derivative corrections, the vector
multiplet is introduced in the gauge covariantization of the
supercovariant derivative:,

DαΦia → DαΦia ¼ DαΦia þ ðΓαÞabΦib: ð2:8Þ

The gauge superconnection Γα is defined by

ðΓαÞab ¼ e−2gVDαe2gV; ð2:9Þ

where g is the gauge coupling constant. The gauge invariant
derivative term is given by a (2,2) Kähler tensor of the
following structure:

Λij̄kl̄;ab
cd ¼ Λij̄kl̄ðΦ;Φ†Þðe2gVÞcaðe2gVÞdb; ð2:10Þ

where Λij̄kl̄ is composed of gauge invariant quantities made
of Φ;Φ†; V. These include the gauge covariant derivatives
of the chiral superfields DαΦ, D̄ _αΦ†. We note that terms
made of ∂mΦ, ∂mΦ†, which are allowed in the ungauged
case, are forbidden in the gauged models due to super-
symmetry and the gauge covariance. Then, the gauged
Lagrangian can be written as

L ¼
Z

d4θKðΦ;Φ†; VÞ − 1

16

Z
d4θΛij̄kl̄ðΦ;Φ†ÞðD̄ _αΦ†j̄e2gVDαΦiÞðD̄ _αΦ†l̄e2gVDαΦkÞ

þ
�Z

d2θWðΦÞ þ H:c:

�
þ 1

16kg2
Tr

�Z
d2θWαWα þ ðH:c:Þ

�
− 2κg

Z
d4θTrV; ð2:11Þ

where we have introduced the gauge kinetic and Fayet-Iliopoulos (FI) terms with the FI parameter κ. The superpotential
and the FI term are necessary to impose the supersymmetric constraints. The bosonic part of the Lagrangian is given
by [29]
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Lboson ¼ −
∂2K

∂φ̄j̄
a∂φib

Dmφ̄
j̄
aDmφib −

∂2K

∂φ̄j̄
a∂φib

F̄j̄
aFib þ g

2
Dâ

�
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ ∂K
∂φic ðTâÞcdφid − 2κδâ0

�

þ 1

k
Tr

�
−
1

4
FmnFmn þ 1

2
D2

�
þ ∂W
∂φia F

ia þ ∂W̄
∂φ̄ī

a

F̄ī
a

þ Λikj̄ l̄ðφ; φ̄Þ
�
ðDmφ̄j̄

aDnφiaÞðDmφ̄
l̄
bDnφ

kbÞ

−
1

2
ðDmφ

iaFkb þ FiaDmφ
kbÞðDmφ̄j̄

aF̄l̄
b þ F̄j̄

aDmφ̄l̄
bÞ þ FiaF̄j̄

aFkbF̄l̄
b

�
; ð2:12Þ

where Fmn ¼ ∂mAn − ∂mAn þ i½Am; An� and T0 is the Uð1Þ generator in G0. A notable fact about the Lagrangian (2.12) is
that, due to the derivative corrections, the equation of motion for the auxiliary field F is not linear,

−
∂2K

∂φ̄j̄0
a∂φib

Fib þ ∂W̄
∂φ̄j̄0

a

þ Λikj̄ l̄ðφ; φ̄Þ
�
−
1

2
ððDmφ

ibFka þ FibDmφ
kaÞÞðDmφj̄

bδ
j̄0 l̄ þ δj̄

0j̄Dmφ̄l̄
bÞ

þ Fiaδj̄
0j̄FkbF̄l̄

b þ FibF̄j̄
bF

kaδj̄
0 l̄
�
¼ 0: ð2:13Þ

This apparently allows several solutions for the auxiliary
field. The solutions provide several distinct on-shell La-
grangians. For example, when W ¼ 0, the inhomogeneous
term in (2.13) vanishes and it is obvious that F ¼ 0 is a
solution. We call this the canonical branch. In addition, we
have another solution F ≠ 0 and we call the corresponding
theory the noncanonical branch. Both the branches exhibit
remarkable features [16,23,26,27]. Although this shows an
unusual situation in supersymmetric theories, we stress that
Eq. (2.13) is the algebraic equation, not the kinematical
one, which guarantees that F still keeps the role of the
auxiliary field.
In the following sections, we examine the nonlinear

sigma model limit g → ∞ in the gauged linear sigma
models. In the limit, the vector multiplet carries non-
propagating degrees of freedom and it will be integrated
out. We in particular focus on the Hermitian symmetric
spaces of the type G=H [52]. This procedure makes us to
write down a variety of supersymmetric nonlinear sigma
models with higher derivative terms.

III. NONLINEAR SIGMA MODELS
WITH D-TERM CONSTRAINTS

In this section, we discuss supersymmetric nonlinear
sigma models whose target spaces are the complex pro-
jective space CPN−1 and the Grassmann manifold GM;N .
It is known that they are obtained in the sigma model
limit g → ∞ of supersymmetric gauge theories with
D-term constraints [52–54]. The former is obtained from
an Abelian gauge theory, while the latter comes from
a non-Abelian gauge theory. In the following, we
explicitly integrate out the gauge field both in the canonical
and the noncanonical branches in the sigma model
limit g → ∞.

A. CPN − 1 model

We first consider the nonlinear sigma model whose
target space is CPN−1 ¼ SUðNÞ=½SUðN − 1Þ × Uð1Þ�. We
formulate this model as a gauged linear sigma model with
the global symmetry G ¼ SUðNÞ and gauge symmetry
G0 ¼ Uð1Þ, where the latter is complexified G0

C ¼ Uð1ÞC.
We consider the flat Kähler potential K ¼ δij̄ΦiΦ†j̄ ¼
Φ†iΦi and W ¼ 0. The chiral superfields Φi;Φ†i; ði ¼
1;…; NÞ belong to the fundamental representation N of
the global SUðNÞ symmetry, and their Uð1Þ charges are
assigned as ðþ1;−1Þ. We assume that the (2,2) Kähler
tensor is given by the flat metric as

Λikj̄ l̄ ¼ δij̄δkl̄ΛðΦ;Φ†Þ; ð3:1Þ

where ΛðΦ; Φ̄Þ is a gauge invariant Kähler scalar
composed of the chiral superfields and their gauge covar-
iant derivatives DαΦ, D̄ _αΦ†.2 Then, the Lagrangian
becomes [53]

L¼
Z

d4θΦ†ie2VΦi

þ 1

16

Z
d4θΛðΦ;Φ†Þδij̄δkl̄e4VDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

þ 1

16g2

�Z
d2θWαWαþðH:c:Þ

�
−2κ

Z
d4θV: ð3:2Þ

Here we have rescaled V → 1
g V. We have introduced the FI

term which provides the D-term constraints on the com-
ponent fields in Φi. Note that for the Abelian gauge group,

2The case ofΛ ¼ const:was studied inAppendixB ofRef. [49].

MUNETO NITTA and SHIN SASAKI PHYS. REV. D 103, 025001 (2021)

025001-4



we have DαΦ ¼ DαΦþ ðDαVÞΦ, D̄ _αΦ† ¼ D̄ _αΦ†þ
ðD̄ _αVÞΦ†. The bosonic part of the Lagrangian (3.2) is
then given by

Lboson ¼ −Dmφ
iDmφ̄i þ FiF̄i þDðφ̄iφi − κÞ

þ 1

2g
D2 −

1

4g2
FmnFmn

þ δij̄δkl̄Λðφ; φ̄ÞððDmφ
iDnφ̄

j̄ÞðDmφkDnφ̄l̄Þ
− 2ðDmφ

iDmφ̄j̄ÞðFkF̄l̄Þ þ FiF̄j̄FkF̄l̄Þ; ð3:3Þ

whereFmn ¼ ∂mAn − ∂nAm and the gauge covariant deriva-
tive is defined by Dmφ

i ¼ ∂mφ
i þ iAmφ

i. In the following,
we assume that the gauge invariant Kähler scalar Λðφ; φ̄Þ is
given by a function ofX ¼ Dmφ

iDmφ̄i as a typical example.
The most plausible reason for this assumption is that this
quantity contains only the first order time derivative of
fields. This guarantees the absence of the Ostrogradski’s
ghost [19] in the theory. This assumption is easily relaxed
but allowing other gauge and Lorentz invariant quantities
such asX ¼ φiφ̄i; Dmφ

iDnφ̄iDmφjDnφ̄j and so on does not
change the following discussions.
In the sigma model limit g → ∞, the gauge kinetic and

D2 terms vanish and the gauge field Am becomes an
auxiliary field. Before integrating out these fields, we first
integrate out the auxiliary fields in the chiral superfields.
The equation of motion for the auxiliary field F̄ī is

0 ¼ ∂L
∂F̄ī

¼ Fi − 2ΛðXÞððDmφ
jDmφ̄jÞFi − ðFjF̄jÞFiÞ: ð3:4Þ

As we have noticed, there are two branches associated with
the solutions Fi ¼ 0 and Fi ≠ 0. We examine each branch
separately.

1. Canonical branch

For the canonical branch corresponding to the solution
Fi ¼ 0, the Lagrangian (3.3) becomes

Lc ¼ −Dmφ
iDmφ̄i þ ΛðDmφ

iDnφ̄
iÞðDmφjDnφ̄jÞ

þDðφ̄iφi − κÞ: ð3:5Þ

The equation of motion for the auxiliary field D gives the
following constraint for the scalar fields φi:

φiφ̄i ¼ κ: ð3:6Þ

The equation of motion for the gauge field Am is

0 ¼ ∂L
∂Am

¼ −2κðiκ−1φi∂mφ̄i þ AmÞ þ i
∂Λ
∂X ðφiDmφ̄i − φ̄iDmφiÞ

þ 2iΛðXÞ½ðφiDpφ̄
iÞðDmφ

jDpφ̄jÞ
− ðφ̄iDpφ

iÞðDmφ̄
jDpφjÞ�: ð3:7Þ

Using the constraint (3.6), we find that the solution to this
equation is given by

Am ¼ iκ−1φ̄i∂mφ
i: ð3:8Þ

Substituting the solution (3.8) into (3.5) and using the
constraint (3.6), we obtain the Lagrangian in the canonical
branch,

Lc ¼ −D̃mφ̄
iD̃mφi þ ΛðX̃ÞðD̃mφ

iD̃nφ̄
iÞðD̃mφjD̃nφ̄jÞ;

ð3:9Þ

where we have defined D̃φi ¼ ∂mφ
i − κ−1ðφ̄j∂mφ

jÞφi and
X̃ ¼ D̃mφ

iD̃mφ̄i.
It is convenient to solve the constraint (3.6) explicitly by

using the parametrization

φi ¼ Wi

ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W† ·W

p : ð3:10Þ

By using the Uð1ÞC gauge symmetry, we can fix W1 ¼ 1.
Then, we have the conventional parametrization of the
CPN−1 model,

φi ¼
ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ju⃗j2

p �
1

us

�
;

φ̄ī ¼
ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ju⃗j2

p ð1; ūs̄Þ; ðs; s̄ ¼ 2;…; NÞ; ð3:11Þ

where us; ūs̄ are inhomogeneous coordinates of the CPN−1

manifold. By using this form, the Lagrangian in the
canonical branch can be rewritten as

Lc ¼ −
κ

ð1þ ju⃗j2Þ2 ½ð1þ ju⃗j2Þð∂mu⃗� · ∂mu⃗Þ − ðu⃗ · ∂mu⃗�Þðu⃗� · ∂mu⃗Þ�

þ κ2

ð1þ ju⃗j2Þ4 Λðu; ūÞ½ð1þ ju⃗j2Þ2ð∂mu⃗� · ∂nu⃗Þð∂mu⃗� · ∂nu⃗Þ

−2ð1þ ju⃗j2Þð∂mu⃗� · ∂nu⃗Þðu⃗ · ∂mu⃗�Þðu⃗� · ∂nu⃗Þ þ ðu⃗ · ∂mu⃗�Þ2ðu⃗� · ∂nu⃗Þ2�: ð3:12Þ
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By using the Fubini-Study metric

gst̄ ¼ κ
ð1þ ju⃗j2Þδst̄ − usūt̄

ð1þ ju⃗j2Þ2 ð3:13Þ

for the CPN−1 manifold, the Lagrangian (3.12) can be
simply written as

Lc ¼ −gst̄∂mus∂mūt̄

þ gst̄gqr̄Λðu; ū; ∂mu; ∂mūÞð∂mus∂nūt̄Þð∂muq∂nūr̄Þ:
ð3:14Þ

The first term is the ordinary kinetic term of the CPN−1

nonlinear sigma model and the second is the derivative
corrections determined by the arbitrary scalar function
Λðu; ū; ∂mu; ∂mūÞ.
Before going to the discussion on the noncanonical

branch, two comments in this Lagrangian are in order. This
Lagrangian with Λ ¼ const: was obtained in Ref. [49] as
the low-energy effective theory of a BPS non-Abelian
vortex in N ¼ 2 supersymmetric UðNÞ gauge theory [55];
a non-Abelian vortex in this case allows the supersym-
metric CPN−1 model on the vortex world sheet, on which
1=2 BPS condition preserves four supercharges among
eight supercharges that the N ¼ 2 supersymmetric theory
in the bulk has. The bosonic part of the four-derivative
correction term is precisely in this form [49].
Without supersymmetry, the CPN−1 Skyrme-Faddeev

model was proposed in Refs. [46–48] as the CPN−1 model
with four-derivative terms. In this case, there are three kinds
of four-derivative terms, and the one in Eq. (3.14) (with
Λ ¼ const:) corresponds to a particular choice among
them. Thus, we call the Lagrangian in Eq. (3.14) (the
bosonic part of) the supersymmetric CPN−1 Skyrme-
Faddeev model.

2. Noncanonical branch

We next study the noncanonical branch corresponding to
solutions Fi ≠ 0. Again, the equation of motion for F̄ is

0 ¼ ∂L
∂F̄ī

¼ Fi − 2ΛðXÞððDmφ
jDmφ̄jÞFi − ðFjF̄jÞFiÞ: ð3:15Þ

The solution Fi ≠ 0 is found to be

FiF̄i ¼ −
1

2Λ
þDmφ

iDmφ̄i: ð3:16Þ

Substituting this solution into the Lagrangian (3.3), it
becomes

Lnc ¼ ΛðXÞ½ðDmφ̄
iDnφ

iÞðDmφ̄jDnφjÞ − ðDmφ
jDmφ̄jÞ2�

−
1

4ΛðXÞ þDðφ̄iφi − κÞ; ð3:17Þ

where we have assumed the sigma model limit g → ∞. The
D-term condition leads to the constraint (3.6), while the
equation of motion for the gauge field is

0¼ i
∂Λ
∂X ðφkDmφ̄k− φ̄kDmφkÞ½ðDmφ̄

iDnφ
iÞðDmφ̄jDnφjÞ

−ðDmφ
jDmφ̄jÞ2�

þ2iΛðXÞ½−φ̄jDqφjðDmφ̄iDqφ
iÞþφjDpφ̄jðDpφ̄

iDmφiÞ
−ðDpφ

iDpφ̄iÞðφjDmφ̄j− φ̄jDmφjÞ�

þ4iΛ−2ðXÞ∂Λ∂X ðφiDmφ̄i− φ̄iDmφiÞ: ð3:18Þ

By using the constraint (3.6), we find that Eq. (3.18) is
again solved by

Am ¼ iκ−1φ̄i∂mφ
i: ð3:19Þ

Substituting this solution into the Lagrangian (3.17), we
find the new sigma model given by

Lnc ¼ ΛðX̃Þ½ðD̃mφ̄
iD̃nφ

iÞðD̃mφ̄jD̃nφjÞ − ðD̃mφ
jD̃mφ̄jÞ2�

−
1

4ΛðX̃Þ : ð3:20Þ

The expression (3.11) enables us to rewrite the Lagrangian
(3.20) as

Lnc ¼
κ2

ð1þ ju⃗j2Þ4 Λðu; ū; ∂mu; ∂mūÞ½ð1þ ju⃗j2Þ2fð∂mu⃗ · ∂nu⃗�Þð∂mu⃗ · ∂nu⃗�Þ − ð∂mu⃗� · ∂mu⃗Þ2g

− 2ð1þ ju⃗j2Þfð∂mu⃗� · ∂nu⃗Þðu⃗ · ∂mu⃗�Þðu⃗� · ∂nu⃗Þ − ð∂mu⃗� · ∂mu⃗Þðu⃗ · ∂nu⃗�Þðu⃗� · ∂nu⃗Þg

þ ðu⃗ · ∂mu⃗�Þ2ðu⃗� · ∂nu⃗Þ2 − fðu⃗ · ∂mu⃗�Þðu⃗� · ∂mu⃗Þg2� − 1

4
Λ−1ðu; ū; ∂mu; ∂mūÞ: ð3:21Þ
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By using the Fubini-Study metric (3.13), this can be simply
expressed as

Lnc ¼ Λðu; ū; ∂mu; ∂mūÞ
× ½ðgst̄∂mus∂nūt̄Þðgqr̄∂muq∂nūq̄Þ − ðgst̄∂mus∂mūt̄Þ2�

−
1

4
Λ−1ðu; ū; ∂mu; ∂mūÞ: ð3:22Þ

This four-derivative term does not contain fourth order time
derivatives, unlike the one in Eq. (3.14) in the canonical
branch. It is obvious that the target space of the scalar
fields is the CPN−1 space, but the canonical kinetic term
gst̄∂mus∂mut̄ is absent.
In particular, for the N ¼ 2 case of CP1, the Lagrangian

reduces to

Lnc ¼ −κ2Λ
ð∂mu∂mūÞ2 − j∂mu∂muj2

ð1þ juj2Þ4 −
1

4Λ
; ð3:23Þ

which is known as the supersymmetric baby Skyrme model
[24,25,27,40–42]. One notices that the first term (with
Λ ¼ 1) is nothing but the Skyrme-Faddeev fourth deriva-
tive term (without the fourth order time derivatives), while
the second term provides higher derivative corrections
determined by Λðu; ū; ∂mu; ∂mūÞ. The Lagrangian in
Eq. (3.22) may be called the supersymmetric CPN−1 baby
Skyrme model.

B. GM;N model

We next consider the nonlinear sigma model whose
target space is the Grassmann manifold GM;N ¼
UðMÞ=½UðM − NÞ ×UðNÞ�. We consider a gauged linear
sigma model with the global symmetry G ¼ SUðMÞ and
gauge symmetry UðNÞ, of which the chiral superfield Φi

a

(i ¼ 1;…M; a ¼ 1;…N) belong to the ðM; N̄Þ represen-
tation. The global symmetry G ¼ SUðMÞ and gauge
symmetry UðNÞC ¼ GLðN;CÞ act on it as

Φ → gΦeiΘ
0
; e2V → e−iΘ

0
e2VeiΘ

0†
; ð3:24Þ

where g ∈ SUðMÞ, Θ0ðx; θ; θ̄Þ is a chiral superfield of a
UðNÞC gauge parameter, and we have introduced the
associated UðNÞ vector superfield Vðx; θ; θ̄Þ. The G ×G0
invariant Lagrangian is therefore [52,54]

L¼
Z

d4θTr½Φe2VΦ†�

−
1

16

Z
d4θΛðΦ;Φ†ÞTr½DαΦe2VD̄ _αΦ†�Tr½DαΦe2VD̄ _αΦ†�

þ 1

16g2

�Z
d2θTr½WαWα�þðH:c:Þ

�
−2κ

Z
d4θTrV:

ð3:25Þ

The derivative corrections are given in the double trace
form, and we have included the FI term which provides the
D-term conditions on the chiral multiplets.
In the nonlinear sigma model limit g → ∞, the bosonic

part of the Lagrangian becomes

Lboson¼−Tr½DmφDmφ̄�þTr½φ̄Dφ− κD�þTr½FF̄�
þΛðφ; φ̄ÞfTr½DmφDnφ̄�Tr½DmφDnφ̄�
−Tr½DmφDmφ̄�Tr½FF̄�
−Tr½FDmφ̄�Tr½DmφF̄�þTr½FF̄�Tr½FF̄�g: ð3:26Þ

The gauge covariant derivative is Dmφ ¼ ∂mφþ iφAm. In
the following, we assume Λ is given by the gauge invariant
quantity X ¼ Tr½DmφDmφ̄�. As clarified before, this con-
dition is easily relaxed allowing for any other gauge
invariant quantities. The equation of motion for the
auxiliary field D gives the constraint

φ̄φ ¼ κ1N: ð3:27Þ

On the other hand, the equation of motion for the auxiliary
field F̄ is given by

F þ ΛðXÞf−Tr½DmφDmφ̄�F
− Tr½FDmφ̄�Dmφþ 2Tr½FF̄�Fg ¼ 0: ð3:28Þ

1. Canonical branch

It is obvious that F ¼ 0 is a solution. In this case, the
Lagrangian becomes

Lc ¼ −Tr½DmφDmφ̄� þ ΛðXÞTr½DmφDnφ̄�Tr½DmφDnφ̄�;
ð3:29Þ

where the scalar fields satisfy the constraint (3.27). The
equation of motion for Am then becomes

φ̄∂mφþ iκAm þ i
∂Λ
∂X ðφDmφ̄ −Dmφφ̄Þ

− ΛðXÞTr½DmφDnφ̄þDnφDmφ̄�ðφ̄∂nφþ iκAnÞ ¼ 0;

ð3:30Þ

where we have used the constraint (3.27). We again find
that the exact solution to this equation is given by

Am ¼ iκ−1φ̄∂mφ: ð3:31Þ

Plugging this solution back into the Lagrangian, we obtain
the nonlinear sigma model supplemented by the derivative
corrections
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Lc ¼ −Tr½D̃mφD̃mφ̄� þ ΛðX̃ÞTr½D̃mφD̃nφ̄�Tr½D̃mφD̃nφ̄�:
ð3:32Þ

Here D̃mφ ¼ ∂mφ − κ−1φðφ̄∂mφÞ and X̃ ¼ Tr½D̃mφD̃mφ̄�.
The constraint (3.27) is solved by the parametrization

φ ¼ W
ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffi
W†W

p ; ð3:33Þ

where W is an M × N matrix. Substituting this into the
Lagrangian, the first term in (3.32) becomes the kinetic
term of the sigma model whose target space is the
Grassmann manifold GM;N , while the second term gives
derivative corrections determined by the arbitrary gauge
invariant function ΛðW;W†; ∂mW; ∂mW†Þ.

2. Noncanonical branch

We next examine the noncanonical branch. It is obvious
that there are nonzero solutions F ≠ 0 to Eq. (3.28).
Compared with the case of the Abelian gauge symmetry,
it is not straightforward to write down explicit solutions for
F. However, the gauge invariant solution Tr½FF̄� should be
given by the gauge and the Lorentz invariant quantities Y
such as

Y ¼ Tr½DmφDmφ̄�; Tr½DmφDnφ̄DmφDnφ̄�;
Tr½DmφDnφ̄DnφDmφ̄�; ð3:34Þ

and so on. Using the equation of motion for F, the
noncanonical Lagrangian becomes

Lnc ¼ −Tr½DmφDmφ̄�
þ ΛðXÞfTr½DmφDnφ̄�Tr½DmφDnφ̄� − Tr½FF̄ðYÞ�2g:

ð3:35Þ

Here Tr½FF̄ðYÞ� is a solution F ≠ 0 given by Y. The
variation of the Lagrangian (3.35) by Am is therefore

δLnc ¼ iTr½ðφ̄∂mφþ iκAmÞδAm�

þ i
∂Λ
∂X Tr½ðφDmφ̄ −Dmφφ̄ÞδAm�

− iΛðXÞTr½DmφDnφ̄þDnφDmφ̄�
× Tr½ðφ̄∂nφþ iκAnÞδAm�
− 2Λðφ; φ̄ÞTr½FF̄�Tr½ðFF̄Þ0δY�: ð3:36Þ

Here ðFF̄Þ0 stands for the differentiation with respect to Y.
In the last term in (3.36), one finds that the variation of the
gauge invariant quantity Y is proportional to φ̄∂mφþ iκAm.
Indeed, for Y ¼ Tr½DmφDmφ̄�, we have

δY ¼ 2iTr½ðφ̄∂mφþ iκAmÞδAm�: ð3:37Þ

Therefore, even in the noncanonical branch, we find that
the solution to the equation of motion for Am is given by
Am ¼ iκ−1φ∂mφ̄. For the other gauge invariant combina-
tions Y such as (3.34), the result is the same. The constraint
(3.27) is solved by the parametrization (3.33) and the
Lagrangian becomes again the Grassmanian sigma model
with the derivative corrections.
We comment on the symmetric nature of theGrassmanian

manifold GM;N ¼ GM;M−N . We have constructed the
Grassmanian sigma models by gauging the symmetry
G0 ¼ UðNÞ, but there is an alternative way to define the
same target space by gaugingG0 ¼ UðM − NÞ. It is obvious
that the latter construction is essentially the same with the
former one except the N ¼ 1 case. In this case, one notices
thatGN;1 ¼ GN;N−1 ¼ CPN−1. This equality implies that we
can construct supersymmetric sigma model whose target
space is CPN−1, either by gauging the non-Abelian
UðN − 1Þ symmetry or the Abelian Uð1Þ symmetry. The
former is nothing but the construction discussed in this
section, while the latter is the formulation discussed in the
previous section. We find apparently different Lagrangians
(3.35) and (3.20) in the derivative corrections. This means
that the equivalence of the target spaces in different
formalism are not taken over to the derivative corrections
in the superfield language. In the next section, we will see a
similar situation in the canonical branch of the nonlinear
sigma models defined by the F-term constraints. We will,
among other things, encounter qualitatively different struc-
tures of the target spaces in the noncanonical branch.

IV. NONLINEAR SIGMA MODELS WITH
D- AND F-TERM CONSTRAINTS

In this section, we discuss the nonlinear sigma
models defined by F-term constraints in addition to the
D-term constraints [52,56]. Such Hermitian symmetric
target spaces include the quadric surface QN−2¼
SOðNÞ=½SOðN−2Þ×Uð1Þ�, the quotient spaces of the types
SOð2NÞ=UðNÞ, Spð2NÞ=UðNÞ, E6=½SOð10Þ ×Uð1Þ�, and
E7=½E6 ×Uð1Þ�. We begin with the target space QN−2 ¼
SOðNÞ=½SOðN − 2Þ × Uð1Þ� as a typical example.

A. Quadric surface QN − 2
We consider a gauged linear sigma model with the global

symmetry G ¼ SOðNÞ and the gauge symmetry Uð1Þ. The
chiral superfield Φi (i ¼ 1;…; N) belongs to the funda-
mental representation N of SOðNÞ and has the Uð1Þ charge
þ1. The Lagrangian in the nonlinear sigma model limit is

L ¼
Z

d4θðΦie2VΦ†i − 2κVÞ þ
�Z

d2θΦ0Φ⃗
tJΦ⃗þH:c:

�

þ 1

16

Z
d4θΛðΦ;Φ†Þe4VDαΦiDαΦjD̄ _αΦ†iD̄ _αΦ†j;

ð4:1Þ
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where we have introduced the gauge invariant superpoten-
tialW ¼ Φ0Φ⃗

tJΦ⃗. This will provide the F-term constraints
on the chiral multiplet. Here Φ0 is the SOðNÞ singlet and
whose Uð1Þ charge is assigned to −2, V is the Uð1Þ vector
multiplet, and the matrix J is given by

J ¼

0
B@

0 0 1

0 1N−2 0

1 0 0

1
CA: ð4:2Þ

The gauge transformations are given by

Φ → e−iΦ
0Φ; Φ0 → e2iΘ

0Φ0; e2V → e−iΘ
0†
e2VeiΘ

0
:

ð4:3Þ

Then the bosonic part of the Lagrangian is evaluated as

Lboson ¼ −Dmφ
iDmφ̄i þ FiF̄i þ F0ðφ⃗tJφ⃗Þ þ F̄0ð ⃗φ̄tJ ⃗φ̄Þ þDðφ̄iφi − κÞ

þ ΛðXÞfðDmφ
iDnφ̄

iÞðDmφjDnφ̄jÞ − 2ðDmφ
iDmφ̄iÞFjF̄j þ ðFiFiÞ2g

þ 2φ0

�
φ1FN þ φNF1 þ

XN−1

î¼2

φîFî

�
þ 2φ̄0

�
φ̄1F̄N þ φ̄NF̄1 þ

XN−1

î¼2

φ̄îF̄î

�
; ð4:4Þ

where we have again assumed that Λ is a function of the
gauge invariant quantity X ¼ Dmφ

iDmφ̄i. The equation of
motion for D gives the constraint

φ̄iφi ¼ κ: ð4:5Þ

Since Φ0 does not propagate, it is also integrated out. The
F-term constraints are given by the equation of motions for
F0;φ0,

δF0∶φ⃗tJφ⃗ ¼ 0; ð4:6Þ

δφ0∶φ1FN þ φNF1 þ
XN−1

î¼2

φîFî ¼ 0: ð4:7Þ

These give the constraints for the fields φi; φ̄i. The
equations of motion for F̄i are

δF̄1∶F1 − 2ΛðXÞfðDmφ
jDmφ̄jÞF1 − ðFjF̄jÞF1g

þ 2φ̄0φ̄
N ¼ 0;

δF̄î∶Fî − 2ΛðXÞfðDmφ
jDmφ̄jÞFî − ðFjF̄jÞFîg

þ 2φ̄0φ̄
î ¼ 0; ðî ¼ 2;…; N − 1Þ;

δF̄N∶FN − 2ΛðXÞfðDmφ
jDmφ̄jÞFN − ðFjF̄jÞFNg

þ 2φ̄0φ̄
1 ¼ 0: ð4:8Þ

Equations (4.5)–(4.8) should be solved simultaneously. In
the following, we solve these equations in the canonical and
the noncanonical branches separately.

1. Canonical branch

One finds that a solution to Eq. (4.8) is given by

φ0 ¼ 0; Fi ¼ 0: ð4:9Þ

This corresponds to the canonical branch. We note that in
this branch, the constraint (4.7) becomes trivial. Then the
Lagrangian becomes

Lc ¼ −Dmφ
iDmφ̄i þ ΛðXÞðDmφ

iDnφ̄
iÞðDmφjDnφ̄jÞ:

ð4:10Þ

The equation of motion for Am is therefore

− κðiκ−1φi∂mφ̄
i þ AmÞ þ i

∂Λ
∂X ðφiDmφ̄i − φ̄iDmφiÞ

þ iΛðφ; φ̄ÞfðφiDnφ̄
iÞðDmφ

jDnφ̄jÞ
− ðφ̄iDnφiÞðDmφ̄

jDnφjÞg ¼ 0; ð4:11Þ

where we have used the constraint (4.5). We find that the
solution is given by

Am ¼ iκ−1φ̄i∂mφ
i: ð4:12Þ

Substituting this solution to the Lagrangian, the covariant
derivative Dmφ

i in the Lagrangian (4.10) is replaced by
D̃mφ

i. Now, we solve the remaining constraints (4.5) and
(4.6). The constraint (4.5) is solved by the following
parametrization:

φi ¼ Wi

ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W† ·W

p : ð4:13Þ

Since we have
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φ⃗tJφ⃗ ¼ κ

W† ·W
ð2W1WN þ ðWîÞ2Þ ¼ 0;

ðî ¼ 2;…; N − 1Þ; ð4:14Þ

the last constraint (4.6) is solved by

Wi ¼

0
B@

1

uî

− 1
2
ðuîÞ2

1
CA; ð4:15Þ

where we have fixed W1 ¼ 1 by the Uð1ÞC gauge trans-
formation. Plugging this back into the Lagrangian, we
obtain the QN−2 sigma model whose derivative corrections
are completely determined by ΛðW;W†; ∂mW; ∂mW†Þ.

2. Noncanonical branch

In the noncanonical branch, we find that a solution to the
equations (4.8) is given by

φ0 ¼ 0; FiF̄i ¼ −
1

2ΛðXÞ þDmφ
iDmφ̄i: ð4:16Þ

Then, the Lagrangian becomes

Lnc ¼ ΛðXÞ½ðDmφ̄
iDnφ

iÞðDmφ̄jDnφjÞ − ðDmφ
jDmφ̄jÞ2�

−
1

4ΛðXÞ : ð4:17Þ

The equation of motion for Am is the same with (3.18)
and it is again solved by (3.19). Substituting this into
the Lagrangian, the gauge covariant derivative Dmφ

i is
replaced by D̃mφ

i. The remaining constraints (4.5) and
(4.6) are solved by the parametrizations (4.13) and (4.15)
and the target space is QN−2. However, we should keep in
mind that there is an extra constraint (4.7) given by

φ1FNðX̃Þ þ φNF1ðX̃Þ þ
XN−1

î¼2

φîFîðX̃Þ ¼ 0; ð4:18Þ

where FiðX̃Þ ≠ 0 is the solution to the auxiliary field in the
noncanonical branch. The constraint (4.18) generically
contains space-time derivatives of the fields φi; φ̄ī and this
has to be solved together with the following equation of
motion:

Λ0ðX̃ÞD̃mφi½ðD̃mφ̄
jD̃nφ

jÞðD̃mφ̄kD̃nφkÞ − ðD̃mφ
jD̃mφ̄jÞ2�

− 2ΛðX̃Þ½D̃nφ
iðD̃mφ̄jD̃nφjÞ − D̃mφ

iðD̃nφ
jD̃nφ̄jÞ�

þ 1

4Λ2ðX̃ÞΛ
0ðX̃ÞD̃mφi ¼ 0; ð4:19Þ

where the prime in Λ0ðX̃Þ denotes the differentiation
with respect to X̃. In general, it is uncertain whether the

simultaneous equations (4.18) and (4.19) admit nontrivial
solutions or not. Instead, the most plausible way to work
with these equations is to restrict the dynamics to a
subspace in QN−2. This subspace highly depends on
explicit structures of the solution Fi. For example, if we
consider the N ¼ 4 case, one finds that a solution to the
equation of motion for Fi in the noncanonical branch is

F2 ¼ F3 ¼ F4 ¼ 0; F1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2ΛðX̃Þ þ D̃mφ
iD̃mφ̄i

s
:

ð4:20Þ

Substituting this solution to the constraint (4.18) gives a
condition

φ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2ΛðX̃Þ þ D̃mφ
iD̃mφ̄i

s
¼ 0: ð4:21Þ

In order that this is compatible with equation of motion, we
first choose the subspace φ4 ¼ 0 in Q2 and then solve
Eq. (4.19) in that subspace.
A comment is in order. As for the Grassmann case, we

have an equality Q4 ¼ G4;2. The constraint (4.18) is neces-
sary in the construction of theQ4 sigma model discussed in
this section, but such a restriction to a subspacewas absent in
the construction of the G4;2 model in the previous section.
Apparently, they have different Lagrangians even though
there is a target space isomorphism between them. The same
is true for the relationQ1 ¼ G2;1 ¼ CP1. In the noncanoni-
cal branch, the different constructions of sigma models
result in the different derivative corrections and the field
space that the dynamics occurs, although they give identical
models in the canonical branches.

B. SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ models

Observed that the QN−2 model has remarkable structures
in the noncanonical branch due to the F-term constraint,
we next consider nonlinear sigma models with the target
spaces SOð2NÞ=UðNÞ or SpðNÞ=UðNÞ. The gauged linear
sigma model has the global symmetry G ¼ SOð2NÞ or
SpðNÞ½¼ USpð2NÞ� and gauge symmetryG0 ¼ UðNÞ. The
chiral superfieldΦ belongs to the ð2N; N̄Þ representation of
G ×G0 and it is expressed as an 2N × N matrix. The
constraint is given by the F-term superpotential

W ¼ Tr½Φ0ΦtJ0Φ�; ð4:22Þ

where Φ0 is an N × N symmetric (antisymmetric) matrix
superfield satisfying Φt

0 ¼ ϵΦ0 for G ¼ SOð2NÞ½SpðNÞ�.
Here ϵ ¼ 1 for G ¼ SOð2NÞ and ϵ ¼ −1 for G ¼ SpðNÞ.
The Uð1ÞD ⊂ UðNÞ charge of Φ0 is assigned to −2 to
cancel the Uð1Þ charge þ1 of Φ. The 2N × 2N matrix J0 is
given by
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J0 ¼
�

0 1N
ϵ1N 0

�
; ð4:23Þ

which is an invariant tensor of SOð2NÞ (ϵ ¼ 1) or
SpðNÞ (ϵ ¼ −1).
The equation of motion forD gives the constraint (3.27),

while that for F0 gives the constraint

φtJ0φ ¼ 0 ð4:24Þ

and that for φ0 gives a constraint

φtJ0F ¼ 0: ð4:25Þ

The equation for F is (4.8), but the gauge symmetry is non-
Abelian. One finds that φ0 ¼ 0 and F ¼ 0 are a solution to
the equation of motion for F. Therefore, the constraint
(4.25) becomes trivial in the canonical branch. We find that
the gauge field is integrated out by the solution Am ¼
iκ−1φ̄∂mφ in the sigma model limit which is the same with
the case without the derivative corrections. Then the target
space of the sigma model is nothing but SOð2NÞ=UðNÞ or
SpðNÞ=UðNÞ and the derivative corrections appear as in
the Grassmann case in Eq. (3.35).
Compared with theQN−2 model, it is not straightforward

to write down solutions F ≠ 0 explicitly due to the
non-Abelian gauge symmetry. However, similar to the
Grassmann case, the solution Tr½FF̄� is given by the gauge
invariant quantities such as Tr½DmφDmφ̄�. Therefore, we
again find that the gauge field Am is integrated out by
Am ¼ iκ−1φ̄∂mφ. The subsequent discussion is parallel to
the QN−2 case. Due to the extra constraint (4.25), we find
that the target spaces SOð2NÞ=UðNÞ or SpðNÞ=UðNÞ
should be restricted to their subspaces in the noncanonical
branches.

C. E6=½SOð10Þ × Uð1Þ� and E7=½E6 × Uð1Þ� models

For the case of the target space E6=½SOð10Þ ×Uð1Þ�, the
global symmetry is G ¼ E6 and the G0 ¼ Uð1Þ symmetry
is gauged in the gauged linear sigma model [52]. The chiral
superfield Φ belongs to the fundamental representation 27
of E6. This is decomposed into the maximal subgroup
SOð10Þ ×Uð1Þ. The F-term constraint is given by the
superpotential

W ¼ ΓijkΦi
0ΦjΦk; ð4:26Þ

where Γijk is a rank-3 symmetric invariant tensor of E6.
Since the gauge symmetry is Abelian, the structure of the
sigma model is essentially the same with the QN−2 case.
Due to the constraint

Γijkφ
iFk ¼ 0 ð4:27Þ

derived by the superpotential, the target space of the sigma
model is restricted to a subspace of E6=½SOð10Þ ×Uð1Þ� in
the noncanonical branch.
For the target space E7=½E6 ×Uð1Þ�, the global sym-

metry is G ¼ E7 and the G0 ¼ Uð1Þ symmetry is gauged in
the gauge linear sigma model. The F-term constraint is [52]

W ¼ dαβγδΦα
0ΦβΦγΦδ; ð4:28Þ

where dαβγδ is a rank-4 symmetric invariant tensor of E7.
Since the gauge symmetry is Abelian, the structure of the
sigma model is essentially the same with the QN−2 case.
Again, the constraint

dαβγδφαφβFγ ¼ 0 ð4:29Þ

defines a subspace in E7=½E6 × Uð1Þ� in the noncanonical
branch.

V. BOGOMOL’NYI-PRASAD-SOMMERFIELD
STATES

In this section, we study the BPS conditions in the
nonlinear sigma models discussed in the previous section.
BPS properties of Skyrme type and higher derivative
models have been studied in various contexts [57–60]. It
has been discussed that the gauged chiral models admit the
1=2 BPS vortex state and the 1=4 BPS states [29]. In the
following, we derive the 1=2 and 1=4 BPS conditions in
the nonlinear sigma models in the limit g → ∞ of those in
the gauged chiral models.

A. BPS states in canonical branch

In the canonical branch, the 1=2 BPS vortex equation for
the finite g for gauged linear sigma model is

D̄zφ
i ¼ 0;

1

g
F12 − ðφ̄φ − κ1Þ ¼ 0; ð5:1Þ

where z ¼ x1 þ ix2 is the complex coordinate in the
ðx1; x2Þ-plane. These are UðMÞ BPS semilocal vortex
equations with N-flavors in the case of Grassmann case
[55,61], for which we have found that higher derivative
corrections do not appear. They reduce to the ordinary BPS
vortex equations in the Abelian-Higgs model for the Uð1Þ
gauge theory.
The energy bound for this configuration is [29]3

E ¼ −κF0
12: ð5:2Þ

3We comment on the positive semidefiniteness of the energy in
the higher derivative chiral models. It is not always true that the
energy density derived from Eq. (2.1) is positive semidefinite for
arbitrary Λ and the Kähler potential K. In order to define the BPS
states as minima of energy, we have to choose appropriate Λ and
K that makes the energy be positive semidefinite [27].
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The configuration is classified by the vortex numberR
d2xF0

12.
In the nonlinear sigma model limit g → ∞, the second

condition in (5.1) gives the D-term constraint, while the
first one becomes

∂̄zφ
i − κ−1ðφ̄j∂̄zφ

jÞφi ¼ 0: ð5:3Þ

This implies the following 1=2 BPS lump equation in the
sigma models:

∂̄zφ
i ¼ 0: ð5:4Þ

The bound (5.2) survives in the limit g → ∞ and the
result is

E ¼ 1

2
j∂zφj2: ð5:5Þ

This provides the lump charge density in the nonlinear
sigma model. We note that the derivative corrections
never show up in Eq. (5.4) and the BPS bound (5.5) in
the canonical branch.4

B. BPS states in noncanonical branch

In the noncanonical branch, we have only 1=4 BPS
state [29]. The BPS equations in the gauged linear sigma
models are

D̄zφ ¼ −iF;
1

g
F12 ¼ φ̄φ − κ1: ð5:6Þ

In the nonlinear sigma model limit g → ∞, the BPS
equations become

D̄zφ ¼ −iF; φ̄φ ¼ κ1: ð5:7Þ

The latter equation gives the D-term constraint. From the
first equation, we obtain

D̄zφDzφ̄ ¼ FF̄: ð5:8Þ

For the CPN−1,QN−2 cases, the gauge group is Abelian and
we find an explicit solution for F. Then the BPS condition
is rewritten as

¯̃Dzφ̄D̃zφ − ¯̃Dzφ
iD̃zφ̄

i ¼ Λ−1ðφ; φ̄Þ: ð5:9Þ

This is nothing but a compacton type equation. To see this,
we choose an appropriate function Λ. For example, we
consider the following function in the CP1 model:

Λ ¼ 2

� juj2
1þ juj2

�−s
2

; ð5:10Þ

where s is a constant. Then, the BPS equation (5.9) results
in the following compacton equation [45]:

ngy ¼ −gs
2: ð5:11Þ

Here we have assumed the ansatz

u ¼ einθfðrÞ; 1 − g ¼ 1

1þ f2
; y ¼ r2

2
; ð5:12Þ

where r and θ are the polar coordinates in the ðx1; x2Þ plane.

VI. COMMENT ON FERMIONIC
INTERACTIONS

Finally, we comment on the fermionic interactions of the
models, while in the previous sections, we have focused on
the bosonic sector of the supersymmetric models and have
shown that the vector field Am is integrated out exactly.
However, the integration of the gaugino is rather awkward
from the reason described below. We illustrate the problem
in the CPN−1 model.
Assuming that Λ does not contain V for simplicity, the

equation of motion for the vector superfield V in the sigma
model limit g → ∞ is given by

2Φie2VΦ†i − κ þ 1

4
ΛðΦ;Φ†Þe4VDαΦiDαΦjD̄ _αΦ†iD̄ _αΦ†j

þ 1

4
Dα½ΛðΦ;Φ†Þe4VΦiDαΦjD̄ _αΦ†iD̄ _αΦ†j�

þ 1

4
D̄ _α½ΛðΦ;Φ†Þe4VDαΦiDαΦjΦ†iD̄ _αΦ†j� ¼ 0: ð6:1Þ

If the term in the second line is ignored, we find that the
vector superfield is solved by

V ¼ −
1

2
logð2κ−1ΦiΦ†iÞ: ð6:2Þ

This is easily confirmed if one notices that the following
relation holds for Eq. (6.2):

Φ†iDαΦi ¼ Φ†i½DαΦi þ 2ðDαVÞΦi�

¼ Φ†iDαΦi −
1

jΦj2Φ
†jDαΦjðΦiΦ†iÞ ¼ 0: ð6:3Þ

4As denoted below Eq. (3.14), for the case of the CPN−1

model, the Lagrangian in Eq. (3.14) (with Λ ¼ const: can be
obtained [49] as the low-energy effective theory of a BPS non-
Abelian vortex in N ¼ 2 supersymmetric UðNÞ gauge theory
[55]. In this context, CPN−1 lumps (sigma model instantons) on
the vortex world sheet represent Yang-Mills instantons in the bulk
theory, and such instanton-vortex composites are 1=4 BPS states
[62]. It was discussed in Ref. [49] that this fact implies that lump
solutions should not have derivative corrections.
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The would-be solution (6.2), whose θσmθ̄ component
gives Am ¼ iκ−1φ̄i∂mφ

i, precisely gives the correct
Kähler potential K ¼ − logð2κ−1ΦΦ†Þ for the CPN−1

model. However, when the term in the second line in
Eq. (6.1) is included, Eq. (6.2) fails to be a solution. This
implies that the expression in Eq. (6.2) is correct only in the
bosonic sector. Including the second line in Eq. (6.1)
modifies the equality in Eq. (6.2) in the fermionic sector.
We note that in solving the auxiliary field F, the

fermionic fields ψ in the chiral multiplets are introduced
perturbatively around the bosonic solution F ¼ Fðφ; φ̄Þ
[20]. The same is true for the vector multiplet. Since the
interaction terms are all expressed by the superfields
explicitly, it is in principle possible to write down the
equations for the fermions. We can integrate out the vector
multiplet starting from the bosonic part of the solution (6.2)
and introduce the fermions perturbatively. This procedure
determines the fermionic interactions in the sigma model
limit g → ∞. Even though the fermionic interactions are
rather cumbersome, we stress that the BPS conditions in the
nonlinear sigma models are not affected by details of the
fermionic interactions. As we have shown, this is obtained
by those in the gauged chiral models.

VII. CONCLUSION AND DISCUSSIONS

In this paper, we have constructed N ¼ 1 supersym-
metric higher derivative terms in nonlinear sigma models
whose target spaces are Hermitian symmetric spaces. We
have considered the sigma model limit of the supersym-
metric gauged linear sigma models involving the derivative
terms for chiral multiplets that are free from the auxiliary
field problem and the Ostrogradski’s ghost. In the sigma
model limit, the vector multiplet does not propagate any-
more and can be integrated out. Due to the supersymmetric
derivative corrections, there are two distinct on-shell
branches called the canonical and noncanonical branches.
This structure is carried over to the nonlinear sigma models.
We have shown that the gauge field Am is explicitly
integrated out, both in the canonical and the noncanonical
branches, even in the presence of higher derivative terms.
In the canonical branch, where the auxiliary field is given

by F ¼ 0, we explicitly have written down the Lagrangians
of the nonlinear sigma models. They consist of the
canonical kinetic terms and the derivative corrections
characterized by the arbitrary function Λ. This is a natural
generalization of the sigma model construction discussed
in Ref. [52].
For the CPN−1 model, we have obtained the super-

symmetric CPN−1 Skyrme-Faddeev model. In the nonca-
nonical branch, where the auxiliary field is given by F ≠ 0,
the situation changes drastically. For the CPN−1 model, an
Abelian symmetry is gauged and we have found the explicit
solutions of the nonzero auxiliary field F. We have solved
all the constraints and have written down the explicit

Lagrangians of the CPN−1 nonlinear sigma model. The
canonical quadratic kinetic term is absent in the nonca-
nonical branch, and there is only the fourth derivative term
as a generalization of the Skyrme-Faddeev term of the CP1

model. We thus have obtained the supersymmetric CPN−1

Skyrme-Faddeev model.
For the formulation of the GM;N model, a non-Abelian

UðNÞ symmetry is gauged in the gauged linear sigma
model. Compared with the CPN−1 case for which the gauge
symmetry is Abelian in the gauged linear sigma model, the
equation of motion for the auxiliary field in theGM;N model
is rather complicated. Although it is hard to find explicit
F ≠ 0 solutions, we have been able to integrate out the
gauge field with the help of the gauge invariance of the
higher derivative terms.
For other Hermitian symmetric spaces, in addition to

D-term constraints, we further impose F-term constraints
yielding holomorphic embedding of the target spaces into
CPN−1 or Grassmann manifold, as was done for the case
without higher derivative terms. In the canonical branches,
these constraints are consistent in the presence of higher
derivative terms, but we find that in the noncanonical
branch these constraints yield further additional constraints
reducing the target spaces to their submanifolds.
For the formulation of the QN−2 model, an Abelian

symmetry is gauged in the gauged linear sigma model, but
we have an extra constraint coming from the F-term
embedding QN−2 to CPN−1. The nonzero solution F ≠ 0
yields an extra constraint on the scalar fields. We have
found that in order that these constraints are compatible
with the equation of motion in the noncanonical branches,
the dynamics of fields should be restricted to a subspace
in the QN−2 manifold, which is a peculiar property of
this model. We have also discussed the sigma models
whose target spaces are SOð2NÞ=UðNÞ, SpðNÞ=UðNÞ,
E6=½SOð10Þ ×Uð1Þ�, and E7=½E6 ×Uð1Þ�. The first two
cases are essentially similar to the cases of the Grassmann
and the QN−2 cases. For the latter two cases, although the
superpotential is complicated compared with the QN−2

case, the structure of the higher derivative terms is similar
to that of the QN−2 case. We also have found that these
constructions provide the different sigma models even
though there are several isomorphisms among the target
spaces such as GN;1 ≃ GN;N−1 ≃ CPN−1, Q1 ≃G2;1 ≃ CP1,
Q4 ≃G4;2, and so on.
Finally, we provide a comment on the BPS equations and

the integration of the fermionic terms in the vector
multiplet. In the canonical branches, BPS equations and
their solutions are the same with those without higher
derivative terms, while in the noncanonical branches they
give compacton type configurations.
It would be interesting to study explicit solutions to the

BPS equations in the noncanonical branch. As we have
noted, the 1=4 BPS equation in the noncanonical branch of
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the CPN−1 model reduces to that of the compactons.
Finding solutions in the other sigma models is interesting.
We will come back to these issues in future studies.
In this paper, we have considered the case that there are

no potential terms in the nonlinear sigma models (although
we have introduced superpotentials for the F-term con-
straints in the gauged linear sigma models). If we also
introduce superpotentials or twisted masses (from dimen-
sional reductions), there aremore BPS states such as domain

walls, their junctions, and so on [27]. Introducing potential
terms and studying associated BPS states remain as a
future work.
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