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A new spinorial strategy for the construction of geometric inequalities involving the Arnowitt-Deser-
Misner mass of black hole systems in general relativity is presented. This approach is based on a second
order elliptic equation (the approximate twistor equation) for a valence 1 Weyl spinor. This has the
advantage over other spinorial approaches to the construction of geometric inequalities based on the Sen-
Witten-Dirac equation that it allows us to specify boundary conditions for the two components of the
spinor. This greater control on the boundary data has the potential of giving rise to new geometric
inequalities involving the mass. In particular, it is shown that the mass is bounded from below by an integral
functional over a marginally outer trapped surface (MOTS) which depends on a freely specifiable valence 1
spinor. From this main inequality, by choosing the free data in an appropriate way, one obtains a new
nontrivial bounds of the mass in terms of the inner expansion of the MOTS. The analysis makes use of a
new formalism for the 1þ 1þ 2 decomposition of spinorial equations.
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I. INTRODUCTION

Geometric inequalities are a prime example of the
rich interplay between general relativity and geometric
analysis. They relate quantities with a clear physical
content with geometric structures of the spacetime. In
particular, they provide important qualitative insight into
fundamental aspects of black holes.
The most fundamental geometric inequality in general

relativity is, without a doubt, the so-called positivity of the
Arnowitt-Deser-Misner (ADM) mass. Although a proof of
this result (for axially symmetric spacetimes) can be found
in the work of Brill [1], a first general proof was obtained
by Schoen and Yau [2,3] using methods of geometric
analysis. An alternative proof, using spinorial methods,
was later given by Witten [4]. An extension of this last
result, showing the positivity of the mass for black hole
spacetimes was given in [5]. Technical aspects of the
spinorial proof, including the existence of solutions of
the boundary value problem for the Sen-Witten-Dirac
equation have been addressed in [6,7]. A further refinement
of the positivity of the mass is given the so-called Penrose
inequality. It provides a lower bound of the mass of a black
hole in terms of (the square root of) its area—see e.g., [8]—
and is closely related to the cosmic censorship conjecture.

The Penrose inequality has only been rigorously proved in
the so-called Riemannian case (i.e., when the initial
hypersurface is time symmetric)—see [9], also [10] for a
survey on the subject. This proof makes use of powerful
methods of geometric analysis to study the properties of a
geometric flow. In the case of axisymmetric black holes,
alternative bounds for the mass in terms of the angular
momentum (mass-angular momentum inequalities) have
been analyzed and rigorously proven [11,12]—see also
[13] for a review on the subject.
The proof of the positivity of the mass for black holes in

[5] suggests that it may be possible to make use of (an
extension of) Witten’s strategy to obtain nontrivial bounds
on the mass and, in particular, obtain a proof the general
Penrose inequality. Indeed, a Penrose-like inequality has
been obtained in [14] by this approach—however, the
classical Penrose inequality remains, so far, unproven.
One of the main advantages of the spinorial approach to the
construction of geometric inequalities is that it leads to
conceptually clearer arguments. For a four-dimensional
spacetime, the existence of a spin structure does not
introduce any additional restrictions, so working in the
setting of asymptotically flat (or Schwarzschildean) hyper-
surfaces, one can obtain bounds on the mass directly from
the existence of solution of a certain spinorial equation.
However, the resulting inequality will depend heavily on
the boundary conditions.
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Witten’s argument for the positivity of themassmakes use
of an integral identity for a spinor field κA over a three-
dimensional hypersurface S. This identity contains both
bulk and boundary integrals. One part of the bulk integrals
is manifestly non-negative while the rest can be eliminated if
κA satisfies the Sen-Witten-Dirac equation DA

BκB ¼ 0 (see
below for an explanation of the notation). If suitable
asymptotic conditions for κA are prescribed then the boun-
dary integral at infinity can be shown to be related to the
mass. Thus, in order to obtain a nontrivial bound on the latter
one is left with the task of identifying conditions on the inner
(black hole) boundary which ensure the solvability of the
Sen-Witten-Dirac equation and such that the inner boundary
integral is non-negative—e.g., it involves the area. As the
analyses in [5,7,15] show, a limitation of Witten’s strategy is
that the Sen-Witten-Dirac equation is first order elliptic and
thus, roughly speaking one can only prescribe one of the
components of κA.

A. Main results

In this paper we develop a different spinorial framework
for the study of geometric inequalities involving the ADM
mass which addresses the difficulties in Witten’s approach
of prescribing boundary data. This strategy builds on the
analysis of the so-called approximate twistor equation
introduced in [16]. The approximate twistor equation is
a second order elliptic equation for a Weyl spinor κA
on a three-dimensional asymptotically Euclidean manifold,
which is assumed to be a hypersurface of avacuumspacetime
ðM; gabÞ. Using suitably constructed solutions to the boun-
dary value problem for the approximate twistor equation we
find that for a marginally outer trapped surface (MOTS) one
has the inequality,

4πm ≥
κffiffiffi
2

p H½ϕA; ϕ̄A0 �; κ ≡ 8πG=c4;

wherem denotes the ADM mass of the spacetime ðM; gabÞ
and H½ϕA; ϕ̄A0 � is the Nester-Witten functional over the
MOTS evaluated on a freely specifiable spinor ϕA over
the 2-surface. This master inequality can be used as the
starting point for the systematic construction of geometric
inequalities involving the mass. In particular, a new proof of
the positivity of the mass for black holes follows directly
from the above inequality. A couple of further examples of
inequalities which follow directly from the master inequality
are provided in the main text.
A substantial part of the calculations in this article have

been carried out in the suite of packages xAct for tensor and
spinor manipulations inMathematica [17]. In particular, we
have profited from the package SpinFrames allowing com-
putations in the NP and GHP formalisms.

1. Organization of the article

This paper is organized as follows. In Sec. II we establish
the framework of 1þ 1þ 2 space–spinor formalism in

which we are working. Next section is dedicated to the
approximate twistor equation, which together with the
appropriate boundary condition will be used in Sec. IV
to establish a new bound on the ADM mass of the initial
data. The role of appendixes is to clarify the arguments
used in the main body of the paper.

2. Notation and conventions

In the following, four-dimensional metrics are taken
to have signature ðþ − −−Þ. Consequently, Riemannian
three- and two-dimensional metrics are taken to be negative
definite. When convenient, we expand spinorial expres-
sions using the Geroch-Held-Penrose (GHP) formalism.
In using spinors and the GHP formalism, we follow the
conventions of [18]. The Einstein field equations are given
by Gab ¼ κTab where as usual κ ≡ 8πG=c4.

II. THE 1+ 1+ 2 SPACE–SPINOR FORMALISM

Consider initial data sets ðS; hij; KijÞ for the vacuum
Einstein field equations satisfying in the asymptotic region
the conditions,

hij ¼ −
�
1þ 2m

r

�
δij þ o∞ðr−3=2Þ; ð1aÞ

Kij ¼ o∞ðr−5=2Þ; ð1bÞ

with r2 ≡ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2, ðx1; x2; x3Þ asymptoti-
cally Cartesian coordinates and m the ADM mass.
Initial data sets of this type are called asymptotically
Schwarzschildean. In addition, it is assumed that S has
one inner boundary ∂S ≈ S2.
The 1þ 1þ 2 spinor formalism is inspired by the two-

dimensional Sen connection introduced in [19] which uses
SLð2;CÞ spinors. Here we adapt these ideas to SUð2;CÞ
spinors (the so-called space spinors first introduced in [20])
which allows us to work only with spinors with unprimmed
indices. A discussion of the space spinor formalism can be
found in [21]—see also [22].

A. Basic setting

Let τAA
0
and ρAA

0
denote, respectively the spinorial

counterpart of the (timelike) normal to the hypersurface
S and the (spacelike) normal to ∂S on S. We consider
spinor dyads foA; ιAg such that

τAA0τBA
0 ¼ δA

B ⇒ τAA0τAA
0 ¼ 2;

ρAA0ρBA
0 ¼ −δAB ⇒ ρAA0ρAA

0 ¼ −2:

The spinors τAA
0
and ρAA

0
are Hermitian. We require τAA

0

and ρAA
0

to be orthogonal to each other—that is,
τAA0ρAA

0 ¼ 0. The complex metric can now be defined as
γAB ≡ τB

A0
ρAA0 . It follows from the definition that
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γA
BγB

C ¼ δA
C:

Because of the orthogonality of τAA
0
and ρAA

0
the complex

metric is a symmetric spinor, γAB ¼ γðABÞ.
The projector to the two-dimensional surface ∂S admits

the alternative expressions,

ΠAA0BB
0 ¼ PAA0QQ0

TQQ0BB
0

¼ δA
BδA0B

0 −
1

2
τAA0τBB

0 þ 1

2
ρAA0ρBB

0

¼ 1

2
ðδABδA0B

0 − γA
Bγ̄A0B

0 Þ;

where

PAA0BB
0 ≡ δA

BδA0B
0 þ 1

2
ρAA0ρBB

0
;

TAA0BB
0 ≡ δA

BδA0B
0 −

1

2
τAA0τBB

0

denote, respectively, the projectors to the distributions
generated by ρAA

0
and τAA

0
.

Several of the calculations simplify if one makes use of
an adapted spin dyad foA; ιAg with oAιA ¼ 1 such that
ôA ¼ ιA and ι̂A ¼ −oA, where b denotes the Hermitian
conjugation. We have

τAA
0 ¼ oAōA

0 þ ιA ῑA
0
:

It then follows that

ρAA
0 ¼ oAōA

0 − ιA ῑA
0
;

γAB ¼ oAιB þ oBιA:

The above construction, restricted to the two-dimensional
surface ∂S still allows the freedom of a rotation,

oA ↦ eiϑoA; ιA ↦ e−iϑιA:

If one defines, following standard conventions, components
of a spinor κA with respect to foA; ιAg by

κ0 ≡ oAκA; κ1 ≡ ιAκA;

then

κ̂A ¼ κ̄0oA þ κ̄1ιA:

B. The three-dimensional and two-dimensional
Sen connections

The three-dimensional and two-dimensional Sen con-
nections are defined, respectively, by

DAA0κC ≡ TAA0BB
0∇BB0κC; ð2aÞ

DAA0κC ≡ ΠAA0BB
0∇BB0κC: ð2bÞ

One can use the spinor τAA
0
to obtain SUð2;CÞ (i.e.,

space spinor) versions of the above derivatives. More
precisely, one has

DAB ≡ τðBA
0
DAÞA0 ; DAB ≡ τðBA

0
DAÞA0 :

From the above expressions one can derive the following
alternative expressions:

DABκC ≡ τðBA
0∇AÞA0κC; DAB ≡ γB

QγðAPDQÞP:

Moreover, one has the decompositions,

∇AA0 ¼ 1

2
τAA0P − τQA0DAQ;

DAB ¼ DAB −
1

2
γABD;

where

P ≡ τAA
0∇AA0 ; D≡ γABDAB

are directional derivatives in the direction of τAA0 and γAB,
respectively.

C. The extrinsic curvature

Following the standard definition adapted to the present
setting, the Weingarten spinor associated with generator
τAA

0
is given by

KABCD ¼ τD
C0
DABτCC0 :

We will assume that distribution is integrable, i.e., KABCD
corresponds to the extrinsic curvature of a hypersurface
orthogonal to τAA

0
. This is equivalent to the condition,

KAC
C
B ¼ 1

2
KϵAB;

where K ¼ KAB
AB is the mean curvature of S and ϵAB is

the antisymmetric spinor generating symplectic bilinear
form. It will also be convenient to introduce a complete
symmetrisation of extrinsic curvature, ΩABCD. It can be
defined as

KABCD ¼ ΩABCD −
1

3
KϵAðCϵDÞB:
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D. Levi-Civita connections

The spinor form of the induced metric hij on S can be
obtained from the projector TAA0BB

0
by removing primed

indices using the spinor τAA0. After using the Jacobi identity
for ϵAB one finds that

hABCD ≡ −ϵAðCϵDÞB:

One can verify that

hABCD ¼ hCDAB;

hABCD ¼ hðABÞCD ¼ hABðCDÞ ¼ hðABÞðCDÞ:

Similarly, from ΠAA0BB
0
a calculation readily gives the

expression,

σABCD ¼ 1

2
ðϵACϵBD þ γABγCDÞ;

for the induced metric σab on ∂S. To obtain this last
expression it has been used that γ̂AB ¼ −γAB.
Let DAB and =DAB denote, respectively, the SUð2;CÞ

form of the Levi-Civita connection of the metrics hab and
σab. One has that

DABϵCD ¼ 0; =DABϵCD ¼ 0:

In addition,

=DABγCD ¼ 0:

The relation between the Sen and Levi-Civita connections
can be worked out using the standard tricks—see e.g., [18].
One finds that

DABπC ¼ DABπC þ 1

2
KABC

QπQ;

DABπC ¼ =DABπC þQAB
Q
CπQ;

where, for convenience, we have defined the transition
spinor,

QAB
C
D ≡ −

1

2
γD

QDABγQ
C:

Using the GHP formalism [18,23] one can arrive at

QABCD ¼ σ0oAoBoCoD þ σιAιBιCιD

− ρoAoBιCιD − ρ0ιAιBoCoD:

The Levi-Civita covariant derivatives are real in the sense
that

dDABπC ¼ −DABπ̂C; d=DABπC ¼ −=DABπ̂C:

This implies the following formulas for Hermitian con-
jugation of Sen derivatives:

dDABπC ¼ −DABπ̂C þ KABC
Dπ̂D;dDABπC ¼ −DABπ̂C þ ðQABC
D þ Q̂ABC

DÞπ̂D:

Finally observe that a direct computation gives

=DABoC ¼ αoAoBoC − βιAιBoC;

=DABιC ¼ βιAιBιC − αoAoBιC:

However, computing the Hermitian conjugate of the first
expression one readily has that

=DABιC ¼ −ᾱιAιBιC þ β̄oAoBιC:

Hence, one concludes that

αþ β̄ ¼ 0;

This relation leads to the formula

ð=DAC=DB
C − =DB

C=DACÞκB ¼ ðρρ0 − σσ0 þ Ψ2ÞκA;

satisfied in the vacuum spacetime.

E. MOTS

Let la and ka denote future-oriented null vectors span-
ning the normal bundle to ∂S and such that laka ¼ 1.
The expansions associated to la and ka are defined,
respectively, by

θþ ≡ σab∇alb; θ− ≡ σab∇akb:

Our conventions are that la denotes an outgoing null vector
whereas ka is an ingoing one. The 2-surface ∂S is said to be
a MOTS (marginal outer trapped surface) if θþ ¼ 0 and
θ− ≤ 0. Let lAA

0
and kAA

0
denote the spinorial counterparts

of la and ka. A natural choice for la and ka is given by

la ¼ 1

2
ðτa þ ρaÞ; ka ¼ 1

2
ðτa − ρaÞ;

so that

lAA
0 ¼ oAōA

0
; kAA

0 ¼ ιA ῑA
0
:

A computation then shows that in terms of the GHP
formalism one has that

θþ ¼ −ρ − ρ̄; θ− ¼ −ρ0 − ρ̄0:

In the present setting one has, moreover, that both ρ and ρ0
are real (see [18], Proposition 4.14.2) so that, in fact, one
has that
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θþ ¼ −2ρ; θ− ¼ −2ρ0:

In the main text, the contraction QA
P
CP plays an important

role. An expansion in terms of the dyad readily shows that

QA
P
BP ¼ ρoAιB − ρ0ιAoB;

If ρ and ρ0 are real, then it readily follows that

Q̂A
P
BP ¼ −ðρoBιA − ρ0ιBoAÞ ¼ −QB

P
AP:

Observing that

oAιB ¼ 1

2
γAB þ 1

2
ϵAB;

one obtains the more convenient expression,

QA
C
BC ¼ 1

2
ðρ − ρ0ÞγAB þ 1

2
ðρþ ρ0ÞϵAB:

In particular, for a MOTS one has

QA
C
BC ¼ 1

2
ρ0ðϵAB − γABÞ:

III. THE APPROXIMATE TWISTOR EQUATION

Let S1, S3 denote, respectively, the spaces of valence 1
and 3 symmetric spinors over the hypersurface S. One
defines the spatial twistor operator,

T∶ S1 → S3; TðκÞABC ¼ DðABκCÞ:

The operator T can be easily shown to be overdetermined
elliptic. The equation DðABκCÞ ¼ 0 arises from the space-
spinor decomposition of the twistor equation ∇A0ðAκBÞ ¼ 0

[16]. The formal adjoint of T, to be denoted by T�, is
given by

T�∶ S3 → S1; T�ðζÞA ≡DBCζABC −ΩA
BCDζBCD;

where ΩABCD ¼ KðABCÞD. The operator T� can be shown to
be underdetermined elliptic. The approximate twistor
equation follows from considering the composition oper-
ator L≡ T� ∘ T∶S1 → S1 and is given by

LðκAÞ≡DBCDðABκCÞ −ΩA
BCDDBCκD ¼ 0: ð3Þ

By construction the operator given by Eq. (3) is formally
self-adjoint elliptic—i.e., L� ¼ L. Given a solution κA to
Eq. (3), it is convenient to define the spinors ξA ≡ 2

3
DA

QκQ
and ξABC ≡DðABκCÞ encoding the independent components

of the derivative DABκC. Moreover, set ζA ≡ ξ̂A. A key
observation is the following: if κA satisfiesLðκAÞ ¼ 0, then

using the properties of the Hermitian conjugation one has
that LðζAÞ ¼ 0.
In the following we consider solutions to Eq. (3) with an

asymptotic behavior of the form,

κA ¼
�
1þm

r

�
xABoB þ o∞ðr−1=2Þ; ð4Þ

where given some asymptotically Cartesian coordinates
x ¼ ðxαÞ we set

xAB ≡ 1ffiffiffi
2

p
�
−x1 − ix2 x3

x3 x1 − ix2

�
;

and the spinor oA is part of a normalised spin dyad foA; ιAg
adapted to S—that is, ιA ¼ ôA. A computation reveals that

ξA ¼
�
1 −

m
r

�
oA þ o∞ðr−3=2Þ; ð5aÞ

ξABC ¼ −
m
r3

xðABoCÞ þ o∞ðr−5=2Þ: ð5bÞ

A. Relation to the ADM mass

Central to our analysis is the functional,

I½κA�≡
Z
S
DðABζCÞ dDABζCdμ ≥ 0;

first considered in [16]. If LðκAÞ ¼ 0 then integrating by
parts it is possible to rewrite I½κA� in terms of boundary
integrals at the sphere at infinity ð∂S∞Þ and the inner
boundary (∂S),

I½κA� ¼
I
∂S∞

nABζC
dDðABζCÞdS −

I
∂S

nABζC
dDðABζCÞdS:

As a consequence of the asymptotic expansions (5a)–(5b)
the integral over ∂S∞ can be shown to equal 4πm. Thus, it
follows that

4πm ≥
I
∂S

nABζC
dDðABζCÞdS: ð6Þ

B. A boundary value problem

The inequality (6) suggests considering boundary con-
ditions of the form ζA ¼ ϕA where ϕA is a smooth, freely
specifiable spinorial field over ∂S. Written in terms of κA
one obtains the condition,

DA
QκQ ¼ −

3

2
ϕ̂A; on ∂S: ð7Þ
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The approximate twistor equation together with the above
transverse boundary condition can be shown to satisfy the
Lopatinskij-Shapiro compatibility conditions—see e.g.,
[24,25]. It follows that the boundary value problem over
S given by (3) and (7) is elliptic. In the following we
consider solutions to the associated boundary value prob-
lem with the asymptotic behavior (4) and the Ansatz,

κA ¼ κ
∘
A þ θA; θA ∈ H2

−1=2 ð8Þ

with κ
∘
A given by the leading term in (4) and where Hs

β with
s ∈ Zþ and β ∈ R denotes the weighted L2 Sobolev
spaces. We follow the conventions for these spaces set
in [26]. In view of the decay conditions (1a)–(1b) the
elliptic operator L is asymptotically homogeneous—see
[27,28]. This is the standard assumption on elliptic oper-
ators on asymptotically Euclidean manifolds.

C. Solvability of the boundary value problem

To discuss the solvability of the approximate twistor
equation we need to consider Green’s identity for the
approximate twistor operator L. That is,Z

S
LðκAÞπ̂Adμ −

Z
S
κA

dLðπAÞdμ

¼
I
∂S

ðDðABκCÞnABπ̂C − nABκC dDðABπCÞÞdS;

where in the above expression it has explicitly been used
that L is self-adjoint. The first task is to rewrite the
boundary conditions in terms of the boundary operator
DA

QκQ so that one can identify the natural adjoint
boundary conditions. One aims for an identity of the form,Z

S
LðκAÞπ̂Adμ −

Z
S
κA dLðπAÞdμ

¼
I
∂S

ðBðκAÞπ̂A − κA
dB�ðπAÞÞdS;

where B is some natural boundary operator yet to be
identified and B� is its formal adjoint over ∂S. Now, the
decomposition of the three-dimensional Sen connection
yields

ffiffiffi
2

p
DðABκCÞnABπ̂C ¼ DκCπ̂

C þ ξAγ
A
Cπ̂

C:

A further computation shows that the normal derivative
DκC can be expressed in terms of ξA and the intrinsic
derivative DA

QκQ as

DκC ¼ 2γC
PDQ

PκQ − 3γC
QξQ:

Combining the above expressions one obtains

DðABκCÞnABπ̂C ¼
ffiffiffi
2

p
ðγCPDQ

PκQπ̂
C − γC

PξPπ̂
CÞ:

For convenience, define the boundary operator,

BðκAÞ≡ −
ffiffiffi
2

p
γA

PξP ¼ −
2

ffiffiffi
2

p

3
γA

PDQ
PκQ:

Notice that ξA ¼ 0 if and only if BðκAÞ ¼ 0. Thus, one can
write

DðABκCÞnABπ̂C ¼ ðBðκCÞ þ
ffiffiffi
2

p
γC

PDQ
PκQÞπ̂C:

A similar calculation as before shows that

nABκC dDðABπCÞ ¼ −κCð dBðπCÞ þ ffiffiffi
2

p dγC
PDQ

PπQÞ:

Thus, one finds that

Z
S
LðκAÞπ̂Adμ −

Z
S
κA

dLðπAÞdμ

¼
I
∂S

ðBðκAÞπ̂A − κA
dBðπAÞÞdSþ I;

where

I ≡ ffiffiffi
2

p I
∂S
ðγCPDP

QκQπ̂
C þ κC dγC

PDP
QπQÞdS:

In order to simplify the integral I it is convenient to write
the two-dimensional Sen connection DAB in terms of the
Levi-Civita connection DAB as

DABκC ¼ =DABκC þQAB
S
CκS;

whereQAB
S
C is the associated transition spinor between the

connections. It follows then, after some calculations, that

I ¼
ffiffiffi
2

p I
∂S
ðγCP=DP

QκQπ̂
C þ κCγC

P=DP
Qπ̂Q

þ γC
PQP

QS
QκSπ̂

C − κCγC
PQ̂P

QS
Qπ̂SÞdS;

¼
ffiffiffi
2

p I
∂S
ð−γCPκQ=DP

Qπ̂C þ κCγC
P=DP

Qπ̂Q

þ γC
PQP

QS
QκSπ̂

C − κCγC
PQ̂P

QS
Qπ̂SÞdS;

where in the second equality integration by parts on a
manifold without boundary has been used on the first
integrand. Remarkably, using the Jacobi identity for ϵAB
one has that

γC
PκQ=DP

Qπ̂C ¼ −γQPκQ=DPCπ̂
C;

from where one concludes that
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I ¼
ffiffiffi
2

p I
∂S
ðγCPQP

QS
QκSπ̂

C − κCγC
PQ̂P

QS
Qπ̂SÞdS:

Thus, the integrand in I contains no differential operators
acting on κC or π̂C. Accordingly, the boundary operator B
is, up to the vanishing of I, self-adjoint. Now, it can be
shown that, in fact, one has that

QA
P
BP ¼ −Q̂B

P
AP ¼ ρoAιB − ρ0ιAoB; ð9Þ

where the GHP coefficients ρ and ρ0 are closely related to
the expansions of the boundary ∂S—regarded as a codi-
mension 2 surface in the spacetime ðM; gabÞ. As discussed
in [18], and adapted spin dyad can be found such that ρ and
ρ0 are both real. From the expression (9) one readily
concludes that I ¼ 0. Consequently, it follows that

B�ðπAÞ ¼ BðπAÞ:

Hence, we conclude that the boundary operator B is self-
adjoint.
Substituting the Ansatz (8) into the approximate Killing

spinor equation (3) one obtains the following inhomo-
geneous equation for θA:

LðθAÞ ¼ FA; FA ≡ −Lðκ∘AÞ: ð10Þ

As by construction DðABκ
∘
CÞ ∈ H∞

−3=2, one concludes that
FA ∈ H∞

−5=2. To analyze the solvability of Eq. (10) we make
use of a boundary value problem version of the Fredholm
alternative adapted to weighted Sobolev spaces—see
e.g., [29]. More precisely, as L and B are self-adjoint,
one has that

LðθAÞ ¼ FA; with BðθAÞj∂S ¼ GA ð11Þ

has a solution if and only ifZ
S
FAν̂

Adμþ
I
∂S

GAν̂
AdS ¼ 0;

for all νA ∈ H2
−1=2 such that

LðνAÞ ¼ 0; with BðνAÞj∂S ¼ 0: ð12Þ

Thus, in the following we analyze the conditions under
which the adjoint problem (12) has a trivial Kernel.

D. Analysis of the Kernel of the adjoint problem

From the ellipticity of the operator ðL;BÞ it follows
that the Kernel of the boundary value problem (12) is finite
dimensional. Assume one has νA ∈ H2

−1=2 satisfying (12).
Using integration by parts and the falloff of νA it follows that

Z
S
DðABνCÞ dDABνCdμ ¼

I
∂S

nABνC dDðABνCÞdS

¼ H½νA; ν̄B0 � ≥ 0; ð13Þ

where following the discussion in the introduction we write

H½νA; ν̄B0 �≡
I
∂S

ν̂CγC
PDQ

PνQdS ≥ 0;

and to obtain the second equality we have used the identity,

nABν̂CDðABνCÞ ¼ ðBðνCÞ þ
ffiffiffi
2

p
γC

PDQ
PνQÞν̂C: ð14Þ

Crucial in the sequel is that the eigenspinors of the two-
dimensional (Levi-Civita) Dirac operator =DB

AνB form a
base of the space of smooth valence 1 spinors over ∂S which
is orthonormal with respect to L2 inner product induced by
the Hermitian conjugation—this follows from the elliptic-
ity and self-adjointness of the operator—see e.g., [30–32].
Now, if the Kernel of ðL;BÞ is nontrivial, it must contain
spinors whose restriction to ∂S are eigenspinors of the two-
dimensional Dirac operator. Now, if =DB

AνB ¼ λνA then for
a MOTS (ρ ¼ 0, ρ0 ≥ 0) a calculation readily gives that

H½νA; ν̄B0 � ¼ λ

I
∂S

ν̂CγC
PνPdS

þ 1

2

I
∂S

ρ0ðν̂CγCPνP − ν̂CνCÞdS:

A remarkable property of the kernel of the problem (12)
is that

I
∂S

ν̂CγC
PνPdS ¼ 0;

which is obtained by integration by parts of the approxi-
mate twistor equation (3). From the latter and making use
of the expansion νA ¼ ν0ιA − ν1oA, one concludes that

0 ≤ H½νA; ν̄B0 � ¼ −
I
∂S

ρ0jν0j2dS:

This can only occur, for ρ0 > 0, if νA ¼ 0 over ∂S. It
follows then from (13) that if ∂S is a MOTS then
DðABνCÞ ¼ 0 on S. That is, νA is a solution to the spatial
twistor equation that goes to zero at infinity. Using
Proposition 5 in [33] then it follows that νA ¼ 0 on S.
This implies that there are no obstructions to the existence
of solutions to the system (11). The previous argument can
be summarized in the following:
Proposition. If ρ0 ≥ 0 and ρ ¼ 0 over ∂S, then the

boundary value problem,

LðκAÞ ¼ 0; BðκAÞj∂S ¼
ffiffiffi
2

p
γA

Pϕ̂P;
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with ϕA a smooth spinorial field over ∂S admits a unique
solution of the form (8). Accordingly, there exists a spinor
ζA such that in the asymptotic end it satisfies

ζA ¼ −
�
1 −

m
r

�
ιA þ o∞ðr−3=2Þ:

The above proposition holds even in the case that ∂S has
several connected components each one being a MOTS—
that is, in the case ðS; hij; KijÞ is a multiple back hole initial
data set.

E. Main inequality in terms of boundary data

The right-hand side of the main inequality (6) can be
written in terms of the boundary data. The key observation
is that the boundary condition ξ̂A ¼ ϕA together with the
approximate twistor equation (3) and its alternative form,

DBCDBCκA þ ΩABCDDBCκD þ 1

3
KDABκ

B ¼ 0; ð15Þ

allow us to systematically eliminate all the transverse
derivatives DκC in the integral over ∂S. We can write
the right-hand side of main inequality as

1ffiffiffi
2

p
I
∂S

γABζC
dDðABζCÞdS

¼ 1ffiffiffi
2

p
I
∂S

γABϕC

�
ϕ̂DΩABCD þ 2

3
DACϕ̂B

�
dS

−
ffiffiffi
2

p

3

I
∂S

ϕCDξCdS:

The alternative form of the approximate twistor equation
given by Eq. (15) yields

DBCξBCA −DA
BξB þ 1

2
γA

BDξB þ 1

2
Kϕ̂A

þΩABCDDBCκD ¼ 0;

but from approximate twistor equation the first and the last
terms cancels each other out, so that

DξC ¼ −2γCADA
Bϕ̂B − KγCAϕ̂A:

After performing integration by parts, the main inequality
(6) reads

4πm ≥
ffiffiffi
2

p I
∂S

ϕ̂AγA
BDBCϕ

CdS:

IV. MASS INEQUALITIES

We are now ready to state the main result of this paper.
Given a hypersurface S and smooth spinor ϕA defined over
a MOTS ∂S one has that

4πm ≥
κffiffiffi
2

p H½ϕA; ϕ̄A0 �; ð16Þ

where

H½ϕA; ϕ̄A0 �≡ 2

κ

I
∂S

ϕ̂AγA
BDBCϕ

CdS:

Given two spinors κA and ωA, the functional H½κA;ωB�
coincides with the Nester-Witten functional—see e.g.,
[7,34,35]—which plays a role in various quasilocal energy
constructions. If the spinor ϕA could be chosen in such a
way that H½κA;ωB� is manifestly non-negative, one would
have obtained a nontrivial bound on the ADM mass of the
black hole. Consequently, inequality (16) can be used as
the starting point for the construction of new geometric
inequalities involving the mass. As examples of interesting
choices of ϕA consider:

(i) The simple choice ϕA ¼ 0 over ∂S leads to a new
proof of the positivity of the mass of a black hole,
i.e., m ≥ 0.

(ii) Choosing ϕA to be an eigenspinor of the two-
dimensional Dirac operator, i.e., =DA

BϕB ¼ λϕA, it
follows from the fact that the eigenvalue must be
pure imaginary, i.e., λ̄ ¼ −λ, and the reality of
H½ϕA; ϕ̄A0 � thatI

∂S
jϕ0j2dS ¼

I
∂S

jϕ1j2dS: ð17Þ

Moreover, inequality (16) takes the form,

4πm ≥
ffiffiffi
2

p I
∂S

ρ0jϕ0j2dS: ð18Þ

Now, on generic topological spheres the eigenspace
associated to a given eigenvalue is two-dimensional.
The pair fϕA; ϕ̂Ag can be shown to be a basis of the
eigenspace and to be nonzero everywhere on ∂S—
see e.g., [36] Theorems 6.2.5 and 6.2.6. Now,
choosing the (pointwise) normalisation ϕAϕ̂

A ¼ 1,
it readily follows from (17) thatI

∂S
jϕ0j2dS ¼ 1

2
j∂Sj;

where j∂Sj denotes the area of ∂S. Combining this
last observation with inequality (18) one concludes
that

4πm ≥
ffiffiffi
2

p

2
ðmin∂S ρ0Þj∂Sj:

It is worth to notice that for a MOTS ρ0 coincides
with the mean curvature h of the ∂S, such that this
inequality is equivalent with

JAROSŁAW KOPIŃSKI and JUAN A. VALIENTE KROON PHYS. REV. D 103, 024057 (2021)

024057-8



4πm ≥
ffiffiffi
2

p

2
ðmin∂S hÞj∂Sj:

To the author’s best knowledge, this inequality
is new.

(iii) Relation to the area variation [37]. Let HAA0 ¼
ριA ῑA0 þ ρ0oAōA0 denote the spinorial counterpart of
the mean curvature vector to ∂S. The variation of the
area j∂Sj in the direction of a vector va on M is
given by the formula,

δvj∂Sj ¼ −
I
∂S

vAA
0
HAA0dS;

where vAA
0
is the spinorial counterpart of va. In the

space-spinor formalism the mean curvature vector
reads

HAB ¼ −ριAoB þ ρ0oAιB:

Making the choice ϕA ¼ −ϕ0ιA (i.e., ϕ1 ¼ 0) one
then has that

vAB ≡ −ϕðAϕ̂BÞ ¼
1

2
jϕ0j2γAB

can be interpreted as the spinorial counterpart of the
(outwardpointing) radial vector to ∂S. For this
choice the right-hand side of (16) for a MOTS
can be written in terms of a variation of its area with
respect to flow generated by va. More precisely, one
has that

4πm ≥ 2
ffiffiffi
2

p
δvj∂Sj:

For the sake of simplicity, the above statements have
been formulated for ∂S consisting of a single connected
component. However, the methods presented here also
applies to an inner boundary consisting of several compo-
nents, each one with the topology of S2 and satisfying the
MOTS condition.

V. CONCLUSIONS

In this article we have developed a new strategy for the
construction of geometric inequalities involving the ADM
mass of a black hole spacetime. This approach relies
heavily on the use of spinors and has the remarkable
property of allowing the specification of the two compo-
nents of a valence-1 spinor ϕA defined over a MOTS. The
use of the MOTS condition is central in the solvability of
the boundary value problem for the approxmate twistor
equation. However, it is not necessary in the argument
showing that the right-hand side of inequality (16) can be
expressed purely in terms of boundary data.
The main question is whether the methods developed in

this article can be used to make inroads towards a general

proof of Penrose’s inequality. In [14] Witten’s approach
to the positivity of the mass was used to obtain a Penrose-
like inequality—-i.e., an inequality involving the ADM
mass and the square root of the area which, in addition,
contains further constant which is hard to control given the
rigidity in the specification of boundary data. The main idea
in that article was to study the change of the mass under
conformal rescalings of the 3-metric. A similar strategy
can be followed with the framework presented in the
present article. The further flexibility given by the pos-
sibility of prescribing full boundary data could prove
crucial in controlling constants appearing in the analysis.
Finally, it is pointed out that it would also be interesting

to analyze whether the methods in this article can be
adapted to settings with different asymptotic boundary
conditions—e.g., hyperboloidal ones so that a connection
with the Bondi mass can be established.
The ideas expressed in the previous paragraphs will be

pursued elsewhere.
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APPENDIX A: IRREDUCIBLE
DECOMPOSITIONS

Given a spinor κA define

ξA ≡ 2

3
DA

QκQ; ξABC ≡DðABκCÞ:

One then has the decomposition,

DABκC ¼ ξABC − ξðAϵBÞC:

APPENDIX B: INTEGRATION BY PARTS

Integration by parts on the 3-manifold S with respect to
the Sen connection DAB is carried out according to the
identity,Z

U
DABκCζ̂

ABCdμ ¼
I
∂U

ñABκCζ̂
ABCdS

þ
Z
U
κCð dΩC

ABDζABD − dDABζABCÞdμ;
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with U ⊂ S and where dS denotes the area element of ∂U,
ñAB its outward pointing (“outside” of U) normal and ζABC
is an arbitrary symmetric spinor.
Integration by parts on ∂S proceeds in the same lines as

on S with the added simplification of not giving rise to
boundary terms. Thus, for symmetric spinors κA and ζABC
one has thatI

∂S
=DABκCζ

ABCdS ¼ −
I
∂S

κC=DABζ
ABCdS:

In some cases it is necessary to use integration by parts on
expressions involving components. The following iden-
tities have been proven in [18]:I

∂S
χðηdS ¼ −

I
∂S

ηðχdS

if the GHP types of χ and η add up to f−1; 1g, andI
∂S

χð0ηdS ¼ −
I
∂S

ηð0χdS

if the type of χ and η add up to f1;−1g.

APPENDIX C: COMMUTATORS

Several of the calculations require the commutators
between the various covariant derivatives. The commutator
between the three-dimensional Sen connection on an
hypersurface, assuming the vacuum Einstein field equa-
tions hold, can be expressed as

½DAB;DCD�κE ¼ 1

2
ðϵAðC□DÞB þ ϵBðC□DÞAÞκE

þ KCDQðADBÞQκE − KABQðCDDÞQκE;

see e.g., [16], where □AB denotes the usual Penrose box—
see [18]. Now, using the above commutator one can write

DAQDB
Q ¼ 1

2
ϵABDPQDPQ þ ΔAB;

where

ΔAB ≡DCðADBÞC:

A calculation using the expression for ½DAB;DCD� readily
yields that

ΔABκC ¼ □ABκC − KAPQBDPQκC − KPðAjQjPDBÞQκC:

One can rewrite the action of ΔAB as

ΔAB ¼ 1

2
□AB −

1

2
ΩABPQDPQ þ 1

3
KDAB:

Similarly, for the two-dimensional Sen connection one can
define

=Δ≡DABDAB; =ΔAB ≡DCðADBÞC:

In particular, we have that

DCADB
C ¼ 1

2
ϵAB=Δþ =ΔAB:

APPENDIX D: THE LOPATINSKIJ-SHAPIRO
CONDITIONS

To establish the compatibility of the approximate twistor
equation and the transverse boundary conditionnone needs
to consider the so-called Lopatinskij-Shapiro conditions—
see e.g., [24,25]. Using the decomposition of DAB in terms
of =D and =DAB, the principal part of the approximate twistor
equation takes the form,

DPQDPQκA ¼ DPQDPQκA −
1

2
D2κA; ðD1Þ

while for the transverse boundary condition one gets

DP
AκP ¼ DP

AκP −
1

2
γPADκP: ðD2Þ

In a neighborhood of ∂S one chooses coordinates so that
the location of the boundary is given by the condition ρ ¼ 0
and =D ¼ ∂ρ. To verify the Lopatinskij-Shapiro conditions
one considers decaying solutions to the auxiliary ordinary
differential equations problem,

κ00A − 2jξj2κA ¼ 0; ðD3aÞ

ðγPAκ0P − 2iξPAκPÞjρ¼0 ¼ 0; ðD3bÞ

obtained from the principal parts (D1) and (D2) by the
replacements D ↦0, DAB ↦ iξAB where ξAB ¼ ξðABÞ is an
arbitrary nonzero real rank 2 spinor—i.e., ξ̂AB ¼ −ξAB,
jξj2 ≡ ξPQξ̂

PQ, γABξAB ¼ 0. Moreover, 0 denotes differ-
entiation with respect to ρ. The decaying solutions of
Eq. (D3a) are given by

κA ¼ κA⋆e−jξj
2ρ;

where κA⋆ is constant. Substitution of the latter into
Eq. (D3b) leads to the condition,

ð2iξPA þ γPAjξj2ÞκP⋆ ¼ 0 on ∂S;
from which, taking into account that both ξAB and γAB are
real spinors, it follows that κA⋆ ¼ 0. Thus, the approximate
twistor equation with the transverse boundary condition
satisfies the Lopatinskij-Shapiro condition, so the associ-
ated boundary value problem is elliptic.
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APPENDIX E: PROOFS OF VARIOUS
PROPERTIES OF THE KERNEL
OF THE ADJOINT PROBLEM

1. The Kernel of ðL;BÞ includes the Kernel of D

To show that an element of the Kernel of the adjoint
problem is also a solution to the Sen-Witten-Dirac equation
one starts by considering the L2-norm of the Sen-Witten-
Dirac operator acting on the element of the Kernel of
ðL;BÞ. Then, using integration by parts it follows that

0 ≤
Z
S
DA

BνB
dDACνCdμ

¼
I
∂S

ν̂CnACDA
BνBdS −

I
∂S∞

ν̂CnACDA
BνBdS

þ
Z
S

�
ν̂CDACDA

BνB −
1

2
Kν̂ADA

BνB

�
dμ:

Now, the boundary integral at ∂S vanishes as a conse-
quence ofBðνAÞ ¼ 0while that at the sphere at infinity also
vanishes as ν̂ADACνC ¼ oðr−2Þ in the asymptotic end.
Now, making use of the decomposition,

DACDB
A ¼ 1

2
ϵCBΔþ ΔCB;

one has, further, thatZ
S
DA

BνB
dDACνCdμ ¼ 1

2

Z
S
ν̂CΔνCdμ −

Z
S
ν̂CΔCBν

Bdμ

þ 1

2

Z
S
Kν̂CDCBνBdμ:

Observing that in vacuum one has

ΔCBν
B ¼ −

1

2
ΩCBADDADνB þ K

3
DCBν

B;

and using the expression for ΔνC ≡DABDABνC given by
the approximate Killing spinor equation one concludes that
the right-hand side of the last equality vanishes and thus,Z

S
DA

BνB
dDACνCdμ ¼ 0

so that DA
BνB ¼ 0 on S.

2. Norms of ν0 and ν1 on ∂S
Starting from

0 ¼
Z
S
ν̂ADA

BνBdμ;

integrating by parts one readily arrives at the condition,

I
∂S

ν̂AγA
BνBdS ¼ 0:

The latter, expanding in terms of an adapted dyad givesI
∂S
ðjν0j2 − jν1j2ÞdS ¼ 0;

or, in fact, that

kν0kL2ð∂SÞ ¼ kν1kL2ð∂SÞ;

for any element in the Kernel.

APPENDIX F: PROPERTIES OF THE
TWO-DIMENSIONAL

SEN-WITTEN-DIRAC OPERATOR

A calculation readily shows that in GHP notation the
equation DA

BνB ¼ 0 implies that

ð0ν0 þ ρν1 ¼ 0;

ðν1 þ ρ0ν0 ¼ 0:

Using the methods of the Appendix in [38] one can show
that if either ρ ¼ 0 or ρ0 ¼ 0 then necessarily ν0 ¼ ν1 ¼ 0

so that νA ¼ 0—that is, the Kernel of DA
BνB is trivial.

Now, a computation readily shows thatI
∂S

DA
BκBdS ¼

I
∂S
ð dDB

AπB − 2QB
C
ACπ̂

BÞκAdS;

so that DA
BνB is not self-adjoint unless ρ ¼ ρ0 ¼ 0.

Expanding the adjoint operator,

DA
BπB − 2QA

CB
CπB;

in terms of a dyad yields the components,

ð0π0 − ρπ1;

ðπ1 − ρ0π0:

Of particular interest in the present analysis is the
eigenvaule problem for the two-dimensional Sen-Witten-
Dirac operator—i.e.,

DA
BκB ¼ λκA:

Applying the operator once more and integrating givesI
∂S

κ̂CDC
BDA

BκAdS ¼ λ2
I
∂S

κCκ̂
CdS:

Integration by parts plus some further manipulations
eventually leads to
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0 ≤
I
∂S
ðDP

AκPÞ dðDQAκQÞdS

¼ −λ2
I
∂S
ðjκ0j2 þ jκ1j2ÞdS

þ 2λ

I
∂S
ðρjκ0j2 þ ρ0jκ1j2ÞdS:

From the above inequality it follows the (classic) obser-
vation that if ρ ¼ ρ0 ¼ 0 then the eigenvalues of the Dirac
operator are pure imaginary. If, for example, ρ ¼ 0 and
ρ0 > 0 (MOTS) then this is no longer true a the eigenvalues
are general complex numbers.

APPENDIX G: NESTER-WITTEN FUNCTIONAL

Sparling’s form is defined as

ΓðλA; μ̄B0 Þ≡ i∇BB0λA∇CC0 μ̄A0dxAA
0 ∧ dxBB

0 ∧ dxCC
0
:

It is Hermitian in the sense that

ΓðλA; μ̄B0 Þ ¼ ΓðλA; μ̄B0 Þ:

In vacuum Sparling’s form is exact—i.e., du ¼ Γ for
some 2-form u ¼ uμνdxμ ∧ dxν. This 2-form is used, in
turn, to define the Nester-Witten functional over a 2-surface
∂S via

H½λR; μ̄S0 �≡ 2

κ

I
∂S

uμνðλ; μ̄Þdxμ ∧ dxν:

In [38] it has been shown that the above functional can be
rewritten as

H½λR; μ̄S0 � ¼
2

κ

I
∂S

γ̄R
0S0 μ̄R0DS

S0λSdS:

A calculation shows that, in terms of SUð2;CÞ (i.e., space
spinors), the above expression is equivalent to

H½λR; μ̄S0 � ¼
2

κ

I
∂S

γ̂R
Sϕ̂RDP

SϕSdS:
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