
 

Electric field of a charge in the vicinity of a higher dimensional black hole
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We find the electric field of a point charge in the presence of a higher-dimensional black hole. As the
charge is lowered to the horizon, all higher multipole moments go to zero, and only the Coulomb field
remains.
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I. INTRODUCTION

A black hole has no hair. That is, the properties of a
stationary black hole in four spacetime dimensions are
entirely determined by its mass, spin, and charge [1–4].
When objects fall into a black hole, the black hole settles
down to this simple, unique, stationary state. A nice
illustration of this phenomenon is contained in the paper
of Cohen and Wald [5], which calculated the electric field
of a static point charge in the presence of a Schwarzschild
black hole. While this paper contains a detailed expression
for the electric field, its main result is that as the position of
the charge approaches the event horizon all higher multi-
pole moments of the electric field go to zero, and only the
Coulomb field remains.
In more than four spacetime dimensions, there are many

more exotic possibilities for black holes (for a review see
Ref. [6]). Nonetheless, for static black holes the theorems
of Refs. [1,2] generalize [7]. A static, vacuum, asymptoti-
cally flat black hole in nþ 1 spacetime dimensions is the
Schwarzschild-Tangherlini black hole [8]. In the electrovac
case, it is the charged generalization of the Schwarzschild-
Tangherlini black hole.
Given the uniqueness result of Ref. [7] one would expect

the result of Ref. [5] to generalize to higher dimensions.
This issue was addressed by Fox [9], who considered the
problem of a point charge in the presence of a
Schwarzschild-Tangherlini black hole. The claimed result
of Ref. [9] is that in contrast to the 3þ 1-dimensional case,
the higher multipoles do not go away as the charge is
lowered to the horizon.
In this paper, we calculate the electric field of a point

charge in the presence of a Schwarzschild-Tangherlini
black hole. In contrast to Ref. [9] we find that the higher
multipole moments vanish as the charge is lowered to the
horizon, just as they did in Ref. [5]. The calculation of the

electric field is given in Sec. II, with some of the details of
the calculation provided in Sec. III. Conclusions are given
in Sec. IV.

II. FIELD CALCULATION

The line element of the Schwarzschild-Tangherlini black
hole in nþ 1 spacetime dimensions takes the form

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θγABdxAdxBÞ: ð1Þ

Here the quantity in parentheses is the line element of the
n − 1-dimensional sphere, with γAB being the metric of the
n − 2-dimensional sphere. The reason for writing the
metric in this way is that we will choose the position of
the charge to be the z axis, and will thus consider functions
depending only on r and θ. The quantity f is given by

f ¼ 1 −
2M
rn−2

: ð2Þ

For the most part, our treatment will be a straightforward
generalization of the treatment in Ref. [5], with one
exception: we will begin by choosing a different set of
coordinates. The reason for this is that the t coordinate is
singular on the horizon. Therefore imposing smoothness
conditions on tensor fields using the coordinate system of
Eq. (1) must involve careful calculation of the behavior of
invariant quantities. In contrast, given a smooth coordinate
system, all that is needed is to check that the coordinate
components of the relevant tensor fields are smooth func-
tions of the coordinates. We will choose ingoing Eddington
coordinates [10] (sometimes called Eddington-Finkelstein
coordinates [11]) given by

dv ¼ dtþ f−1dr: ð3Þ

This puts the line element of Eq. (1) in the form*garfinkl@oakland.edu
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ds2 ¼ −fdv2 þ 2dvdrþ r2ðdθ2 þ sin2 θγABdxAdxBÞ: ð4Þ

In terms of metric components we have

gvv ¼ −f; gvr ¼ grv ¼ 1; grr ¼ 0;

gθθ ¼ r2;
ffiffiffi
g

p ¼ rn−1ðsin θÞn−2 ffiffiffi
γ

p
: ð5Þ

The static Killing vector, ξa has component ξv ¼ 1 with all
other components vanishing.
For the electrostatic field of a point charge on the z axis,

the only nonzero components of the electromagnetic field
tensor Fab are Fvr ¼ −Frv and Fvθ ¼ −Fθv where these
components are functions of only r and θ. From the
Maxwell equation ∇½aFbc� ¼ 0 we obtain

0 ¼ ∂vFrθ þ ∂rFθv þ ∂θFvr ð6Þ

which using Eq. (5) becomes

0 ¼ ∂rð−fr2FθvÞ þ ∂θFrv: ð7Þ
Therefore there is a scalar ψ for which

Frv ¼ ∂rψ ; Fθv ¼ f−1r−2∂θψ : ð8Þ
From the second Maxwell equation

−4πjβ ¼ 1ffiffiffi
g

p ∂αð
ffiffiffi
g

p
FαβÞ ð9Þ

and Eq. (8) we find

∂r∂rψ þ n − 1

r
∂rψ þ r−2f−1ð∂θ∂θψ

þ ðn − 2Þ cot θ∂θψÞ ¼ −4πjv: ð10Þ
We consider a point charge e located on the z axis at

r ¼ b. Away from the charge, we look for solutions of
Eq. (10) by the method of separation of variables. That is,
we seek a solution of the form ψ ¼ AðrÞBðuÞ where
u ¼ cos θ. We then find that Eq. (10) gives

d2A
dr2

þ n − 1

r
dA
dr

−
K
r2f

A ¼ 0; ð11Þ

ð1 − u2Þ d
2B
du2

þ ð1 − nÞudB
du

þ KB ¼ 0; ð12Þ

where K is the separation constant of the equation. The
solutions of the second of these equations are the
Gegenbauer polynomials Cα

lðuÞ. Here, l is the order of
the polynomial and α ¼ ðn − 2Þ=2. The separation constant
is K ¼ lðlþ n − 2Þ. For n ¼ 3 the Gegenbauer polyno-
mials are just the usual Legendre polynomials. The
Gegenbauer polynomials are orthogonal with weight func-
tion ð1 − u2Þðn−3Þ=2 and satisfy the normalization

Z
1

−1
ðCα

lÞ2ð1 − u2Þðn−3Þ=2du ¼ π21−2αΓðlþ 2αÞ
l!ðlþ αÞðΓðαÞÞ2 : ð13Þ

We will use the symbol Qα
l to denote the somewhat

complicated looking normalization constant on the right-
hand side of Eq. (13).
With the known value of the separation constant,

Eq. (11) then becomes

d2Al

dr2
þ n − 1

r
dAl

dr
−
lðlþ n − 2Þ

r2f
Al ¼ 0: ð14Þ

For each l we must find separate solutions of Eq. (14): one
for r < b and one for r > b. The solution must be
continuous at r ¼ b, and we will compute the discontinuity
in dA=dr using Eq. (10).
We will treat the l ¼ 0 case separately. Here B ¼ 1 and

d2A0

dr2
þ n − 1

r
dA0

dr
¼ 0: ð15Þ

It then follows that Fvθ ¼ 0 and

Fvr ¼ c0r1−n ð16Þ
where the constant c0 must be chosen separately for r < b
and r > b. Since the black hole has no charge, we must
choose c0 ¼ 0 for the r < b solution. Since the charge as
calculated from the field at large distances must equal e, it
follows from Eq. (10) that for the r > b solution

c0 ¼ −
4πe
An−1

: ð17Þ

Here An−1 is the area of the n − 1 sphere and is given
explicitly by

An−1 ¼
2πn=2

Γðn=2Þ : ð18Þ

Thus, we find that the l ¼ 0 part of the electromagnetic
field is given by

Fvr ¼ 0 for r < b; Fvr ¼ −
4πe
An−1

r1−n for r > b:

ð19Þ
Now we consider the l > 0 part of the electromagnetic

field. Since f → 1 at large r it follows that the solutions of
Eq. (14) behave like rl and r−ðlþn−2Þ at large r. For r > b
we must choose the solution that goes to zero at large
distances. Denote this solution glðrÞ with its normalization
chosen so that glðrÞ ¼ r−ðlþn−2Þ at large distances. Since f
vanishes on the horizon, it follows from Eq. (8) that in order
to have a smooth electromagnetic field, the solution of
Eq. (14) must vanish on the horizon. Denote by hlðrÞ this
solution, with the normalization chosen so that hlðrÞ ¼ rl

at large distances. Then the l > 0 part of ψ takes the form
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ψl>0 ¼
X
l>0

clglðbÞhlðrÞCα
lðcos θÞ r < b;

ψl>0 ¼
X
l>0

clhlðbÞglðrÞCα
lðcos θÞ r > b; ð20Þ

for some set of constants cl.
Now for each l > 0 multiply Eq. (10) by

ffiffiffi
g

p
Cα
lðcos θÞ

and integrate over all angular variables to obtain

− 4πeCα
lð1Þδðr − bÞ

¼ An−2Qα
l

�
d
dr

�
rn−1

dAl

dr

�
− lðlþ n − 2Þrn−3f−1Al

�
:

ð21Þ
Integrating Eq. (21) from b − ϵ to bþ ϵ we obtain

−4πeCα
lð1Þ ¼ An−2Qα

lclb
n−1Wðhl; glÞ: ð22Þ

Here the Wronskian of two solutions Wðu1; u2Þ is defined
to be W ≡ u1u02 − u2u01 and it is to be evaluated at r ¼ b.
However, since the differential equation that the solutions
satisfy is Eq. (14) we obtain

dW
dr

¼ −
n − 1

r
W ð23Þ

and therefore there is a constant k for which W ¼ kr1−n.
But with our chosen normalization for gl and hl we find
that at large distances W ¼ −ð2lþ n − 2Þr1−n and there-
fore that the constant k is equal to −ð2lþ n − 2Þ. Using
this result in Eq. (22) we obtain

−4πeCα
lð1Þ ¼ −ð2lþ n − 2ÞAn−2Qα

lcl ð24Þ
and therefore

cl ¼ 4πeCα
lð1Þ

ð2lþ n − 2ÞAn−2Qα
l
: ð25Þ

[Note that for the case n ¼ 3 the expression of Eq. (25)
becomes cl ¼ e.] Using Eq. (25) in Eq. (20) we find that
the l > 0 part of ψ is given by

ψl>0¼
4πe
An−2

X
l>0

Cα
lð1Þ

ð2lþn−2ÞQα
l
glðbÞhlðrÞCα

lðcosθÞ r<b;

ð26Þ

ψl>0¼
4πe
An−2

X
l>0

Cα
lð1Þ

ð2lþn−2ÞQα
l
hlðbÞglðrÞCα

lðcosθÞ r>b:

ð27Þ

To obtain explicit expressions for ψl>0 we need explicit
expressions for glðrÞ and hlðrÞ. However, there is already
enough information in Eq. (27) to work out the fate of the
higher multipole field as the charge is lowered to the
horizon. Since hlðrÞ vanishes on the horizon, it follows that

hlðbÞ goes to zero as the charge is lowered to the horizon.
Therefore in this limit the right-hand side of Eq. (27)
vanishes. Thus all higher multipole parts of the field vanish
and only the Coulomb field of Eq. (19) remains.

III. SOLUTIONS OF THE RADIAL EQUATION

We now turn to the problem of obtaining explicit
expressions for glðrÞ and hlðrÞ. Since gl behaves like
r−ðlþn−2Þ near infinity, we define Ãl by Ãl ≡ rlþn−2Al and
find that Eq. (14) takes the form

d2Ãl

dr2
−
2lþ n − 3

r
dÃl

dr
þ lðlþ n − 2Þ

r2
ð1 − f−1ÞÃl ¼ 0:

ð28Þ

Defining the coordinate ρ≡ 1 − f we find that Eq. (28)
takes the form

ρðρ − 1Þ d
2Ãl

dρ2
þ ðρ − 1Þð2sþ 2Þ dÃl

dρ
þ sðsþ 1ÞÃl ¼ 0

ð29Þ

where the quantity s is defined by

s≡ l
n − 2

: ð30Þ

Note that r → ∞ corresponds to ρ ¼ 0 and the horizon is at
ρ ¼ 1. Thus we are interested in solutions to Eq. (28) on the
interval (0,1). Furthermore, gl is the solution that vanishes
at ρ ¼ 0 and hl is the solution that vanishes at ρ ¼ 1.
Equation (29) has the form of the hypergeometric

differential equation. Recall [12] that the hypergeometric
differential equation for a function yðxÞ has three param-
eters ða1; a2; a3Þ and takes the form

xðx − 1Þ d
2y

dx2
þ ½ða1 þ a2 þ 1Þx − a3�

dy
dx

þ a1a2y ¼ 0:

ð31Þ

Furthermore, the solution to the hypergeometric equation
that is regular at x ¼ 0 is the hypergeometric function
Fða1; a2; a3; xÞ. Comparing Eq. (29) to Eq. (31) we find
that the values of the parameters are

a1 ¼ s; a2 ¼ 1þ s; a3 ¼ 2þ 2s: ð32Þ

It then follows that gl is given by

gl ¼ r−ðlþn−2ÞFðs; 1þ s; 2þ 2s; ρÞ: ð33Þ

Since Fða1; a2; a3; 0Þ ¼ 1, it follows that Eq. (33) has the
normalization for gl that we chose in the previous section.

ELECTRIC FIELD OF A CHARGE IN THE VICINITY OF A … PHYS. REV. D 103, 024056 (2021)

024056-3



We could attempt to find hl by using a linear combi-
nation of the singular solution and the nonsingular solution
of Eq. (29). However, it turns out to be both easier and more
straightforward to use f as a variable instead of ρ and to
build in the property that hl needs to vanish at the horizon:
from Eq. (29) we obtain

fðf − 1Þ d2

df2
ðf−1ÃlÞ þ ½ð2sþ 4Þf − 2� d

df
ðf−1ÃlÞ

þ ðsþ 1Þðsþ 2Þf−1Ãl ¼ 0: ð34Þ

Equation (34) is also the hypergeometric equation, but now
with the parameters

a1 ¼ 1þ s; a2 ¼ 2þ s; a3 ¼ 2: ð35Þ

Taking the nonsingular solution, we then find that hl is
given by

hl ¼ klr−ðlþn−2ÞfFð1þ s; 2þ s; 2; fÞ: ð36Þ

Here kl is a normalization constant to be chosen to satisfy
the normalization condition chosen in the previous section.

IV. CONCLUSION

We have found that all the higher multipole moments
vanish as the charge is lowered to the horizon. What then
went wrong in the analysis of Ref. [9] to yield the opposite
conclusion? Simply put, the treatment of Ref. [9] chooses
solutions of Maxwell’s equations that are singular on the

horizon, with that choice being obscured by the coordinate
systems used. The method of Ref. [9] uses the t coordinate
throughout, and uses the ρ coordinate to analyze all
solutions of the radial equation, which makes for a very
complicated analysis at the horizon. Using the Eddington
coordinate v, one can immediately see from Eq. (8) that the
higher multipole part of ψ must vanish at the horizon. But
in any coordinate system, one can calculate invariant
quantities and demand that they be nonsingular. From
Eqs. (5) and (8) it follows that the electromagnetic invariant
FabFab is given by

FabFab ¼ −2½ð∂rψÞ2 þ f−1r−4ð∂θψÞ2�: ð37Þ

Therefore, from an examination of this invariant one can
conclude that the nonmonopole part of ψ must vanish on
the horizon. The treatment of Ref. [9] fails to impose this
condition and is therefore not treating the correct electro-
magnetic field.
In contrast, we impose smoothness on the horizon and

find that everything proceeds as a straightforward gener-
alization of Ref. [5] with the same conclusion: all higher
multipoles vanish as the charge approaches the horizon.
There may be many cases in which higher-dimensional
black holes lead to exotic, unexpected behavior, but this is
not one of them.
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