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A new spinorial strategy for the construction of geometric inequalities involving the Arnowitt-Deser-
Misner mass of black hole systems in general relativity is presented. This approach is based on a second
order elliptic equation (the approximate twistor equation) for a valence 1 Weyl spinor. This has the
advantage over other spinorial approaches to the construction of geometric inequalities based on the Sen-
Witten-Dirac equation that it allows us to specify boundary conditions for the two components of the
spinor. This greater control on the boundary data has the potential of giving rise to new geometric
inequalities involving the mass. In particular, it is shown that the mass is bounded from below by an integral
functional over a marginally outer trapped surface (MOTS) which depends on a freely specifiable valence 1
spinor. From this main inequality, by choosing the free data in an appropriate way, one obtains a new
nontrivial bounds of the mass in terms of the inner expansion of the MOTS. The analysis makes use of a
new formalism for the 1 4+ 1 + 2 decomposition of spinorial equations.
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I. INTRODUCTION

Geometric inequalities are a prime example of the
rich interplay between general relativity and geometric
analysis. They relate quantities with a clear physical
content with geometric structures of the spacetime. In
particular, they provide important qualitative insight into
fundamental aspects of black holes.

The most fundamental geometric inequality in general
relativity is, without a doubt, the so-called positivity of the
Arnowitt-Deser-Misner (ADM) mass. Although a proof of
this result (for axially symmetric spacetimes) can be found
in the work of Brill [1], a first general proof was obtained
by Schoen and Yau [2,3] using methods of geometric
analysis. An alternative proof, using spinorial methods,
was later given by Witten [4]. An extension of this last
result, showing the positivity of the mass for black hole
spacetimes was given in [5]. Technical aspects of the
spinorial proof, including the existence of solutions of
the boundary value problem for the Sen-Witten-Dirac
equation have been addressed in [6,7]. A further refinement
of the positivity of the mass is given the so-called Penrose
inequality. It provides a lower bound of the mass of a black
hole in terms of (the square root of) its area—see e.g., [8]—
and is closely related to the cosmic censorship conjecture.
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The Penrose inequality has only been rigorously proved in
the so-called Riemannian case (i.e., when the initial
hypersurface is time symmetric)—see [9], also [10] for a
survey on the subject. This proof makes use of powerful
methods of geometric analysis to study the properties of a
geometric flow. In the case of axisymmetric black holes,
alternative bounds for the mass in terms of the angular
momentum (mass-angular momentum inequalities) have
been analyzed and rigorously proven [11,12]—see also
[13] for a review on the subject.

The proof of the positivity of the mass for black holes in
[5] suggests that it may be possible to make use of (an
extension of) Witten’s strategy to obtain nontrivial bounds
on the mass and, in particular, obtain a proof the general
Penrose inequality. Indeed, a Penrose-like inequality has
been obtained in [14] by this approach—however, the
classical Penrose inequality remains, so far, unproven.
One of the main advantages of the spinorial approach to the
construction of geometric inequalities is that it leads to
conceptually clearer arguments. For a four-dimensional
spacetime, the existence of a spin structure does not
introduce any additional restrictions, so working in the
setting of asymptotically flat (or Schwarzschildean) hyper-
surfaces, one can obtain bounds on the mass directly from
the existence of solution of a certain spinorial equation.
However, the resulting inequality will depend heavily on
the boundary conditions.
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Witten’s argument for the positivity of the mass makes use
of an integral identity for a spinor field x, over a three-
dimensional hypersurface S. This identity contains both
bulk and boundary integrals. One part of the bulk integrals
is manifestly non-negative while the rest can be eliminated if
k4 satisfies the Sen-Witten-Dirac equation D, %xz = 0 (see
below for an explanation of the notation). If suitable
asymptotic conditions for x, are prescribed then the boun-
dary integral at infinity can be shown to be related to the
mass. Thus, in order to obtain a nontrivial bound on the latter
one is left with the task of identifying conditions on the inner
(black hole) boundary which ensure the solvability of the
Sen-Witten-Dirac equation and such that the inner boundary
integral is non-negative—e.g., it involves the area. As the
analyses in [5,7,15] show, a limitation of Witten’s strategy is
that the Sen-Witten-Dirac equation is first order elliptic and
thus, roughly speaking one can only prescribe one of the
components of k.

A. Main results

In this paper we develop a different spinorial framework
for the study of geometric inequalities involving the ADM
mass which addresses the difficulties in Witten’s approach
of prescribing boundary data. This strategy builds on the
analysis of the so-called approximate twistor equation
introduced in [16]. The approximate twistor equation is
a second order elliptic equation for a Weyl spinor x,
on a three-dimensional asymptotically Euclidean manifold,
which is assumed to be a hypersurface of a vacuum spacetime
(M, g, )- Using suitably constructed solutions to the boun-
dary value problem for the approximate twistor equation we
find that for a marginally outer trapped surface (MOTS) one
has the inequality,

K _

4xm > 7§H[¢A’¢A’],
where m denotes the ADM mass of the spacetime (M, g,;)
and H[g,. ¢4 ] is the Nester-Witten functional over the
MOTS evaluated on a freely specifiable spinor ¢, over
the 2-surface. This master inequality can be used as the
starting point for the systematic construction of geometric
inequalities involving the mass. In particular, a new proof of
the positivity of the mass for black holes follows directly
from the above inequality. A couple of further examples of
inequalities which follow directly from the master inequality
are provided in the main text.

A substantial part of the calculations in this article have
been carried out in the suite of packages xAct for tensor and
spinor manipulations in Mathematica [17]. In particular, we
have profited from the package SpinFrames allowing com-
putations in the NP and GHP formalisms.

k = 87G/c*,

1. Organization of the article

This paper is organized as follows. In Sec. II we establish
the framework of 14 14 2 space-spinor formalism in

which we are working. Next section is dedicated to the
approximate twistor equation, which together with the
appropriate boundary condition will be used in Sec. IV
to establish a new bound on the ADM mass of the initial
data. The role of appendixes is to clarify the arguments
used in the main body of the paper.

2. Notation and conventions

In the following, four-dimensional metrics are taken
to have signature (+ — ——). Consequently, Riemannian
three- and two-dimensional metrics are taken to be negative
definite. When convenient, we expand spinorial expres-
sions using the Geroch-Held-Penrose (GHP) formalism.
In using spinors and the GHP formalism, we follow the
conventions of [18]. The Einstein field equations are given
by G, = kT, where as usual x = 872G/ c*.

II. THE 1+1+2 SPACE-SPINOR FORMALISM

Consider initial data sets (S, hij, K ,»j) for the vacuum
Einstein field equations satisfying in the asymptotic region
the conditions,

2m
hij:—(1+7>5ij+ooo(r_3/2), (la)

Kij = 0(r™?), (1b)
with 72 = (x')? + (x*)? + (x*)2, (x',x%,x) asymptoti-
cally Cartesian coordinates and m the ADM mass.
Initial data sets of this type are called asymptotically
Schwarzschildean. In addition, it is assumed that S has
one inner boundary S ~ S?.

The 1+ 1 4 2 spinor formalism is inspired by the two-
dimensional Sen connection introduced in [19] which uses
SL(2,C) spinors. Here we adapt these ideas to SU(2,C)
spinors (the so-called space spinors first introduced in [20])
which allows us to work only with spinors with unprimmed
indices. A discussion of the space spinor formalism can be
found in [21]—see also [22].

A. Basic setting

Let 744 and p*’ denote, respectively the spinorial
counterpart of the (timelike) normal to the hypersurface
S and the (spacelike) normal to dS on S. We consider
spinor dyads {o%,1"} such that

!

!
TAA/TBA = 5AB = TAA/TAA = 2,

panpBh = =8,8 = paapt = -2.

The spinors 744" and p**’ are Hermitian. We require 744’
and p*" to be orthogonal to each other—that is,
Taap™ = 0. The complex metric can now be defined as
Yap = 75° pay. It follows from the definition that
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}’AB}’BC = 5AC‘

Because of the orthogonality of 744" and p**’ the complex
metric is a Symmetric Spinor, yag = ¥(4p)-

The projector to the two-dimensional surface S admits
the alternative expressions,

My ?? = Pya@CTop""
1 1

Bg B __; BB |,
A" 04 5 TAaT +2PAAP

BB’

=7

(548848 — vaP74 "),

N[ =

where
P..BB =5.Bs B’+l BB'
AATT = 0p 0y 2PAA’P >
T BB’:(S 85 B’_l BB’
AA =04 Oy ZTAA’T

denote, respectively, the projectors to the distributions
generated by p*" and 744’

Several of the calculations simplify if one makes use of
an adapted spin dyad {0,4,14} with 041" =1 such that
04 =14 and 14, = —o4, where ~ denotes the Hermitian
conjugation. We have

It then follows that

’ — Al A
P = oA — AT

YAB = Oalp 1 Oply.

The above construction, restricted to the two-dimensional
surface OS still allows the freedom of a rotation,

A i9 A A

o = e'of, A oA,

If one defines, following standard conventions, components
of a spinor k4 with respect to {04,14} by

Ko = 0Ky, K = 1Ky,
then

I%A = Kooy + Kqlyg.

B. The three-dimensional and two-dimensional
Sen connections

The three-dimensional and two-dimensional Sen con-
nections are defined, respectively, by

DAA’KC = TAAIBB/VBBIK‘C, (23)
Dpyke = HAA’BB/VBB’KC- (2b)

One can use the spinor 74" to obtain SU(2,C) (i.e.,
space spinor) versions of the above derivatives. More
precisely, one has

Dyp=< (BA/DA)AH D=t (BA/ﬂA)A"

From the above expressions one can derive the following
alternative expressions:

Dypkc = T(BA/VA)A’KC’ Duyp= }’BQV(APDQ)P-

Moreover, one has the decompositions,

1
Var = ETAA’P - TQA’DAQ’

1
Dyp = Dup — E}’ABQ,

where

PETAAIVAA/, :EE)/ABDAB
are directional derivatives in the direction of 744 and y,p,
respectively.

C. The extrinsic curvature

Following the standard definition adapted to the present
setting, the Weingarten spinor associated with generator
44" is given by

__C
Kapep = " Daprec-

We will assume that distribution is integrable, i.e., K pcp
corresponds to the extrinsic curvature of a hypersurface
orthogonal to 744, This is equivalent to the condition,

C 1
Kactp = EKGABa

where K = K, 5% is the mean curvature of S and €,z is
the antisymmetric spinor generating symplectic bilinear
form. It will also be convenient to introduce a complete
symmetrisation of extrinsic curvature, Qupcp. It can be
defined as

1
Kapep = upep — §K€A(C€D)B~
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D. Levi-Civita connections
The spinor form of the induced metric 4;; on S can be

obtained from the projector T4, 5% by removing primed
indices using the spinor 7, /. After using the Jacobi identity
for €45 one finds that

hapep = —€A(C€D)B-

One can verify that

hagcp = hepass

hagcp = hapycp = hascp) = hasycp)-

Similarly, from I1,,58 a calculation readily gives the
expression,

oapcp = 7 (€ac€pp + YagYcp)-

N =

for the induced metric 6,, on JS. To obtain this last
expression it has been used that 7,5 = —y4p-

Let Dy and P, denote, respectively, the SU(2,C)
form of the Levi-Civita connection of the metrics &,;, and
04- One has that

Dypecp =0, B jpecp = 0.

In addition,

Dpyep = 0.

The relation between the Sen and Levi-Civita connections
can be worked out using the standard tricks—see e.g., [18].
One finds that

1
Dypre = Dpprc + EKABCQ”Qv

Dprc = Pagrc + Qaperng.

where, for convenience, we have defined the transition
spinor,

1
QABCD = _EVDngBVQC-

Using the GHP formalism [18,23] one can arrive at

— /
Qupcp = 6'04050c0p + Olplgiclp
/
— POAOBIclp — P lalgOcOp.

The Levi-Civita covariant derivatives are real in the sense
that

—

Dppre = —Dypiic, Dpprc = —Dypiic.

This implies the following formulas for Hermitian con-
jugation of Sen derivatives:

S N DA
Dypprc = —Dapfic + Kapc” #ip,
- N D 2 D\ ~
Dyprc = —Dapic + (Qapc” + Qapc” )p.
Finally observe that a direct computation gives
Dypoc = aosopoc — Piaigoc,
DABlC = ﬂlAlBlC — QO0A0Blc.

However, computing the Hermitian conjugate of the first
expression one readily has that

D apic = —usigic + Posogic.
Hence, one concludes that
a+p=0,
This relation leads to the formula
(PacPs" = P Pyc)k® = (pp' — 60 +¥s)ka,
satisfied in the vacuum spacetime.

E. MOTS

Let [* and k“ denote future-oriented null vectors span-
ning the normal bundle to JS and such that 9k, = 1.
The expansions associated to [“ and k“ are defined,
respectively, by

0t =06V, 1,, 0~ =6V k.
Our conventions are that [“ denotes an outgoing null vector
whereas k¢ is an ingoing one. The 2-surface JS is said to be
a MOTS (marginal outer trapped surface) if 7 = 0 and
6~ < 0. Let [*Y and k**" denote the spinorial counterparts
of [* and k“. A natural choice for [* and k“ is given by

la — ka — (Ta _pa)’

N =

(7 + p%),

N =

so that
’ _ A ’ —A!
[AA = A4, KA = A

A computation then shows that in terms of the GHP
formalism one has that

0" =-p—-p, O =—p'-p.
In the present setting one has, moreover, that both p and p/

are real (see [18], Proposition 4.14.2) so that, in fact, one
has that
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ot = =2p, 0~ =-2p.

In the main text, the contraction Q4 -p plays an important
role. An expansion in terms of the dyad readily shows that

P — /
Qa"Bp = POalp — P'140p,

If p and p’ are real, then it readily follows that

QAPBP = —(PUBlA —p1goy) = _QBPAP-
Observing that

1
0alp = 5748 + 5€AB>

one obtains the more convenient expression,

1 1
04 pc = 5 (p=p")rap + 5 (p+p)eas.

In particular, for a MOTS one has
C 1 /
Qa"Bc = 3P (4B — 7aB)-

III. THE APPROXIMATE TWISTOR EQUATION

Let ©;, &5 denote, respectively, the spaces of valence 1
and 3 symmetric spinors over the hypersurface S. One
defines the spatial twistor operator,

T: @1 b d @3, T(K)ABC = D(ABKC)'

The operator T can be easily shown to be overdetermined
elliptic. The equation D,pkc) = 0 arises from the space-
spinor decomposition of the twistor equation V 44k = 0
[16]. The formal adjoint of T, to be denoted by T*, is
given by
T: & - €, T*({)s = PP Lanc — " PLpep,

where Q4pcp = K(apc)p- The operator T* can be shown to
be underdetermined elliptic. The approximate twistor

equation follows from considering the composition oper-
ator L=T"0oT: &, —» &, and is given by

L(KA) = DBCD(ABKc) - QABCDDBCKD =0. (3)

By construction the operator given by Eq. (3) is formally
self-adjoint elliptic—i.e., L* = L. Given a solution x4 to
Eg. (3), it is convenient to define the spinors &, = 2D, %,
and &4 pc = D(4pkc) encoding the independent components
of the derivative D,pkc. Moreover, set {4 = EA. A key
observation is the following: if x, satisfies L (k4) = 0, then

using the properties of the Hermitian conjugation one has
that L.({4) = 0.

In the following we consider solutions to Eq. (3) with an
asymptotic behavior of the form,

m
KA = (1 +r>xAB0B + 0, (r7'12), (4)

where given some asymptotically Cartesian coordinates
x = (x%) we set

1 /—x!'—ix? X3
XAB = . s
\/§ x3 xl —ix?
A

and the spinor o” is part of a normalised spin dyad {o”, "}
adapted to S—that is, 1* = 6. A computation reveals that

£y = (1 _§> 0a + 0 (r~3/?), (5a)

m
faBc = — 3X(aBOC) T 06 (r™/%). (5b)

A. Relation to the ADM mass

Central to our analysis is the functional,

Ikal = /SD(ABCC)DABCCdﬂ >0,

first considered in [16]. If L(k,) = O then integrating by
parts it is possible to rewrite I[k,] in terms of boundary
integrals at the sphere at infinity (0S,) and the inner
boundary (9S),

I[ka] = jg naplcDABLES — jgs naplcDABLOdS.

oo

As a consequence of the asymptotic expansions (5a)—(5b)
the integral over S, can be shown to equal 4zm. Thus, it
follows that

Axm > ja{ nC cDABLONS. (6)
oS

B. A boundary value problem

The inequality (6) suggests considering boundary con-
ditions of the form {4, = ¢4, where ¢, is a smooth, freely
specifiable spinorial field over 0S. Written in terms of x,
one obtains the condition,

3.
DAQKQ = _§¢A7 on OS. (7)
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The approximate twistor equation together with the above
transverse boundary condition can be shown to satisfy the
Lopatinskij-Shapiro compatibility conditions—see e.g.,
[24,25]. Tt follows that the boundary value problem over
S given by (3) and (7) is elliptic. In the following we
consider solutions to the associated boundary value prob-
lem with the asymptotic behavior (4) and the Ansatz,

Ka :ICQ'A—FQA, 9A EH%I/Z (8)

with k, given by the leading term in (4) and where Hj, with
s€Z* and p€R denotes the weighted L?> Sobolev
spaces. We follow the conventions for these spaces set
in [26]. In view of the decay conditions (la)-(1b) the
elliptic operator L is asymptotically homogeneous—see

[27,28]. This is the standard assumption on elliptic oper-
ators on asymptotically Euclidean manifolds.

C. Solvability of the boundary value problem

To discuss the solvability of the approximate twistor
equation we need to consider Green’s identity for the
approximate twistor operator L. That is,

/L(KA)fTAdﬂ—/KAL?”\A)dM
S S
= %98 (D(ABKc)nAB;TC - nABKCD(ABﬂc>)dS,

where in the above expression it has explicitly been used
that L is self-adjoint. The first task is to rewrite the
boundary conditions in terms of the boundary operator
DAQKQ so that one can identify the natural adjoint
boundary conditions. One aims for an identity of the form,

/SL(KA)szdﬂ—/SKAL@)dM

— § (Bl - B ()
oS

where B is some natural boundary operator yet to be
identified and B* is its formal adjoint over 0S. Now, the
decomposition of the three-dimensional Sen connection
yields

\/ED( BKc)nABﬂ'C = EKcﬁ'C + fA]/Acﬁ'C.
A further computation shows that the normal derivative
Pk can be expressed in terms of &, and the intrinsic
derivative D%, as

Drc = 27/CPEQPKQ - 3YCQ§Q-

Combining the above expressions one obtains

D(ABKc)nABﬁC = \/§(7CPEQPKQﬁC - YCP5Pﬁ6)~

For convenience, define the boundary operator,

2v2
B(k,) = —V2y,tep = —TYAPDQPKQ-
Notice that £, = 0 if and only if B(x,4) = 0. Thus, one can
write

DapkcynB2¢ = (B(kc) + \/EycPﬂQPKQ)izC
A similar calculation as before shows that
—«C(B(nc) + V2P pmy).

AB,.CTy
nK D(ABEC) =

Thus, one finds that

/ L (k4)724du — / K'AL/(;A)d/,t
S S
- ?{ (B(kq)#" — k4 B(21))dS + 1.
oS
where
1= \/Ef (rc"PpQroi + KCJ’CPEQ”Q)dS
oS

In order to simplify the integral [ it is convenient to write
the two-dimensional Sen connection D,y in terms of the
Levi-Civita connection D,z as

_ s
Dypkc = Dagkce + Qap” cKs,

where Q55 - is the associated transition spinor between the
connections. It follows then, after some calculations, that

= \/5% (}/CPBPQK‘QfZ'C + KC]/CPDPQﬁ'Q
+7c" 0p% o5 — K VCPQPQSQﬁ'S)dS’
- \/Ef (—]/CPK'QBPQ;TC + K'CVCPDPQJ%Q
+rc"0p% orsi€ — K yc’0p? Softs)dS,
where in the second equality integration by parts on a
manifold without boundary has been used on the first
integrand. Remarkably, using the Jacobi identity for €45
one has that

yCPKQBPQ;Z'C = —}’QPK'prcﬁ'c,

from where one concludes that
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I = \/E%S(}’CPQPQSQKS&C - KC?’CPQPQSQﬁS)dS‘

Thus, the integrand in [ contains no differential operators
acting on k. or #. Accordingly, the boundary operator B
is, up to the vanishing of /, self-adjoint. Now, it can be
shown that, in fact, one has that

QAPBP = _QBPAP = posip — p'140p, (9)

where the GHP coefficients p and p’ are closely related to
the expansions of the boundary 0S—regarded as a codi-
mension 2 surface in the spacetime (M, g,;,). As discussed
in [18], and adapted spin dyad can be found such that p and
p' are both real. From the expression (9) one readily
concludes that / = 0. Consequently, it follows that

B*(74) = B(ny).

Hence, we conclude that the boundary operator B is self-
adjoint.

Substituting the Ansatz (8) into the approximate Killing
spinor equation (3) one obtains the following inhomo-
geneous equation for 6y:

L(04) = Fa, Fy=—L(xy). (10)
As by construction D(ABEQ € HY, /2» OnE concludes that
FyeHZ),. To analyze the solvability of Eq. (10) we make

use of a boundary value problem version of the Fredholm
alternative adapted to weighted Sobolev spaces—see
e.g., [29]. More precisely, as L. and B are self-adjoint,
one has that

L(04) = Fs.  with B(04)|ys = Ga (11)

has a solution if and only if

S as
for all vy € H?, ), such that

L(vy) =0, with B(ry)|ys =0. (12)

Thus, in the following we analyze the conditions under
which the adjoint problem (12) has a trivial Kernel.

D. Analysis of the Kernel of the adjoint problem

From the ellipticity of the operator (L, B) it follows
that the Kernel of the boundary value problem (12) is finite
dimensional. Assume one has v, € H? /o satisfying (12).
Using integration by parts and the falloff of v4 it follows that

/ DiusveyDPrCdy = f nABLCD 50, dS
S oS
:H[UA,Z_/BI] ZO, (13)

where following the discussion in the introduction we write
H[UA, DB’] = % ﬁcycpﬂgprdS > 0,
oS
and to obtain the second equality we have used the identity,

nABf/CD(ABVC) = (B(Vc) + \/EYCPEQPUQ)QC. (14)

Crucial in the sequel is that the eigenspinors of the two-
dimensional (Levi-Civita) Dirac operator Pivg form a
base of the space of smooth valence 1 spinors over OS which
is orthonormal with respect to L? inner product induced by
the Hermitian conjugation—this follows from the elliptic-
ity and self-adjointness of the operator—see e.g., [30-32].
Now, if the Kernel of (L, B) is nontrivial, it must contain
spinors whose restriction to JS are eigenspinors of the two-
dimensional Dirac operator. Now, if P2 ,v5 = v, then for
a MOTS (p =0, p’ > 0) a calculation readily gives that

H[I/A, DB/] = /1% ﬁCyCPUpdS
oS

1

+ j{ P (0 vp = DCuc)dS.
2 Jas

A remarkable property of the kernel of the problem (12)
is that

]{ 2y FrpdS =0,
0s

which is obtained by integration by parts of the approxi-
mate twistor equation (3). From the latter and making use
of the expansion v, = yy14 — V04, one concludes that

0 <H[yy, 0p] = —]{ p'|vol*dS.
oS

This can only occur, for p’ >0, if v, =0 over 0S. It
follows then from (13) that if 9S is a MOTS then
Diapvc) =0 on S. That is, v, is a solution to the spatial
twistor equation that goes to zero at infinity. Using
Proposition 5 in [33] then it follows that v, =0 on S.
This implies that there are no obstructions to the existence
of solutions to the system (11). The previous argument can
be summarized in the following:

Proposition. If p' >0 and p =0 over JS, then the
boundary value problem,

L(k,) =0, B(ka)los = \/EJ/AP&P,

024057-7



JAROSEAW KOPINSKI and JUAN A. VALIENTE KROON

PHYS. REV. D 103, 024057 (2021)

with ¢, a smooth spinorial field over S admits a unique
solution of the form (8). Accordingly, there exists a spinor
{4 such that in the asymptotic end it satisfies

o= —<1 —%> 1a + 05 (/7).

The above proposition holds even in the case that OS has
several connected components each one being a MOTS—
that is, in the case (S, h;;, K;;) is a multiple back hole initial
data set.

ijo

E. Main inequality in terms of boundary data

The right-hand side of the main inequality (6) can be
written in terms of the boundary data. The key observation

is that the boundary condition EA = ¢, together with the
approximate twistor equation (3) and its alternative form,

1
DBCDBCKA + QABCDDBCKD + gKDABKB = O, (15)
allow us to systematically eliminate all the transverse

derivatives Pk in the integral over 0S. We can write
the right-hand side of main inequality as

1 —
— DUBLAdS
\/5]25 YaBSc ¢
1 ~ 2 ~
= 7§ és rBgc <¢DQABCD + gEAC‘:bB) ds
V2
- ?g . PCPES.

The alternative form of the approximate twistor equation
given by Eq. (15) yields
BC B L 1o
D &pca —Da"Lp +§7A Dlp +§K¢A
+ QABCDDBCKD = 0,

but from approximate twistor equation the first and the last
terms cancels each other out, so that

Péc = —2VCAEAB&5B - KYCA(zA-
After performing integration by parts, the main inequality

(6) reads

4azm > \/Ef CAbA}'ABEBC¢CdS'
IS

IV. MASS INEQUALITIES

We are now ready to state the main result of this paper.
Given a hypersurface S and smooth spinor ¢, defined over
a MOTS 0§ one has that

drm > %HWA, bul, (16)

where

H[ppa. dpar] = %fgs Oy A BPpedCds.

Given two spinors k, and @y, the functional H[k,, wp]
coincides with the Nester-Witten functional—see e.g.,
[7,34,35]—which plays a role in various quasilocal energy
constructions. If the spinor ¢, could be chosen in such a
way that Hlky, wg] is manifestly non-negative, one would
have obtained a nontrivial bound on the ADM mass of the
black hole. Consequently, inequality (16) can be used as
the starting point for the construction of new geometric
inequalities involving the mass. As examples of interesting
choices of ¢, consider:

(1) The simple choice ¢, = 0 over 9S leads to a new
proof of the positivity of the mass of a black hole,
ie., m>0.

(i) Choosing ¢, to be an eigenspinor of the two-
dimensional Dirac operator, i.e., D,B¢pp = Ay, it
follows from the fact that the eigenvalue must be
pure imaginary, i.e., 1 =—4, and the reality of

H(pa. du] that

f golds = 74 giPds. (17)
oS oS

Moreover, inequality (16) takes the form,
4mam > \/5% P'lpo|>dS. (18)
a8

Now, on generic topological spheres the eigenspace
associated to a given eigenvalue is two-dimensional.
The pair {¢,, 4} can be shown to be a basis of the
eigenspace and to be nonzero everywhere on 0S—
see e.g., [36] Theorems 6.2.5 and 6.2.6. Now,
choosing the (pointwise) normalisation ¢,¢* = 1,
it readily follows from (17) that

1
¢ IduPas =3 os].
aS

where |0S| denotes the area of OS. Combining this
last observation with inequality (18) one concludes
that

V2. .
> / )
4zm 5 (rr(%glp)|88|

It is worth to notice that for a MOTS p’ coincides
with the mean curvature 4 of the 0S, such that this
inequality is equivalent with
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drm > \/Ti(n%n h)|0S|.

To the author’s best knowledge, this inequality
iS new.

(iii) Relation to the area variation [37]. Let Hpy =
pisly + p 0,04 denote the spinorial counterpart of
the mean curvature vector to S. The variation of the
area |0S| in the direction of a vector v on M is
given by the formula,

51/|88| = fi’)s UAA/HAA’dS,

. . .
where 14" is the spinorial counterpart of v“. In the
space-spinor formalism the mean curvature vector
reads

Hyp = —piaop + p'oatp.

Making the choice ¢4 = —¢pg14 (i.e., ¢p; = 0) one
then has that

- 1
VAB = —¢(A¢B) = B |¢0|27AB

can be interpreted as the spinorial counterpart of the
(outwardpointing) radial vector to 0S. For this
choice the right-hand side of (16) for a MOTS
can be written in terms of a variation of its area with
respect to flow generated by v“. More precisely, one
has that

4am > 2V/26,|95|.

For the sake of simplicity, the above statements have
been formulated for OS consisting of a single connected
component. However, the methods presented here also
applies to an inner boundary consisting of several compo-
nents, each one with the topology of S and satisfying the
MOTS condition.

V. CONCLUSIONS

In this article we have developed a new strategy for the
construction of geometric inequalities involving the ADM
mass of a black hole spacetime. This approach relies
heavily on the use of spinors and has the remarkable
property of allowing the specification of the two compo-
nents of a valence-1 spinor ¢, defined over a MOTS. The
use of the MOTS condition is central in the solvability of
the boundary value problem for the approxmate twistor
equation. However, it is not necessary in the argument
showing that the right-hand side of inequality (16) can be
expressed purely in terms of boundary data.

The main question is whether the methods developed in
this article can be used to make inroads towards a general

proof of Penrose’s inequality. In [14] Witten’s approach
to the positivity of the mass was used to obtain a Penrose-
like inequality—-i.e., an inequality involving the ADM
mass and the square root of the area which, in addition,
contains further constant which is hard to control given the
rigidity in the specification of boundary data. The main idea
in that article was to study the change of the mass under
conformal rescalings of the 3-metric. A similar strategy
can be followed with the framework presented in the
present article. The further flexibility given by the pos-
sibility of prescribing full boundary data could prove
crucial in controlling constants appearing in the analysis.

Finally, it is pointed out that it would also be interesting
to analyze whether the methods in this article can be
adapted to settings with different asymptotic boundary
conditions—e.g., hyperboloidal ones so that a connection
with the Bondi mass can be established.

The ideas expressed in the previous paragraphs will be
pursued elsewhere.
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APPENDIX A: IRREDUCIBLE
DECOMPOSITIONS

Given a spinor k, define

2
o= gDAQKQ, Sasc = Diapke)-
One then has the decomposition,

Dypkc = Eapc — f(AGB)c-

APPENDIX B: INTEGRATION BY PARTS

Integration by parts on the 3-manifold S with respect to
the Sen connection D,p is carried out according to the
identity,

/DABKcéABCdﬂ :j{ ﬁABKcéABCdS
u au

+ AKC(QCABDCABD — DB upe)du,
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with & € § and where dS denotes the area element of OU,
fi4p its outward pointing (“outside” of ¢/) normal and { 4p¢
is an arbitrary symmetric spinor.

Integration by parts on JS proceeds in the same lines as
on S with the added simplification of not giving rise to
boundary terms. Thus, for symmetric spinors k4 and {4pc
one has that

f DABK‘CgABCdS = —% KcDAggABCdS.
oS S

In some cases it is necessary to use integration by parts on
expressions involving components. The following iden-
tities have been proven in [18]:

7{ xondS = — ]{ ndydsS
oS oS

if the GHP types of y and 5 add up to {—1,1}, and

j{ 70ndS = — 7{ nd'ydS
oS oS

if the type of y and  add up to {1,-1}.

APPENDIX C: COMMUTATORS

Several of the calculations require the commutators
between the various covariant derivatives. The commutator
between the three-dimensional Sen connection on an
hypersurface, assuming the vacuum Einstein field equa-
tions hold, can be expressed as

1
[Dag> Deplrg = 5 (eactpys + epcUpya)xe

+ KcpouDpy%ke — KapocDp) Pk,

see e.g., [16], where [ 1,5 denotes the usual Penrose box—
see [18]. Now, using the above commutator one can write

1
DypDp? = §€ABDPQDPQ + Aup,

where
AAB = DC(ADB)C'

A calculation using the expression for [Dyg, Dcp) readily
yields that

Aypke = Uypre — KAPQBDPQKC - KP(A|Q|PDB)QKC~

One can rewrite the action of A,y as

1 1 1
Agp = 5 Uap — 3 QABPQDPQ + 3 KDyp.

Similarly, for the two-dimensional Sen connection one can
define

A= ZaA192AB7 Lap = 2C(A28)C-

In particular, we have that
c |1
DepDpt = 5 eaph + Aap-

APPENDIX D: THE LOPATINSKIJ-SHAPIRO
CONDITIONS

To establish the compatibility of the approximate twistor
equation and the transverse boundary conditionnone needs
to consider the so-called Lopatinskij-Shapiro conditions—
see e.g., [24,25]. Using the decomposition of D,p in terms
of D and D ,p, the principal part of the approximate twistor
equation takes the form,

1
DPQDPQKA = EPQEPQKA - EEzKA’ (Dl)

while for the transverse boundary condition one gets

DPAK'P :2PAK'P —%}’PAﬂKP. (D2)
In a neighborhood of S one chooses coordinates so that
the location of the boundary is given by the condition p = 0
and P = 0,. To verify the Lopatinskij-Shapiro conditions
one considers decaying solutions to the auxiliary ordinary
differential equations problem,

Ky = 2|€)%k, =0, (D3a)

(YPAK;—" - 2i~fPA’<P)|p:0 =0, (D3b)
obtained from the principal parts (D1) and (D2) by the
replacements 2 ', Dyp > 1§45 Where &y = &4p) is an
arbitrary nonzero real rank 2 spinor—i.e., EAB = —4p,
&2 E§PQ§PQ, ABE, o = 0. Moreover, ' denotes differ-
entiation with respect to p. The decaying solutions of
Eq. (D3a) are given by

g2
Kq = Kgu€ |§| /)’

where k,, is constant. Substitution of the latter into
Eq. (D3b) leads to the condition,

(2P 4 + yP41EP)kp, =0 on S,

from which, taking into account that both £,z and y,5 are
real spinors, it follows that x4, = 0. Thus, the approximate
twistor equation with the transverse boundary condition
satisfies the Lopatinskij-Shapiro condition, so the associ-
ated boundary value problem is elliptic.
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APPENDIX E: PROOFS OF VARIOUS
PROPERTIES OF THE KERNEL
OF THE ADJOINT PROBLEM

1. The Kernel of (L.B) includes the Kernel of D

To show that an element of the Kernel of the adjoint
problem is also a solution to the Sen-Witten-Dirac equation
one starts by considering the L?-norm of the Sen-Witten-
Dirac operator acting on the element of the Kernel of
(L, B). Then, using integration by parts it follows that

OS/DABUBDA/C\I/C{LM
S
= % ﬁCnACDABUBdS - f ﬁCnACDABUBdS
IS 08
1
+/<ﬁcDACDABI/B—2Kf/ADABDB>d/4.
S

Now, the boundary integral at S vanishes as a conse-
quence of B(v,) = 0 while that at the sphere at infinity also
vanishes as 0,DCv- = o(r ) in the asymptotic end.
Now, making use of the decomposition,

1
DacDpt = §€CBA + Acps

one has, further, that

— 1
/DABUBDACde,u:—/ﬁCAyCdﬂ —/f/CACBde/t
S 2)s s

1
+§/SKﬁCpCBVBdﬂ.
Observing that in vacuum one has
B ! s K B
ACBIJ = _EQCBADDA 14 +§DCBI/ .

and using the expression for Ave = D,z D*8u( given by
the approximate Killing spinor equation one concludes that
the right-hand side of the last equality vanishes and thus,

/ DABI/BDA/C\I/C(LM =0
S
so that D,Bvg =0 on S.

2. Norms of v, and v; on 9S

Starting from

O:/IQADABI/Bd,U,
S

integrating by parts one readily arrives at the condition,

% l,)A}/ABUBdS =0.
oS

The latter, expanding in terms of an adapted dyad gives

74 (Ivol? = 1 [2)dS = 0,
oS

or, in fact, that

||Vo||L2<z)5) = ”VIHLZ(Z)S)’

for any element in the Kernel.

APPENDIX F: PROPERTIES OF THE
TWO-DIMENSIONAL
SEN-WITTEN-DIRAC OPERATOR

A calculation readily shows that in GHP notation the
equation 2,8y, = 0 implies that

vy +pr; =0,

61/1 +ﬂ/U0 =0.
Using the methods of the Appendix in [38] one can show
that if either p = 0 or p’ = 0 then necessarily vy = v; =0

so that v, = O—that is, the Kernel of Z,8v; is trivial.
Now, a computation readily shows that

7{ @ABKBdS:]{ (EE:’TB —ZQBCAc;fB)KAdS’
as as

so that P,y is not self-adjoint unless p = p’ = 0.
Expanding the adjoint operator,

DpPrp—20,Pcmp,
in terms of a dyad yields the components,

Oy —pry,
Or, — p'my.
Of particular interest in the present analysis is the
eigenvaule problem for the two-dimensional Sen-Witten-
Dirac operator—i.e.,

EABKB = AK.'A.

Applying the operator once more and integrating gives

% I%CECBEABKAdS :/12% chCdS.
oS oS

Integration by parts plus some further manipulations
eventually leads to
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0< § (B (D0ko)ds
oS
=2 § (ko + )
aS
+20 4 (pleal + /),
oS

From the above inequality it follows the (classic) obser-
vation that if p = p’ = 0 then the eigenvalues of the Dirac
operator are pure imaginary. If, for example, p = 0 and
p' > 0 (MOTS) then this is no longer true a the eigenvalues
are general complex numbers.

APPENDIX G: NESTER-WITTEN FUNCTIONAL

Sparling’s form is defined as
T (A4, fig) = iVgpaVeoiadx A dxBB A dx€C.
It is Hermitian in the sense that

(2. fip) =T (a. fip).

In vacuum Sparling’s form is exact—i.e., du =I" for
some 2-form u = u,,dx* A dx*. This 2-form is used, in
turn, to define the Nester-Witten functional over a 2-surface

oS via

_ 2 _
H[Ag, fig] = ;]gé‘ Mﬂv(l’ﬂ)dxﬂ A dx”.

In [38] it has been shown that the above functional can be
rewritten as

2 N
H[Ag, fig] = p ﬁg 75 e DS g 2sdS.

A calculation shows that, in terms of SU(2,C) (i.e., space
spinors), the above expression is equivalent to

_ 2 [ . ¢4
H[Ag. fig] = Kﬁs PRSP DpSpsdS.
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