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Effective field theories describing gravity coupled to matter are investigated, allowing for operators of
arbitrary mass dimension. Terms violating local Lorentz and diffeomorphism invariance while preserving
internal gauge symmetries are included. The theoretical framework for violations of local Lorentz and
diffeomorphism invariance and associated conceptual issues are discussed, including transformations in
curved and approximately flat spacetimes, the treatment of various types of backgrounds, the implications
of symmetry breaking, and the no-go constraints for explicit violation in Riemann geometry. Techniques
are presented for the construction of effective operators, and the possible terms in the gravity, gauge,
fermion, and scalar sectors are classified and enumerated. Explicit expressions are obtained for terms
containing operators of mass dimension six or less in the effective action for general relativity coupled to
the Standard Model of particle physics. Special cases considered include Einstein-Maxwell effective field
theories and the limit with only scalar coupling constants.
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I. INTRODUCTION

The theory of general relativity (GR) coupled to the
Standard Model (SM) of particle physics provides an
impressive description of many features of the Universe
over a wide range of distance scales. Obtaining a fully
satisfactory combination of gravity with quantum physics
remains an open challenge, however, and a deeper under-
lying unified theory is expected to emerge at the Planck
scale. This theory could be founded on Riemann geometry
or one of its extensions, on a non-Riemann geometry, or on
nongeometric mathematics. In any scenario, observable
effects from the Planck scale at low energies can be
expected to include small deviations from the known
physics described by GR coupled to the SM, and their
detection would offer guidance in the construction of the
underlying theory. It is thus of central interest to ask how
key properties of the underlying theory could in principle
manifest themselves in experiments and observations
performed using current and near-future technology.
A powerful tool for investigating prospective signals

from the Planck scale in a model-independent way is
provided by effective field theory [1]. Tiny remnant
couplings from the underlying theory can be expected to
emerge at the level of effective field theory as terms
correcting the action of GR coupled to the SM, with the
size of the physical effects governed by small coefficients
reflecting features of the underlying theory. An individual
term in the effective Lagrange density is the product of an
operator constructed from fields observed in nature with a
controlling coupling coefficient. In typical applications of
effective field theory, the coupling coefficients are assumed

to be constant scalars and are called coupling constants.
However, the solutions of the underlying theory describing
our Universe may include nontrivial backgrounds, which
would then be reflected at the level of the effective field
theory as coupling coefficients that could vary with
spacetime position and that could be tensorial rather than
scalar. Tensorial couplings could arise directly from fea-
tures of the underlying theory, but even if the underlying
theory generates only a nonconstant scalar background,
then the ensuing effective field theory can contain vector
and tensor coupling coefficients determined by the deriv-
atives of the scalar.
For the above reasons, a comprehensive investigation of

the effective description of the underlying theory requires
the inclusion of nonconstant tensor backgrounds as cou-
plings in the effective field theory. Backgrounds of this type
have anomalous symmetry properties under the spacetime
transformations of GR and the SM. In particular, their
existence implies that the effective field theory can contain
apparent violations of local Lorentz invariance and of
diffeomorphism symmetry. It is therefore of interest to
construct the general effective field theory describing
gravity coupled to matter while allowing for terms violating
these symmetries.
The framework for the general effective field theory

based on GR coupled to the SM is presented in Ref. [2].
This framework allows for violations of local Lorentz and
diffeomorphism invariances. Terms in the corresponding
effective field theory can be organized according to their
mass dimension d in natural units, with terms of larger d
expected to have smaller effects at low energies. All terms
with d ≤ 4, called minimal terms, are presented in Ref. [2],
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and they have been the subject of numerous investigations
[3,4]. In the pure-gravity sector, phenomenological studies
[5–21] and experiments [22–34] have constrained most
minimal terms to impressive sensitivities. The minimal
matter-gravity sector has also been widely explored both
phenomenologically [35–42] and experimentally [43–49],
with the focus to date being primarily on spin-independent
effects. A subset of terms in the pure-gravity sector with
operators of larger mass dimensions d ≥ 5 has been con-
structed and someexperimental constraints obtained [50–73].
One goal of this work is to extend the analysis of terms in

the effective field theory to include nonminimal terms
involving both gravity and matter as well as nonminimal
terms in the pure-gravity sector. We present a systematic
methodology for constructing all these terms, and we obtain
explicit results ford ≤ 6 for a generic theory, forGRcoupled
to the SM, and for its limits including Einstein-Maxwell
theories and the restriction to scalar coupling constants. To
achieve this, we develop further the framework presented in
Ref. [2], combining it with techniques recently developed
for the construction of terms of arbitrary d in non-Abelian
effective field theories in Minkowski spacetime [74]. We
discuss the relevant spacetime transformations, establishing
the properties of various types of backgrounds and their
symmetry violations, and we characterize the relationships
between different types of effective terms and their linea-
rizations to approximately flat spacetimes. The analysis in
Ref. [2] revealed unexpected constraints on the form of the
effective field theory, arising from compatibility require-
ments between the variational procedure and the Bianchi
identities, which have recently been the subject of extensive
study [75–78]. Here, we revisit these no-go constraints to
clarify their impact in the context of perturbative corrections
to known physics, showing that they can determine whether
the underlying theory is based on Riemann geometry or
instead emerges from an alternative geometry or nongeo-
metric mathematics.
The outline of this work is as follows. In Sec. II, we study

the framework for the gravitational effective field theory.
Essential definitions and conventions are presented in
Sec. II A, while Sec. II B discusses key concepts about
spacetime transformations in both curved and approxi-
mately flat spacetimes. The treatment of backgrounds is
initiated in Sec. II C, and the implications for violations of
symmetries in curved spacetimes are described in Sec. II D.
The relationships between broken symmetries in curved and
flat spacetimes are elucidated in Sec. II E. Our discussion of
the framework concludes with a treatment of the no-go
constraints in Sec. II F.
The methodology for the construction of terms in an

effective Lagrange density built within this framework is
presented in Sec. III, along with a compact notation for
various types of backgrounds. The procedure to obtain
gauge-covariant spacetime operators and related results is
described in Sec. III A. Using these results, in Sec. III B we

enumerate and classify operators involving pure-gravity
fields and backgrounds. We turn attention to matter fields in
Sec. III C, which presents the explicit form of operators
with d ≤ 6 for gauge fields, Dirac fermions, and scalars.
The application of all these results to realistic effective field
theories is considered in Sec. IV. Terms with d ≤ 6 in the
Lagrange density for various Einstein-Maxwell theories are
tabulated in Sec. IVA. Section IV B enumerates the explicit
form of terms in effective field theories based on GR
coupled to the SM. The limit with backgrounds acting only
as scalar coupling constants is discussed in Sec. IV C. We
conclude with a summary in Sec. V.
Throughout this work, we adopt the conventions of

Ref. [2]. We assume vanishing torsion and nonmetricity
except where otherwise indicated, so the definitions and
results in Appendix A of Ref. [2] apply with the torsion and
contortion set to zero. In particular,Greek indices are used for
tensorial components on the spacetime manifold, and Latin
ones for ones on the tangent space. The Minkowski metric
ηab has positive signature þ2, and the Levi-Civita tensor
ϵabcd is fixed by ϵ0123 ¼ þ1. The Dirac matrices satisfy
fγa; γbg ¼ −2ηab, with σab defined as σab ¼ i½γa; γb�=2.

II. FRAMEWORK

In this section, we describe the concepts and framework
appropriate for the construction of the general effective
field theory based on GR coupled to the SM. Individual
subsections treat the basic setup, spacetime transforma-
tions, backgrounds, symmetry violations, linearization, and
the no-go constraints.

A. Metric, vierbein, and covariant derivative

The geometric underpinning for GR coupled to the SM is
a four-dimensional smooth manifold called spacetime that
contains a dynamical four-dimensional metric gμν. While
the underlying unified theory may be nongeometric, its
low-energy approximation must reduce to known physics.
The corresponding effective field theory extending GR
coupled to the SM can therefore reasonably be taken as
based on a manifold with a metric.
The SM incorporates fermions as spinor fields, which are

conveniently described using the vierbein formalism [79].
In this approach, spinor fields at each spacetime point and
related objects including the Dirac gamma matrices are all
defined in a coordinate frame in the tangent space, called a
local frame. In contrast, a coordinate frame on the manifold
is called a spacetime frame. The vierbein eμaðxÞ connects
local frames with spacetime frames.
Since tangent spaces are flat, the vierbein is related to the

metric by

gμν ¼ eμaeνbηab: ð1Þ
For simplicity, we assume the connection is both metric and
torsion free, so the metric gμν, the spacetime connection
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Γλ
μν, and the spin connection ωμ

ab are all fixed by the
vierbein eμa. The vierbein can therefore be taken as the sole
field describing the gravitational dynamics. We adopt a
covariant derivative satisfying

Dμeνa ≡ ∂μeνa − Γλ
μνeλa þ ωμ

a
beν

b ¼ 0; ð2Þ

which then also implies Dλgμν ¼ 0. Note, however, that the
theoretical framework used in this work can readily be
extended to include nonzero nonmetricity and torsion [2].
In particular, key implications such as the no-go constraints
also hold when the requirements of zero torsion and
nonmetricity are relaxed.
The SM incorporates bosons in gauge field theory. The

corresponding covariant derivative in curved spacetime
then incorporates a gauge connection Aμ along with the
spacetime connection Γλ

μν and the spin connection ωμ
ab.

The gauge connection is the connection for the internal
gauge degrees of freedom and acts on objects with gauge
indices, the spacetime connection is the connection on the
spacetime manifold and acts on spacetime indices, and the
spin connection is the connection in local frames and acts
on local indices.
Following standard convention, the explicit use of gauge

and spinor indices is avoided in this work. For example, the
action of the covariant derivative on a fermion field ψ with
suppressed spinor and gauge indices can be written in this
convention as

Dμψ ¼ ∂μψ þ 1

4
iωμ

abσabψ − igAμψ ; ð3Þ

where g is the gauge coupling constant. As another
example, the gauge field strength Fμν contains both
spacetime and gauge indices, and its covariant derivative
can be written as

DλFμν ¼ ∂λFμν − Γρ
λμFρν − Γρ

λνFμρ − ig½Aλ; Fμν�: ð4Þ

Note that the 16 Dirac gamma matrices ΓA ∈ fI; iγ5;
γa; γ5γa; σab=2g forming a complete basis for spinor
matrices typically appear in fermion bilinears containing
local-frame indices. We define DμΓA by imposing the
product rule

Dμðψ̄ΓAψÞ¼ ðDμψÞΓAψþ ψ̄ðDμΓAÞψþ ψ̄ΓAðDμψÞ; ð5Þ

which can be shown to imply that DμΓA ¼ ∂μΓA ¼ 0.

B. Spacetime transformations

Spacetime transformations play a key role in GR [80] and
hence also in the construction of the general effective field
theory based on GR coupled to the SM. In this subsection,
we discuss some essential concepts for transformations in

curved spacetime and in approximately flat spacetime,
focusing on requisite aspects for the present work.

1. Particle versus observer

It is convenient and useful to distinguish two notions of
transformations, called particle and observer transformations
[2,81]. Particle transformations change dynamical particles
and fields, while observer transformations change the
observer frame. In the absence of backgrounds, the compo-
nent forms of the two transformations are inverses of each
other and in that context are sometimes called active and
passive. However, this equivalence fails in the presence of
backgrounds. A particle transformation affects dynamical
particles and fields but leaves any backgrounds invariant,
which can modify the physics associated with couplings
between the dynamical variables and the background. In
contrast, an observer transformation amounts to a coordinate
transformation, which changes the components of fields and
backgrounds but is assumed to leave invariant the physics.
A physical symmetry associated with a given particle trans-
formation can therefore be violated in the presence of
backgrounds, even though the physics remains invariant
under the corresponding observer transformation.
Mathematically, particle transformations involve map-

pings of the spacetime manifold and its tangent and
cotangent bundles, whereas observer transformations are
implemented on the atlas of the manifold. Since physics is
independent of the coordinate frames used for the atlas
but can depend on the manifold mappings, discussions of
symmetry violations are best conducted in the language of
particle transformations without invoking frame changes.
For this reason, we focus here primarily on particle trans-
formations, often omitting the word particle for simplicity.
Unless indicated otherwise, every transformation in this
work should be understood as a particle transformation.
Note that distinguishing between the two types of

transformations can be subtle in practice. For instance,
special relativity is typically introduced in textbooks from
the perspective of observer Lorentz transformations. This
approach works well for Lorentz-invariant theories, where
the component forms of particle and observer Lorentz
transformations are essentially equivalent. However, ana-
lyzing generic violations of Lorentz invariance in the
context of observer Lorentz transformations is challenging
at best. Physical Lorentz-violating effects are features of
experimental configurations of particles and fields rather
than features of the observer, so the general treatment of
Lorentz violation cannot readily be described using modi-
fied observer transformations [82].

2. Transformations in curved spacetime

In Minkowski spacetime, the central spacetime trans-
formations are global transformations that include spatial
rotations, Lorentz boosts, and translations. The rotations and
Lorentz boosts form the group of Lorentz transformations,

BACKGROUNDS IN GRAVITATIONAL EFFECTIVE FIELD … PHYS. REV. D 103, 024059 (2021)

024059-3



which is enlarged by translations to the Poincaré group. All
these Minkowski-spacetime transformations are isometries
of the Minkowski metric ημν, and they move spacetime
points. For example, a global rotation about a point P in the
spacetime maps all points other than P into different points.
In contrast, the metric gμν in a generic curved spacetime

typically has no isometries, and so the usual notions of
global Lorentz transformations and translations play no
particular role. Instead, it is useful to study local Lorentz
transformations and diffeomorphisms.
Local Lorentz transformations are Lorentz transforma-

tions in the tangent space at each spacetime point, leaving
the spacetime point unmoved. Under a local Lorentz
transformation, the vierbein and metric transform as

eμaðxÞ → Λa
bðxÞeμbðxÞ; gμνðxÞ → gμνðxÞ; ð6Þ

whereΛa
bðxÞ are the components of the matrixΛðxÞ for the

local Lorentz transformation at the point x. Other dynami-
cal boson fields transform similarly, with spacetime indices
unchanged and local indices acted on by the components of
ΛðxÞ. Fermion fields are transformed by the corresponding
matrices SðΛðxÞÞ in the appropriate spinor representation of
the local Lorentz group.
Note that local Lorentz transformations at different

spacetime points are typically different. However, an asso-
ciated global transformation can be defined in any curved
spacetime by requiring that the same local Lorentz trans-
formation is performed simultaneously at every spacetime
point. This can be termed a global local Lorentz trans-
formation, and it is the analogue of a global gauge trans-
formation constructed froma local gauge transformation in a
gauge field theory. Global local Lorentz transformations
leave spacetime points fixed, so they cannot be the ana-
logues of global Lorentz transformations in Minkowski
spacetime. Instead, the analogues can be taken to be certain
types of Lorentz transformations defined in approximately
flat spacetimes, as described in Sec. II B 3 below.
Diffeomorphisms in a curved spacetime capture the idea

of moving spacetime points. Under a diffeomorphism, a
spacetime point at position x is mapped to another point at
x0 according to

xμ → x0μ ¼ xμ þ ξμðxÞ; ð7Þ

where ξμðxÞ is smooth and the mapping is assumed invert-
ible. Here, x0μ denotes the components of the new position in
the original coordinates, which remain unchanged by the
transformation. Dynamical fields on the manifold transform
according to the pushforward or pullback induced by the
diffeomorphism. For example, the vierbein and metric trans-
form as

eμaðxÞ → e0μaðx0Þ ¼
∂xρ
∂x0μ eρ

aðxÞ;

gμνðxÞ → g0μνðx0Þ ¼
∂xρ
∂x0μ

∂xσ
∂x0ν gρσðxÞ; ð8Þ

where e0μaðx0Þ and g0μνðx0Þ are the new vierbein and metric at
the point x0 after the diffeomorphism. In contrast, dynamical
fields valued in local frames, including spinor fields, trans-
form as scalar fields under a diffeomorphism.
Although the expressions (8) appear similar to those for a

general coordinate transformation, the physical interpreta-
tion is different. Only the coordinates change under general
coordinate transformations, leaving physical particles and
fields invariant. General coordinate transformations can
thus be identified as observer diffeomorphisms. In contrast,
the particle diffeomorphisms of interest here change physi-
cal particles and fields while leaving the coordinate system
unchanged.
Fields can be valued at any position on the manifold.

When valued at the same position, dynamical fields under-
going a diffeomorphism (7) with infinitesimal ξμðxÞ change
by the corresponding Lie derivative. For example, under an
infinitesimal diffeomorphism the vierbein and metric trans-
form as

e0μaðxÞ ¼ eμaðxÞ − LξeμaðxÞ ¼ eμa − eρa∂μξ
ρ − ξλ∂λeμa;

g0μνðxÞ ¼ gμνðxÞ − LξgμνðxÞ
¼ gμν − gρν∂μξ

ρ − gμσ∂νξ
σ − ξλ∂λgμν: ð9Þ

These results can be derived directly from Eqs. (7) and (8).
Equations where dynamical fields are valued at the same
position are often used in calculations involving diffeo-
morphisms, and they are distinct from ones such as Eq. (8)
in which the fields are valued at different positions.

3. Transformations in approximately flat spacetime

As discussed above, a local Lorentz transformation in a
curved spacetime leaves spacetime points fixed while
acting on local frames, and a diffeomorphism moves
spacetime points while leaving local frames unchanged.
Next, we show that suitable combinations of local Lorentz
transformations and diffeomorphisms in approximately flat
spacetimes can mimic the roles of global Lorentz trans-
formations and translations in Minkowski spacetime.
Most experiments are performed in weak gravitational

fields such as those found in the solar system. The
corresponding spacetimes are therefore approximately flat.
The vierbein and metric can then be decomposed as

eμaðxÞ ¼ ημa þ ϵμaðxÞ ≈ ημa þ
1

2
hμaðxÞ þ χμaðxÞ;

gμνðxÞ ¼ ημν þ hμνðxÞ; ð10Þ
where ϵμa ≪ 1, hμν ≪ 1, and χμa ≪ 1 with hμν symmetric
and χμa antisymmetric. Under the diffeomorphism (7), the
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vierbein and metric transform according to Eq. (8). We can
assign the resulting changes in the vierbein and metric to
the fluctuations hμνðxÞ and χμaðxÞ, with the Minkowski
metric defined as invariant. For infinitesimal diffeomor-
phisms and at lowest order in the fluctuations, we then find

hμνðxÞ → h0μνðx0Þ ¼ hμνðxÞ − ηρν∂μξ
ρðxÞ − ημσ∂νξ

σðxÞ;

χμaðxÞ → χ0μaðx0Þ ¼ χμaðxÞ −
1

2
ηρa∂μξ

ρðxÞ

þ 1

2
ηρaημσ∂ρξ

σðxÞ: ð11Þ

These transformations are called linearized diffeomor-
phisms in approximately Minkowski spacetime.
Since the spacetime is assumed to be approximately

flat, one might anticipate the existence of notions similar to
the global Lorentz transformations and translations in
Minkowski spacetime. Indeed, when the displacements
ξμðxÞ are independent of spacetime position, the linearized
diffeomorphisms (11) take the same form as Minkowski-
spacetime translations. It is therefore natural to define
translations in an approximately Minkowski spacetime as
linearized diffeomorphisms with constant ξμ. This defini-
tion applies to all dynamical quantities, including matter
fields.
The linearized diffeomorphisms (11) can alternatively be

expressed as transformations of the vierbein and metric
fluctuations valued at the same position,

hμνðxÞ → h0μνðxÞ ≈ hμν − ηρν∂μξ
ρ − ημσ∂νξ

σ − ξλ∂λhμν;

χμaðxÞ → χ0μaðxÞ ≈ χμa −
1

2
ηρa∂μξ

ρ þ 1

2
ηρaημσ∂ρξ

σ

− ξλ∂λχμa; ð12Þ

in parallel with the result (9). If we make the further
approximation of keeping only terms at leading order in
small quantities, the linearized diffeomorphisms (12)
reduce to the simpler form

hμνðxÞ → hμν − ηρν∂μξ
ρ − ημσ∂νξ

σ;

χμaðxÞ → χμa −
1

2
ηρa∂μξ

ρ þ 1

2
ηρaημσ∂ρξ

σ: ð13Þ

These simplified transformations in approximately
Minkowski spacetime are called gravitational gauge trans-
formations, or gauge transformations if there is no risk of
confusion with internal gauge transformations of matter
fields. For hμν and χμa, gauge transformations and linear-
ized diffeomorphisms valued at the same position differ by
contributions involving the operator ξλ∂λ that originates
from the Lie derivative (9). However, nongravitational
fields are unaffected by the linearization procedure, and
so for consistency the corresponding contributions must be
kept when expanding nongravitational expressions at

leading order in small quantities. A gauge transformation
of a nongravitational operatorOðxÞ in the Lagrange density
therefore can be defined as

OðxÞ → OðxÞ − LξOðxÞ; ð14Þ

which retains the contribution −ξλ∂λOðxÞ.
To identify the analogues of Minkowski-spacetime

Lorentz transformations in an approximately flat space-
time, it is useful to introduce a special set of transforma-
tions on the curved manifold called manifold Lorentz
transformations. These transformations are distinct both
from the usual local Lorentz transformations and also from
the global local Lorentz transformations described in the
previous subsection. By definition, manifold Lorentz trans-
formations act both on spacetime points and on local
frames. Under a transformation of this type specified by
a fixed element Λ of the Lorentz group, every spacetime
point at position x is mapped to another point x0 according
to the special diffeomorphism

xμ → x0μ ¼ Λμ
νxν; ð15Þ

where x0μ is the new position expressed in the original
coordinate system and Λμ

ν are the components of Λ. In
addition, the vierbein and the metric on the manifold are
defined to transform as

eμaðxÞ → e0μaðx0Þ ¼ ðΛ−1ÞρμΛa
beρbðxÞ;

gμνðxÞ → g0μνðx0Þ ¼ ðΛ−1ÞρμðΛ−1ÞσνgρσðxÞ; ð16Þ

where the new vierbein e0μaðx0Þ and the new metric g0μνðx0Þ
are at the new position x0 after the diffeomorphism, and
where ðΛ−1Þρμ ¼ Λμ

ρ are the components of the inverse of
the matrix Λ. Other dynamical boson fields are defined to
transform similarly under manifold Lorentz transforma-
tions, with both spacetime and local indices transforming
according to Λ and its inverse, while fermion fields trans-
form according to the corresponding spinor transforma-
tion SðΛÞ.
The manifold Lorentz transformations can be defined

on any single coordinate chart in the atlas of a curved
spacetime, but the dependence on the coordinate chart
limits the value of the definition in the generic case.
However, approximately flat spacetimes permit natural
choices of coordinate systems in which the vierbein and
metric are given approximately by eμa ≈ δμ

a and gμν ≈ ημν.
These natural coordinate systems are not strictly unique,
but all manifold Lorentz transformations defined on them
are closely related. So for practical applications and in
particular in the context of experimental analyses, we can
select any one of them without loss of physical generality.
Moreover, the existence of these natural coordinates
in approximately flat spacetimes ensures that manifold

BACKGROUNDS IN GRAVITATIONAL EFFECTIVE FIELD … PHYS. REV. D 103, 024059 (2021)

024059-5



Lorentz transformations are the natural analogues of
Minkowski-spacetime Lorentz transformations. This fol-
lows because Minkowski spacetime is a special manifold
on which a coordinate system can be chosen such that the
vierbein and the metric take the form eμa ¼ δμ

a and
gμν ¼ ημν. A Minkowski-spacetime Lorentz transformation
can then be viewed as a manifold Lorentz transformation
defined in this chosen coordinate system for Minkowski
spacetime.
Within this setup, we can verify that manifold Lorentz

transformations are combinations of local Lorentz trans-
formations and diffeomorphisms. Assume first that the
local Lorentz transformations are global local Lorentz
transformations, defined to have components Λa

bðxÞ in
Eq. (6) independent of spacetime position. Assume further
that the diffeomorphisms are the special transformations
x0μ ¼ Λμ

νxν, which preserve the Minkowski metric. The
transformations in Eq. (16) can then be identified as
combinations of those in Eqs. (6) and (8) in this limit.
Other dynamical boson fields transform appropriately, as
do the spinor fields. It is therefore natural to identify global
Lorentz transformations in an approximately Minkowski
spacetime as manifold Lorentz transformations. The global
Lorentz transformations can thus be understood as suitable
combinations of global local Lorentz transformations and
special diffeomorphisms that preserve the Minkowski
metric.
Table I summarizes the various transformations intro-

duced above. The first column identifies the type of
manifold. An entry in the second column specifies the
transformation of interest, while one in the third column
provides its definition, either via a brief descriptive state-
ment or as a reference to defining equations in the text. All
these transformations play a key role in the present work.

C. Backgrounds

A given term in the Lagrange density L of the general
effective field theory extending GR coupled to the SM is
the product of a field operator OðxÞ with a coupling

coefficient kðxÞ or its derivatives. Since it plays the role
of a coupling, k can be viewed as a background in the
theory or, equivalently, as a nonzero vacuum value of a field
[2]. This perspective holds irrespective of the detailed
origin or nature of the coefficient in the context of the
underlying theory.
Since the field operatorOmay behave nontrivially under

spacetime transformations and since the Lagrange density
is a scalar density under general coordinate transforma-
tions, the background k can carry spacetime and local
indices. For example, backgrounds with tensorial indices
may arise in string theory [83]. In effective field theory, the
operator O is bosonic and so contains spinor fields only as
combinations of fermion bilinears. The background k
therefore carries no spinor indices. For definiteness and
simplicity, we assume here that k carries no indices
associated with any internal gauge degrees of freedom.
Backgrounds carrying gauge indices are possible in prin-
ciple and would appear in an effective field theory that
violates internal gauge invariance, but investigating this
possibility lies outside our scope. For present purposes, we
can therefore treat k as a tensor under general coordinate
transformations and under observer local Lorentz trans-
formations. Note that k must remain invariant under all
particle transformations, including both diffeomorphisms
and local Lorentz transformations, because it is nondy-
namical by construction.
The distinction between any upper and lower local

indices carried by k is physically irrelevant because the
two types of indices can be interconverted using the
Minkowski metric, which by definition is a nondynamical
quantity. However, upper spacetime indices on k can
represent physically different effects from lower spacetime
indices because the two are connected by the metric gμν,
which is a dynamical field. As an example, when k is a
nondynamical background, then a term in L of the form
kμOμ generates different contributions to the equations of
motion than does the term kμgμνOν. These considerations
imply that we can limit attention to three types of indices on
k without loss of generality: upper spacetime indices, lower

TABLE I. Some transformations in curved and approximately flat spacetimes.

Manifold Transformation Definition

General spacetime Local Lorentz transformation Eq. (6)
Diffeomorphism Eqs. (7) and (8)
Infinitesimal diffeomorphism Eq. (9)
Global local Lorentz transformation Local Lorentz transformation with Λa

b constant
Manifold Lorentz transformation Diffeomorphism xμ → Λμ

νxν, Λμ
ν constant

and global local Lorentz transformation
Translation Diffeomorphism with ξμ constant

Approximately flat spacetime Lorentz transformation Manifold Lorentz transformation
Linearized diffeomorphism Eqs. (11) and (12)
Gauge transformation Eqs. (13) and (14)
Translation Linearized diffeomorphism with ξμ constant
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spacetime indices, and local indices in any position. An
arbitrary background can thus be denoted as kμ���ν���a���ðxÞ.
Note that adopting a nonstandard definition of the vierbein,
which could lead to local frames with a nondynamical local
metric and nontrivial local curvature, cannot introduce new
physical effects because the nonstandard and conventional
vierbeins are related via nondynamical algebraic equations.
Modulo possible derivatives acting on the background, the
general structure of a term in the Lagrange density L can
therefore be written in the form

L ⊃ kμ���ν���a���ðxÞOμ���ν���a���ðxÞ; ð17Þ

whereO contains all dynamical fields including any factors
involving the vierbein eμa and metric gμν. If derivatives
acting on the background are present, their indices must
also be contracted to ensure that L remains a scalar density.
Two classes of backgrounds k can conveniently be

identified, according to whether they are spontaneous or
explicit. As the two classes have different physical impli-
cations, for clarity in much of what follows we denote
spontaneous backgrounds by hki and explicit ones by k̄.
Spontaneous backgrounds hki arise as solutions of the
equations of motion in the underlying theory and hence are
vacuum expectation values of underlying fields. They
satisfy the equations of motion and are thus on-shell
quantities. Fluctuations of the underlying fields about
hki then exist and can represent additional modes in the
effective theory [84,85], including Nambu-Goldstone [86]
and massive modes. In contrast, explicit background fields
k̄ are specified by fiat and so are nondynamical. They are
unconstrained by equations of motion and hence can be off
shell. Moreover, no dynamical fluctuations about them
exist. Intuitively, a spontaneous background hki can be
viewed as a special nondynamical background k̄ that must
be on shell and that has accompanying dynamical fluctua-
tions. The on-shell restriction and the presence of dynami-
cal fluctuations imply that the backgrounds hki and k̄ are
associated with distinct physics.
Among the set of possible general background fields k is

a subset consisting of background vierbeins and back-
ground metrics. In realistic applications, the usual vierbein
and metric have nonzero values in the vacuum, which
ensures nonzero distances between points. We can view
these quantities as a background vierbein and a background
metric. In many theories, including GR, they emerge
spontaneously as solutions of the equations of motion in
otherwise empty regions of spacetime, where the energy-
momentum tensor and other relevant sources vanish.
Like other background fields, they are invariant under
particle transformations. In the present context, it is thus
appropriate to denote the usual background vierbein
by hei and the usual background metric by hgi. For
example, the Minkowski solution to the GR field equations

has heiμa ¼ ημ
a and hgiμν ¼ ημν, and for the background

the basic relation (1) reduces to the identity [84,85]

hgiμν ¼ heiμaheiνbηab: ð18Þ

It follows that the general effective field theory based on
GR coupled to the SM must contain at least one sponta-
neous background vierbein and background metric. Note
that one or more explicit backgrounds k̄ in the theory may
also have the same index structure as the usual vierbein and
metric and may therefore be identified as one or more
explicit background vierbeins and metrics. The notion of an
explicit background vierbein that relates explicit back-
grounds k̄ with local and spacetime indices was introduced
and investigated in Refs. [77,78]. In what follows, any
explicit background vierbeins and background metrics are
denoted as ē and ḡ. They are nondynamical and by
definition cannot arise from a dynamical vierbein or metric
on the manifold, so they can be treated in the same way as
other explicit backgrounds k̄. An effective field theory
based on GR containing an explicit background vierbein
and background metric must therefore have at least two
metrics and two vierbeins.
To illustrate some implications of these various results,

consider a background k carrying a single index. The above
discussion reveals that six versions of this k can usefully be
distinguished, with the two classes of spontaneous and
explicit k being further subdivided according to the three
possible index types,

k ∈ fhkiμ; hkiμ; hkia; k̄μ; k̄μ; k̄ag: ð19Þ

Consider first the spontaneous case. Since any spontaneous
background hki arises as the solution of dynamical equa-
tions of motion, the three types of spontaneous hki are
related by the spontaneous background vierbein and back-
ground metric [84],

hkiμ ¼ heiμahkia ¼ hgiμνhkiν: ð20Þ

All three spontaneous backgrounds hki thus represent the
same physics. In contrast, the three types of explicit
backgrounds k̄ correspond to different physics because
they are nondynamical and couple differently with the
usual vierbein and metric. For instance, given an explicit
background k̄μ with a contravariant index, we can take
advantage of the existence of the usual metric gμν to form
the product gμνk̄ν, which might naively seem to represent an
explicit background with a covariant index. However, this
product involves the dynamical operator gμν and hence
cannot be treated as an explicit background in the varia-
tional procedure. Attempting instead to take advantage of
the existence of the usual metric background hgiμν to write
the product hgiμνk̄ν also fails to generate a satisfactory
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explicit background with a covariant index because the
product mixes on-shell and off-shell quantities. The sit-
uation for explicit backgrounds is further complicated in
scenarios with an explicit background vierbein ēμa and
background metric ḡμν in addition to the usual background
vierbein heiμa and background metric hgiμν [77,78]. Formal
equations such as k̄μ ≡ ēμak̄a or k̄μ ≡ ḡμνk̄ν can then be
introduced, but these must be understood as definitions
instead of physical relations. Since generic theories lack an
explicit background vierbein and background metric, the
three explicit backgrounds k̄ typically cannot be related
even by definitions of this type. All these examples
generalize to backgrounds k with more complicated index
structures.

D. Symmetry violations

The presence of a background can violate spacetime
symmetries because backgrounds behave differently from
dynamical fields under particle spacetime transformations.
Both backgrounds and dynamical fields behave covariantly
under observer transformations, which ensures invariance
of the physics under coordinate changes. For instance,
physical invariance under general coordinate transforma-
tions, which are observer diffeomorphisms, is assumed to
be a property of a realistic theory. However, backgrounds
are invariant under particle transformations, while dynami-
cal fields transform covariantly. This difference can lead to
physical symmetry violations in observables that involve
dynamical fields coupled to a background.
Consider, for example, a generic background ka��� in a

local frame. This can be viewed as specifying an orientation
in the frame, sometimes called a preferred direction, which
is invariant under local Lorentz transformations. Unless
ka��� happens to have no indices and is independent of
position, or unless it is proportional to combinations of the
Lorentz-group invariants ηab and ϵabcd, the coupling of a
dynamical field to ka��� can produce changes of physical
observables under local rotations or local Lorentz boosts.
These are violations of local Lorentz invariance, which can
thus be traced to a direction-dependent background in a
local frame [2]. Note that even a scalar background kðxÞ
without indices but varying with spacetime position can
introduce violations of local Lorentz invariance because the
derivatives of kðxÞ specify an orientation in a local frame
[87]. Similarly, a generic background kμ���ν��� on the space-
time manifold can lead to violations of diffeomorphism
invariance unless it has no indices and is independent of
spacetime position. Only a background serving as a scalar
coupling constant, such as the expectation value of the
Higgs field in the SM, can preserve local Lorentz invari-
ance and diffeomorphisms.
For explicit backgrounds, the above results hold without

further subtleties. An explicit background k̄μ���ν���a���ðxÞ
defined both on the manifold and in local frames violates

local Lorentz and diffeomorphism invariance in ways
determined directly by its index structure and by its
nonvanishing derivatives. For spontaneous backgrounds,
however, conditions such as Eq. (20) relate the different
types of indices. A spontaneous background hkiμ���ν���a���ðxÞ
can therefore be viewed equivalently as defined entirely on
the manifold, entirely in local frames, or as a mixture of the
two. Consequently, we recover the result obtained in
Ref. [84]: a generic theory contains spontaneous local
Lorentz violation (SLLV) if and only if it contains
spontaneous diffeomorphism violation (SDV),

SLLV ⇔ SDV ðgeneric theoriesÞ: ð21Þ

Two exceptions to this result exist, one due to an accidental
symmetry and the other to convention. The first exception
arises when the spontaneous background happens to be
proportional to combinations of the Lorentz-group invar-
iants ηab and ϵabcd, in which case it has accidental local
Lorentz invariance but can still violate diffeomorphism
invariance. The other is specific to the usual background
vierbein heiμa ¼ ημ

a and metric hgiμν ¼ ημν in an approx-
imately Minkowski spacetime. As described in the previous
subsection, these quantities are taken by convention to be
invariant under both local Lorentz transformations and
diffeomorphisms, with special transformation rules (11)
assigned to the fluctuations around them to compensate for
this defined invariance.
The action of the effective field theory is defined as usual

via integration over the spacetime manifold,

S ¼
Z

d4xeL; ð22Þ

and is assumed invariant by construction under general
coordinate transformations, which can be understood as
observer diffeomorphisms as described in Sec. II B 2. A
generic term inL involving a background takes the form (17)
or its generalization incorporating background derivatives.
The properties of the term under local Lorentz transforma-
tions and diffeomorphisms are determined by the index
structure and spacetime dependence of the background k.
Table II shows some examples of terms in L and their

properties under local Lorentz transformations and diffeo-
morphisms: invariance, spontaneous violation, or explicit
violation. In principle, this yields nine possible classes of
terms identified according to the transformation properties
displayed in the first two columns of the table, which we
denote by the abbreviations LLI, SLLV, ELLV, DI, SDV,
EDV as shown in the parentheses. However, the generic
result (21) ensures that the SLLV-DI class is empty, while
the LLI-SDV class contains only the exceptions to the
result mentioned above. Note that terms in the SLLV-EDV
and ELLV-SDV classes must involve mixed backgrounds
arising partly from spontaneous violation and partly from
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explicit violation, so in this sense the corresponding
examples are more complicated. More generally, a given
model may contain several terms lying in distinct classes
and can therefore be expected to exhibit multiple features
associated with different types of symmetry violations.
The third column of Table II provides examples of

individual terms in each of the eight nonempty classes.
Other than the exceptions in the LLI-SDV class, for which
the backgrounds must be formed from the Minkowski
metric or the Levi-Civita tensor, the chosen examples all
involve the comparatively simple backgrounds with a
single index taken from the set (19). The operators O
are understood to have transformation properties deter-
mined by their index structure and to enter the action (22)
as dynamical fields on the manifold, which can include the
usual vierbein eμa and metric gμν along with matter fields.
Any local indices on an operatorO therefore arise from the
presence of vierbeins and fermion bilinears involving Dirac
matrices rather than from spacetime fields expressed in
local coordinates. For instance, the choice Oab ¼ Rab is
excluded to avoid the spurious appearance of the usual GR
combination ηabRab ¼ gμνRμν ¼ R in the LLI-SDV class.
Some classes also contain additional simple examples
beyond those shown in the table. As an illustration, the
term k̄μOμ lies in the LLI-EDV class and is distinct from the
term k̄μOμ listed in the table. Also, the three possible SLLV-
SDV terms hkiμOμ, hkiμOμ, and hkiaOa are related by
virtue of the equivalence (20).
The transformations listed in Table II refer to properties

of terms in the action rather than to physical observables.
The relationship between properties of the action and
experimental measurements can be subtle. Consider, for
example, a term of the form k̄μOμ, which exhibits local
Lorentz invariance at the level of the action. Experiments
searching for local Lorentz violation may nonetheless be
sensitive to this term because the nonzero vierbein heiμa
implies that the combination k̄μheiμa provides a definite
orientation in the local experimental frame, which can yield
observable local Lorentz violation. An example is the
fermion-sector term [2]

L ⊃ −b̄μeμaψ̄γ5γaψ ; ð23Þ

which causes orientation-dependent splittings in the fer-
mion energy spectrum and has been studied in numerous
experiments searching for Lorentz violation in quantum
electrodynamics [4]. A kind of converse is also possible:
some terms of the form k̄μOμ explicitly violate diffeo-
morphism invariance at the level of the action but are
undetectable in experiments. This can often be confirmed
directly for a given case by identifying a suitable field or
coordinate redefinition that removes the term from the
action and thereby demonstrates its physical irrelevance
[2,36,81]. A well-known example is the term

L ⊃ −āμeμaψ̄γaψ ; ð24Þ

for which one component of the background āμðxÞ can be
removed using the field redefinition ψ ¼ exp½ifðxÞ�ψ 0,
representing a position-dependent change of phase [2].
Another subtlety arises in spontaneous symmetry vio-

lation, where the underlying theory is invariant under local
Lorentz transformations and diffeomorphisms. In any
spontaneous symmetry violation, the symmetry of the full
theory remains unbroken but becomes hidden when the
Lagrange density of the full theory is expressed in terms of
field fluctuations about the background [88]. In the context
of spontaneous breaking of spacetime symmetries, the field
fluctuations transform in unconventional ways, which
ensure that the full theory retains the complete spacetime
symmetry [85]. However, experiments cannot change the
background by performing local Lorentz and diffeomor-
phism transformations, and they treat the fluctuations as
conventional tensor fields. As a result, experiments can be
sensitive to the existence of spontaneous backgrounds
despite the hidden invariance of the underlying theory.
Note, however, that in approximately Minkowski space-
time the usual spontaneous background vierbein heiμa ¼
ημ

a and spontaneous background metric hgiμν ¼ ημν form
an exception to this picture because the fluctuations (10) are
conventionally assumed to transform so that the full

TABLE II. Examples of terms in the Lagrange density with different transformation properties.

Local Lorentz transformations Diffeomorphisms Examples

Invariance (LLI) Invariance (DI) GR
Spontaneous violation (SDV) hkiabOab, hkiab ¼ ηab

Explicit violation (EDV) k̄μOμ

Spontaneous violation (SLLV) Invariance (DI) None
Spontaneous violation (SDV) hkiμOμ

Explicit violation (EDV) kμaOμa, kμa ≡ k̄μhkia
Explicit violation (ELLV) Invariance (DI) k̄aOa, k̄a constant

Spontaneous violation (SDV) kμaOμa, kμa ≡ hkiμk̄a
Explicit violation (EDV) k̄aOa, k̄a nonconstant
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vierbein and metric behave as tensor fields. In experimental
analyses, the backgrounds heiμa ¼ ημ

a and hgiμν ¼ ημν can
therefore be viewed as preserving local Lorentz invariance
and diffeomorphism invariance.
The experimental situation can be further complicated by

dynamical fields from objects outside the control of the
experimentalist that can mimic the effects of a background
and hence play the role of one or more nonzero coefficients
k in the effective field theory. A simple example is the
gravitational field of the Earth, which acts as a nontrivial
background and provides a preferred direction in the
laboratory. Some coefficients k then depend on the local
gravitational acceleration g⃗. This introduces apparent sig-
nals for local Lorentz and diffeomorphism violation even in
a scenario with an invariant theory. The invariance would
be manifestly evident under transformations of the exper-
imental conditions only if the Earth could be transformed as
well. Similarly, a background distribution of particles or a
thermal bath establishes a preferred inertial frame and
hence can also create apparent signals for Lorentz violation.
For instance, a neutrino beam that travels through the body
of the Earth interacts with the electrons in the Earth’s
material [89]. This acts as a background described by an
a-type coefficient similar to that in Eq. (24), producing
apparent Lorentz violation in neutrino flavor oscillations
[90]. Note that mimic backgrounds can occur at various
scales, including cosmological ones. For example, the
cosmic microwave background fixes a rest frame through-
out the Universe. This leads to apparent violations of
Lorentz invariance, including subtle effects such as the
observed dipole temperature anisotropy due to the velocity
of the Earth relative to this frame [91]. Preferred spacetime
directions can also be expected from other mimic back-
grounds at large scales, including the cosmic neutrino
background and perhaps also dark matter and dark energy.
The effects of known mimic backgrounds must be

removed in any experimental analysis searching for vio-
lations of spacetime symmetries arising in an underlying
theory. Alternatively, since mimic backgrounds can play
the role of the coefficients k, laboratory searches for
violations of spacetime symmetries can be reinterpreted
as providing constraints on unknown dynamical fields,
even in theories that are invariant under local Lorentz
transformations and diffeomorphisms. For instance, exten-
sions of Riemann geometry to include spacetime torsion or
nonmetricity tensors typically generate nontrivial back-
grounds in nature, and matching these to the above
framework permits sensitive experimental constraints on
the components of both torsion [92] and nonmetricity [93]
to be achieved by reinterpreting experimental bounds
obtained in laboratory searches for Lorentz violation.
The frame dependence of the backgrounds implies that

meaningful comparisons of results obtained in different
experiments must be made in a specified frame. For this
purpose, it is desirable to choose a standard frame that is

approximately inertial over the timescale of typical mea-
surements and that is experimentally accessible. No Earth-
based frame is a suitable choice due to the rotation of the
Earth about its axis and its revolution around the Sun,
which imply consequent experimental effects such as
sidereal variations of observables [94]. Instead, the canoni-
cal frame adopted in the literature is the Sun-centered frame
[95], which uses a right-handed coordinate system deter-
mined by the Earth’s rotational axis and the direction to the
2000 vernal equinox. This frame has been used to report
results of numerous experimental investigations performed
in the past two decades [4].

E. Linearization

Experimental and observational tests of spacetime sym-
metries mostly involve weak gravitational fields in approx-
imately flat spacetime, for which it is appropriate to adopt the
linearized description (10) of the vierbein and metric
introduced in Sec. II B 3. From the viewpoint of the whole
manifold, these experiments probe local Lorentz and diffeo-
morphism invariance. In the linearized description, however,
this reduces to studying the analogues in approximately flat
spacetime ofMinkowski-spacetime Lorentz transformations
and translations, which can mix local Lorentz transforma-
tions and diffeomorphisms as shown in Sec. II B 3. The
spacetime symmetries of a given theory on the manifold
therefore can correspond nontrivially to spacetime sym-
metries of its linearized limit. For example, a Lorentz
transformation in experiments searching for sidereal or
annual variations involves changes both of the velocity in
the local frame and of the spacetime position, so even
backgrounds k having only spacetime indices can generate
Lorentz violation in experiments. In this subsection, we
consider some aspects of this correspondence.
In the limit of weak gravitational fields in approximately

flat spacetime, the action (22) is linearized to SL accord-
ing to

S ¼
Z

d4xeL → SL ¼
Z

d4xLL; ð25Þ

where the linearized Lagrange density LL incorporates
relevant contributions from the linearization of the vierbein
determinant e. The pure-gravity sector of LL is understood
to contain terms up to second order in the fluctuations h and
χ, which permits exploration of effects on gravitational
waves and graviton propagation, except that contributions
from the cosmological-constant term are kept only to first
order in h. For the matter-gravity sector, LL is restricted to
contain terms at first order in h and χ but to include other
fields at all orders. These choices are the usual ones
adopted for the linearization procedure in GR coupled to
matter.
In the linearized limit, three kinds of spacetime trans-

formations in approximately flat spacetime are of interest:
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Lorentz transformations, gauge transformations, and trans-
lations. Their definitions and basic properties are presented
in Sec. II B 3. The three symmetries can be broken
spontaneously or explicitly.
Consider first Lorentz transformations in the linearized

theory. These are combinations of special local Lorentz
transformations and diffeomorphisms, so theories with
either local Lorentz violation or diffeomorphism violation
typically have linearized limits violating Lorentz invari-
ance. In some special scenarios, however, the backgrounds
on the manifold reduce in the linearized limit to combi-
nations of the Lorentz-group tensors ημν and ϵκλμν. Lorentz
invariance is then preserved in the linearized theory despite
the presence of local Lorentz violation or diffeomorphism
violation in the original theory.
Gauge transformations of linearized gravitational fields

in approximately flat spacetime are given by Eq. (13), while
for nongravitational fields they are given by the linearized
diffeomorphisms (14). In the linearized limit, the Riemann
curvature Rμνρσ and its contractions Rμν and R are
gauge invariant at first order, while the combination eR
is gauge invariant at second order. These features ensure
gauge invariance of the linearized action for GR coupled to
the SM. Gauge invariance also holds for other theories with
unbroken local Lorentz and diffeomorphism invariance,
provided any dynamical backgrounds kðxÞ without indices
are treated as matter scalar fields in the linearization
procedure. Note that terms with nondynamical back-
grounds k̄ðxÞ break diffeomorphism invariance and may
lead to gauge violations in the linearized limit, irrespective
of their spacetime- or local-index structures.
With the above understandings of the linearization

procedure and gauge transformations, calculation shows
that when a theory is diffeomorphism invariant (DI), then
its linearized limit is gauge invariant (GI). This holds
irrespective of the properties of the theory under local
Lorentz transformations. It implies a linearized theory with
gauge violation (GV) comes from a theory with diffeo-
morphism violation (DV),

DI ⇒ GI; GV ⇒ DV: ð26Þ

Note that the converses are false. For example, a term in L
of the form L ⊃ kαβγδκλμνRαβγδRκλμν violates diffeomor-
phism invariance on the manifold but preserves gauge
invariance in the linearized theory LL, so DV ⇏ GV.
Translations in approximately flat spacetime are special

cases of linearized diffeomorphisms for which the displace-
ments ξμðxÞ of spacetime points are independent of
spacetime position. Therefore, if a theory is DI, then its
linearized limit is also translation invariant (TI), and hence
if a linearized theory has translation violation (TV), then the
full theory is DV,

DI ⇒ TI; TV ⇒ DV: ð27Þ

As before, the converses are false.
Translation violation also implies the existence of at least

one nonconstant background k. Since nonzero derivatives
of k at a spacetime point determine preferred directions at
that point, translation violation in a linearized theory is
accompanied by Lorentz violation (LV). The contrapositive
ensures that Lorentz invariance (LI) in the linearized theory
implies translation invariance. We thus have

LI ⇒ TI; TV ⇒ LV: ð28Þ

Again, the converses are false, as a constant background
can violate Lorentz symmetry while preserving translation
invariance.
Given the three kinds of transformations at the linearized

level, each of which allows the two options of invariance or
violation, one might expect to classify any term in a
linearized theory as one of eight types. However, the
relation (28) implies that two of these eight classes must
be empty. Table III displays the eight possibilities and
provides examples of terms in the linearized Lagrange
density LL. The first three columns list the possible
properties under Lorentz transformations, gauge transfor-
mations, and translations, which we denote by the abbre-
viations shown in parentheses. The final column shows
representative terms in LL for each of the five nonempty
classes. The backgrounds k are assumed to be generic
unless otherwise indicated. Some entries involve the

TABLE III. Examples of terms in the linearized Lagrange density with different transformation properties.

Lorentz transformations Gauge transformations Translations Examples

Invariance (LI) Invariance (GI) Invariance (TI) GR
Violation (TV) None

Violation (GV) Invariance (TI) kμνO0
μν, kμν ¼ ημν

Violation (TV) None

Violation (LV) Invariance (GI) Invariance (TI) kaOa, ka constant
Violation (TV) kμOμ, kμ nonconstant

Violation (GV) Invariance (TI) kμO0
μ, kμ constant

Violation (TV) kaO0
a, ka nonconstant
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comparatively simple single-index backgrounds listed in
the set (19), and some contain two-index backgrounds
determined by the Minkowski and Levi-Civita tensors. In
this table, gauge-invariant operators are denoted byOwhile
gauge-violating ones are denoted by O0. The operators are
taken to have the same basic properties as those adopted for
Table II, except that any gravitational field they contain is
linearized. For example, the gauge-invariant operators
displayed could include linearizations of products of the
scalar curvature and the Ricci tensor, which are gauge
invariant in LL because each factor is separately gauge
invariant at first order in the fluctuations. The entries in the
final column are only representative, and other simple
examples exist. Note also that combinations of terms in a
given model can produce more complicated combinations
of effects.
The correspondence between the spacetime symmetries

of a given term in the Lagrange density of a theory and the
spacetime symmetries in the linearized limit is depicted

schematically in Fig. 1. Each of the six boxes with a white
background represents one of the classes of terms in
Table II, labeled according to its properties under local
Lorentz transformations and diffeomorphisms using the
abbreviations shown in the table. Note that for simplicity
we omit from the figure the two classes SLLV-EDV and
ELLV-SDV that involve mixed backgrounds. Each of the
six boxes with a gray background represents one of the six
nonempty classes of terms in Table III, labeled by its
properties under Lorentz transformations, gauge transfor-
mations, and translations. The lines specify the classes of
linearized terms that can arise from a given term in the
original theory. For example, a term with spacetime
symmetries in the SLLV-SDV class can produce terms at
the linearized level lying in one of the four classes LV-GV-
TI, LV-GV-TV, LV-GI-TV, and LV-GI-TI. The figure
applies to single terms in the original theory, as combina-
tions of terms can be associated with different classes. It
also assumes the term in the original theory contributes in
the linearized limit, hence excluding certain possible
operators such as cubic products of curvatures.
Table IV provides specific examples of the connections

displayed in Fig. 1 between different types of terms and
their linearizations. The six entries in the first column list
the symmetry properties of the six types of terms repre-
sented by the boxes with a white background in the figure.
The other six columns in the table are labeled with the
symmetry properties of the six classes of linearized terms
denoted by the boxes with a gray background in the figure.
Each of the 36 entries contained in these five columns
matches a particular line in the figure and thereby provides
a specific example of a term with the corresponding
symmetries, except for the 16 entries for which no such
term exists. These 16 cases are excluded by the constraints
(21), (26), (27), and (28). The backgrounds k are generic
unless otherwise indicated and the operators O represent

FIG. 1. Relationships between different types of effective terms
and their linearizations.

TABLE IV. Symmetry properties of sample terms and their linearizations.

Linearization

Theory LI, GI, TI LV, GV, TI LI, GV, TI LV, GV, TV LV, GI, TV LV, GI, TI

LLI, DI GR None None None None None

SLLV, SDV None hkiμOμ, None hkiμOμ, hkiμνRμνR, hkiμνRμνR,
hkiμ constant hkiμ nonconstant hkiμν nonconstant hkiμν constant

LLI, SDV hkiμνRμνR, None hkiμνOμν, None None None
hkiμν ¼ ημν hkiμν ¼ ημν

ELLV, DI None None None None None k̄aOa,
k̄a constant

LLI, EDV k̄μνRμνR, k̄μOμ, k̄μνOμν, k̄μOμ, k̄μνRμνR, k̄μνRμνR,
k̄μν ¼ ημν k̄μ constant k̄μν ¼ ημν k̄μ nonconstant k̄μν nonconstant k̄μν constant

ELLV, EDV k̄μaeνaRμνR, k̄μaOμa, k̄μaOμa, k̄aOa, k̄μaeνaRμνR, k̄μaeνaRμνR,
k̄μa ¼ ημa k̄μa constant k̄μa ¼ ημa k̄a nonconstant k̄μa nonconstant k̄μa constant
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appropriate dynamical fields. The entries are only repre-
sentative examples, and additional possibilities exist.
The existence of certain invariances in a theory has

implications for the observability of the fluctuations hμν
and χμa introduced in Eq. (10). Consider first a theory with
local Lorentz invariance described by a Lagrange densityL.
Under an infinitesimal local Lorentz transformation with
Λa

bðxÞ ¼ ηab þ ϵabðxÞ, the fluctuation hμν is invariant
while χμa changes at leading order,

hμνðxÞ → hμνðxÞ; χμaðxÞ → χμaðxÞ − ϵμaðxÞ: ð29Þ

Since χμa and ϵμa are both antisymmetric, it follows that the
χμa modes can be transformed to zero using a suitable local
Lorentz transformation. Other dynamical fields change to
new expressions under this transformation. For example,
the spinor field ψðxÞ changes according to

ψðxÞ → ψ 0ðxÞ ¼ exp

�
1

4
iϵabðxÞσab

�
ψðxÞ: ð30Þ

Writing the theory in terms of transformed fields amounts
to implementing field redefinitions and so produces a
Lagrange density equivalent to L but lacking the χμa
modes. This confirms that the χμa modes are unobservable
in a theory with local Lorentz invariance [36]. In particular,
it implies that the χμa modes play no physical role in
theories of the LLI-DI, LLI-SDV, and LLI-EDV types
shown in Fig. 1 and in the first, third, and fifth rows of
Table IV. Note, however, that the χμa modes can be physical
in theories with Lorentz invariance in approximately flat
spacetime, as these can arise as linearized limits of theories
with local Lorentz violation.
Similarly, some components of the metric and vierbein

are unobservable in theories with gauge invariance in
approximately flat spacetime. Under an infinitesimal gauge
transformation with xμ → xμ þ ξμðxÞ, the fluctuations hμν
and χμa change according to Eq. (13). It follows that
4 degrees of freedom in the metric and vierbein are
associated with gauge transformations and hence are
unobservable in theories with gauge invariance. As in
the case of the χμa modes discussed above, field redefini-
tions can remove these ξμ modes by generating a physically
equivalent Lagrange density in which they are absent. This
establishes that the ξμ modes are unphysical in linearized
theories of the LI-GI-TI, LV-GI-TV, and LV-GI-TI classes
shown in Fig. 1 and in the corresponding columns of
Table IV.

F. No-go constraints

In any model based on Riemann geometry or its exten-
sions to include torsion and nonmetricity, the fields must
satisfy the Bianchi identities, which are intrinsically
imposed by the geometric structure [80,96]. The Bianchi

identities hold both on and off shell, and their compatibility
with the variational principle imposes constraints that must
be satisfied for consistency of the model. In GR, for
example, the Bianchi identity implies the on-shell conser-
vation of the energy-momentum tensor, DμTμν ¼ 0, which
is compatible with the dynamics and symmetries of the
theory obtained by variation of the action. Similarly, in a
model with spontaneous violation of one or more spacetime
symmetries, compatibility with the Bianchi identities is
maintained because the variational procedure is standard.
However, explicit violation of a spacetime symmetry
requires the presence in the action of one or more non-
dynamical background fields k̄μ���ν���a���ðxÞ, which behave
unconventionally under variations. The variational results
can then become incompatible with implications from the
Bianchi identities and hence can render problematic amodel
containing explicit violation [2]. This can, for instance,
induce outright inconsistencies in the model or impose
unnatural requirements such as fine tuning of the explicit
background. The potential constraints on a model with
explicit violation of spacetime symmetries are called no-go
constraints. Their role has been the subject of extensive
recent investigation by Bluhm and collaborators [75–78].
As described in Sec. II C, a spontaneous background hki

can be viewed as a nondynamical background k̄ that is on
shell and that comes with dynamical fluctuations including
Nambu-Goldstone and massive modes. In this context,
incompatibilities in a model with explicit breaking can be
interpreted as due to the absence of dynamical fluctuations
[2]. Within the Stückelberg approach [97,98], the missing
Nambu-Goldstone modes correspond to extra dynamical
scalar fields that can be added to restore the explicitly broken
symmetry [78]. For explicit diffeomorphism violation, the
no-go constraints can be identified with the Noether iden-
tities [99] arising from the requirement of general coordinate
invariance of the model [75]. Under suitable circumstances,
the constraints can be satisfied by appropriately fixing the ξμ
modes. Similar results hold for local Lorentz violation and
the corresponding χμa modes [77], as well as in the presence
of matter-gravity couplings [78]. However, in some scenar-
ios the no-go constraints cannot be satisfied for any choice of
the ξμ or χμa modes [75].
The present subsection contributes to the ongoing dis-

cussion of this topic by demonstrating that an explicit
background k̄μ���ν���a���ðxÞ typically cannot satisfy the no-go
constraints in a model that modifies the physics only
perturbatively. This result holds in the matter-gravity sector
as well as in the pure-gravity one, and it thus extends the
practical impact of the no-go constraints on the space of
possible realistic models that seek to describe small devia-
tions from known physics. Some comments about models
based on non-Riemann geometry are also presented.
Consider first a model with an explicit background

k̄μ1���μn carrying n covariant spacetime indices. The asso-
ciated current can be defined as usual by variation of the

BACKGROUNDS IN GRAVITATIONAL EFFECTIVE FIELD … PHYS. REV. D 103, 024059 (2021)

024059-13



action, Jμ1���μn ≡ δS=δk̄μ1���μn . Following the calculational
procedure in Ref. [2] reveals that the Bianchi identity
implies

DμTμ
ν ¼ Jμ1���μnDνk̄μ1���μn −Dμ1ðJμ1���μn k̄νμ2���μnÞ − � � �

−DμnðJμ1���μn k̄μ1���μn−1νÞ ¼ 0; ð31Þ

where the covariant derivatives are combinations of
partial derivatives and Levi-Civita connections. This result
matches Eq. (27) of Ref. [77], and it reduces to Eq. (A.17)
of Ref. [78] in the limit of a single spacetime index. It
represents four no-go constraints that must be obeyed by
the model for internal consistency.
In practical applications relevant for laboratory and

solar-system experiments, gravity is weak and the space-
time is approximately flat. The metric can then be expanded
as in Eq. (10), with the dynamics determined by the metric
fluctuation hμν. Linearizing Eq. (31) in hμν produces an
equation of the schematic form

Jð∂kþ k∂hÞ þ ð∂J þ J∂hÞk ¼ 0; ð32Þ

where we suppress all indices and factors. The no-go
constraints thus correspond to conditions of the schematic
form

∂k̄
k̄
þ ∂J

J
þ ∂h ¼ 0: ð33Þ

Note that the metric fluctuation h appearing in this
expression includes both the conventional modes appearing
in GR and the ξμ modes. The latter are physical in some
scenarios but are unobservable in GR and models with
gauge invariance, as discussed at the end of the previous
subsection.
We can consider the implications of the no-go constraints

(31) and the schematic condition (33) for different models
with an explicit background k̄μ1���μn . Suppose first that the
background k̄μ1���μn appears only in the pure-gravity sector
of a model, so that the current Jμ1���μn is composed of hμν.
The no-go constraints can then be impossible to satisfy. A
simple example is a model with a fixed but nonconstant
cosmological term Λ̄ðxÞ. This is incompatible with the
condition (31) required by the Bianchi identity, which
demands ∂μΛ̄ ¼ 0 [75]. Another example is the LLI-EDV
model with action

S ∝
Z

d4x eðRþ k̄μνgμνÞ; ð34Þ

containing a two-index symmetric prescribed background
k̄μν. At zeroth order in hμν, the condition (31) reduces to the
constraint

∂μk̄μν − 1

2
ηαβ∂νk̄αβ ¼ 0; ð35Þ

showing that only special choices of backgrounds k̄μν can
be admissible. Generic backgrounds k̄μν in this model are
therefore perturbatively incompatible with the no-go con-
straints independently of the behavior of hμν and its ξμ
modes, and so arbitrary explicit diffeomorphism violation
is excluded. Moreover, at first order in h the schematic
condition (33) in this model reduces to ∂k̄=k̄ ∼ ∂h=h. Since
∂h=h is tiny near the Earth and since k̄ is perturbative by
construction, it follows that k̄ must be almost constant.
Thus, even a restricted background k̄μν satisfying (35) must
have a fine-tuned structure to satisfy the no-go constraints.
In the above models, the no-go constraints generate

direct restrictions on explicit backgrounds without involve-
ment of hμν or ξμ at leading order because the background
terms in the action are linear in hμν. However, backgrounds
in more involved models typically also conflict with the no-
go constraints and the perturbative assumption. Consider,
for example, a model with action

S ∝
Z

d4x eðRþ k̄ðxÞhμνhμνÞ; ð36Þ

which can be viewed as incorporating a constant two-
index background η̄μν such that hμν ¼ gμν − η̄μν and
hμν ≡ η̄μαη̄νβhαβ, along with a background function k̄ðxÞ.
At leading order in small quantities, the no-go constraints
(31) for this model reduce to the schematic form
∂k̄=k̄ ∼ ∂h=h, in accordance with the result (33). As before,
this shows that the structure of k̄ðxÞmust be fine tuned to be
nearly constant in the vicinity of the Earth for the
perturbative assumption to be valid. In the particular special
case that k̄ðxÞ ¼ m2=2 is a positive constant, the action (36)
describes a simple model for massive gravity. At leading
order, the no-go constraints then collapse to ∂μhμν ¼ 0,
which is analogous to enforcing a particular gauge-fixing
condition and imposes a corresponding form for the ξμ
modes. In this limit, the model (36) is therefore compatible
with the no-go constraints at least to first order in hμν.
However, even constant backgrounds may be insufficient to
ensure compatibility with the no-go constraints in many
models. For example, no useful post-Newton expansion
exists in pure-gravity models with constant-background
d ¼ 4 terms of the form s̄μνRμν or t̄κλμνRκλμν because the ξμ
modes decouple at leading order and hence cannot be used to
satisfy the no-go constraints, leading to severe restrictions on
acceptable linearized curvatures [75]. As before, the sche-
matic constraint (33) for these models shows that the only
potential backgrounds that are admissible must be almost
constant, so generic explicit backgrounds are excluded.
Next, suppose instead that the explicit background k̄

appears in the matter-gravity sector, so that the current J
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includes matter fields. If we insist that k̄ modifies the
physics only perturbatively, as required in an effective field
theory, then we can show that the model is typically
incompatible with the no-go constraints. Consider, for
example, a matter sector involving a spinor field ψ . The
fermion bilinears can involve Dirac matrices and associated
couplings to the vierbein eμa, which in approximately
flat spacetime can be expanded according to Eq. (10).
Linearizing the current J in the metric and vierbein
fluctuations produces an expression of the schematic form

J ∼ ψ̄ψ þOðhÞψ̄ψ þOðχÞψ̄ψ þ � � � ; ð37Þ

where for simplicity we suppress all indices, factors, and
structures involving Dirac matrices. At leading order, we
thus find ∂J=J ∼ ψ̄∂ψ=ψ̄ψ . However, the size of ψ̄∂ψ=ψ̄ψ
in laboratory experiments is much larger than the unper-
turbed GR contributions from ∂h, which are dominated by
the local gravitational acceleration. For instance, neutrons
bound in the Earth’s gravitational field have values of
ψ̄∂ψ=ψ̄ψ of order 10−12 GeV, whereas the gravitational
acceleration on the Earth’s surface is of order 10−32 GeV.
The condition (33) from the no-go constraints thus typi-
cally cannot be satisfied unless any physical effects from
the ξμ modes or from ∂k̄=k̄ are also much larger than the
gravitational acceleration, both of which are excluded for
perturbative modifications to GR.
This line of reasoning can be applied to most models

with explicit backgrounds in the matter-gravity sector.
The argument can be evaded for certain cases in which
the background k̄ is constant or nearly so, ∂k̄ ∼ 0, and the
current J happens to have a special form that is conserved
or almost conserved, ∂J ∼ 0, since then both k̄ and the ξμ
modes can yield perturbative contributions to the usual
gravitational acceleration while still satisfying the condi-
tion (33) from the no-go constraints. For example, one-loop
radiative corrections in certain models of massive gravity
yield a c̄-type coefficient in the matter-gravity sector
[78,100], which amounts to a background k̄ with ∂k̄ ∼ 0
and a current J with ∂J ∼ 0. As another example, consider a
term of the form L ⊃ −āμeμaψ̄γaψ involving an explicit
background āμ, which can produce nontrivial physical
effects when āμ differs from a gradient, āμ ≠ ∂μf̄ [2].
This term produces a current J that is conserved, ∂J ¼ 0,
by virtue of a global U(1) symmetry. The condition (33)
then reduces to ∂ā=ā ∼ ∂h, which is compatible with
perturbative behavior. In this instance, further insight can
be gleaned from the analogous term for spontaneous
symmetry breaking, L ⊃ −aμeμaψ̄γaψ , where aμ now
contains a background haiμ along with dynamical fluctua-
tions ensuring compatibility between the Bianchi identity
and the variational procedure. This situation is compara-
tively simple because ∂J ¼ 0 and so the condition (33)
implies ∂a ∼ a∂h, which is congruent with the solution

(87) for the fluctuation modes given in Ref. [36]. For a
more complicated matter-gravity term with a spontaneous
background k that lacks a conservation law for J, satisfying
(33) requires solving ∂k ∼ k∂J=J. This typically is chal-
lenging to perform in detail and remains an open problem
of definite interest. In contrast, for most explicit back-
grounds, nonperturbative solutions that are compatible with
the no-go constraints may be possible in principle but
typically are incompatible with existing experiments.
Consider next a model with an explicit background

k̄μ1���μn carrying n contravariant spacetime indices. This
faces challenges similar to those for the background k̄μ1���μn .
For this case, the no-go constraints take the form

DμTμ
ν ¼ Jμ1���μnDνk̄μ1���μn þDμ1ðk̄μ1���μnJνμ2���μnÞ þ � � �

þDμnðk̄μ1���μnJμ1���μn−1νÞ ¼ 0: ð38Þ

The solution to this equation has the same schematic form
as Eq. (33) and so exhibits the same problems, with only
fine-tuned backgrounds offering the potential for consis-
tency. While nonperturbative solutions of the no-go con-
straints may exist for arbitrary backgrounds, they typically
are excluded by existing experiments.
Finally, we discuss a model containing a background

k̄ab1���bn with nþ 1 local indices. The corresponding no-go
constraints now involve the antisymmetric part of the
energy-momentum tensor. They take the form

Tμν−Tνμ ¼−eμaeνb½ðJac1���cn k̄bc1���cn þJc1ac2���cn k̄
c1
b
c2���cn

þ�� �þJc1���cnak̄
c1���cn

bÞ− ða↔ bÞ� ¼ 0; ð39Þ

where Jab1���bn ≡ δS=δk̄ab1���bn is the relevant current. These
constraints amount to the requirement of the vanishing of a
generalized cross product between the current and the
background. As before, the obstacle for this case can be
understood in the perturbative limit, where the modes of
relevance are hμν and χμa.
Consider first a background k̄ab1���bn appearing in the

matter-gravity sector, with the current J expanded as in
Eq. (37). Since J cannot be significantly modified by
perturbative hμν or χμa, the no-go constraints (39) can be
seen to require the vanishing of a linear combination of the
currents determined by the background. This represents a
strong restriction on the structure of the background
k̄ab1���bn , with generic backgrounds being inadmissible.
Next, suppose k̄ab1���bn appears instead in the pure-gravity

sector. For most terms in the corresponding Lagrange
density, including ones containing factors of the curvature,
the contribution to the current at leading order in small
quantities cannot contain the χμa modes. This is because
the local indices on the background must ultimately be
contracted with factors of the vierbein, which contains the
χμa modes only at subleading order and which has a
vanishing covariant derivative. The no-go constraints (39)
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then reduce to the requirement that a certain linear
combination of derivatives of hμν must vanish, which is
problematic in the Newton limit. Typical backgrounds
obeying the no-go constraints are thus incompatible with
known perturbative physics.
A comparatively simple example illustrating a few of

these features is given by the term L ¼ k̄aμeμa, for which
the constraints (39) reduce to k̄aμeμb − k̄bμeμa ¼ 0 and thus
exclude an arbitrary explicit background k̄aμ. A suitable
nonperturbative k̄aμ can nonetheless yield a condition
determining χμa that provides consistency with the no-go
constraints. For example, demanding that k̄aμ takes the
form of a background vierbein yields an equation for χμa
analogous to a gauge condition [77]. Overall, the above
discussions confirm that the no-go constraints strongly
restrict models with a generic background k̄ab1���bn .
Note that the extension of Riemann geometry to include

torsion and nonmetricity typically cannot satisfy the no-go
constraints either. If the torsion and nonmetricity are
dynamical, then they are fully determined by the equations
of motion, and so no extra degrees of freedom are available
to ensure compatibility of the geometry with the variational
principle. The situation with dynamical torsion is discussed
in Ref. [2]. If instead the torsion and nonmetricity are
nondynamical, then they are predetermined and hence can
be interpreted as fixed background fields. They therefore
are also subject to no-go constraints, and the same argu-
ments apply. Consistent solutions to the equations of
motion typically are nonperturbative and hence incompat-
ible with existing experiments.
The no-go constraints thus imply that a generic

perturbative model with explicit violation of spacetime
symmetries cannot be based on Riemann geometry
or its extensions to include torsion and nonmetricity.
Conceivably, such a model might be formulated instead
within the context of some other geometry, or it might even
be a nongeometric theory lacking a smooth manifold.
Investigations of these possibilities are of definite interest
but lie beyond our present scope. However, it must be
possible to approximate the infrared limit of any complete
and consistent realistic model using an effective field
theory based on GR and the SM. The framework studied
in this work or its extension to include torsion and non-
metricity includes all possible backgrounds in the Lagrange
density, so it suffices as a low-energy approximation of any
complete and realistic model. Although this approximation
may well violate the no-go constraints from Riemann
geometry, the complete model must satisfy any correspond-
ing constraints arising from the underlying geometry.
One option for a geometry compatible with explicit

breaking is Finsler geometry, which can be viewed as a
generalization of Riemann geometry with the role of the
metric in determining geometric features supplemented
by other quantities prescribed on the manifold [101,102].

With the latter quantities identified as explicit background
fields, Finsler geometry has been conjectured as a possible
route to escape the no-go constraints in Riemann geometry
[2]. Investigating this conjecture in detail is hampered by
the lack of a satisfactory definition for Lorentz-Finsler
geometry, which is currently the subject of active research
[103–116]. Support for the conjecture includes the dem-
onstration that the trajectory of a fermion or scalar particle
in the present of explicit backgrounds corresponds to a
geodesic in a Riemann-Finsler space [103,104,117–120].
Figure 2 provides a pictorial representation of the

different options for theories with backgrounds, omitting
as before the two classes SLLV-EDV and ELLV-SDV that
involve mixed backgrounds. Terms within the hexagon are
built on Riemann geometry. Each of the six triangles in the
hexagon corresponds to one of the six classes of theories
contained in the rows of Table IV. Theories in the LLI-DI,
SLLV-SDV, and LLI-SDV classes satisfy the no-go con-
straints and are compatible with Riemann geometry.
Theories in the LLI-EDV, ELLV-DI, and ELLV-EDV
classes listed in the last three rows of Table IV all involve
explicit violation and are depicted by shaded triangles.
When they incorporate only perturbative deviations from
GR coupled to the SM, these models typically are incon-
sistent or incompatible with experiments. Theories with
explicit violation that represent perturbative deviations
from GR coupled to the SM generically lie outside the
hexagon, so they must be constructed from some other
geometry such as Finsler geometry or have a nongeo-
metrical basis. Attempting to express them in terms of
effective field theory based on Riemann geometry is an
approximation, and it typically implies incompatibilities
with the no-go constraints from Riemann geometry.

III. EFFECTIVE FIELD THEORY

In this section, we develop a methodology for the
construction of a realistic effective field theory involving
gravity and matter in the presence of arbitrary backgrounds.

FIG. 2. Pictorial classification of background terms.
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This enables the explicit derivation of all desired terms in
the action, including ones in the pure-gravity sector and
those involving matter-gravity couplings to gauge fields,
fermions, and scalars. It also yields the terms describing the
dynamics of the background.
The methodology is initiated in Sec. III A, which

describes the procedure for building dynamical operators
with appropriate spacetime and gauge properties. It is
convenient to separate the action (22) into four sectors,

S ¼
Z

d4x eðLg þ LA þ Lψ þ LϕÞ; ð40Þ

where Lg contains pure-gravity terms and any background
dynamics, LA describes gauge fields and their gravity
couplings, Lψ involves fermions including their gravity
and gauge couplings, andLϕ contains all terms with scalars.
The pure-gravity sector is addressed in Sec. III B, alongwith
the dynamics of the background. We consider the matter-
gravity sector in Sec. III C, starting with the pure-gauge
sector and then adding fermion and scalar terms. For
definiteness, we work in Sec. III C with a Dirac fermion
or complex scalar in a single representation of a gauge
group. Applications involving more general types of fer-
mions and scalars in realistic scenarios, including the
construction of the effective field theory based on GR
coupled to the SM, are provided in Sec. IV.
Any single effective term in the Lagrange densityL takes

the form of a contraction between a dynamical operator O
and a background k or its derivatives, as illustrated in
Eq. (17). A specific operator O may be contracted directly
to one or more backgrounds k or their derivatives, or may
be contracted instead via combinations of the vierbein,
metric, and Levi-Civita tensor. It is convenient to adopt a
compact notation for these various types of backgrounds
and contractions, thereby simplifying expressions in the
Lagrange density. The idea is to introduce a quantity
k̆μ���ν���a��� that is a linear combination of all terms formed
from background fields, vierbeins, metrics, and the Levi-
Civita tensor. Note that multiple vierbein and metric factors
may appear in a given term, but at most one Levi-Civita
factor is needed because products of the Levi-Civita tensor
reduce to products of vierbeins or metrics. Contracting the
combination k̆μ���ν���

a���, with any specific operator Oμ���ν���a���
then produces a single expression in the Lagrange density
L of the form L ⊃ k̆μ���ν���

a���ðxÞOμ���ν���a���ðxÞ, which expands
into many individual terms of the form (17). Terms
involving contractions between dynamical operators and
derivatives of backgrounds can also be combined in this
way by using derivatives of k̆μ���ν���

a���.
As an example, consider the simplest case where k̆ has

no indices, so that the corresponding term L ⊃ k̆O in the
Lagrange density involves a dynamical operator O without
indices. We can expand the quantity k̆ to display the
component backgrounds,

k̆ ¼ kþ kμνgμν þ kμνgμν þ kμaeμa þ kμaeμa þ � � �
þ kκλμνgκλgμν þ � � � þ kκλμνϵκλμν þ � � � ; ð41Þ

which explicitly reveals the dependence on the gravitational
degrees of freedom and illustrates the compactness of the
expression k̆O. This expansion is also appropriate for terms
such as L ⊃ ðDμk̆ÞOμ, which involve the contraction of a
dynamical operator with the derivative of a combination of
backgrounds. As another example, consider the case where
k̆μ has a single contravariant spacetime index. A term L ⊃
k̆μOμ in the Lagrange density can then be expanded using

k̆μ ¼ kμ þ kνgμν þ kaeμa þ � � � : ð42Þ

Similarly, the term L ⊃ k̆aOa involving a dynamical
operator with a local index can be expanded using

k̆a ¼ ka þ kμeμa þ kμeμa þ � � � : ð43Þ

Depending on the hypotheses of a specific theory, the
various backgrounds kμ���ν���a���ðxÞ combined in the above
expansions may be partially or wholly related to each other.
For instance, a given theory containing only a single
background kμ might nonetheless have a Lagrange density
with terms involving a two-index background kμν formed as
kμν ∝ kμkν. A given quantity k̆μ���ν���

a��� may therefore be
nonlinear in the backgrounds kμ���ν���a��� that specify a
particular theory. Since the mass dimensionality of each
kμ���ν���a��� is determined by the operator structure of the
Lagrange density, any nonlinear relationships may also
involve dimensionful factors that ensure a definite mass
dimensionality for k̆μ���ν���

a���.
Expressed using the above notation, the Lagrange

density for the effective field theory can be used for
spontaneous or explicit violation of spacetime symmetries,
with the various combinations of backgrounds kμ���ν���a���

contained in the quantities k̆μ���ν���a��� correspondingly
understood to be spontaneous or explicit. For spontaneous
breaking, the backgrounds hkiμ���ν���a��� are understood
to come with concomitant dynamical fluctuations, as
described in Sec. II C. For explicit breaking, the back-
grounds k̄μ���ν���a��� are nondynamical, and typically the
underlying theory cannot be based on Riemann geometry
for reasons outlined in Sec. II F.

A. Dynamical operators

To construct terms in the Lagrange density L, we require
a procedure to build suitable dynamical operators
Oμ���ν���a���. For effective field theory based on GR and
gauge theory, the terms must be independent of observer
general coordinate transformations and be locally gauge
invariant. In Minkowski spacetime, a procedure to
construct gauge-covariant operators has recently been
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developed, from which all gauge-invariant terms in the
action can be built [74]. In this subsection, we extend this
procedure to gauge-covariant spacetime-tensor operators,
which permits the construction of all terms with both gauge
invariance and observer independence in curved spacetime.
For the gauge symmetry, consider first the scenario in

Minkowski spacetime with a Dirac fermion ψ in a
representation U of the gauge group [74]. Then, ψ →
Uψ under a gauge transformation, while the Dirac con-
jugate transforms as ψ̄ → ψ̄U†. The gauge-covariant
derivative acting on ψ can be written as
Dμψ ¼ ∂μψ − igAμψ , where g is the gauge coupling and
Aμ is the gauge field in the U representation, and it
transforms as Dμ → UDμU†. The gauge field strength
Fμν in the U representation is generated by the commutator
½Dμ; Dν� ¼ −igFμν. By definition, an operator O formed
from gauge fields is called gauge covariant if O → UOU†.
Given gauge-covariant operators O and O0, two kinds
of gauge-invariant operators can be constructed, trðOÞ
and ðOψÞΓO0ψ , where Γ represents the 16 matrices
f1; iγ5; γμ; γ5γμ; σμν=2g spanning the spinor space. These
gauge-invariant operators are the desired objects from
which to build terms in the Lagrange density for the
effective field theory in Minkowski spacetime. More details
about this construction and its implications can be found in
Sec. II of Ref. [74].
To generalize this construction to curved spacetime, we

can work with spacetime-tensor fields and covariant deriv-
atives extended to include an appropriate connection.
Relevant spacetime-tensor fields include the metric gμν,
the curvature tensor Rκλμν, the gauge field strength Fμν, the
spinor bilinears ψ̄Γψ , scalars ϕ, and combinations. For this
purpose, the quantities γμ appearing in Γ are now under-
stood as γμ ¼ eμaγa, where the Dirac matrices γa are
defined in the local frame. In combinations, gauge-invariant
operators are placed inside fermion bilinears. All these
spacetime-tensor operators are also gauge covariant. The
covariant derivative Dμ acting on ψ or on DD � � �Dψ can
be expressed as

Dμ ¼ D
⋆
μ þ

1

4
ωμ

abσab − igAμ; ð44Þ

whereD
⋆
μ is the usual covariant derivative of GR containing

the partial derivative ∂μ and the appropriate connection
term formed using Christoffel symbols, and where ωμ

ab is
the spin connection. For explicit derivations, we adopt the
conventions of Ref. [2]. Direct calculation shows that any
mixture of covariant derivatives and the spacetime-tensor
operators also forms a gauge-covariant spacetime-tensor
operator.
Building the Lagrange density L using all possible

gauge-covariant spacetime-tensor operators would intro-
duce many redundancies due to relationships between
various mixtures of operators. It is therefore useful to work

instead with a standard basis set that has no or controlled
redundancies. The key result here is that any mixture of g,
R, F, Γ, and D can be written in the standard form

½ðDðn1ÞRÞ � � � ðDðntÞRÞ�½ðDðm1ÞFÞ � � � ðDðmsÞFÞ�ΓDðlÞ; ð45Þ

where all indices on spacetime-tensor fields are omitted for
simplicity. In this expression, we introduce the notation

DðnÞ ≡ 1

n!

X
Dα1Dα2 � � �Dαn ð46Þ

as a symmetric sum over the n indices. Note that explicit
factors of the metric tensor gμν can safely be disregarded in
the form (45), as gμν commutes with covariant derivatives
and all other operators.
To prove the result (45), we follow a path similar to the

proof of Eq. (2) in Ref. [74]. It suffices to consider the case
that the operator (45) acts on a Dirac fermion field ψ , as
other cases are both similar and simpler. Using the product
rule for covariant derivatives, any mixture ofD, R, F, and Γ
can be expressed in block form as

O ¼
X

ðDD � � �DRÞ � � � ðDD � � �DRÞ
× ðDD � � �DFÞ � � � ðDD � � �DFÞΓDD � � �D; ð47Þ

where we use DΓ ¼ 0, which follows from Eq. (5). It
therefore suffices to prove that operators of the form
Dα1Dα2 � � �Dαn can be expressed as linear combinations
of the basis (45). This can be achieved by mathematical
induction. The case n ¼ 1 follows directly from the
definition of DðnÞ. Suppose the proposition holds for
n ≤ k. Then, we can decompose Dα1Dα2 � � �Dαkþ1

using
Young tableaux,

ð48Þ

The first term on the right-hand side is of the form Dðkþ1Þ.
The second term contains at least one commutator of
two covariant derivatives, as proved in Ref. [74]. Direct
calculation shows that

½Dμ; Dν� ¼ ½D⋆ μ; D
⋆
ν� þ

1

4
iRκλμνeκaeλbσab − igFμν; ð49Þ

where the commutator on the right-hand side generates a
combination of curvature tensors, so the commutator of
covariant derivatives yields factors of R, F, and Γ. The
remaining part of the second Young tableau (48) thus
contains at most k − 1 < k covariant derivatives. The
proposition therefore holds for n ¼ kþ 1, concluding
the proof.
Next, we consider the linear independence of the

operators (45). Note first that the operators DðniÞR and
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DðnjÞR are linearly independent when ni ≠ nj because they
have different mass dimensions. Since DðniÞR commutes
withDðnjÞR, we can impose n1 ≤ � � � ≤ nt on the basis (45).
Similarly,DðniÞF andDðnjÞF are linearly independent when
ni ≠ nj, but they commute only for Abelian gauge field
theory. In the Abelian case, we can therefore choose the
linearly independent standard basis as

f½ðDðn1ÞRÞ � � � ðDðntÞRÞ�½ðDðm1ÞFÞ � � � ðDðmsÞFÞ�ΓDðlÞ
jn1 ≤ � � � ≤ nt; m1 ≤ � � � ≤ msg: ð50Þ

However, in a non-Abelian gauge theory, we choose
instead the basis

f½ðDðn1ÞRÞ � � � ðDðntÞRÞ�½ðDðm1ÞFÞ � � � ðDðmsÞFÞ�ΓDðlÞ

jn1 ≤ � � � ≤ ntg: ð51Þ

This basis is linearly independent in some cases and is
almost linearly dependent in others, depending on the
structure of the gauge group [74].
In building a Hermitian Lagrange density, it is useful to

have explicit expressions for the Hermitian conjugations of
the operators (45). Including fermions to form bilinears, we
find

½ðDðm0ÞψÞðDðm1ÞFβ1γ1Þ � � � ðDðmsÞFβsγsÞΓðDðmsþ1ÞψÞ�†
¼ ðDðmsþ1ÞψÞðDðmsÞFβsγsÞ � � � ðDðm1ÞFβ1γ1ÞΓðDðm0ÞψÞ:

ð52Þ
Any pieces involvingDðnÞR can be omitted because they are
independently real and commutewith all other operators. The
result (52) takes the same formas Eq. (13) inRef. [74], but the
covariant derivatives now also include terms involving the
spacetimeand spin connections.The proof ofEq. (52) follows
the path given in Ref. [74].

B. Pure-gravity and background sector

With the construction of generic gauge-invariant space-
time-tensor operators in hand, we can address specific
sectors of the effective field theory in turn. In this subsection,
we consider operators involving pure-gravity fields.

For the pure-gravity sector, it is convenient to distinguish
terms in the Lagrange density Lg according to mass
dimension. We therefore write

Lg¼
1

2κ
ðLg0þLð2Þ

g þLð3Þ
g þLð4Þ

g þLð5Þ
g þLð6Þ

g þ���Þ; ð53Þ

where 1=2κ ≡ 1=16πGN ≃ 3 × 1036 GeV2 is the gravita-
tional coupling constant formed from the Newton
gravitational constant GN . The term Lg0 ¼ R − 2Λ is the
conventional Einstein-Hilbert expression with cosmologi-

cal constant, while the terms LðdÞ
g represent contributions to

the effective field theory. Note that each individual com-

ponent LðdÞ
g has mass dimension two, but by convention the

superscript d represents the mass dimension of the dynami-

cal operator in LðdÞ
g including the factor of the gravitational

coupling constant. For example, Lð4Þ
g includes terms with

the Riemann tensor as dynamical operator, which in this
convention is of mass dimension two.
Table V displays all terms in LðdÞ

g with d ≤ 6 in
schematic form. The first column lists each component
Lagrange density given in Eq. (53), while the second
column specifies the corresponding operator structures that
can appear. In this schematic notation, each instance of k
can represent a distinct background even when occurring in
a single term, and the various quantities k̆ may also be
distinct. In each row, terms without background derivatives
Dk are listed first. All terms are invariant under general

coordinate transformations except for LðdÞ
g;δ with d ¼ 3 or 5,

which transform into a total derivative and hence maintain
invariance of the action rather than the Lagrange density.
Throughout Table V, all indices and any numerical or

dimensionful factors are omitted for simplicity. In each
term, we can absorb into k̆ any metric, vierbein, or Levi-
Civita factors, so all indices on DðnÞk̄ and DðnÞR can be

assumed distinct and contracted with indices on k̆. To
maintain Hermiticity of the Lagrange density, all back-
grounds are taken to be real. The mass dimensionality of a
given background k or k̆ is fixed by the operator structure of

the Lagrange density. As examples, the quantity k̆ in Lð2Þ
g

has mass dimension d ¼ 2, while k̆ in the term k̆R is
dimensionless. The mass dimension of k may be different

TABLE V. Schematic structure of terms with d ≤ 6 in the Lagrange density Lg.

Component Expression

Lð2Þ
g k̆

Lð3Þ
g Lð3Þ

g;δ þ k̆ðDkÞ
Lð4Þ
g k̆Rþ k̆ðDkÞðDkÞ

Lð5Þ
g k̆DRþ Lð5Þ

g;δ þ k̆ðDkÞRþ k̆ðDkÞðDkÞðDkÞ þ k̆ðDkÞðDð2ÞkÞ
Lð6Þ
g k̆RRþ k̆Dð2ÞRþ k̆ðDkÞðDkÞRþ k̆ðDð2ÞkÞRþ k̆ðDkÞðDkÞðDkÞðDkÞ þ k̆ðDkÞðDkÞðDð2ÞkÞ þ k̆ðDð2ÞkÞðDð2ÞkÞ
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in different theories, so for convenience and simplicity we
adopt the convention that the mass dimension of k is
disregarded in assigning a given term to a particular

component LðdÞ
g . For instance, the term k̆ðDkÞ is assigned

to Lð3Þ
g irrespective of the actual mass dimension of k. The

number of derivatives D is instead the relevant factor in
defining the mass dimension of terms involving back-
ground derivatives.
Since the commutator of two covariant derivatives

generates curvature factors, and since the product of two
backgrounds can schematically be viewed as a single
background, certain terms can be omitted from the table
without loss of generality. For example, the term k̆½D;D�k
is schematically equivalent to the term k̆R, which itself is
typically included in k̆ðDkÞðDkÞ up to a surface term. The
only exception arises when the background is index free,
with k̆R representing the term kðxÞgαγgβδRαβγδ.
More insight can be obtained from the explicit forms of

the components of the Lagrange density Lg. First, consider
terms without background derivatives Dk. The curvature
plays a central role in most of these terms. Table VI
displays the explicit form of all terms in Lg for d ≤ 8. In
this table, unlike others in this section, we include operators
with d ¼ 7 and 8 because they are comparatively few in
number and because certain d ¼ 8 backgrounds have
recently been constrained by observational data [60,70].
Each row of the table lists a component of Lg constructed
from operators of a given mass dimension, followed by the
explicit form of the corresponding terms. In each term, the
combination k̆ of backgrounds is understood to be real and
to inherit from the dynamical operator the appropriate
symmetry under permutation of the indices. Most of the
operators can be constructed by inspection from Table V.

The components LðdÞ
g;δ with d ¼ 3 and 5 appearing in

Table V, which are general coordinate invariant only up

to a surface term, are represented in Table VI by the three

terms with backgrounds ðk̆ð3ÞΓ Þμ, ðk̆ð5ÞCS;1Þμ, and ðk̆ð5ÞCS;2Þμ. The
operators associated with the latter two are Chern-Simons
terms expressed using the vierbein and spin connection. To
preserve general coordinate invariance of the action, these
three backgrounds must obey

Dμðk̆ð3ÞΓ Þμ ¼ 0;

Dμðk̆ð5ÞCS;1Þν −Dνðk̆ð5ÞCS;1Þμ ¼ 0;

Dμðk̆ð5ÞCS;2Þν −Dνðk̆ð5ÞCS;2Þμ ¼ 0: ð54Þ

The first equation implies ∂μ½ðk̆ð3ÞΓ Þμ=e� ¼ 0 in any coor-

dinate frame. The second equation implies ∂μðk̆ð5ÞCS;1Þν−
∂νðk̆ð5ÞCS;1Þμ ¼ 0, so if the topology is trivial then we can

write ðk̆ð5ÞCS;1Þμ ¼ ∂μk for some scalar background kðxÞ.
A similar result holds for the third equation.
Next, consider the terms in Table V involving one or

more factors of Dk that cannot be moved onto the
dynamical operators via integration by parts. Since differ-
ent backgrounds and hence distinct Dk factors can appear
in a given term, an explicit listing of all such terms is
impractical in the general case. We can, however, gain
useful insight about generic terms with background deriv-
atives Dk by considering ones constructed explicitly using
a one-index background because any given background
kμ���ν���a��� can be expressed as a linear combination of
products of backgrounds with only one index. For example,
a two-index background kμν can be viewed as a linear
combination of products of eight one-index backgrounds as
follows. Given kμν in a specific coordinate system, we can
define four one-index backgrounds in these coordinates via
ðkμÞν ≡ kμν and another four via ðk0μÞν ≡ δμ

ν. In the chosen
coordinate system, it then follows that kμν ¼ P

λðkλÞνðk0λÞμ.

TABLE VI. Terms with d ≤ 8 and without background derivatives in the Lagrange density Lg.

Component Expression

Lg0 R − 2Λ
Lð2Þ
g k̆ð2Þ

Lð3Þ
g ðk̆ð3ÞΓ ÞμΓα

μα

Lð4Þ
g ðk̆ð4ÞR ÞαβγδRαβγδ

Lð5Þ
g ðk̆ð5ÞD ÞαβγδκDκRαβγδ þ ðk̆ð5ÞCS;1Þκϵκλμνηacηbdðωλ

ab∂μων
cd þ 2

3
ωλ

abωμ
ceωνe

dÞ
þðk̆ð5ÞCS;2Þκϵκλμνϵabcdðωλ

ab∂μων
cd þ 2

3
ωλ

abωμ
ceωνe

dÞ
Lð6Þ
g ðk̆ð6ÞD ÞαβγδκλDðκDλÞRαβγδ þ ðk̆ð6ÞR Þα1β1γ1δ1α2β2γ2δ2Rα1β1γ1δ1Rα2β2γ2δ2

Lð7Þ
g ðk̆ð7ÞD ÞαβγδκλμDðκDλDμÞRαβγδ þ ðk̆ð7ÞDRÞα1β1γ1δ1α2β2γ2δ2κRα1β1γ1δ1DκRα2β2γ2δ2

Lð8Þ
g ðk̆ð8ÞD ÞαβγδκλμνDðκDλDμDνÞRαβγδ þ ðk̆ð8ÞDR;1Þα1β1γ1δ1α2β2γ2δ2κλRα1β1γ1δ1DðκDλÞRα2β2γ2δ2

þðk̆ð8ÞDR;2Þα1β1γ1δ1α2β2γ2δ2κλðDκRα1β1γ1δ1ÞðDλRα2β2γ2δ2Þ
þðk̆ð8ÞR Þα1β1γ1δ1α2β2γ2δ2α3β3γ3δ3Rα1β1γ1δ1Rα2β2γ2δ2Rα3β3γ3δ3
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Provided we define the eight one-index backgrounds to
transform as four-vectors under general coordinate trans-
formations, this expression is a tensor expression and hence
is valid in any coordinate system, as required.
Taking advantage of this result, we can consider a

scenario involving a single one-index background kμ as
an example to gain insight. Table VII displays possible
operators of mass dimension d ≤ 6 involving derivatives of
a background kμ with one covariant spacetime index. The

first column lists LðdÞ
k for different values of d, while the

second column displays the corresponding possible terms
involving Dμkν. As before, each combination k̆ of back-
grounds is taken as real and inherits the symmetry under
index permutation of the operator, and each operator can be
constructed using Table V as a guide. Following the
convention described above, the assigned value of the
mass dimension d of a particular term is defined for
convenience by the number of derivatives D involved.
As a result, the various combinations k̆ðdÞ at given d may
have different mass dimensions and may incorporate
different powers of kμ. Notice also that the combinations

k̆ðdÞ with even numbers of indices cannot contain terms
linear in kμ. For example, the leading-order kμ-dependent

term in ðk̆ð3ÞDkÞκλ is ðk̆ð3ÞDkÞκλ ∝ kμkνgμκgνλ, which produces a

cubic coupling in kμ for the component Lð3Þ
k .

If the breaking is spontaneous, the type of index carried
by the background has no effect on the physics, as
discussed in Sec. II C. In this scenario, Table VII also
encompasses operators of mass dimension d ≤ 6 con-
structed from a single background kμ or ka, provided each
instance of kμ in the table is replaced with gμνkν or eμaka,
respectively. However, if the breaking is explicit, then each
of the three types of single-index background kμ, kμ, and ka

can lead to different physics. If all three are present, then we
can write

Lð3Þ
k ¼ ðk̆ð3ÞDk;1ÞμνDμk̄ν þ ðk̆ð3ÞDk;2ÞμνDμk̄ν þ ðk̆ð3ÞDk;3ÞμaDμk̄a;

ð55Þ

with distinct combinations k̆ for each term.
Taken together, the results in this subsection provide the

explicit form of all terms at d ≤ 6 in the expansion (57) of
Ref. [2] in the zero-torsion limit. Our construction covers
both the pure-gravity sector and any background dynamics,
allowing for either spontaneous or explicit violations of
spacetime symmetries. It opens the way to broadening
theoretical explorations of many issues including, for exam-
ple, the t puzzle [10,50], the relevance of spontaneous
violation [121], and the influence of gravitational effects on
thematter sector [122]. It also has potential applications to the
numerous ongoing experimental searches for backgrounds.

C. Matter sector

Next, we turn attention to the matter sector, including
pure matter, matter-gravity, and matter-background terms.
It is convenient to separate the discussion according to the
type of matter involved. In what follows, we first consider
the inclusion of gauge fields, then Dirac spinors, and finally
complex scalar fields.

1. Gauge fields

In the gauge sector, we consider for definiteness a
Lagrange density LA determining the behavior of a gauge
field Aμ with gauge field strength Fμν in the U representa-
tion of the gauge group. This follows the setup adopted in
Sec. II of Ref. [74] and summarized in Sec. III A above.
Couplings of Aμ to gravity and backgrounds are included in
this sector. It is convenient to split LA into pieces according
to the mass dimension d of the dynamical operator,

LA ¼LA0þLð1Þ
A þLð2Þ

A þLð3Þ
A þLð4Þ

A þLð5Þ
A þ�� � : ð56Þ

The first piece LA0 ¼ trðFμνFμνÞ=2 is the usual Yang-Mills
term in curved spacetime expressed with a trace taken in the
gauge space. On each of the other pieces, the superscript
indicates the value of d.
Table VIII lists the schematic form of all terms in LðdÞ

A
with mass dimension d ≤ 6. The first entry in each row
shows a component of LA with fixed d, while the second
entry lists the schematic forms of the corresponding
operators. In this notation, each occurrence of k in a given
term can represent a distinct background, and the combi-
nations k̆ appearing in different terms can also be distinct.
Terms in the pure gauge sector are shown first, followed by
terms with gauge-curvature couplings, and then by terms
with background derivatives Dk. All terms in the Lagrange
density are invariant under gauge transformations except

LðdÞ
A;δ with d ¼ 1 and 3, which become total derivatives and

thus leave the action invariant instead. The table omits all

TABLE VII. Terms with d ≤ 6 involving derivatives of a single
background kμ.

Component Expression

Lð3Þ
k ðk̆ð3ÞDkÞκλðDκkλÞ

Lð4Þ
k ðk̆ð4ÞDkÞκλμνðDκkλÞðDμkνÞ

Lð5Þ
k ðk̆ð5ÞDkÞκλμνρσðDκkλÞðDμkνÞðDρkσÞ,

ðk̆ð5ÞDDkÞκλμνρðDκkλÞðDðμDνÞkρÞ,
ðk̆ð5ÞDkRÞκλμνρσðDκkλÞRμνρσ

Lð6Þ
k ðk̆ð6ÞDkÞκλμνρστυðDκkλÞðDμkνÞðDρkσÞðDτkυÞ,

ðk̆ð6ÞDDkÞκλμνρστðDκkλÞðDμkνÞðDðρDσÞkτÞ,
ðk̆ð6ÞDDkDDkÞκλμνρσðDðκDλÞkμÞðDðνDρÞkσÞ,

ðk̆ð6ÞDkRÞκλμνρστυðDκkλÞðDμkνÞRρστυ,

ðk̆ð6ÞDDkRÞκλμνρστðDðκDλÞkμÞRνρστ
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indices and factors, and all backgrounds can be taken as
real except for the one involving the operator trðFFFÞ.
Note that the components LðdÞ

A have mass dimension four,

unlike the components LðdÞ
g in Eq. (53). Other properties of

the backgrounds k and the combinations k̆ follow those
described for Table V.
The explicit form of terms in LA without background

derivatives are displayed in Table IX for d ≤ 6. The
structure of the table follows that of Table VIII, and the
various expressions can be derived using the latter as a
guide. Each combination k̆ appearing in Table IX is
understood to have index symmetry determined by the
index structure of the corresponding dynamical operator.
All combinations k̆ are real except for the one controlling

the dynamical operator trðFκλFμνFρσÞ. The terms Lð1Þ
A;δ and

Lð3Þ
A;δ in Table VIII are explicitly given in Table IX as the

terms with backgrounds ðk̆ð1ÞÞμ and ðk̆ð3ÞCSÞκ, with the latter
governing the non-Abelian Chern-Simons operator.

To maintain gauge symmetry, these backgrounds must
satisfy the conditions

Dμðk̆ð1ÞÞμ ¼ 0; Dμðk̆ð3ÞCSÞν −Dνðk̆ð3ÞCSÞμ ¼ 0: ð57Þ

The first of these expressions implies ∂μ½ðk̆ð1ÞÞμ=e� ¼ 0,

while the second implies ∂μðk̆ð3ÞCSÞμ − ∂νðk̆ð3ÞCSÞν ¼ 0. If the
topology is trivial, a scalar background field kðxÞ can be

found such that ðk̆ð3ÞCSÞμ ¼ ∂μk, in which case its contribu-

tion to Lð3Þ
A is equivalent under partial integration to a d ¼ 4

term kϵκλμνFκλFμν. If the topology is nontrivial, however,

the Chern-Simons contribution to Lð3Þ
A can produce inde-

pendent physical effects. Note that the putative d ¼ 2 term
k̆μνtrðFμνÞ ¼ k̆μνtrð∂μAν − ∂νAμÞ involves a combination

of partial derivatives of Aμ, so it is included in Lð1Þ
A up to a

surface term. We also omit terms such as ðtrFÞðtrð� � �FÞÞ
because these terms either vanish if the gauge group is

TABLE VIII. Schematic structure of terms with d ≤ 6 in the gauge Lagrange density LA.

Component Expression

Lð1Þ
A Lð1Þ

A;δ

Lð3Þ
A Lð3Þ

A;δ þ k̆ðDkÞtrðFÞ
Lð4Þ
A

k̆trðFFÞ þ k̆trðDð2ÞFÞ þ k̆RtrðFÞ þ k̆ðDkÞðDkÞtrðFÞ þ k̆ðDð2ÞkÞtrðFÞ
Lð5Þ
A

k̆trðFDFÞ þ k̆trðDð3ÞFÞ þ k̆RtrðDFÞ þ k̆ðDRÞtrðFÞ
þk̆ðDkÞRtrðFÞ þ k̆ðDkÞðDkÞðDkÞtrðFÞ þ k̆ðDkÞðDð2ÞkÞtrðFÞ þ k̆ðDð3ÞkÞtrðFÞ

Lð6Þ
A

k̆trðFDð2ÞFÞ þ k̆trððDFÞðDFÞÞ þ k̆trðDð4ÞFÞ þ ½k̆trðFFFÞ þ H:c:�
þk̆RtrðFFÞ þ k̆RtrðDð2ÞFÞ þ k̆ðDð2ÞRÞtrðFÞ þ k̆ðDRÞtrðDFÞ þ k̆RRtrðFÞ
þk̆ðDkÞtrðFDFÞ þ k̆ðDkÞðDkÞtrðFFÞ þ k̆ðDð2ÞkÞtrðFFÞ þ k̆ðDð4ÞkÞtrðFÞ

þk̆ðDkÞðDkÞðDkÞðDkÞtrðFÞ þ k̆ðDkÞðDkÞðDð2ÞkÞtrðFÞ þ k̆ðDð2ÞkÞðDð2ÞkÞtrðFÞ þ k̆ðDkÞðDð3ÞkÞtrðFÞ
þk̆ðDkÞðDRÞtrðFÞ þ k̆ðDkÞðDkÞRtrðFÞ þ k̆ðDð2ÞkÞRtrðFÞ

TABLE IX. Terms with d ≤ 6 and without background derivatives in the gauge Lagrange density LA.

Component Expression

LA0 − 1
2
trðFμνFμνÞ

Lð1Þ
A −ðk̆ð1ÞÞμtrðAμÞ

Lð3Þ
A ðk̆ð3ÞCSÞκϵκλμνtrðAλFμν þ 2

3
igAλAμAνÞ þ ðk̆ð3ÞDFÞαμνtrðDαFμνÞ

Lð4Þ
A − 1

2
ðk̆ð4ÞF ÞκλμνtrðFκλFμνÞ − ðk̆ð4ÞDFÞαβμνtrðDðαDβÞFμνÞ − ðk̆ð4ÞRFÞαβγδμνRαβγδtrðFμνÞ

Lð5Þ
A

1
2
ðk̆ð5ÞD ÞακλμνtrðFκλDαFμνÞ þ ðk̆ð5ÞDFÞαβγμνtrðDðαDβDγÞFμνÞ

þðk̆ð5ÞRDFÞαβγδϵμνRαβγδtrðDϵFμνÞ þ ðk̆ð5ÞDRFÞαβγδϵμνðDϵRαβγδÞtrðFμνÞ
Lð6Þ
A − 1

2
ðk̆ð6ÞD ÞαβκλμνtrðFκλDðαDβÞFμνÞ − 1

2
ðk̆ð6ÞDFDFÞαβκλμνtrððDαFκλÞðDβFμνÞÞ

−ðk̆ð6ÞDFÞαβγδμνtrðDðαDβDγDδÞFμνÞ − 1
12
½ðk̆ð6ÞF Þκλμνρσ trðFκλFμνFρσÞ þ H:c:�

− 1
2
ðk̆ð6ÞRFFÞαβγδκλμνRαβγδtrðFκλFμνÞ − ðk̆ð6ÞRDDFÞαβγδϵζμνRαβγδtrðDðϵDζÞFμνÞ

−ðk̆ð6ÞDDRFÞαβγδϵζμνðDðϵDζÞRαβγδÞtrðFμνÞ − ðk̆ð6ÞDRDFÞαβγδϵζμνðDϵRαβγδÞtrðDζFμνÞ
−ðk̆ð6ÞRRFÞα1β1γ1δ1α2β2γ2δ2μνRα1β1γ1δ1Rα2β2γ2δ2 trðFμνÞ
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SUðNÞ or are incorporated in terms such as trðF � � �FÞ if
the gauge group is U(1), but their inclusion may be
appropriate for other gauge groups.

2. Fermions

Consider next the fermion sector, including couplings to
gravity and to gauge fields. For definiteness, we adopt the
scenario described in Sec. II of Ref. [74] and outlined in
Sec. III A above, with a Dirac fermion ψ of mass mψ lying
in the U representation of the gauge group. The Lagrange
density Lψ can be split into components containing
dynamical operators with definite mass dimension d,

Lψ ¼ Lψ0 þ Lð3Þ
ψ þ Lð4Þ

ψ þ Lð5Þ
ψ þ Lð6Þ

ψ þ � � � : ð58Þ
The term Lψ0 is the usual Dirac Lagrange density Lψ0 ¼
ψ̄ðeμaγaiDμ −mψ Þψ=2þ H:c:, which includes minimal
couplings to gravity and to the non-Abelian field. All

components LðdÞ
ψ have overall mass dimension four, with

the superscript d indicating the mass dimension of the
associated dynamical operator.
Table X provides the schematic structure of terms in LðdÞ

ψ

of mass dimension d ≤ 6. The first column lists the
components of Lψ , while the second column displays
the corresponding operators. In this schematic context,
the backgrounds k or combinations k̆ can all be distinct,
even within a single term. In a given row, terms involving
fermions and covariant derivatives are listed first, then ones
involving curvature couplings and gauge couplings, and
finally ones with background derivatives Dk. All indices
and constants are omitted for simplicity, and all structures
involving Hermitian combinations of Dirac matrices are
represented by Γ. The factor H.c. appearing at the end of

most expressions for a given component LðdÞ
ψ represents the

addition of the Hermitian conjugate of all terms explicitly
written for that component. In principle, any background k
or combination k̆ can be taken as complex, but its
imaginary part is contained up to surface terms in the real
parts of other backgrounds. For example, the imaginary
part of k̆ in k̆ ψ̄ ΓiDψ is contained in the real part of
k̆ðDk̄Þψ̄Γψ , and the imaginary part of k̆ in k̆Rψ̄ΓiDψ is
contained in the real parts of k̆ðDRÞψ̄Γψ and k̆ðDk̄ÞRψ̄Γψ .
To avoid redundancy, all background fields in this

schematic notation can therefore be taken as real.
Further properties of the backgrounds k and the combina-
tions k̆ discussed for Table V also hold here.
To offer more insight into the content of Lψ , we provide

in Table XI the explicit form of all terms in Lψ with
operators of mass dimension d ≤ 6 and without back-
ground derivatives, omitting total-derivative terms. The
structure of this table matches that of Table X. The notation
for the combinations k̆ appearing in this table is chosen to
match standard conventions in the literature, with different
symbols distinguishing the spin and CPT properties of the
various dynamical operators as usual, where CPT is the
product of charge conjugation C, parity inversion P, and
time reversal T. All backgrounds can be taken real. The
index symmetry of each background k̆ is understood to
match the index symmetry of the associated dynamical
operator. The position of the indices is also chosen to match
conventions in the literature. In particular, the notation in

Lð3Þ
ψ and Lð4Þ

ψD involves covariant indices on the back-
grounds in agreement with Ref. [2] and reducing in
Minkowski spacetime to Ref. [81], while the usage of
contravariant background indices in LðdÞ with d ≥ 5 is
compatible with that in published works discussing the
nonminimal fermion sector, such as Refs. [74,123].
The reader is reminded that for spontaneous breaking the

index position on the background has no effect on the
physics, as discussed in Sec. II C, while for explicit breaking
the choice of index position establishes a definition of the
corresponding physical effects. For example, in explicit
breaking the physical effects of the two backgrounds b̄μ and
b̄0μ can be different, with these two possibilities contained
among others in b̆μ as b̄μ and gμνb̄0ν. To achieve an
unambiguous statement, experiments measuring a given
background component must therefore report results on the
background using a specific convention. A separate con-
fusion can arise because raising or lowering indices on a
given background component can introduce spurious signs
and coordinate dependences. This issue exists already in
Minkowski spacetime but can be particularly acute in
gravitational experiments. It could, for example, be prob-
lematic to report results for a quantity k̄μ defined as k̄μ ≡
gμνb̄ν using data from an experiment sensitive to a back-
ground b̄μ, given that gμν itself is a nontrivial object.

TABLE X. Schematic structure of terms with d ≤ 6 in the fermion Lagrange density Lψ.

Component Expression

Lð3Þ
ψ k̆ ψ̄ Γψ

Lð4Þ
ψ k̆ ψ̄ ΓiDψ þ k̆ðDkÞψ̄Γψ þ H:c:

Lð5Þ
ψ k̆ ψ̄ Γi2Dð2Þψ þ k̆ ψ̄ ΓFψ þ k̆Rψ̄Γψ þ k̆ðDkÞψ̄ΓiDψ þ k̆ðDkÞðDkÞψ̄Γψ þ k̆ðDð2ÞkÞψ̄Γψ þ H:c:

Lð6Þ
ψ k̆ ψ̄ Γi3Dð3Þψ þ k̆Rψ̄ΓiDψ þ k̆ðDRÞψ̄Γψ þ k̆ ψ̄ ΓFiDψ þ k̆ ψ̄ ΓðDFÞψ þ k̆ðψ̄ΓψÞðψ̄ΓψÞ

þk̆ðDkÞψ̄Γi2Dð2Þψ þ k̆ðDkÞRψ̄Γψ þ k̆ðDkÞψ̄ΓFψ þ k̆ðDð2ÞkÞψ̄ΓiDψ þ k̆ðDkÞðDkÞψ̄ΓiDψ

þk̆ðDkÞðDð2ÞkÞψ̄Γψ þ k̆ðDkÞðDkÞðDkÞψ̄Γψ þ k̆ðDð3ÞkÞψ̄Γψ þ H:c:
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For any d, the structure of the couplings involving
gravity, gauge, and fermion fields can be written in
schematic form as

L0 ⊃ k̆ðDkÞ � � � ðDkÞðDRÞ � � � ðDRÞ
× ðtr½ðDFÞ � � � ðDFÞ�Þ � � � ðtr½ðDFÞ � � � ðDFÞ�Þ
× ½ðDψÞðDFÞ � � � ðDFÞΓðDψÞ� � � �
× � � � ½ðDψÞðDFÞ � � � ðDFÞΓðDψÞ� þ H:c:; ð59Þ

where D here denotes any symmetric combination of
derivatives. Inspection reveals that the only terms of this
form absent from Table XI involve the operators trðFÞψ̄Γψ ,
trðFÞψ̄ΓiDψ , and trðDFÞψ̄Γψ . These vanish for gauge
groups with traceless adjoint generators, including SUðNÞ,
but they reduce to terms in Table XI if the gauge group is
Abelian. Otherwise, the operators of lowest mass dimen-
sion that involve traces of powers of F take the schematic
form trðFFÞψ̄Γψ , which have d ¼ 7. Although this value
of d lies outside the range of Table XI, the unique structure

TABLE XI. Terms with d ≤ 6 and without background derivatives in the fermion Lagrange density Lψ.

Component Expression

Lψ0
1
2
ψ̄ðeμaγaiDμ −mψ Þψ þ H:c:

Lð3Þ
ψ −m̆0ψ̄ψ − im̆5ψ̄γ5ψ − ăκeκaψ̄γaψ − b̆κeκaψ̄γ5γaψ − 1

2
H̆κλeκaeλbψ̄σabψ

Lð4Þ
ψD

− 1
2
c̆κμeκaeμbeνbψ̄γaiDνψ − 1

2
d̆κμeκaeμbeνbψ̄γ5γaiDνψ

− 1
2
ĕμeμbeνbψ̄ iDνψ − 1

2
if̆μeμbeνbψ̄γ5iDμψ − 1

4
ğκλμeκaeλbeμbeνbψ̄σabiDνψ þ H:c:

Lð5Þ
ψD − 1

2
ðm̆ð5ÞÞμνψ̄ iDðμiDνÞψ − 1

2
iðm̆ð5Þ

5 Þμνψ̄γ5iDðμiDνÞψ
þ 1

2
ðăð5ÞÞκμνeκaψ̄γaiDðμiDνÞψ þ 1

2
ðb̆ð5ÞÞκμνeκaψ̄γ5γaiDðμiDνÞψ

− 1
4
ðH̆ð5ÞÞκλμνeκaeλbψ̄σabiDðμiDνÞψ þ H:c:

Lð5Þ
ψR −ðm̆ð5Þ

R ÞμνρσRμνρσψ̄ψ − iðm̆ð5Þ
5R ÞμνρσRμνρσψ̄γ5ψ

−ðăð5ÞR ÞκμνρσeκaRμνρσψ̄γ
aψ − ðb̆ð5ÞR ÞκμνρσeκaRμνρσψ̄γ5γ

aψ − 1
2
ðH̆ð5Þ

R ÞκλμνρσeκaeλbRμνρσψ̄σ
abψ

Lð5Þ
ψF − 1

2
ðm̆ð5Þ

F Þμνψ̄Fμνψ − 1
2
iðm̆ð5Þ

5F Þμνψ̄γ5Fμνψ

þ 1
2
ðăð5ÞF Þκμνeκaψ̄γaFμνψ þ 1

2
ðb̆ð5ÞF Þκμνeκaψ̄γ5γaFμνψ − 1

4
ðH̆ð5Þ

F Þκλμνeκaeλbψ̄σabFμνψ

Lð6Þ
ψD − 1

2
ðc̆ð6ÞÞκμνρeκaψ̄γaiDðμiDνiDρÞψ − 1

2
ðd̆ð6ÞÞκμνρeκaψ̄γ5γaiDðμiDνiDρÞψ

þ 1
2
ðĕð6ÞÞμνρψ̄iDðμiDνiDρÞψ þ 1

2
iðf̆ð6ÞÞμνρψ̄γ5iDðμiDνiDρÞψ

þ 1
4
ðğð6ÞÞκλμνρeκaeλbψ̄σabiDðμiDνiDρÞψ þ H:c:

Lð6Þ
ψR − 1

2
ðc̆ð6ÞR ÞκμνρστeκaRνρστψ̄γ

aiDμψ − 1
2
ðd̆ð6ÞR ÞκμνρστeκaRνρστψ̄γ5γ

aiDμψ

− 1
2
ðĕð6ÞR ÞμνρστRνρστψ̄ iDμψ − 1

2
iðf̆ð6ÞR ÞμνρστRνρστψ̄γ5iDμψ

− 1
4
ðğð6ÞR ÞκλμνρστeκaeλbRνρστψ̄σ

abiDμψ þ H:c:

Lð6Þ
ψDR −ðm̆ð6Þ

DRÞμνρστðDμRνρστÞψ̄ψ − iðm̆ð6Þ
5DRÞμνρστðDμRνρστÞψ̄γ5ψ

−ðăð6ÞDRÞκμνρστeκaðDμRνρστÞψ̄γaψ − ðb̆ð6ÞDRÞκμνρστeκaðDμRνρστÞψ̄γ5γaψ
− 1

2
ðH̆ð6Þ

DRÞκλμνρστeκaeλbðDμRνρστÞψ̄σabψ
Lð6Þ
ψF − 1

4
ðc̆ð6ÞF Þκμνρeκaψ̄γaFνρiDμψ − 1

4
ðd̆ð6ÞF Þκμνρeκaψ̄γ5γaFνρiDμψ

þ 1
4
ðĕð6ÞF Þμνρψ̄FνρiDμψ þ 1

4
iðf̆ð6ÞF Þμνρψ̄γ5FνρiDμψ þ 1

8
ðğð6ÞF Þκλμνρeκaeλbψ̄σabFνρiDμψ þ H:c:

Lð6Þ
ψDF − 1

2
ðm̆ð6Þ

DFÞμνρψ̄ðDμFνρÞψ − 1
2
iðm̆ð6Þ

5DFÞμνρψ̄γ5ðDμFνρÞψ
þ 1

2
ðăð6ÞDFÞκμνρeκaψ̄γaðDμFνρÞψ þ 1

2
ðb̆ð6ÞDFÞκμνρeκaψ̄γ5γaðDμFνρÞψ

− 1
4
ðH̆ð6Þ

DFÞκλμνρeκaeλbψ̄σabðDμFνρÞψ
Lð6Þ
ψψ k̆SSðψ̄ψÞðψ̄ψÞ − k̆PPðψ̄γ5ψÞðψ̄γ5ψÞ þ ik̆SPðψ̄ψÞðψ̄γ5ψÞ

−ðk̆SVÞκeκaðψ̄ψÞðψ̄γaψÞ − ðk̆SAÞκeκaðψ̄ψÞðψ̄γ5γaψÞ þ 1
2
ðk̆STÞκλeκaeλbðψ̄ψÞðψ̄σabψÞ

−iðk̆PVÞκeκaðψ̄γ5ψÞðψ̄γaψÞ − iðk̆PAÞκeκaðψ̄γ5ψÞðψ̄γ5γaψÞ þ 1
2
iðk̆PTÞκλeκaeλbðψ̄γ5ψÞðψ̄σabψÞ

þ 1
2
ðk̆VVÞκλeκaeλbðψ̄γaψÞðψ̄γbψÞ þ 1

2
ðk̆AAÞκλeκaeλbðψ̄γ5γaψÞðψ̄γ5γbψÞ

− 1
2
ðk̆VTÞκλμeκaeλbeμcðψ̄γaψÞðψ̄σbcψÞ − 1

2
ðk̆ATÞκλμeκaeλbeμcðψ̄γ5γaψÞðψ̄σbcψÞ

þðk̆VAÞκλeκaeλbðψ̄γaψÞðψ̄γ5γbψÞ þ 1
8
ðk̆TTÞκλμνeκaeλbeμceνdðψ̄σabψÞðψ̄σcdψÞ
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of these terms may be of interest for theoretical and
experimental studies.

3. Scalars

In the scalar sector, we consider first a scenario with a
scalar field ϕ lying in any representation of the gauge
group. Depending on the model of interest and the gauge
group involved, the representation may be complex, real, or
pseudoreal, and it may be different from the representations
of the fermion and gauge fields. The Lagrange density Lϕ

involves all couplings of ϕ, including to gravity, gauge, and
fermion fields as well as self couplings. It can be decom-
posed into a sum of pieces,

Lϕ¼Lϕ0þLð2Þ
ϕ þLð3Þ

ϕ þLð4Þ
ϕ þLð5Þ

ϕ þLð6Þ
ϕ þ���; ð60Þ

where Lϕ0 is a conventional renormalizable Lagrange
density for ϕ that is invariant under gauge transformations,
local Lorentz transformations, and diffeomorphisms.
Typically, Lϕ0 incorporates a kinetic term quadratic in
the covariant derivative of ϕ along with a potential term
involving a globally stable polynomial in ϕ. According to

its sign, the term quadratic in ϕmay represent a scalar mass
or may trigger spontaneous breaking of the gauge sym-
metry. Where compatible with gauge invariance, Lϕ0 also
includes conventional couplings to other sectors. The

components LðdÞ
ϕ have overall mass dimension four, and

they represent corrections in the effective field theory
involving dynamical operators of mass dimension d.
In constructing possible contributions to the terms LðdÞ

ϕ
in the effective field theory, we seek gauge-invariant
operators that are polynomials in ϕ and in covariant
derivatives of ϕ. Any given scalar operator of this type
can be characterized by its mass dimension d and assigned
to a corresponding set VðdÞ. For instance, Vð1Þ contains the
operator ϕ and any independent conjugates, Vð2Þ contains
ϕϕ, Dμϕ, and various conjugates, and Vð3Þ contains ϕϕϕ,
ϕDμϕ,DμDνϕ, and various conjugates. Note that any given
operator in the set VðdÞ may carry up to d − 1 spacetime
indices. The properties of operators quadratic in ϕ at any d
are studied in Ref. [104].
Table XII displays the terms in LðdÞ

ϕ with d ≤ 6 in

schematic form. For each LðdÞ
ϕ with given d shown in

TABLE XII. Schematic structure of terms with d ≤ 6 in the scalar Lagrange density Lϕ.

Component Expression

Lð2Þ
ϕ

k̆Vð2Þ þ k̆ðDkÞVð1Þ

Lð3Þ
ϕ

k̆Vð3Þ þ k̆RVð1Þ þ k̆FVð1Þ þ k̆ðDkÞVð2Þ þ k̆ðDkÞðDkÞVð1Þ þ k̆ðDð2ÞkÞVð1Þ

Lð4Þ
ϕ

k̆Vð4Þ þ k̆RVð2Þ þ k̆FVð2Þ þ k̆ðDRÞVð1Þ þ k̆ðDFÞVð1Þ þ k̆ðDkÞVð3Þ þ k̆ðDkÞRVð1Þ þ k̆ðDkÞFVð1Þ

þk̆ðDkÞðDkÞVð2Þ þ k̆ðDð2ÞkÞVð2Þ þ k̆ðDkÞðDkÞðDkÞVð1Þ þ k̆ðDkÞðDð2ÞkÞVð1Þ þ k̆ðDð3ÞkÞVð1Þ

Lð5Þ
ϕ

k̆Vð5Þ þ k̆RVð3Þ þ k̆FVð3Þ þ k̆ðDRÞVð2Þ þ k̆ðDFÞVð2Þ þ k̆ðψ̄ΓψÞVð2Þ þ k̆ðDð2ÞRÞVð1Þ þ k̆ðDð2ÞFÞVð1Þ

þk̆RRVð1Þ þ k̆FFVð1Þ þ k̆RFVð1Þ þ k̆½ðψ̄ΓDψÞVð1Þ þ H:c:� þ k̆ðDkÞVð4Þ þ k̆ðDkÞRVð2Þ

þk̆ðDkÞFVð2Þ þ k̆ðDkÞðDRÞVð1Þ þ k̆ðDkÞðDFÞVð1Þ þ k̆ðDkÞðDkÞVð3Þ þ k̆ðDkÞðDkÞRVð1Þ

þk̆ðDkÞðDkÞFVð1Þ þ k̆ðDð2ÞkÞVð3Þ þ k̆ðDð2ÞkÞRVð1Þ þ k̆ðDð2ÞkÞFVð1Þ þ k̆ðDkÞðDkÞðDkÞVð2Þ

þk̆ðDkÞðDð2ÞkÞVð2Þ þ k̆ðDð3ÞkÞVð2Þ þ k̆ðDkÞðDkÞðDkÞðDkÞVð1Þ þ k̆ðDkÞðDkÞðDð2ÞkÞVð1Þ

þk̆ðDð2ÞkÞðDð2ÞkÞVð1Þ þ k̆ðDkÞðDð3ÞkÞVð1Þ þ k̆ðDð4ÞkÞVð1Þ

Lð6Þ
ϕ

k̆Vð6Þ þ k̆RVð4Þ þ k̆FVð4Þ þ k̆ðDRÞVð3Þ þ k̆ðDFÞVð3Þ þ k̆ðψΓψÞVð3Þ þ k̆ðDð2ÞRÞVð2Þ þ k̆ðDð2ÞFÞVð2Þ

þk̆RRVð2Þ þ k̆FFVð2Þ þ k̆RFVð2Þ þ k̆½ðψ̄ΓDψÞVð2Þ þ H:c:� þ k̆ðDð3ÞRÞVð1Þ þ k̆ðDð3ÞFÞVð1Þ

þk̆RðDð1ÞRÞVð1Þ þ k̆FðDð1ÞRÞVð1Þ þ k̆FðDð1ÞFÞVð1Þ þ k̆RðDð1ÞFÞVð1Þ þ k̆Rðψ̄ΓψÞVð1Þ þ k̆Fðψ̄ΓψÞVð1Þ

þk̆½ðψ̄ΓDð2ÞψÞVð1Þ þ H:c:� þ k̆ðDψΓDψÞVð1Þ þ k̆ðDkÞVð5Þ þ k̆ðDkÞRVð3Þ þ k̆ðDkÞFVð3Þ

þk̆ðDkÞðDRÞVð2Þ þ k̆ðDkÞðDFÞVð2Þ þ k̆ðDkÞðψ̄ΓψÞVð2Þ þ k̆ðDkÞðDð2ÞRÞVð1Þ þ k̆ðDkÞðDð2ÞFÞVð1Þ

þk̆ðDkÞRRVð1Þ þ k̆ðDkÞFFVð1Þ þ k̆ðDkÞRFVð1Þ þ k̆ðDkÞ½ðψ̄ΓDψÞVð1Þ þ H:c:� þ k̆ðDkÞðDkÞVð4Þ

þk̆ðDkÞðDkÞRVð2Þ þ k̆ðDkÞðDkÞFVð2Þ þ k̆ðDkÞðDkÞðDRÞVð1Þ þ k̆ðDkÞðDkÞðDFÞVð1Þ þ k̆ðDð2ÞkÞVð4Þ

þk̆ðDð2ÞkÞRVð2Þ þ k̆ðDð2ÞkÞFVð2Þ þ k̆ðDð2ÞkÞðDRÞVð1Þ þ k̆ðDð2ÞkÞðDFÞVð1Þ þ k̆ðDkÞðDkÞðDkÞVð3Þ

þk̆ðDkÞðDkÞðDkÞRVð1Þ þ k̆ðDkÞðDkÞðDkÞFVð1Þ þ k̆ðDkÞðDð2ÞkÞVð3Þ þ k̆ðDkÞðDð2ÞkÞRVð1Þ

þk̆ðDkÞðDð2ÞkÞFVð1Þ þ k̆ðDð3ÞkÞVð3Þ þ k̆ðDð3ÞkÞRVð1Þ þ k̆ðDð3ÞkÞFVð1Þ þ k̆ðDkÞðDkÞðDkÞðDkÞVð2Þ

þk̆ðDkÞðDkÞðDð2ÞkÞVð2Þ þ k̆ðDð2ÞkÞðDð2ÞkÞVð2Þ þ k̆ðDkÞðDð3ÞkÞVð2Þ þ k̆ðDð4ÞkÞVð2Þ

þk̆ðDkÞðDkÞðDkÞðDkÞðDkÞVð1Þ þ k̆ðDkÞðDkÞðDkÞðDð2ÞkÞVð1Þ þ k̆ðDkÞðDkÞðDð3ÞkÞVð1Þ

þk̆ðDkÞðDð2ÞkÞðDð2ÞkÞVð1Þ þ k̆ðDkÞðDð4ÞkÞVð1Þ þ k̆ðDð2ÞkÞðDð3ÞkÞVð1Þ þ k̆ðDð5ÞkÞVð1Þ
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the first column, the possible corresponding operator
structures are presented in the second column. In this
notation, a factor VðdÞ represents any element of the
associated set of scalar operators, so an expression con-
taining VðdÞ is a compact description of several distinct
terms. Operators without background derivatives are listed
first, with pure-scalar terms preceding ones containing
gravity, gauge, and fermion couplings. These are followed
by operators involving increasing numbers of background
derivatives Dk. Indices and all numerical or dimensional
factors are omitted, and any appearance of a Hermitian
combination of Dirac matrices is represented by Γ. A few
terms appear with Hermitian conjugates, which are denoted
by H.c. in the table. All appearances of the backgrounds k
and combinations k̆ can be distinct, even within a single
term, and the backgrounds are assumed real. Since all terms
are required to be gauge invariant, the choice of represen-
tation for ϕ restricts the appearance of some operator

structures. For example, the term k̆ðDkÞVð1Þ in Lð2Þ
ϕ is

gauge invariant only when the scalar is in the singlet
representation.
To offer further insight, the explicit terms with d ≤ 6 in

the Lagrange density for a special model are provided in
Table XIII. For simplicity and definiteness, the complex
scalar ϕ in this model is assumed to be in the same U
representation of the gauge group as the fermion field and

the gauge field strength, only terms invariant by virtue of
the combination U†U ¼ I are listed, and total-derivative
terms are omitted. This excludes, for instance, singlet terms
arising from products of U representations that are specific
to a particular gauge group. For example, when the gauge
group is SU(3) and the scalar is in the octet representation,

the Lagrange density Lð6Þ
ϕ contains an additional term

Lð6Þ
ϕ ⊃ ðk̆ð6ÞDϕDDϕÞμνρϵabcϕaðiDμϕÞbðiDðμiDνÞϕÞc þ H:c:;

ð61Þ

where a, b, c are the gauge indices in the adjoint
representation.
The format of Table XIII parallels that of Table XII, and

the contents of the former can be deduced by inspection of
the latter. In Table XIII, the mass parameter �μ2 in the
conventional piece Lϕ0 of the Lagrange density can take
either sign, with the lower sign triggering spontaneous
breaking of the gauge symmetry. In other terms, each
background k̆ is understood to have index symmetry
inherited from the index symmetry of the corresponding
operator. All backgrounds can be assumed real. The results
in the table emphasize the rapid growth with d of terms
involving scalar couplings already visible in the schematic

TABLE XIII. Terms with d ≤ 6 and without background derivatives in the scalar Lagrange density Lϕ.

Component Expression

Lϕ0 −ðDμϕÞ†Dμϕ� μ2ϕ†ϕ − 1
6
λðϕ†ϕÞ2

Lð2Þ
ϕ

k̆ð2Þϕ†ϕ

Lð3Þ
ϕ

− 1
2
ðk̆ð3ÞÞμϕ†iDμϕþ H:c:

Lð4Þ
ϕ ½1

2
ðk̆ð4ÞÞμνϕ†iDðμiDνÞϕþ H:c:� − ðk̆ð4ÞRϕÞμνρσRμνρσϕ

†ϕ − 1
2
ðk̆ð4ÞFϕÞμνϕ†Fμνϕ − 1

6
k̆ð4Þϕϕðϕ†ϕÞ2

Lð5Þ
ϕ ½− 1

2
ðk̆ð5ÞÞμνρϕ†iDðμiDνiDρÞϕþ 1

2
ðk̆ð5ÞRDϕÞμνρστRνρστϕ

†iDμϕþ 1
4
ðk̆ð5ÞFDϕÞμνρϕ†FνρiDμϕ

þ 1
2
ðk̆ð5ÞϕDϕÞμðϕ†ϕÞðϕ†iDμϕÞ þ H:c:� þ 1

2
ðk̆ð5ÞDRϕÞμνρστðDμRνρστÞϕ†ϕþ 1

2
ðk̆ð5ÞDFϕÞμνρϕ†ðDμFνρÞϕ

þk̆ð5ÞSϕ ðψ̄ψÞðϕ†ϕÞ þ ik̆ð5ÞPϕðψ̄γ5ψÞðϕ†ϕÞ þ ðk̆ð5ÞVϕÞκeκaðψ̄γaψÞðϕ†ϕÞ þ ðk̆ð5ÞAϕÞκeκaðψ̄γ5γaψÞðϕ†ϕÞ
þ 1

2
ðk̆ð5ÞTϕÞκλeκaeλbðψ̄σabψÞðϕ†ϕÞ

Lð6Þ
ϕ ½1

2
ðk̆ð6ÞÞμνρσϕ†iDðμiDνiDρiDσÞϕþ 1

2
ðk̆ð6ÞRDDϕÞμνρστυRρστυϕ

†iDðμiDνÞϕþ 1
4
ðk̆ð6ÞFDDϕÞμνρσϕ†FρσiDðμiDνÞϕ

þ 1
2
ðk̆ð6ÞDRDϕÞμνρστυðDνRρστυÞϕ†iDμϕþ 1

4
ðk̆ð6ÞDFDϕÞμνρσϕ†ðDνFρσÞiDμϕþ 1

2
ðk̆ð6ÞϕDDϕÞμνðϕ†ϕÞðϕ†iDðμiDνÞϕÞ

þ 1
2
ðk̆ð6ÞDϕDϕÞμνðϕ†iDμϕÞðϕ†iDνϕÞ þ 1

2
ðk̆ð6Þ

Dϕ†Dϕ
ÞμνððiDμϕÞ†ϕÞðϕ†iDνϕÞ þ 1

2
ðk̆ð6ÞSDϕÞμðψ̄ψÞðϕ†iDμϕÞ

þ 1
2
iðk̆ð6ÞPDϕÞμðψ̄γ5ψÞðϕ†iDμϕÞ þ 1

2
ðk̆ð6ÞVDϕÞκμeκaðψ̄γaψÞðϕ†iDμϕÞ þ 1

2
ðk̆ð6ÞADϕÞκμeκaðψ̄γ5γaψÞðϕ†iDμϕÞ

þ 1
4
ðk̆ð6ÞTDϕÞκλμeκaeλbðψ̄σabψÞðϕ†iDμϕÞ þ 1

2
ðk̆ð6ÞDSϕÞμðψ̄ iDμψÞðϕ†ϕÞ þ 1

2
iðk̆ð6ÞDPϕÞμðψ̄γ5iDμψÞðϕ†ϕÞ

þ 1
2
ðk̆ð6ÞDVϕÞκμeκaðψ̄γaiDμψÞðϕ†ϕÞ þ 1

2
ðk̆ð6ÞDAϕÞκμeκaðψ̄γ5γaiDμψÞðϕ†ϕÞ

þ 1
4
ðk̆ð6ÞDTϕÞκλμeκaeλbðψ̄σabiDμψÞðϕ†ϕÞ þ H:c:� þ ðk̆ð6ÞDDRϕÞμνρστυðDðμDνÞRρστυÞϕ†ϕ

þ 1
2
ðk̆ð6ÞDDFϕÞμνρσϕ†ðDðμDνÞFρσÞϕþ ðk̆ð6ÞRRϕÞμνρστυχωRμνρσRτυχωϕ

†ϕþ 1
2
ðk̆ð6ÞRFϕÞμνρστυRρστυϕ

†Fμνϕ

þ 1
4
ðk̆ð6ÞFFϕ;1Þμνρσϕ†FμνFρσϕþ 1

4
ðk̆ð6ÞFFϕ;2Þμνρσ trðFμνFρσÞϕ†ϕþ 1

4
ðk̆ð6ÞRϕϕÞμνρσRμνρσðϕ†ϕÞ2

þ 1
4
ðk̆ð6ÞFϕϕÞμνðϕ†ϕÞðϕ†FμνϕÞ þ 1

120
k̆ð6Þϕϕϕðϕ†ϕÞ3
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notation of Table XII, even in the context of a specific and
comparatively simple model.

IV. APPLICATIONS

In this section, we consider some applications of the
formalism to several cases of practical relevance. These
include effective field theories extending Einstein-Maxwell
theory, GR coupled to the SM, and conventional models
involving only scalar coupling constants.

A. Einstein-Maxwell theories

As a first application, we consider effective field theories
based on the usual Einstein-Maxwell theory coupling
gravity to electrodynamics and possibly additional matter
fields. In any specific scenario, the Einstein-Maxwell
Lagrange density LEM can be separated as

LEM ¼ Lg þ LA þ � � � ; ð62Þ

where Lg contains terms in the pure-gravity and back-
ground sectors, LA describes the photon sector including
gravitational couplings, and the ellipsis indicates any other
component Lagrange densities for couplings to fermions
and scalars.
The general features of the Lagrange density Lg for the

gravity sector are treated in Sec. III B. The discussion
applies directly to the Einstein-Maxwell case. In particular,
the explicit forms of the terms in Lg without background
derivatives are listed in Table VI.
For the photon sector, the terms in LA can be extracted

from the results obtained for non-Abelian gauge theories in
Sec. III C 1, and in particular from Table IX. However, the
Abelian nature of the gauge group simplifies the structure
of certain terms, while some terms that are distinct in the
non-Abelian case merge in the Abelian limit. For clarity, we
display in Table XIVall terms in LA with operators of mass
dimension d ≤ 6 without background derivatives. The first

column lists the components LðdÞ
A of LA, while the second

shows the terms they incorporate. In this table, each
background can be taken to be real and to have index
symmetry inherited from that of the corresponding oper-
ator. The index positions and the labels on the backgrounds
match existing conventions in the literature.
Augmenting the Einstein-Maxwell theory with matter

fields implies a corresponding extension of the effective
field theory. The inclusion of a single Dirac field, which
may be charged under the U(1) gauge group, yields an
additional component Lψ in LEM. The terms in Lψ

involving operators of mass dimension d ≤ 6 and without
background derivatives can be extracted directly from
Table XI in Sec. III C 2, with the gauge field strength
Fμν taken as Abelian. Similarly, adding a complex scalar
with U(1) charge generates a component Lϕ in LEM. All
contributions toLϕ containing operators of mass dimension
d ≤ 6 without background derivatives are given by
Table XIII in Sec. III C 3, with Fμν understood to be
Abelian.
The inclusion of an uncharged real scalar is more

involved because additional terms can be constructed.
For this case, all terms in Lϕ with operators of mass
dimension d ≤ 6 are presented in Table XV. The format of
the table matches that of Table XIII, and most of the
comments in Sec. III C 3 apply. In some of the terms unique
to this scenario, a factor of i has been inserted to keep all
backgrounds and combinations real.

B. General relativity and the Standard Model

Next, we turn attention to the effective field theory
constructed from GR coupled to the SM, the gravitational
Standard-Model Extension (SME). The framework for this
scenario is described in Ref. [2], which explicitly presents
all minimal operators allowing for nonzero torsion in
Riemann-Cartan spacetime. Here, we extend these results
to include operators of mass dimension d ≤ 6, restricting

TABLE XIV. Terms with d ≤ 6 in the photon sector of the Einstein-Maxwell effective field theory.

Component Expression

LA0 − 1
4
FμνFμν

Lð1Þ
A

−ðk̆AÞμAμ

Lð3Þ
A

1
2
ðk̆AFÞκϵκλμνAλFμν þ 1

2
ðk̆ð3ÞDFÞαμνDαFμν

Lð4Þ
A − 1

4
ðk̆FÞκλμνFκλFμν − 1

2
ðk̆ð4ÞDFÞαβμνDðαDβÞFμν − 1

2
ðk̆RFÞαβγδμνRαβγδFμν

Lð5Þ
A

1
4
ðk̆ð5ÞD ÞακλμνFκλDαFμν þ 1

2
ðk̆ð5ÞDFÞαβγμνDðαDβDγÞFμν

þ 1
2
ðk̆ð5ÞRDFÞαβγδϵμνRαβγδDϵFμν þ 1

2
ðk̆ð5ÞDRFÞαβγδϵμνðDϵRαβγδÞFμν

Lð6Þ
A − 1

4
ðk̆ð6ÞD ÞαβκλμνFκλDðαDβÞFμν − 1

2
ðk̆ð6ÞDFÞαβγδμνDðαDβDγDδÞFμν − 1

4
ðk̆ð6ÞDFDFÞαβκλμνðDαFκλÞðDβFμνÞ

− 1
12
ðk̆ð6ÞF ÞκλμνρσFκλFμνFρσ − 1

4
ðk̆ð6ÞRFFÞαβγδκλμνRαβγδFκλFμν − 1

2
ðk̆ð6ÞRDDFÞαβγδϵζμνRαβγδDðϵDζÞFμν

− 1
2
ðk̆ð6ÞDDRFÞαβγδϵζμνðDðϵDζÞRαβγδÞFμν − 1

2
ðk̆ð6ÞDRDFÞαβγδϵζμνðDϵRαβγδÞDζFμν

− 1
2
ðk̆ð6ÞRRFÞα1β1γ1δ1α2β2γ2δ2μνRα1β1γ1δ1Rα2β2γ2δ2Fμν
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attention to the zero-torsion limit and to terms without
background derivatives.
The Lagrange density LSME for this theory can be

decomposed into a sum of terms assigned to sectors for
each type of field,

LSME ¼ Lgravity þ Lgauge þ Llepton þ Lquark

þ LHiggs þ LYukawa: ð63Þ

The gauge invariance of the corresponding action is the SM
group SUð3Þ × SUð2Þ × Uð1Þ. In what follows, we present
explicit terms in the effective field theory prior to the usual
spontaneous breaking of the gauge group to SUð3Þ × Uð1Þ,
adopting the conventions of Ref. [2]. In particular, the
covariant derivative Dμ is both spacetime and SUð3Þ ×
SUð2Þ × Uð1Þ covariant. The coupling constants for SU(3),
SU(2), and U(1) are denoted by g3, g, and g0, respectively.
They are related to the charge q for the electromagnetic
U(1) group and to the angle θW via q¼gsinθW¼g0cosθW .
The piece Lgravity can be identified with the Lagrange

density Lg discussed in Sec. III B, Lgravity ¼ Lg, which has
terms listed in Table VI. In the gauge sector, which includes
gauge couplings to gravitational fields, the gauge fields for
the strong interaction are described by the Hermitian SU(3)
adjoint matrix Gμ, while the SU(2) gauge fields form a
Hermitian adjoint matrixWμ. The Hermitian singlet hyper-
charge gauge field is denoted Bμ. The field strengths cor-
responding to these gauge fields are Gμν, Wμν, and Bμν.

The corresponding Lagrange density Lgauge can be con-
structed using the techniques and results presented in
Sec. III C 1 and Table IX, along with the U(1) limit
provided in Table XIV.
Table XVI displays the terms in Lgravity and Lgauge

without background derivatives and containing operators
of mass dimension d ≤ 6. The first row of the table
provides the usual Lagrange density in the absence of
backgrounds. For the remainder of the table, the first

column lists the component LðdÞ
gravity or LðdÞ

gauge, while the
second column contains the corresponding terms. The
notation for the background combinations k̆ is introduced
in Sec. III. Each combination k̆ is real and has index
symmetry derived from that of its associated dynamical
operator. For the terms with d ¼ 3 and 4, the index
positions and identifying subscripts on the combinations
k̆ match those adopted in Ref. [2]. For generality, we
include in this table all terms with dynamical operators that
are total derivatives. Note that the meaning of the trace
operation trðOÞ for an operator O in the gauge sector
depends on the context, being taken in the appropriate
representation forO. Since trGμ and trWμ both vanish, only
traces linear in the U(1) gauge fields appear in the table.
In the fermion sector, the generations are distinguished

by an index A ¼ 1, 2, 3. The three charged leptons are
denoted lA ≡ ðe; μ; τÞ, and the three neutrinos are
νA ≡ ðνe; νμ; ντÞ. For simplicity, we consider the minimal
SM with massless neutrinos. The general effects of masses

TABLE XV. Terms with d ≤ 6 for an uncharged scalar coupled to the Einstein-Maxwell effective field theory.

Component Expression

Lϕ0 − 1
2
ðDμϕÞDμϕ� 1

2
μ2ϕ2 þ 1

6
gϕ3 − 1

24
λϕ4

Lð2Þ
ϕ

1
2
k̆ð2Þϕ2

Lð3Þ
ϕ

1
6
k̆ð3Þϕ ϕ3 þ ðk̆ð3ÞRϕÞμνρσRμνρσϕþ 1

2
ðk̆ð3ÞFϕÞμνFμνϕ

Lð4Þ
ϕ

1
2
ðk̆ð4ÞÞμνϕiDðμiDνÞϕ − 1

24
k̆ð4Þϕ ϕ4 − 1

2
ðk̆ð4ÞRϕÞμνρσRμνρσϕ

2 − 1
4
ðk̆ð4ÞFϕÞμνFμνϕ

2 − ðk̆ð4ÞDRϕÞμνρστðDμRνρστÞϕ
− 1

2
ðk̆ð4ÞDFϕÞμνρðDμFνρÞϕ

Lð5Þ
ϕ

1
6
ðk̆ð5ÞDDϕÞμνϕ2iDðμiDνÞϕþ 1

6
ðk̆ð5ÞDϕDϕÞμνϕðiDμϕÞðiDνϕÞ þ 1

120
k̆ð5Þϕ ϕ5 þ 1

6
ðk̆ð5ÞRϕÞμνρσRμνρσϕ

3

þ 1
2
ðk̆ð5ÞDRϕÞμνρστðDμRνρστÞϕ2 þ ðk̆ð5ÞDDRϕÞμνρστυðDðμDνÞRρστυÞϕþ 1

12
ðk̆ð5ÞFϕÞμνFμνϕ

3

þ 1
4
ðk̆ð5ÞDFϕÞμνρðDμFνρÞϕ2 þ 1

2
ðk̆ð5ÞDDFϕÞμνρσðDðμDνÞFρσÞϕþ ðk̆ð5ÞRRϕÞμνρστυχωRμνρσRτυχωϕ

þ 1
4
ðk̆ð5ÞFFϕÞμνρσFμνFρσϕþ 1

2
ðk̆ð5ÞRFϕÞμνρστυRμνρσFτυϕ

Lð6Þ
ϕ

1
2
ðk̆ð6ÞÞμνρσϕiDðμiDνiDρiDσÞϕþ 1

24
ðk̆ð6ÞDDϕÞμνϕ3iDðμiDνÞϕþ 1

24
ðk̆ð6ÞDϕDϕÞμνϕ2ðiDμϕÞðiDνϕÞ þ 1

720
k̆ð6Þϕ ϕ6

þ 1
24
ðk̆ð6ÞRϕÞμνρσRμνρσϕ

4 þ 1
48
ðk̆ð6ÞFϕÞμνFμνϕ

4 þ 1
2
ðk̆ð6ÞRDDϕÞμνρστυRρστυϕiDðμiDνÞϕ

þ 1
4
ðk̆ð6ÞFDDϕÞμνρσFρσϕiDðμiDνÞϕþ 1

6
ðk̆ð6ÞDRϕÞμνρστðDμRνρστÞϕ3 þ 1

12
ðk̆ð6ÞDFϕÞμνρðDμFνρÞϕ3

þ 1
2
ðk̆ð6ÞDDRϕÞμνρστυðDðμDνÞRρστυÞϕ2 þ 1

4
ðk̆ð6ÞDDFϕÞμνρσðDðμDνÞFρσÞϕ2 þ 1

2
ðk̆ð6ÞRRϕÞμνρστυχωRμνρσRτυχωϕ

2

þ 1
4
ðk̆ð6ÞRFϕÞμνρστυRμνρσFτυϕ

2 þ 1
8
ðk̆ð6ÞFFϕÞμνρσFμνFρσϕ

2 þ ðk̆ð6ÞDDDRϕÞμνρστυχðDðμDνDρÞRστυχÞϕ
þ 1

2
ðk̆ð6ÞDDDFϕÞμνρστðDðμDνDρÞFστÞϕþ ðk̆ð6ÞRDRϕÞλμνρστυχωRμνρσðDλRτυχωÞϕ

þ 1
2
ðk̆ð6ÞRDFϕÞμνρστυχRνρστðDμFυχÞϕþ 1

2
ðk̆ð6ÞDRFϕÞμνρστυχðDμRνρστÞFυχϕþ 1

4
ðk̆ð6ÞFDFϕÞμνρστFνρðDμFστÞϕ

V. ALAN KOSTELECKÝ and ZONGHAO LI PHYS. REV. D 103, 024059 (2021)

024059-28



and combinations of Dirac and Majorana couplings for
operators of arbitrary dimension affecting neutrino propa-
gation are discussed in Ref. [90]. The six quark flavors are
uA ≡ ðu; c; tÞ, dA ≡ ðd; s; bÞ, with the color index sup-
pressed. Left- and right-handed spinor components are
defined as usual by ψL ≡ 1

2
ð1 − γ5Þψ, ψR ≡ 1

2
ð1þ γ5Þψ .

The right-handed leptons and quarks are SU(2) singlets,
RA ¼ ðlAÞR, UA ¼ ðuAÞR, DA ¼ ðdAÞR, while the left-
handed leptons and quarks form SU(2) doublets,
LA ¼ ððνAÞL; ðlAÞLÞT , QA ¼ ððuAÞL; ðdAÞLÞT .
Terms involving operators of mass dimension d ≤ 6 in

the Lagrange densityLfermion ¼ Llepton þ Lquark are listed in
Table XVII, including all couplings to the gravity and
gauge sectors. For simplicity, this table is restricted to terms
without background derivatives, and operators that are total
derivatives are omitted. Except for the latter restriction, the
format of the table follows that of Table XVI. The
conventions adopted in Table XVII agree with standard
usage in the literature. In particular, backgrounds with
different spin and CPT properties are represented by
different symbols in the usual way, and the index positions
on the backgrounds are the standard ones. The index

symmetry of a given background is determined by that
of the corresponding dynamical operator. Each occurrence
of the symbol H.c. for the Hermitian conjugate applies to all
terms in the particular component of the Lagrange density.
In rows without the symbol H.c., the backgrounds can be
assumed Hermitian in generation space.
In the Higgs sector, we write the Higgs doublet ϕ in

unitary gauge in the form ϕ ¼ ð0; rϕÞT=
ffiffiffi
2

p
. The conjugate

Higgs doublet is denoted ϕc. Table XVIII provides the

explicit form of the components LðdÞ
Higgs with d ≤ 6 of the

Lagrange density in the Higgs sector, excluding terms with
background derivatives and ones involving total derivatives
of the dynamical operators. The structure of the table
follows that of Table XVII, and it includes all couplings to
the gravity and gauge sectors. In the table, each background
k̆ has indices with symmetry matching that of the asso-
ciated dynamical operator, and all backgrounds can be
taken as real. Note that a few terms have backgrounds k̆
without spacetime indices. For example, a term with d ¼ 4

proportional to k̆ð4Þϕϕðϕ†ϕÞ2 appears in the table. These types
of expressions incorporate both scalar coupling constants

TABLE XVI. Terms with d ≤ 6 in the gravity and gauge sectors Lgravity and Lgauge.

Component Expression

Lgravity;0 þ Lgauge;0
1
2κ ðR − 2ΛÞ − 1

2
trðGμνGμνÞ − 1

2
trðWμνWμνÞ − 1

4
BμνBμν

Lð2Þ
gravity

1
2κ k̆

ð2Þ

Lð3Þ
gravity

1
2κ ðk̆

ð3Þ
Γ ÞμΓα

μα

Lð4Þ
gravity

1
2κ ðk̆ð4ÞR ÞαβγδRαβγδ

Lð5Þ
gravity

1
2κ ½ðk̆ð5ÞD ÞαβγδκDκRαβγδ þ ðk̆ð5ÞCS;1Þκϵκλμνηacηbdðωλ

ab∂μων
cd þ 2

3
ωλ

abωμ
ceωνe

dÞ
þðk̆ð5ÞCS;2Þκϵκλμνϵabcdðωλ

ab∂μων
cd þ 2

3
ωλ

abωμ
ceωνe

dÞ�
Lð6Þ
gravity

1
2κ ½ðk̆ð6ÞD ÞαβγδκλDðκDλÞRαβγδ þ ðk̆ð6ÞR Þα1β1γ1δ1α2β2γ2δ2Rα1β1γ1δ1Rα2β2γ2δ2 �

Lð1Þ
gauge ðk̆0ÞκBκ

Lð3Þ
gauge ðk̆3ÞκϵκλμνtrðGλGμν þ 2

3
ig3GλGμGνÞ þ ðk̆2ÞκϵκλμνtrðWλWμν þ 2

3
igWλWμWνÞ þ ðk̆1ÞκϵκλμνBλBμν

þ 1
2
ðk̆ð3ÞDBÞακλDαBκλ

Lð4Þ
gauge − 1

2
ðk̆GÞκλμνtrðGκλGμνÞ − 1

2
ðk̆WÞκλμνtrðWκλWμνÞ − 1

4
ðk̆BÞκλμνBκλBμν − 1

2
ðk̆RBÞκλμνρσRκλμνBρσ

− 1
2
ðk̆ð4ÞDBÞαβκλDðαDβÞBκλ

Lð5Þ
gauge − 1

2
ðk̆ð5ÞDGÞακλμνtrðGκλDαGμνÞ − 1

2
ðk̆ð5ÞDWÞακλμνtrðWκλDαWμνÞ − 1

4
ðk̆ð5ÞDBÞακλμνBκλDαBμν

− 1
2
ðk̆ð5ÞDRBÞακλμνρσðDαRκλμνÞBρσ − 1

2
ðk̆ð5ÞRDBÞακλμνρσRκλμνDαBρσ − 1

2
ðk̆ð5ÞDBÞαβγκλDðαDβDγÞBκλ

Lð6Þ
gauge − 1

2
ðk̆ð6ÞDDGÞαβκλμνtrðGκλDðαDβÞGμνÞ − 1

2
ðk̆ð6ÞDDWÞαβκλμνtrðWκλDðαDβÞWμνÞ

− 1
4
ðk̆ð6ÞDDBÞαβκλμνBκλDðαDβÞBμν − 1

2
ðk̆ð6ÞDGDGÞαβκλμνtrððDαGκλÞðDβGμνÞÞ

− 1
2
ðk̆ð6ÞDWDWÞαβκλμνtrððDαWκλÞðDβWμνÞÞ − 1

4
ðk̆ð6ÞDBDBÞαβκλμνðDαBκλÞðDβBμνÞ

− 1
12
½ðk̆ð6ÞG Þκλμνρσ trðGκλGμνGρσÞ þ H:c:� − 1

12
½ðk̆ð6ÞW Þκλμνρσ trðWκλWμνWρσÞ þ H:c:�

− 1
2
ðk̆ð6ÞRDDBÞαβγδϵζμνRαβγδDðϵDζÞBμν − 1

2
ðk̆ð6ÞDDRBÞαβγδϵζμνðDðϵDζÞRαβγδÞBμν

− 1
2
ðk̆ð6ÞDRDBÞαβγδϵζμνðDϵRαβγδÞDζBμν − 1

12
ðk̆ð6ÞB ÞκλμνρσBκλBμνBρσ

− 1
4
ðk̆ð6ÞBGGÞκλμνρσBκλtrðGμνGρσÞ − 1

4
ðk̆ð6ÞBWWÞκλμνρσBκλtrðWμνWρσÞ

− 1
2
ðk̆ð6ÞRGGÞαβγδκλμνRαβγδtrðGκλGμνÞ − 1

2
ðk̆ð6ÞRWWÞαβγδκλμνRαβγδtrðWκλWμνÞ

− 1
4
ðk̆ð6ÞRBBÞαβγδκλμνRαβγδBκλBμν − 1

2
ðk̆ð6ÞRRBÞα1β1γ1δ1α2β2γ2δ2κλRα1β1γ1δ1Rα2β2γ2δ2Bκλ
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TABLE XVII. Terms with d ≤ 6 in the fermion sector Lfermion ¼ Llepton þ Lquark.

Component Expression

Lfermion;0
1
2
eμaL̄Aγ

aiDμLA þ 1
2
eμaR̄Aγ

aiDμRA þ 1
2
eμaQ̄Aγ

aiDμQA þ 1
2
eμaŪAγ

aiDμUA þ 1
2
eμaD̄Aγ

aiDμDA þ H:c:

Lð3Þ
lepton

−ðăLÞκABeκaL̄Aγ
aLB − ðăRÞκABeκaR̄Aγ

aRB

Lð4Þ
lepton

− 1
2
ðc̆LÞκμABeκaeμbeνbL̄Aγ

aiDνLB − 1
2
ðc̆RÞκμABeκaeμbeνbR̄Aγ

aiDνRB þ H:c:

Lð5Þ
lepton;D

1
2
ðăð5ÞL ÞκμνAB eκaL̄Aγ

aiDðμiDνÞLB þ 1
2
ðăð5ÞR ÞκμνAB eκaR̄Aγ

aiDðμiDνÞRB þ H:c:

Lð5Þ
lepton;R ðăð5ÞR;LÞκμνρσAB eκaRμνρσL̄Aγ

aLB þ ðăð5ÞR;RÞκμνρσAB eκaRμνρσR̄Aγ
aRB

Lð5Þ
lepton;W

1
2
ðăð5ÞW;LÞκμνAB eκaL̄AWμνγ

aLB

Lð5Þ
lepton;B

1
2
ðăð5ÞB;LÞκμνAB eκaBμνL̄Aγ

aLB þ 1
2
ðăð5ÞB;RÞκμνAB eκaBμνR̄Aγ

aRB

Lð6Þ
lepton;D − 1

2
ðc̆ð6ÞL ÞκμνρAB eκaL̄Aγ

aiDðμiDνiDρÞLB − 1
2
ðc̆ð6ÞR ÞκμνρAB eκaR̄Aγ

aiDðμiDνiDρÞRB þ H:c:

Lð6Þ
lepton;R − 1

2
ðc̆ð6ÞR;LÞκμνρστAB eκaRνρστL̄Aγ

aiDμLB − 1
2
ðc̆ð6ÞR;RÞκμνρστAB eκaRνρστR̄Aγ

aiDμRB þ H:c:

Lð6Þ
lepton;DR ðc̆ð6ÞDR;LÞκμνρστAB eκaðDμRνρστÞL̄Aγ

aLB þ ðc̆ð6ÞDR;RÞκμνρστAB eκaðDμRνρστÞR̄Aγ
aRB

Lð6Þ
lepton;W − 1

4
ðc̆ð6ÞW;LÞκμνρAB eκaL̄Aγ

aWνρiDμLB þ H:c:

Lð6Þ
lepton;DW

1
2
ðc̆ð6ÞDW;LÞκμνρAB eκaL̄Aγ

aðDμWνρÞLB

Lð6Þ
lepton;B − 1

4
ðc̆ð6ÞB;LÞκμνρAB eκaBνρL̄Aγ

aiDμLB − 1
4
ðc̆ð6ÞB;RÞκμνρAB eκaBνρR̄Aγ

aiDμRB þ H:c:

Lð6Þ
lepton;DB

1
2
ðc̆ð6ÞDB;LÞκμνρAB eκaðDμBνρÞL̄Aγ

aLB þ 1
2
ðc̆ð6ÞDB;RÞκμνρAB eκaðDμBνρÞR̄Aγ

aRB

Lð6Þ
lepton;2

1
2
ðk̆ð6ÞLLÞκλABCDeκaeλbðL̄Aγ

aLBÞðL̄Cγ
bLDÞ þ 1

2
ðk̆ð6ÞRRÞκλABCDeκaeλbðR̄Aγ

aRBÞðR̄Cγ
bRDÞ

þðk̆ð6ÞLRÞκλABCDeκaeλbðL̄Aγ
aLBÞðR̄Cγ

bRDÞ
Lð3Þ
quark

−ðăQÞκABeκaQ̄Aγ
aQB − ðăUÞκABeκaŪAγ

aUB − ðăDÞκABeκaD̄Aγ
aDB

Lð4Þ
quark

− 1
2
ðc̆QÞκμABeκaQ̄Aγ

aiDμQB − 1
2
ðc̆UÞκμABeκaŪAγ

aiDμUB − 1
2
ðc̆DÞκμABeκaD̄Aγ

aiDμDB þ H:c:

Lð5Þ
quark;D

1
2
ðăð5ÞQ ÞκμνAB eκaQ̄Aγ

aiDðμiDνÞQB þ 1
2
ðăð5ÞU ÞκμνAB eκaŪAγ

aiDðμiDνÞUB þ 1
2
ðăð5ÞD ÞκμνAB eκaD̄Aγ

aiDðμiDνÞDB þ H:c:

Lð5Þ
quark;R ðăð5ÞR;QÞκμνρσAB eκaRμνρσQ̄Aγ

aQB þ ðăð5ÞR;UÞκμνρσAB eκaRμνρσŪAγ
aUB þ ðăð5ÞR;DÞκμνρσAB eκaRμνρσD̄Aγ

aDB

Lð5Þ
quark;G

1
2
ðăð5ÞG;QÞκμνAB eκaQ̄AGμνγ

aQB þ 1
2
ðăð5ÞG;UÞκμνAB eκaŪAGμνγ

aUB þ 1
2
ðăð5ÞG;DÞκμνAB eκaD̄AGμνγ

aDB

Lð5Þ
quark;W

1
2
ðăð5ÞW;QÞκμνAB eκaQ̄AWμνγ

aQB

Lð5Þ
quark;B

1
2
ðăð5ÞB;QÞκμνAB eκaBμνQ̄Aγ

aQB þ 1
2
ðăð5ÞB;UÞκμνAB eκaBμνŪAγ

aUB þ 1
2
ðăð5ÞB;DÞκμνAB eκaBμνD̄Aγ

aDB

Lð6Þ
quark;D − 1

2
ðc̆ð6ÞQ ÞκμνρAB eκaQ̄Aγ

aiDðμiDνiDρÞQB − 1
2
ðc̆ð6ÞU ÞκμνρAB eκaŪAγ

aiDðμiDνiDρÞUB

− 1
2
ðc̆ð6ÞD ÞκμνρAB eκaD̄Aγ

aiDðμiDνiDρÞDB þ H:c:

Lð6Þ
quark;R − 1

2
ðc̆ð6ÞR;QÞκμνρστAB eκaRνρστQ̄Aγ

aiDμQB − 1
2
ðc̆ð6ÞR;UÞκμνρστAB eκaRνρστŪAγ

aiDμUB

− 1
2
ðc̆ð6ÞR;DÞκμνρστAB eκaRνρστD̄Aγ

aiDμDB þ H:c:

Lð6Þ
quark;DR ðc̆ð6ÞDR;QÞκμνρστAB eκaðDμRνρστÞQ̄Aγ

aQB þ ðc̆ð6ÞDR;UÞκμνρστAB eκaðDμRνρστÞŪAγ
aUB

þðc̆ð6ÞDR;DÞκμνρστAB eκaðDμRνρστÞD̄Aγ
aDB

Lð6Þ
quark;G − 1

4
ðc̆ð6ÞG;QÞκμνρAB eκaQ̄Aγ

aGνρiDμQB − 1
4
ðc̆ð6ÞG;UÞκμνρAB eκaŪAγ

aGνρiDμUB − 1
4
ðc̆ð6ÞG;DÞκμνρAB eκaD̄Aγ

aGνρiDμDB þ H:c:

Lð6Þ
quark;DG

1
2
ðc̆ð6ÞDG;QÞκμνρAB eκaQ̄Aγ

aðDμGνρÞQB þ 1
2
ðc̆ð6ÞDG;UÞκμνρAB eκaŪAγ

aðDμGνρÞUB þ 1
2
ðc̆ð6ÞDG;DÞκμνρAB eκaD̄Aγ

aðDμGνρÞDB

Lð6Þ
quark;W − 1

4
ðc̆ð6ÞW;QÞκμνρAB eκaQ̄Aγ

aWνρiDμQB þ H:c:

Lð6Þ
quark;DW

1
2
ðc̆ð6ÞDW;QÞκμνρAB eκaQ̄Aγ

aðDμWνρÞQB

Lð6Þ
quark;B − 1

4
ðc̆ð6ÞB;QÞκμνρAB eκaBνρQ̄Aγ

aiDμQB − 1
4
ðc̆ð6ÞB;UÞκμνρAB eκaBνρŪAγ

aiDμUB − 1
4
ðc̆ð6ÞB;DÞκμνρAB eκaBνρD̄Aγ

aiDμDB þ H:c:

Lð6Þ
quark;DB

1
2
ðc̆ð6ÞDB;QÞκμνρAB eκaðDμBνρÞQ̄Aγ

aQB þ 1
2
ðc̆ð6ÞDB;UÞκμνρAB eκaðDμBνρÞŪAγ

aUB þ 1
2
ðc̆ð6ÞDB;DÞκμνρAB eκaðDμBνρÞD̄Aγ

aDB

Lð6Þ
quark;2

1
2
ðk̆ð6ÞQQÞκλABCDeκaeλbðQ̄Aγ

aQBÞðQ̄Cγ
bQDÞ þ 1

2
ðk̆ð6ÞUUÞκλABCDeκaeλbðŪAγ

aUBÞðŪCγ
bUDÞ

þ 1
2
ðk̆ð6ÞDDÞκλABCDeκaeλbðD̄Aγ

aDBÞðD̄Cγ
bDDÞ þ ðk̆ð6ÞQUÞκλABCDeκaeλbðQ̄Aγ

aQBÞðŪCγ
bUDÞ

þðk̆ð6ÞQDÞκλABCDeκaeλbðQ̄Aγ
aQBÞðD̄Cγ

bDDÞ þ ðk̆ð6ÞUDÞκλABCDeκaeλbðŪAγ
aUBÞðD̄Cγ

bDDÞ
Lð6Þ
quark;lepton ðk̆ð6ÞQLÞκλABCDeκaeλbðQ̄Aγ

aQBÞðL̄Cγ
bLDÞ þ ðk̆ð6ÞQRÞκλABCDeκaeλbðQ̄Aγ

aQBÞðR̄Cγ
bRDÞ

þðk̆ð6ÞULÞκλABCDeκaeλbðŪAγ
aUBÞðL̄Cγ

bLDÞ þ ðk̆ð6ÞURÞκλABCDeκaeλbðŪAγ
aUBÞðR̄Cγ

bRDÞ
þðk̆ð6ÞDLÞκλABCDeκaeλbðD̄Aγ

aDBÞðL̄Cγ
bLDÞ þ ðk̆ð6ÞDRÞκλABCDeκaeλbðD̄Aγ

aDBÞðR̄Cγ
bRDÞ
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and position-dependent effects. The component terms of

this form in Lð2Þ
Higgs and Lð4Þ

Higgs replicate conventional SM
terms in the first row of the table, so they can either be
omitted or understood as renormalizations of the conven-
tional terms having no physical effects. A similar comment

applies to the first term in Lð4Þ
Higgs, where the trace piece of

the constant component of the background ðk̆ϕϕÞμν can be
viewed as a renormalization of the usual Higgs kinetic
term.
Finally, we present in Table XIX all terms involving

operators with d ≤ 6 that couple the fermions to the Higgs
boson, restricting attention for simplicity to terms without
background derivatives and disregarding total derivatives of
dynamical operators. The terms in this table represent
generalizations of the Yukawa couplings in the SM, which
are listed in the first row. Note that the first three entries for

Lð4Þ
Yukawa contain pieces that can be understood as physically

irrelevant renormalizations of the usual SM Yukawa cou-
plings, along with other nontrivial background effects. For
entries already discussed in the literature, the notation in the
table follows existing conventions. Backgrounds in terms
written without an accompanying Hermitian conjugate H.c.
can be taken as Hermitian in generation space. All back-
grounds have indices with symmetries constrained accord-
ing to the structure of the corresponding operators.

C. Constant scalar backgrounds

All the examples discussed above contain special cases
with constant scalar backgrounds, which can be viewed as

scalar coupling constants. In particular, the corresponding
limits of the effective field theories built on the Einstein-
Maxwell theories and on GR coupled to the SM can be
extracted from the tables provided in the previous sub-
sections. For a given theory, the explicit terms of this type
are obtained as appropriate restrictions of the backgrounds
k̆ to maintain local Lorentz and diffeomorphism invariance.
As discussed in Sec. II C, a background k transforms as a

spacetime tensor under observer local Lorentz and general
coordinate transformations, but it remains invariant under
all particle transformations including both local Lorentz
transformations and diffeomorphisms. This behavior is
compatible with local Lorentz and diffeomorphism invari-
ance of the Lagrange density only if k carries no indices and
is constant, in which case it acts as a conventional coupling
constant. We can therefore identify all contributions that
produce scalar coupling constants in a given effective
Lagrange density by keeping only terms involving com-
ponents of each combination k̆μ���ν���

a��� that are proportional
to products of the vierbein eμa, metric gμν, and Levi-Civita
tensor ϵκλμν and then fixing these components to be
spacetime constants. Note that this implies discarding all
terms involving nonzero background derivatives Dk.
With this procedure in hand, it is straightforward to

extract the limits of the various theories discussed above
that have only scalar coupling constants. As an illustration,
we provide in Table XX a listing of terms with d ≤ 6
having only scalar coupling constants that is obtained from
the generic Lagrange densities presented in Tables VI, IX,
XI, and XIII. The first column of Table XX specifies the
sector, the second column fixes the value of d, and the third

TABLE XVIII. Terms with d ≤ 6 in the Higgs sector LHiggs.

Component Expression

LHiggs;0 −ðDμϕÞ†Dμϕþ μ2ϕ†ϕ − 1
6
λðϕ†ϕÞ2

Lð2Þ
Higgs k̆ð2Þϕ ϕ†ϕ

Lð3Þ
Higgs

ðk̆ϕÞμϕ†iDμϕþ H:c:

Lð4Þ
Higgs ½1

2
ðk̆ϕϕÞμνðDμϕÞ†Dνϕþ H:c:� − ðk̆ϕRÞμνρσRμνρσϕ

†ϕ − 1
2
ðk̆ϕWÞμνϕ†Wμνϕ − 1

2
ðk̆ϕBÞμνBμνϕ

†ϕ − 1
6
k̆ð4Þϕϕðϕ†ϕÞ2

Lð5Þ
Higgs ½1

2
ðk̆ð5ÞÞμνρϕ†iDðμiDνiDρÞϕþ 1

2
ðk̆ð5ÞRDϕÞμνρστRνρστϕ

†iDμϕþ 1
4
ðk̆ð5ÞWDϕÞμνρϕ†WνρiDμϕþ 1

4
ðk̆ð5ÞBDϕÞμνρBνρϕ

†iDμϕ

þ 1
2
ðk̆ð5ÞϕDϕÞμðϕ†ϕÞðϕ†iDμϕÞ þ H:c:� þ ðk̆ð5ÞDRϕÞμνρστðDμRνρστÞϕ†ϕþ 1

2
ðk̆ð5ÞDWϕÞμνρϕ†ðDμWνρÞϕ

þ 1
2
ðk̆ð5ÞDBϕÞμνρðDμBνρÞϕ†ϕ

Lð6Þ
Higgs ½1

2
ðk̆ð6ÞÞμνρσϕ†iDðμiDνiDρiDσÞϕþ 1

2
ðk̆ð6ÞRDDϕÞμνρστυRρστυϕ

†iDðμiDνÞϕþ 1
4
ðk̆ð6ÞWDDϕÞμνρσϕ†WρσiDðμiDνÞϕ

þ 1
4
ðk̆ð6ÞBDDϕÞμνρσBρσϕ

†iDðμiDνÞϕþ 1
2
ðk̆ð6ÞDRDϕÞμνρστυðDνRρστυÞϕ†iDμϕþ 1

4
ðk̆ð6ÞDWDϕÞμνρσϕ†ðDνWρσÞiDμϕ

þ 1
4
ðk̆ð6ÞDBDϕÞμνρσðDνBρσÞϕ†iDμϕþ 1

2
ðk̆ð6ÞϕDDϕÞμνðϕ†ϕÞðϕ†iDðμiDνÞϕÞ þ 1

2
ðk̆ð6ÞDϕDϕÞμνðϕ†iDμϕÞðϕ†iDνϕÞ

þ 1
2
ðk̆ð6Þ

Dϕ†Dϕ
ÞμνððiDμϕÞ†ϕÞðϕ†iDνϕÞ þ H:c:� þ ðk̆ð6ÞDDRϕÞμνρστυðDðμDνÞRρστυÞϕ†ϕ

þ 1
2
ðk̆ð6ÞDDWϕÞμνρσϕ†ðDðμDνÞWρσÞϕþ 1

2
ðk̆ð6ÞDDBϕÞμνρσðDðμDνÞBρσÞϕ†ϕþ ðk̆ð6ÞRRϕÞμνρστυχωRμνρσRτυχωϕ

†ϕ

þðk̆ð6ÞRWϕÞμνρστυRρστυϕ
†Wμνϕþ 1

2
ðk̆ð6ÞRBϕÞμνρστυRρστυBμνϕ

†ϕþ 1
4
ðk̆ð6ÞWWϕ;1Þμνρσϕ†WμνWρσϕ

þ 1
4
ðk̆ð6ÞWWϕ;2Þμνρσ trðWμνWρσÞϕ†ϕþ 1

4
ðk̆ð6ÞBBϕÞμνρσBμνBρσϕ

†ϕþ 1
4
ðk̆ð6ÞBWϕÞμνρσBμνϕ

†Wρσϕ

þ 1
4
ðk̆ð6ÞRϕϕÞμνρσRμνρσðϕ†ϕÞ2 þ 1

4
ðk̆ð6ÞWϕϕÞμνðϕ†ϕÞðϕ†WμνϕÞ þ 1

4
ðk̆ð6ÞBϕϕÞμνBμνðϕ†ϕÞ2 þ 1

120
k̆ð6Þϕϕϕðϕ†ϕÞ3
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column displays the corresponding terms with scalar
coupling constants. The complete Lagrange density of this
type is obtained by multiplying each operator displayed by
a coupling constant and adding all the resulting terms. Note
that the term ϵκλμνRα

βκλRβ
αμν and the combination

ϵαβγδϵκλμνRαβκλRγδμν ¼ 4ðRαβγδRαβγδ − 4RαβRαβ þ R2Þ
ð64Þ

can be expressed as total derivatives. For simplicity, other
total-derivative operators are omitted from the table.

TABLE XIX. Terms with d ≤ 6 in the Yukawa sector LYukawa.

Component Expression

LYukawa;0 −ðGLÞABL̄AϕRB − ðGUÞABQ̄Aϕ
cUB − ðGDÞABQ̄AϕDB þ H:c:

Lð4Þ
Yukawa −ðĞð4Þ

L ÞABL̄AϕRB − ðĞð4Þ
U ÞABQ̄Aϕ

cUB − ðĞð4Þ
D ÞABQ̄AϕDB − 1

2
ðH̆LÞκλABeκaeλbL̄Aϕσ

abRB

− 1
2
ðH̆UÞκλABeκaeλbQ̄Aϕσ

abUB − 1
2
ðH̆DÞκλABeκaeλbQ̄Aϕσ

abDB þ H:c:

Lð5Þ
Yukawa −ðĞð5Þ

L ÞμABL̄AϕiDμRB − ðĞð5Þ
U ÞμABQ̄Aϕ

ciDμUB − ðĞð5Þ
D ÞμABQ̄AϕiDμDB − 1

2
ðH̆ð5Þ

L ÞκλμAB eκaeλbL̄Aϕσ
abiDμRB

− 1
2
ðH̆ð5Þ

U ÞκλμAB eκaeλbQ̄Aϕ
cσabiDμUB − 1

2
ðH̆ð5Þ

D ÞκλμAB eκaeλbŪAϕσ
abiDμDB − ðĞð5Þ

Dϕ;LÞμABL̄AðiDμϕÞRB

−ðĞð5Þ
Dϕ;UÞμABQ̄AðiDμϕÞcUB − ðĞð5Þ

Dϕ;DÞμABQ̄AðiDμϕÞDB − 1
2
ðH̆ð5Þ

Dϕ;LÞκλμAB eκaeλbL̄AðiDμϕÞσabRB

− 1
2
ðH̆ð5Þ

Dϕ;UÞκλμAB eκaeλbQ̄AðiDμϕÞcσabUB − 1
2
ðH̆ð5Þ

Dϕ;DÞκλμAB eκaeλbŪAðiDμϕÞσabDB þ H:c:

Lð5Þ
Yukawa;ψϕ ðk̆ð5ÞLϕÞκABeκaðL̄Aγ

aLBÞðϕ†ϕÞ þ ðk̆ð5ÞRϕÞκABeκaðR̄Aγ
aRBÞðϕ†ϕÞ þ ðk̆ð5ÞQϕÞκABeκaðQ̄Aγ

aQBÞðϕ†ϕÞ
þðk̆ð5ÞUϕÞκABeκaðŪAγ

aUBÞðϕ†ϕÞ þ ðk̆ð5ÞDϕÞκABeκaðD̄Aγ
aDBÞðϕ†ϕÞ þ H:c:

Lð6Þ
Yukawa;D −ðĞð6Þ

L ÞμνABL̄AϕiDðμiDνÞRB − ðĞð6Þ
U ÞμνABQ̄Aϕ

ciDðμiDνÞUB − ðĞð6Þ
D ÞμνABQ̄AϕiDðμiDνÞDB

− 1
2
ðH̆ð6Þ

L ÞκλμνAB eκaeλbL̄Aϕσ
abiDðμiDνÞRB − 1

2
ðH̆ð6Þ

U ÞκλμνAB eκaeλbQ̄Aϕ
cσabiDðμiDνÞUB

− 1
2
ðH̆ð6Þ

D ÞκλμνAB eκaeλbQ̄Aϕσ
abiDðμiDνÞDB − ðĞð6Þ

DDϕ;LÞμνABL̄AðiDðμiDνÞϕÞRB

−ðĞð6Þ
DDϕ;UÞμνABQ̄AðiDðμiDνÞϕÞcUB − ðĞð6Þ

DDϕ;DÞμνABQ̄AðiDðμiDνÞϕÞDB

− 1
2
ðH̆ð6Þ

DDϕ;LÞκλμνAB eκaeλbL̄AðiDðμiDνÞϕÞσabRB − 1
2
ðH̆ð6Þ

DDϕ;UÞκλμνAB eκaeλbQ̄AðiDðμiDνÞϕÞcσabUB

− 1
2
ðH̆ð6Þ

DDϕ;DÞκλμνAB eκaeλbQ̄AðiDðμiDνÞϕÞσabDB − ðĞð6Þ
Dϕ;LÞμνABL̄AðiDμϕÞiDνRB

−ðĞð6Þ
Dϕ;UÞμνABQ̄AðiDμϕÞciDνUB − ðĞð6Þ

Dϕ;DÞμνABQ̄AðiDμϕÞiDνDB − 1
2
ðH̆ð6Þ

Dϕ;LÞκλμνAB eκaeλbL̄AðiDμϕÞσabiDνRB

− 1
2
ðH̆ð6Þ

Dϕ;UÞκλμνAB eκaeλbQ̄AðiDμϕÞcσabiDνUB − 1
2
ðH̆ð6Þ

Dϕ;DÞκλμνAB eκaeλbQ̄AðiDμϕÞσabiDνDB þ H:c:

Lð6Þ
Yukawa;R −ðĞð6Þ

R;LÞμνρσAB RμνρσL̄AϕRB − ðĞð6Þ
R;UÞμνρσAB RμνρσQ̄Aϕ

cUB − ðĞð6Þ
R;DÞμνρσAB RμνρσQ̄AϕDB

− 1
2
ðH̆ð6Þ

L ÞκλμνρσAB eκaeλbRμνρσL̄Aϕσ
abRB − 1

2
ðH̆ð6Þ

U ÞκλμνρσAB eκaeλbRμνρσQ̄Aϕ
cσabUB

− 1
2
ðH̆ð6Þ

D ÞκλμνρσAB eκaeλbRμνρσQ̄Aϕσ
abDB þ H:c:

Lð6Þ
Yukawa;G −ðĞð6Þ

G;UÞμνABQ̄AGμνϕ
cUB − ðĞð6Þ

G;DÞμνABQ̄AGμνϕDB − 1
2
ðH̆ð6Þ

G;UÞκλμνAB eκaeλbQ̄AGμνϕ
cσabUB

− 1
2
ðH̆ð6Þ

G;DÞκλμνAB eκaeλbQ̄AGμνϕσ
abDB þ H:c:

Lð6Þ
Yukawa;W −ðĞð6Þ

W;LÞμνABL̄AWμνϕRB − ðĞð6Þ
W;UÞμνABQ̄AWμνϕ

cUB − ðĞð6Þ
W;DÞμνABQ̄AWμνϕDB

− 1
2
ðH̆ð6Þ

W;LÞκλμνAB eκaeλbL̄AWμνϕσ
abRB − 1

2
ðH̆ð6Þ

W;UÞκλμνAB eκaeλbQ̄AWμνϕ
cσabUB

− 1
2
ðH̆ð6Þ

W;DÞκλμνAB eκaeλbQ̄AWμνϕσ
abDB þ H:c:

Lð6Þ
Yukawa;B −ðĞð6Þ

B;LÞμνABBμνL̄AϕRB − ðĞð6Þ
B;UÞμνABBμνQ̄Aϕ

cUB − ðĞð6Þ
B;DÞμνABBμνQ̄AϕDB

− 1
2
ðH̆ð6Þ

B;LÞκλμνAB eκaeλbBμνL̄Aϕσ
abRB − 1

2
ðH̆ð6Þ

B;UÞκλμνAB eκaeλbBμνQ̄Aϕ
cσabUB

− 1
2
ðH̆ð6Þ

B;DÞκλμνAB eκaeλbBμνQ̄Aϕσ
abDB þ H:c:

Lð6Þ
Yukawa;ϕ −ðĞð6Þ

ϕ;LÞABðϕ†ϕÞL̄AϕRB − ðĞð6Þ
ϕ;UÞABðϕ†ϕÞQ̄Aϕ

cUB − ðĞð6Þ
ϕ;DÞABðϕ†ϕÞQ̄AϕDB

− 1
2
ðH̆ð6Þ

ϕ;LÞκλABeκaeλbðϕ†ϕÞL̄Aϕσ
abRB − 1

2
ðH̆ð6Þ

ϕ;UÞκλABeκaeλbðϕ†ϕÞQ̄Aϕ
cσabUB

− 1
2
ðH̆ð6Þ

ϕ;DÞκλABeκaeλbðϕ†ϕÞQ̄Aϕσ
abDB þ H:c:

Lð6Þ
Yukawa;ψϕ

1
2
ðk̆ð6ÞLDϕÞκμABeκaðL̄Aγ

aLBÞðϕ†iDμϕÞ þ 1
2
ðk̆ð6ÞRDϕÞκμABeκaðR̄Aγ

aRBÞðϕ†iDμϕÞ
þ 1

2
ðk̆ð6ÞQDϕÞκμABeκaðQ̄Aγ

aQBÞðϕ†iDμϕÞ þ 1
2
ðk̆ð6ÞUDϕÞκμABeκaðŪAγ

aUBÞðϕ†iDμϕÞ
þ 1

2
ðk̆ð6ÞDDϕ;1ÞκμABeκaðD̄Aγ

aDBÞðϕ†iDμϕÞ þ 1
2
ðk̆ð6ÞDLϕÞκμABeκaðL̄Aγ

aiDμLBÞðϕ†ϕÞ
þ 1

2
ðk̆ð6ÞDRϕÞκμABeκaðR̄Aγ

aiDμRBÞðϕ†ϕÞ þ 1
2
ðk̆ð6ÞDQϕÞκμABeκaðQ̄Aγ

aiDμQBÞðϕ†ϕÞ
þ 1

2
ðk̆ð6ÞDUϕÞκμABeκaðŪAγ

aiDμUBÞðϕ†ϕÞ þ 1
2
ðk̆ð6ÞDDϕ;2ÞκμABeκaðD̄Aγ

aiDμDBÞðϕ†ϕÞ þ H:c:
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In the limit of scalar coupling constants, all indices on
the dynamical operators must be contracted. The curvature,
the gauge field strength, and the scalar field all have even
numbers of indices and appear in dynamical combinations
that have even mass dimension d. Since the vierbein,
metric, and Levi-Civita tensors also have even numbers
of indices, no terms with odd d can appear in the gravity or
gauge sectors. Since the quadratic combination of fermions
has odd mass dimension d ¼ 3, terms with odd d can
appear in the fermion sector and in fermion couplings to
scalars. These features are reflected in the result in
Table XX.
The gravity sector of Table XX consists of terms of

dimension d ≤ 6 in the effective field theory for GR that
involve only scalar coupling constants. Various combina-
tions of the sectors in the table form other effective field
theories of this type including, for example, ones based on
Einstein-Yang-Mills and Einstein-Maxwell theory, on non-
Abelian gauge theory and Maxwell electrodynamics in
Minkowski spacetime, and theories with fermions and
scalars. Using the same procedure, the effective field theory
for GR coupled to the SM can be obtained directly from
Tables XVI, XVII, XVIII, and XIX. In Minkowski space-
time, this reduces to the SM effective field theory with

d ≤ 6. The operators for arbitrary d involving only scalar
coupling constants in these various realistic theories have
been presented elsewhere in the literature, including ones
for arbitrary d in the graviton sector [59], the neutrino
sector [90], the photon sector [124], and the fermion
sector [125].

V. SUMMARY

In this work, we develop the framework for gravitational
effective field theory in the presence of backgrounds and
provide a methodology for constructing operators of
arbitrary mass dimension d in the Lagrange density.
Explicit terms with d ≤ 6 are obtained for several theories,
including the realistic cases of GR coupled to the SM and
some of its limits. The results presented here are achieved
through a combination of conceptual developments and
technical results.
The underpinnings of the framework are discussed in

Sec. II. Table I summarizes the relevant spacetime trans-
formations in both curved and approximately flat space-
times. The various types of backgrounds and their
implications for violations of symmetries in curved space-
times are described, with examples provided in Table II.

TABLE XX. Terms with d ≤ 6 involving scalar coupling constants.

Sector d Terms

Gravity 4 1
2κR

6 1
2κRαβγδRαβγδ; 1

2κR
αβRαβ;

1
2κR

2; 1
2κ ϵ

κλμνRα
βκλRβ

αμν

Gauge 4 trðFμνFμνÞ; trðFμνF̃μνÞ
6 trðFμνDαDαFμνÞ; trðFμνDαDαF̃μνÞ; trðFμνDðμDρÞFρ

νÞ; trðFμνDðμDρÞF̃ρ
νÞ,

RκλμνtrðFκλFμνÞ; RκλμνtrðFκλF̃μνÞ; RνρtrðFμνFμ
ρÞ; RνρtrðFμνF̃μ

ρÞ; RtrðFμνFμνÞ; RtrðFμνF̃μνÞ,
RαβtrðDðαDγÞFβ

γÞ; RαβtrðDðαDγÞF̃β
γÞ; itrðFμ

νFν
ρFρ

μÞ; itrðFμ
νFν

ρF̃ρ
μÞ

Fermion 3 ψ̄ψ ; iψ̄γ5ψ
4 1

2
eμaψ̄γaiDμψ þ H:c:; 1

2
eμaψ̄γ5γaiDμψ þ H:c:

5 1
2
ψ̄iDμiDμψ þ H:c:; 1

2
iψ̄γ5iDμiDμψ þ H:c:; Rψ̄ψ ; iRψ̄γ5ψ ; eμaeνbψ̄σabFμνψ ; eμaeνbψ̄σabF̃μνψ ,

6 1
2
gνρeμaψ̄γaiDðμiDνiDρÞψ þ H:c:; 1

2
gνρeμaψ̄γ5γaiDðμiDνiDρÞψ þ H:c:,

1
2
eκaRκμψ̄γaiDμψ þ H:c:; 1

2
eκaRκμψ̄γ5γ

aiDμψ þ H:c:; 1
2
eμaRψ̄γaiDμψ þ H:c:; 1

2
eμaRψ̄γ5γaiDμψ þ H:c:,

eνaðDμRμνÞψ̄γaψ ; eνaðDμRμνÞψ̄γ5γaψ ; eμaðDμRÞψ̄γaψ ; eμaðDμRÞψ̄γ5γaψ ,
eκaψ̄γaðDμFκμÞψ ; eκaψ̄γ5γaðDμFκμÞψ ; 1

2
eκaψ̄γaFκμiDμψ þ H:c:; 1

2
eκaψ̄γ5γaFκμiDμψ þ H:c:,

1
2
eκaψ̄γaF̃κμiDμψ þ H:c:; 1

2
eκaψ̄γ5γaF̃κμiDμψ þ H:c:,

ðψ̄ψÞðψ̄ψÞ; iðψ̄ψÞðψ̄γ5ψÞ;−ðψ̄γ5ψÞðψ̄γ5ψÞ; ðψ̄γaψÞðψ̄γaψÞ; ðψ̄γaψÞðψ̄γ5γaψÞ,
ðψ̄γ5γaψÞðψ̄γ5γaψÞ; 14 ðψ̄σabψÞðψ̄σabψÞ; 14 ϵabcdðψ̄σabψÞðψ̄σcdψÞ

Scalar 2 ϕ†ϕ
4 1

2
ϕ†iDμiDμϕþ H:c:; Rϕ†ϕ; ðϕ†ϕÞ2

5 ðψ̄ψÞðϕ†ϕÞ; iðψ̄γ5ψÞðϕ†ϕÞ
6 1

2
gμνgρσϕ†iDðμiDνiDρiDσÞϕþ H:c:; 1

2
Rμνϕ†iDðμiDνÞϕþ H:c:; 1

2
Rϕ†iDμiDμϕþ H:c:,

1
2
ðDμRμνÞϕ†iDνϕþ H:c:; 1

2
ðDμRÞϕ†iDμϕþ H:c:; 1

2
ϕ†ðDμFμνÞiDνϕþ H:c:; 1

2
ðϕ†ϕÞðϕ†iDμiDμϕÞ þ H:c:,

1
2
ðϕ†iDμϕÞðϕ†iDμϕÞ þ H:c:; 1

2
ððiDμϕÞ†ϕÞðϕ†iDμϕÞ þ H:c:; 1

2
eμaðψ̄γaψÞðϕ†iDμϕÞ þ H:c:,

1
2
eμaðψ̄γ5γaψÞðϕ†iDμϕÞ þ H:c:; 1

2
eμaðψ̄γaiDμψÞðϕ†ϕÞ þ H:c:; 1

2
eμaðψ̄γ5γaiDμψÞðϕ†ϕÞ þ H:c:,

ðDμDνRμνÞϕ†ϕ; ðDμDμRÞϕ†ϕ; RαβγδRαβγδðϕ†ϕÞ; RαβRαβðϕ†ϕÞ; R2ðϕ†ϕÞ; ϵκλμνRα
βκλRβ

αμνðϕ†ϕÞ,
ϕ†FμνFμνϕ;ϕ†FμνF̃μνϕ; trðFμνFμνÞðϕ†ϕÞ; trðFμνF̃μνÞðϕ†ϕÞ; Rðϕ†ϕÞ2; ðϕ†ϕÞ3
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Linearizing in approximately flat spacetimes produces limit-
ing cases of the spacetime transformations, listed in Table III.
The links between properties of terms in the full and
linearized Lagrange densities are schematically displayed
in Fig. 1, and the symmetry properties of thevarious cases are
illustrated with examples in Table IV. We also revisit the no-
go constraints arising from the compatibility of the varia-
tional procedure with the Bianchi identities, showing that a
large class of potential perturbative terms in the effective
Lagrange density cannot arise from a Riemann geometry or
its extensions but instead must have an alternative geometric
or nongeometric origin in the underlying theory. These
results are illustrated pictorially in Fig. 2.
Using this framework, the methodology for constructing

terms in a generic effective Lagrange density is presented in
Sec. III. The use of compact notation for backgrounds and
technical results for construction of gauge-covariant oper-
ators permit the enumeration and classification of terms in
the Lagrange density. Tables V, VI, and VII provide explicit
results for the pure-gravity and background sector involv-
ing operators with d ≤ 6. Analogous forms for terms in the
matter-gravity sector are obtained. Tables VIII and IX
consider operators containing gauge fields, Tables X and
XI present results for Dirac fermions, and Tables XII and
XIII treat scalars.

Applications of the methodology to cases of practical
importance are considered in Sec. IV. For Einstein-
Maxwell effective field theories, terms in the matter-gravity
Lagrange density with d ≤ 6 are provided for photons
in Table XIV and for uncharged scalars in Table XV.
For the realistic effective field theory consisting of GR
coupled to the SM, we present all terms with d ≤ 6 in
the matter-gravity sector involving gauge, lepton, quark,
Higgs, and Yukawa couplings in Tables XVI, XVII, XVIII,
and XIX. Terms for the limiting case with backgrounds
acting only as scalar coupling constants are displayed in
Table XX.
The results obtained in this work establish the foundation

for further investigations of gravitational effective field
theories. The explicit characterization of terms in realistic
scenarios provided here opens the way for future phenom-
enological and experimental searches, with promising
potential for detecting observable signals from the Planck
scale.
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