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Recently it was discovered that null hypersurfaces can develop caustics outside the event horizon of
super-entropic Kerr-AdS black holes, in contrast to the usual Kerr-AdS case. In this work we explore a few
more examples of black hole spacetimes in which such exterior caustics can develop. If a closed null curve
is present, e.g., in the case of Taub-NUTand the “transunital”Kerr-AdS spacetimes, then it coincides with a
null hypersurface caustic (NHC) of a minimal separation parameter. Thus a spacetime on the verge of
forming closed timelike curves could develop a caustic. Known examples of super-entropic black holes
also have exterior NHC, although such spacetimes are free of closed null/timelike curves. Nevertheless the
relationship between closed causal curves, NHC, and super entropy is not straightforward. This is best
illustrated with the Bañados-Teitelboim-Zanelli (BTZ) black string, which for some choices of the warp
factor in the extra dimension and the value of the charge, can be super-entropic. However, even those that
are not super-entropic can admit NHC outside the horizon.
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I. INTRODUCTION: NULL
HYPERSURFACE CAUSTICS

The Lorentzian signature of spacetime manifolds gives
rise to the notion of causality, which is of great importance
in general relativity. From the concept of black holes to the
horizon problem in cosmology, the concept of causality
plays a central role. More importantly, in any given
physical system, we are often interested in predicting—
using physical laws in the form of evolution equations—
how the system evolves given initial and/or boundary
conditions. Doing so requires that the Cauchy problem
be well posed, i.e., that the evolution is unique. Although
we often think of slicing spacetime into a foliation of
spacelike hypersurfaces à la Arnowitt-Deser-Misner
(ADM) decomposition [1,2] when discussing the Cauchy
problem, for some purposes (notably in the context of black
holes) it is more convenient to consider a three-dimensional
null foliation [3] or double-null foliation [4,5] instead.
The causal structure of a given spacetimeM is often said

to be determined by the behavior of light cones. However,
since the light cones at any point p ∈ M live in the tangent
space TpM instead of the spacetime manifold itself, some-
times we are really interested in how null curves in M
behave. The study of null hypersurfaces is therefore also a
natural generalization of this. If the light cones “fold up” too

much, caustics can develop in the null hypersurface. When
this happens, the foliation is no longer good for practical
purposes such as initial value problem in numerical rela-
tivity. Worse still, sometimes it could mean that the causal
structure of spacetime has some pathologies, such as a
closed null curve. Surprisingly the exterior geometry of both
asymptotically flat [6] and asymptotically (anti-)de Sitter
Kerr [7] (hereinafter, “Kerr-(A)dS”) black holes are free of
such null hypersurface caustics (NHC), despite the compli-
cated ways light rays can behave around rotating black
holes. This remains the case even if the black holes are
electrically charged.
Imseis et al. [8] recently showed that the so-called

“ultraspinning” super-entropic Kerr-AdS black hole, which
is constructed by a nontrivial procedure when considering
the limit a → L (see below), admits NHC outside the
horizon. This prompts a question: could NHC be related to
super entropy in some way? On the other hand, if light
cones open up too much there is a risk of admitting a closed
timelike curve (CTC) in the spacetime, which would
violate causality (whether this is a problem or not remains
controversial). Therefore it is also interesting to investigate
whether NHC is related to CTC.
In Sec. II, we will investigate spacetimes with CTC and

show that the boundary of the CTC region—a closed null
curve—coincides with a NHC with a minimal separation
parameter. Of particular interest is the “transunital” Kerr-
AdS black hole, with a > L. In a sense, this illustrates how
null hypersurface foliation is related to causality—if caustic
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develops it could be a hint that there is a CTC, and thus
(global) causality is violated. NHC can occur when closed
causal curve1 is absent, so they are not equivalent notions.
In Sec. III, we will look at some examples of super-entropic
black holes. The (limited) evidence suggests that all black
holes which (for some parameters) can be super-entropic
have NHC outside their horizon, but the converse does not
hold. We end with some discussions in Sec. IV.

II. NULL HYPERSURFACE CAUSTICS AND
CLOSED NULL CURVES

In this section we will investigate the connection
between null hypersurface caustics and CTC, or more
precisely the closed null curve that is a boundary of
spacetime regions with CTC. It is instructive to begin with
the “transunital” black holes, which are just Kerr-AdS
black hole with angular momentum parameter a larger than
the asymptotic AdS curvature length scale L, since the
mathematics is rather similar with the “cisunital” (the usual
a < L) case and the super-entropic case (a ¼ L, but with
nontrivial topological construction). The notion of NHC
will be defined as we work through this example. (The
readers should refer to [8] for more detailed explanations.)

A. Transunital Kerr-AdS black hole

The metric of the Kerr-AdS5 spacetime with a single
rotation axes in 5 dimensions2 is [9–12]:

g½KAdSða > LÞ� ¼−
Δr

ρ2
½dt− a

Ξ
sin2θdφ�2

þ sin2θΔθ

ρ2

�
adt−

r2þa2

Ξ
dφ

�
2

þ ρ2

Δr
dr2þ ρ2

Δθ
dθ2þ r2cos2θdψ2; ð1Þ

where

ρ2 ≔ r2 þ a2cos2θ;

Δr ≔ ðr2 þ a2Þ
�
1þ r2

L2

�
− 2M;

Δθ ≔ 1 −
a2

L2
cos2θ;

Ξ ≔ 1 −
a2

L2
: ð2Þ

Here the angular coordinates are Hopf coordinates on the
topological 3-sphere (with φ;ψ ∈ð0;2πÞ and θ ∈ ð0; π=2Þ).
Note that M and a are, respectively, the mass and spin
parameters of the black hole. The conserved physical mass
and angular momentum that enter the thermodynamical
laws of this black hole are [13]

M ¼ πMð2þ ΞÞ
4l3

BΞ2
; J ¼ πMa

2l3
BΞ2

; ð3Þ

where lB is the gravitational length scale in the bulk. The
physical angular momentum to mass ratio A is defined as
J ¼ AM, hence,

A ¼ 2a
2þ Ξ

¼ 2a
3 − ða=LÞ2 : ð4Þ

Following [11], we refer to those black holes with a > L
as “transunital,” while those with a < L as “cisunital.”
There exists a mapping [14,15] between the metrics of
transunital and cisunital black holes, such that the geom-
etries are locally equivalent. However, this is not a global
equivalence (e.g., the full ranges of angular coordinates are
not preserved under such a coordinate transformation) and
so it does not preserve global quantities. It is thus not
surprising that transunital black holes can admit closed
causal curves but their cisunital cousins do not.
Note thatA=L is a monotonic increasing function of a=L

and for a=L ¼ 1, A=L is also unity. Of course the metric is
not defined exactly at a ¼ L, but as we shall see, cosmic
censorship does not allow a to come close to L anyway
(from either side); see [9] for details. In fact, the a ¼ L case
can only be made sense of by nontrivial topological
identification, which gives rise to the super-entropic case
that we will discuss in Sec. III.
Returning to our case, we note that for a=L →

ffiffiffi
3

p
ðΞ → −2Þ, A=L → þ∞. As the physical angular momen-
tum is unbounded, the black hole can spin arbitrarily fast
(if we do not consider possible instabilities). Of course,
depending on the spin parameter a, this spacetime may not
have an event horizon. To obtain the condition for the
horizon to exist (that is, for cosmic censorship condition to
hold), we only need to examine the function Δr, which is a
quadratic in r2:

Δr

L2
¼ r̄4 þ

�
1þ a2

L2

�
r̄2 þ a2 − 2M

L2
; ð5Þ

where we have introduced the rescaled radial coordinate
r̄ ≔ r=L. For this equation to have a positive real solution,
a needs to satisfy the bound a2 < 2M. In terms of Ξ, this
condition can be written as

ð1 − ΞÞ < 2M
L2

¼ 8l3
BM
πL2

Ξ2

2þ Ξ
≕ μ

Ξ2

2þ Ξ
; ð6Þ

1A closed curve is causal if it is either timelike or null.
2The reason this was explored in 5 dimensions is so that it can

be applied in holography [9,10]. A practical reason is because the
horizon function Δr vastly simplifies in 5 dimensions, namely the
second term −2M has no r-dependence, while it is −2Mr in
4 dimensions.
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where μ is a kind of dimensionless mass parameter. Then,
the cosmic censorship condition yields

ðμþ 1ÞΞ2 þ Ξ − 2 > 0: ð7Þ

This inequality gives

Ξ < Ξð−Þ; ΞðþÞ < Ξ; ð8Þ

where

Ξð�Þ ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðμþ 1Þp

2ðμþ 1Þ : ð9Þ

Note that Ξð−Þ < 0 and ΞðþÞ > 0.
For some of the subsequent calculations, we will need

the inverse metric. To this aim we introduce the following
quantity:

D ≔ g2tφ − gttgφφ ¼ ΔrΔθ
sin2 θ
Ξ2

: ð10Þ

Using this, the component of the inverse metric tensor we
need can be obtained as

gtt ¼ −
gφφ
D

¼ 1

ρ2

�
a2 sin2 θ

Δθ
−
ðr2 þ a2Þ2

Δr

�
; ð11Þ

the remaining components that we will use are grr and gθθ,
which are just the inverse of the components of the metric
tensor.
Let us now study the null hypersurfaces of this spacetime

to investigate its caustics structure by following the method
of [6–8]. We start by introducing the ingoing and outgoing
Eddington-Finkelstein coordinates; these are defined in
terms of a “generalized tortoise coordinate” r�ðr; θÞ with
angle dependence:

v ¼ tþ r�ðr; θÞ; u ¼ t − r�ðr; θÞ: ð12Þ

The exact form of r�ðr; θÞ will be determined by Eq. (14).
In terms of these coordinates, the null hypersurfaces are
given by

v ¼ const; u ¼ const: ð13Þ

Therefore, the null hypersurface defined by v ¼ const
satisfies the equation

gμν∂μv∂νv ¼ gtt þ grrð∂rr�Þ2 þ gθθð∂θr�Þ2 ¼ 0: ð14Þ

The exact form of r�ðr; θÞ will be determined by this
equation. Note that if we write the above partial differential
equation (PDE) in terms of u, we obtain the same r�.
Therefore, once the PDE (14) is solved, we can substitute

the solution r� ¼ r�ðr; θÞ into Eq. (13) to obtain the null
hypersurfaces. Inserting gtt into the PDE, we obtain the
separable form

�
a2sin2θ
Δθ

−
ðr2þa2Þ2

Δr

�
þΔrð∂rr�Þ2þΔθð∂θr�Þ2¼0: ð15Þ

Introducing the so-called “constant of separation” a2λ
(hereinafter, λ is referred to as the separation constant),
we obtain the following system of PDEs:

∂rr� ¼
QðrÞ
Δr

; ∂θr� ¼
PðθÞ
Δθ

; ð16Þ

where

QðrÞ2 ≔ ðr2 þ a2Þ2 − a2λΔr;

PðθÞ2 ≔ a2ðΔθλ − sin2θÞ: ð17Þ

Writing down the exact differential dr� ¼ ∂rr�drþ∂θr�dθ, we can write

dr� ¼
Q
Δr

drþ P
Δθ

dθ: ð18Þ

If we integrate this, there will be an integration constant,
which we will denote by ða2=2ÞgðλÞ with an arbitrary
function gðλÞ:

r� ¼
Z

Q
Δr

drþ
Z

P
Δθ

dθ þ a2

2
gðλÞ: ð19Þ

To find a general solution r�ðr; θÞ, we assume λ is also a
variable: r� ¼ ηðr; θ; λÞ, hence the exact differential is

dη ¼ Q
Δr

drþ P
Δθ

dθ þ a2

2
Fdλ; ð20Þ

where ∂λη is written as ða2=2ÞF with

Fðr;θ;λÞ¼
Z

∞

r

1

Qðr0;λÞdr
0 þ

Z
θ

0

1

Pðθ0;λÞdθ
0 þg0ðλÞ: ð21Þ

If λ ¼ const, Eq. (20) reduces back to Eq. (18). However,
this result can be obtained by requiring F ¼ 0 even for
λ ≠ const. The condition F ¼ 0 determines the ðr; θÞ-
dependence of λ for any choice of gðλÞ and uphold the
original exact differential (18). Substituting λ ¼ λðr; θÞ into
Eq. (19), the most general solution to Eq. (14) is obtained.
The condition F ¼ 0 implies dF ¼ 0, which gives

0 ¼ ð∂λFÞdλþ ð∂rFÞdrþ ð∂θFÞdθ; ð22Þ

and we can write it as
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νdλ ¼ −
dr
Q

þ dθ
P
; with ν ≔ −∂λF: ð23Þ

Making use of this and Eq. (18), we can rewrite the
metric as

ds2 ¼ ΔrΔθ

Ξ2R2
ðdr2� − dt2Þ þ gφφðdφ − ωdtÞ2

þ ν2P2Q2

Ξ2R2
dλ2 þ r2cos2θdψ2 ð24Þ

≕
ΔrΔθ

Ξ2R2
ðdr2� − dt2Þ þ dh2; ð25Þ

in which we have introduced dϖ ≔ dφ − ωdt, with ω ≔
−gtφ=gφφ and R2 ≔ gφφ= sin2 θ. The derivation of this form
of the metric is provided in Appendix A.
Under the condition dr� ¼ �dt, the spacetime metric

degenerates into:

dh2 ¼ gφφðdφ−ωdtÞ2þν2P2Q2

Ξ2R2
dλ2þ r2cos2θdψ2: ð26Þ

Since the determinant is the square of the volume element
of this degenerate metric, the points where it becomes zero
correspond to the caustics. For the present metric, the
condition for the caustics is thus given by

r2

4
sin2ð2θÞ ν

2P2Q2

Ξ2
¼ 0: ð27Þ

We analyze Eq. (27) for ingoing null hypersurface
(λ ¼ const and decreasing r). First, we note that from
Eq. (23), for fixed λ, for the case that decreasing θ gives
decreasing r, we have P > 0. Therefore, Q ¼ 0 is (at least)
a sufficient condition that gives rise to the caustics.
In the unit of L, we can define the following dimension-

less quantities

Q̄2ðr̄;Ξ;λ;μÞ≔Q2=L4

¼ ðr̄2þ 1−ΞÞ2

− λð1−ΞÞ
�
ðr̄2þ 1−ΞÞð1þ r̄2Þ−μ

Ξ2

2þΞ

�
;

ð28Þ

P̄2ðθ;Ξ; λÞ ≔ P2=L2

¼ ð1 − ΞÞ½ðsin2θ þ Ξcos2θÞλ − ð1 − ΞÞsin2θ�:
ð29Þ

We shall plot Q̄ ¼ 0 on the ðr̄;ΞÞ-plane for given values
of λ and μ, which give us the NHC.We also plot the horizon
location (Δr ¼ 0) curve on the same plane. Moreover, we

can now check for the existence of closed null curve and its
position in the same plane. These are shown in Fig. 1.
From the equation for P, namely Eq. (17), we get a lower

bound of λ for given θ and Ξ as

λmin ¼
sin2 θ
Δθ

: ð30Þ

FIG. 1. Contour map of Q ¼ 0 for λ ¼ 0.9 (blue), λ ¼ 0.5
(purple), λ ¼ λmin (green), horizon (red dashed curve), and gφφ ¼
0 (black dotted) with θ ¼ π=6 shown in the ðr̄;ΞÞ-plane, where
Ξ ≔ 1 − a2=L2. Note that for a given value of θ, there can be
multiple caustics. For example the λ ¼ λmin case here gives two
caustic curves for the cisunital case, both of which coincide with a
closed null curve. Both are located inside the event horizon. We
also see that the caustics are outside the event horizon for
transunital black holes (Ξ < 0) but not for cisunital black holes
(Ξ > 0). Note that there are some ranges of Ξ in which there is no
black hole. This is due to the censorship condition given in
Eq. (8). The lower panel is the zoom-in contours for the
cisunital case.
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If we substitute this into Q̄2, the caustics condition Q̄2 ¼ 0
requires that the expression

ðr̄2 þ 1 − ΞÞ2Δθ

− ð1 − ΞÞsin2θ
�
ðr̄2 þ 1 − ΞÞð1þ r̄2Þ − μ

Ξ2

2þ Ξ

�
ð31Þ

must vanish. On the other hand, the closed null curve
condition gφφ ¼ 0 can be written using Ξ as

sin2θ
ðΞ2=L2Þ½r̄2þð1−ΞÞcos2θ�

�
ðr̄2þ1−ΞÞ2Δθ

−ð1−ΞÞsin2θ
�
ðr̄2þ1−ΞÞð1þ r̄2Þ−μ

Ξ2

2þΞ

��
¼0: ð32Þ

Therefore, gφφ ¼ 0 and Q̄2ðr̄;Ξ; λmin; μÞ ¼ 0 give the
same curve. That is to say, the boundary of the CTC region
coincides with a null hypersurface caustic of a minimal
separation parameter.
Before we move on to other examples, let us comment on

the CTCs in the transunital black hole spacetime. As
discussed in [9], the angular coordinate ψ becomes timelike
for θ < θa ≔ arccosðL=aÞ (These regions can be excised
so that the black hole topology is that of a sphere with two
punctures). Thus, there are CTCs for the region close to the
poles. These are not the CTCs we discussed here, which is
in the φ-direction. It can be checked that the metric
coefficient

gφφ ¼ sin2 θ
ρ2Ξ2

½−Δra2 sin2 θ þ Δθðr2 þ a2Þ2� ð33Þ

can become negative. This always happens at sufficiently
large r. To see this, one can examine the leading term in
Δra2 sin2 θ and Δθðr2 þ a2Þ2, that is, the coefficients of the
r4 terms. From this we can conclude that gϕϕ < 0 for a > L
at large enough r.
In our discussion above, the closed null curve gφφ ¼ 0 is

the one that corresponds to the caustics. It is not clear
whether such closed causal curves are pathological from
holographic point of view, since the (conformal) boundary
metric (see [9]) is free of CTC in the φ-direction. This is in
contrast to the conical defect AdS3 spacetime examined in
[16], whose CTCs extend to the boundary. Yet even in that
case the holographic dual seemingly admits a consistent
and controllable evolution even without imposing addi-
tional consistency constraints. In any case the physical
relevance (or the lack thereof) is interesting but it is beyond
the scope of work to discuss these issues in depth: our
objective is merely to discuss the relationship between
closed causal curve and NHC.
The aforementioned relationship between caustics and

closed null curve also exist when they are inside a black
hole horizon. This can be checked, e.g., in the case of

asymptotically flat Kerr black hole, in the region r < 0
“below” the ring singularity. For cisunital and transunital
Kerr-AdS5 black holes, see Fig. 1. It is worth noting at this
point that the property that NHC can occur outside a black
hole horizon is not unique to super-entropic black holes,
since transunital black holes are not super-entropic in the
usual sense, that is, with respect to thermodynamic volume
(see Sec. III for definition). They can, however, be super-
entropic with respect to mass [12].
The method of searching for caustics explained thus far

can be applied to various axisymmetric spacetimes.
Therefore in the following parts of this work, we shall
employ this method to discuss the caustics in a few other
interesting spacetimes, with the hope to learn some shared
properties and differences between them.

B. Taub-NUT

The Taub-NUT spacetime is a peculiar geometry that
admits closed causal curves, but it also shares some
similarities with Kerr black holes (in fact, it can be written
in a Boyer-Lindquist-like coordinates in which the solution
looks like a “twisting” black hole with the two hemispheres
rotating in opposite directions [17,18]), so it provides
another arena that we can explore to check the relationship
between null hypersurface caustics and closed causal
curves.
The metric tensor of the Taub-NUT spacetime can be

written in the coordinates ðτ; r; θ;φÞ as [19]

g½T − N� ¼ −UðrÞ½dτ þ 4asin2ðθ=2Þdφ�2 þ dr2

UðrÞ
þ ðr2 þ a2Þðdθ2 þ sin2θdφ2Þ; ð34Þ

where

UðrÞ ¼ r2 − 2Mr − a2

r2 þ a2
: ð35Þ

Here a is not a rotation parameter but the NUT charge,
which has no Newtonian analog.
Alternatively, in ðt; r; θ;φÞ coordinates, in which t ¼

τ þ 2aφ, we can write the metric as

g½T − N� ¼ −Udt2 − 4aU cos θdtdφþ dr2

U
þ ðr2 þ a2Þdθ2

þ ½−4a2Ucos2θ þ ðr2 þ a2Þsin2θ�dφ2: ð36Þ

To evaluate the null hypersurface, we need the inverse
metric component gtt:
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gtt ¼ −
gφφ

g2tφ − gttgφφ
¼ 4a2U cos2 θ − ðr2 þ a2Þ sin2 θ

ðr2 þ a2ÞU sin2 θ

¼ 4a2

ðr2 þ a2Þ cot
2 θ −

1

UðrÞ : ð37Þ

For v ¼ tþ r�, the null hypersurface is given by

gμν∂μv∂νv ¼ gtt þ grrð∂rr�Þ2 þ gθθð∂θr�Þ2 ¼ 0; ð38Þ

which yields

ð∂rr�Þ2 ¼
r2 þ a2 − a2λU
U2ðr2 þ a2Þ ð39Þ

ð∂rr�Þ2 ¼
ðr2 þ a2Þ2 − a2λðr2 − 2Mr − a2Þ

U2ðr2 þ a2Þ2 ; ð40Þ

and

ð∂θr�Þ2 ¼ a2ðλ − 4 cot2 θÞ: ð41Þ

From the second equation, we get the bound on the
separation constant

λ ≥ 4 cot2 θ ≔ λmin: ð42Þ

In Fig. 2, the caustics condition ðr2 þ a2Þ2 −
a2λðr2 − 2Mr − a2Þ ¼ 0, the horizon condition r2 −
2Mr − a2 ¼ 0, as well the CTC condition (null closed
curve gφφ ¼ 0) for given θ on ðr; aÞ-plane are plotted.

In these plots, for definiteness we have set θ ¼ π=6,
hence, λmin ¼ 12.
Once again, we observe that the null closed curve

coincides with the NHC with minimal separation constant.
This is true both outside and inside the horizon. Note that
the negative r region is connected with the positive r region
by the 2-surface of finite area at r ¼ 0 (at which the
curvature is finite and hence not a singularity) [20].

C. Tipler cylinder

As another example of spacetime with CTC, we consider
one of the archetypal example of time machine: the Tipler
cylinder [21], which is an infinitely long and massive
spinning object. The metric for the whole region of the
spacetime is written in the following form:

g½TIP� ¼−Fdt2þ2MdtdφþHðdr2þdz2ÞþLdφ2: ð43Þ

The z-axis corresponds to the spin axis of the cylinder. The
inner region of the surface whose radius is R is given by

F¼ 1; M¼ ar2; H¼ e−a
2r2 ; L¼ r2ð1−a2r2Þ; ð44Þ

where a is the angular velocity of the cylinder. Since
g2tφ − gttgφφ ¼ r2, the tt-component of the inverse metric gtt
can be obtained as

gtt ¼ −
gφφ
r2

¼ −ð1 − a2r2Þ: ð45Þ

Using this, we can separate the PDE

gμν∂μv∂νv ¼ gtt þ grrð∂rr�Þ2 þ gzzð∂zr�Þ2 ¼ 0; ð46Þ

with the separation constant λ. Note that for this spacetime
the coordinate r� is a function of r and z: r� ¼ r�ðr; zÞ.
Then we get

ð∂rr�Þ2 ¼
1 − a2r2 − λea

2r2

ea
2r2

; ð47Þ

ð∂zr�Þ2 ¼ λ: ð48Þ

Considering these equations and L, we will see that caustics
with λ ¼ λmin ¼ 0 gives the boundary of the CTC region
gφφ ¼ 0.
The exterior solution is classified into the following

three classes depending on the radius R: 0 < aR < 1=2,
aR ¼ 1=2, and 1=2 < aR < 1. The upper bound aR < 1
stems from the fact that the surface velocity of the cylinder
is supposed to be slower than the speed of light. According
to [21], only the third case possesses CTC, therefore, we
focus on this case here. The metric functions are

FIG. 2. Contour map of the caustics ½r2 þ a2 − λUðrÞ� ¼ 0 for
different separation constants λ (blue, purple, green), horizon
radii (dashed red), and the boundary of the closed timelike curve
region, gφφ ¼ 0 (dotted black), for the choice θ ¼ π=6, in the
Taub-NUT spacetime.
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F ¼ r sin ðβ − γÞ
R sin β

; M ¼ r sin ðβ þ γÞ
sin 2β

; ð49Þ

H ¼ e−a
2R2

�
r
R

�
−2a2R2

; L ¼ Rr sin ð3β þ γÞ
2 sin 2β cos β

; ð50Þ

with

β ¼ tan−1ð4a2R2 − 1Þ1=2;
γ ¼ ð4a2R2 − 1Þ1=2 log ðr=RÞ: ð51Þ

The PDE for the NHC yields

ð∂rr�Þ2 ¼
R sin ð3βþ γÞ− 2λea

2R2ðr=RÞ2a2R2

r sin2β cosβ

2r sin2β cosβea
2R2ðr=RÞ2a2R2 ;

ð52Þ

ð∂zr�Þ2 ¼ λ: ð53Þ

The NHC curves and the closed null curve gφφ ¼ 0 for both
interior and exterior solutions are shown in Fig. 3.
To conclude, all spacetimes discussed in this subsection

have CTCs. Regardless of the positions of the CTCs, i.e.,
whether they are located inside or outside the horizon, the
NHCs with minimum separation constant coincide with the
gφφ ¼ 0 closed null curve.

III. NULL HYPERSURFACE CAUSTICS AND
SUPER-ENTROPIC BLACK HOLES

Since the super-entropic black hole studied in [8] is free
of closed causal curve, there might be some connection
between the presence of NHC outside a black hole horizon
and the property that said black hole is super-entropic.
This is what we propose to study in this section. Let us start
with a brief explanation on what it means to be “super-
entropic.” In the recent years, the inclusion of the negative
cosmological constant as a thermodynamical variable
(a “pressure”) in anti–de Sitter spacetime, and its sub-
sequent rich phenomenology, dubbed “black hole
chemistry,” has received a lot of attention (see [22] for a
review). Specifically, the thermodynamical pressure is
P ¼ −Λ=8πG, where we have restored the Newton’s
gravitational constant for clarity. The “thermodynamical
volume” V is defined as the thermodynamic conjugate
∂M=∂P. This notion of volume has no geometric meaning
in general, for example, it can even be negative for
Taub-NUT [23]. Nevertheless, for static charged or neutral
black holes, it coincides with the naive spherical volume
V ¼ ð4=3Þπr3þ. There is a conjecture called the “reverse
isoperimetric inequality” [24], which states that the AdS-
Schwarzschild black hole has the largest entropy among all
black holes with the same thermodynamic volume. In this
sense AdS-Schwarzschild is the most stable configuration

(under the second law of thermodynamics, the black hole
would prefer to evolve toward the state with largest
entropy). A “super-entropic” black holes are black holes
that violate this inequality. There are only a few known
super-entropic black holes, so it is possible that the reverse
isoperimetric inequality holds for “most” black holes
(though the exact meaning of “most” has yet to be defined;
in [25] it is conjectured that all black holes with compact
horizon would satisfy the reverse isoperimetric inequality).
The super-entropic Kerr-AdS black hole [25–27] is

constructed by first rescaling the coordinate ϕ into ϕ̃ ≔
ϕ=Ξ and then taking the limit a → L (this is referred to as
the “ultra-spinning” limit). The new coordinate ϕ̃ is then
(re-)compactified. Recently there has been some doubt on
its true status as a counterexample to the reverse isoperi-
metric inequality [28]. Nevertheless, motivated by [8], let
us examine two other known examples of super-entropic
black holes.

FIG. 3. NHC curves and gφφ ¼ 0 (black dotted) for interior
solution (upper panel) and exterior solution (lower panel) for
several values of λ in the Tipler cylinder spacetime.
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A. Ultraspinning Kerr-Sen-AdS black hole

Kerr-Sen black hole [29] is a rotating charged black hole
which is an exact solution of the low-energy heterotic
string theory (EMDA theory, short for “Einstein-Maxwell-
dilaton-axion” theory), obtained via applying a solution
generating technique to the Kerr solution. The Lagrangian
of the theory is given as

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − e−ϕF2 −

1

12
e−2ϕH2

�
; ð54Þ

where F2 ¼ FμνFμν is the square of the Maxwell field
tensor, ϕ is the dilaton field, and H ≔ −e2ϕ⋆dχ is a third-
rank tensor field. Here χ denotes the axion pseudoscalar
Hodge-dual to H. The solution with the cosmological
constant can also be obtained.
Recently, Wu et al. found that an ultra-spinning Kerr-

Sen-AdS4 black hole can be super-entropic but not always
so, depending on the values of the parameters [30]. We
shall now check whether super entropy is related to NHC in
this spacetime geometry.
The metric of the ultraspininng Kerr-Sen AdS4 black

hole is

g½K − S� ¼ −
Δr

Σ
ðdt − Lsin2θdφÞ2 þ Σ

Δr
dr2 þ Σ

sin2θ
dθ2

þ sin4θ
Σ

½Ldt − ðr2 þ 2brþ L2Þdφ�2; ð55Þ

where b ≔ q2=ð2mÞ is the dilatonic scalar charge, while m
and q are the mass and electric charge parameter of the
black hole, and

Δr ¼ ðr2 þ 2brþ L2Þ2L−2 − 2mr;

Σ ¼ r2 þ 2brþ L2cos2θ: ð56Þ

As discussed in [30], the black hole is super-entropic
for b=L < 1 and not super-entropic (“sub-entropic”) for
b=L > 1. Note that in order to discuss super/subentropy,
we need to restrict the parameters m and b so that the black
hole spacetime still admits a horizon. It can nevertheless be
shown that caustics can appear even around naked singu-
larities, but without a horizon we cannot discuss the notion
of entropy.
The tt, tφ, and φφ components of the metric are

gtt ¼
1

Σ
ð−Δr þ L2sin4θÞ;

gtφ ¼ Lsin2θ
Σ

½Δr − sin2θðr2 þ 2brþ L2Þ�;

gφφ ¼ 2mrL2

Σ
sin4θ:

Since gφφ is always positive, much like the ultraspinning
Kerr-AdS black hole, the ultraspinning Kerr-Sen-AdS4
black hole is free of closed causal curve in the entire
spacetime. To calculate gtt, we need to compute
D ≔ g2tφ − gttgφφ. The expression is simple:

D ¼ Δr sin4 θ: ð57Þ

Using this, the inverse component gtt is readily obtained
to be

gtt ¼ −
gφφ
D

¼ −
2mrL2

ΔrΣ
: ð58Þ

Since the null hypersurface is given by

gμν∂μðtþ r�Þ∂νðtþ r�Þ ¼ 0; ð59Þ

we obtain

−
2mrL2

Δr
þ Δrð∂rr�Þ2 þ sin2 θð∂θr�Þ2 ¼ 0: ð60Þ

As emphasized in [31], even in the asymptotically flat
case, the Kerr-Sen spacetime is of Petrov Type I [32], thus,
a priori, one does not expect it to have a Carter-like
constant. Nevertheless, the Hamilton-Jacobi equation is
separable for the geodesics [33]. For our asymptotically
AdS case, introducing a constant for the separation of
variables as L2λ, this equation yields

ð∂rr�Þ2 ¼ L2
ð2mr − λΔrÞ

Δ2
r

; ð∂θr�Þ2 ¼
L2λ

sin2θ
: ð61Þ

Therefore the caustics condition is 2mr − λΔr ¼ 0. We plot
this condition and the horizon condition Δr ¼ 0 in Fig. 4.
We note that there exist caustics outside the horizon in

both super and subentropic cases. The result seems to
indicate that the existence of NHC outside the horizon is
not related to whether the black holes is super-entropic or
not at least for Kerr-Sen-AdS case. In the following
subsection, we will see that this is also the case for charged
BTZ black strings.

B. Charged BTZ black string

Another example of the super-entropic black hole is the
charged BTZ spacetime [34]. To make a four-dimensional
solution,3 we consider an extra fourth-dimension in the
z-direction (charged BTZ black string). The metric is
written as

3This is to allow the introduction of the separation constant λ,
for a fair comparison with the other cases we discussed thus far.
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g½BTZ� ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dφ2 þ hðzÞdz2; ð62Þ

where

fðrÞ ¼ −8M −
q2

2
log ðr=LÞ þ r2

L2
; ð63Þ

and hðzÞ is an arbitrary positive definite function. The
cosmological constant sets the length scale viaΛ ≔ −1=L2.
As discussed in the Appendix B, this spacetime can be
super-entropic, depending on the charge parameter q and

the functional form of the warp factor hðzÞ. However, the
spacetime geometry is always free of closed causal curves
since gφφ ≥ 0.
To define the null hypersurfaces, we again start by

introducing ingoing and outgoing Eddington-Finkelsteing
coordinates:

u ¼ t − r�; v ¼ tþ r�; ð64Þ

where r� ¼ r�ðr; zÞ is the tortoise coordinate. The equation
that null hypersurface satisfies is

gμν∂μv∂νv ¼ gtt þ grrð∂rr�Þ2 þ gzzð∂zr�Þ2 ¼ 0: ð65Þ

This PDE simplifies into

−
1

fðrÞ þ fðrÞð∂rr�Þ2 þ
1

hðzÞ ð∂zr�Þ2 ¼ 0: ð66Þ

Therefore, after introducing the constant for the separation
of variables λ, we can obtain

ð∂rr�Þ2 ¼
1 − fλ
f2

; ð∂zr�Þ2 ¼ λhðzÞ: ð67Þ

The computation is similar to the other cases explored thus
far. The end result yields

1 − fλ ¼ 0; ð68Þ

which gives the caustics curve. Note that λ ≥ 0 since
hðzÞ > 0. We plot this condition and the horizon condition
f ¼ 0 on the ðr; qÞ-plane in Fig. 5.
For arbitrary λ and arbitrary value of the charge, the

caustic curve is outside the horizon. Specifically, and
surprisingly, this is also the case for neutral BTZ black
string. The charged BTZ black string example shows that it
is possible that a class of solution can be super-entropic
only for some choices of the parameter and metric
coefficients, yet there are always NHC present outside
the event horizon.

IV. DISCUSSION

In this work, we have discussed the null hypersurface
caustics (NHC) of the following spacetimes: transunital
AdS5-Kerr, Taub-NUT, Tipler cylinder, charged (nonrotat-
ing) BTZ string, and ultraspinning Kerr-Sen-AdS4. Among
these, transunital black holes, Tipler cylinder, and Taub-
NUT spacetimes admit closed timelike curves (CTC), and
the NHC with minimal separation constant coincides with
the closed null curve, which corresponds to the boundary
of the CTC-region. This can occur outside the black hole
horizon. A general proof of this relationship is difficult. The
main idea involved in the calculations is to express gtt as
−gφφ=D, however the separation of variables requires

FIG. 4. For the ultraspinning Kerr-Sen-AdS4 black holes:
contours of the caustics 2mr − λΔr ¼ 0 with λ ¼ 1 (purple),
and horizon curve (dashed red curve) on the ðr̄; m̄Þ-plane for
super-entropic case (b̄ ¼ 0.5) and subentropic case (b̄ ¼ 1.5),
where quantities with bar are normalized by L. There exist
caustics outside the horizon in both super/subentropic cases.
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knowledge on the detailed form of gφφ. Such proof should
be possible for more restricted class of metric, but then it is
doubtful whether such result would shed more light to our
understanding.
The relationship between CTC and NHC shows that

indeed the caustics in null hypersurfaces reflect the under-
lying causal structures of the spacetime geometry. In this
work we are agnostic about whether CTCs are definitely
bad, as it is a matter of ongoing debate, which is outside the
scope of our work. (See, e.g., [35,36], which essentially
argued that although point particle can travel on a CTC, any
macroscopic objects would be constrained by the second
law of thermodynamics. See also [37].)
The ultraspinning Kerr-Sen-AdS4 black holes can be

either super-entropic or not, depending on the values of the
black hole parameters. Regardless of the fact that such
black holes are super-entropic, NHCs appear outside their
horizon. Together with the ultraspinning Kerr-AdS4

spacetime, our results suggest that black holes that can
become super-entropic might have NHC outside the hori-
zon. Further evidence is provided by the charged BTZ
black string, which is also super-entropic for some choices
of the charge parameter and the warp factor. However,
for the charged BTZ black string, all of them—even the
subentropic ones—have NHC outside the event horizon.
More examples of super-entropic black holes are required
to study the relationship between super entropy and NHC.
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APPENDIX A: DERIVATION OF THE METRIC
IN EQ. (25)

Using Eq. (18) and Eq. (23), we obtain

dr ¼ QΔr

Q2Δθ þ P2Δr
ðΔθdr� − νP2dλÞ; ðA1Þ

dθ ¼ PΔθ

Q2Δθ þ P2Δr
ðΔrdr� þ νQ2dλÞ: ðA2Þ

Substituting these into grr and gθθ terms, we get

ρ2

Δr
dr2 þ ρ2

Δθ
dθ2 ¼ 1

Ξ2R2
ðΔrΔθdr2� þ ν2P2Q2dλ2Þ; ðA3Þ

whereas the terms with gtt, gtφ, gφφ can be rewritten as

gttdt2 þ 2gtφdtdφþ gφφdφ2

¼
�
gtt −

g2tφ
gφφ

�
dt2 þ g2tφ

gφφ
dt2 þ 2gtφdtdφþ gφφdφ2

¼ −
D
gφφ

dt2 þ gφφðdφ−ωdtÞ2 ¼ −
ΔrΔθ

Ξ2R2
dt2 þ gφφdϖ2:

ðA4Þ

Thus we obtain Eq. (24).

APPENDIX B: IS THE CHARGED BTZ
BLACK STRING SUPER-ENTROPIC?

Although three-dimensional charged BTZ spacetime is a
super-entropic black hole [34], it does not trivially follow
that the solution with an “extra direction” (z-direction) is
always super-entropic.
Following the procedure which has already been dis-

cussed in the literature [24,25], we evaluate whether the
reverse isoperimetric inequality

FIG. 5. Contour map of the charged BTZ black string caustics
1 − fλ ¼ 0 for several values of λ ¼ 0.025 (green), 0.05 (purple),
0.1 (blue), and the horizon curve (dashed red curve) on the ðr̄; q̄Þ-
plane, where r̄ ≔ r=L and q̄ ≔ q=L. The lower panel shows the
positions of the inner horizon and caustics for fixed q̄ to clarify
their behaviors around the inner horizon (red dashed curve) for
small q̄ in the upper panel.
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R ≔
�ðD − 1ÞV

ωD−2

� 1
D−1

�
ωD−2

A

� 1
D−2

≥ 1; ðB1Þ

holds. HereD is the spacetime dimension andωD stands for
the area of the space orthogonal to constant ðt; rÞ. The
horizon area A can be obtained from the metric as follows

A ¼ 2πrþ

Z þ∞

−∞
hðzÞdz ≔ 2πrþH; ðB2Þ

where rþ is the radius of the outer horizon.
One immediately notices that one must constrain the

horizon area to be finite in order to have any chance for the
black string to be super-entropic. This means that the warp
factor hðzÞ should be chosen in such a way that the area
integral converges.
Now, M is the energy (mass) of the black hole obtained

from the horizon condition fðrþÞ ¼ 0:

M ¼ r2þ
8L2

; ðB3Þ

and P is the pressure given with the cosmological constant
Λ as

P ¼ −
Λ
8π

¼ ðD − 2ÞðD − 1Þ
16πL2

: ðB4Þ

The thermodynamic volume V is computed using the
formula in black hole chemistry [22]:

V ¼
�∂M
∂P

�
S;q
; ðB5Þ

the subscript means that the entropy and charge of the black
hole should be fixed when taking the partial derivative.
Using (B3) and (B4), the thermodynamic volume is

V ¼ −
πq2L2

12
þ π

3
r2þ: ðB6Þ

Therefore, for the present metric R is obtained as

R¼
�
3V
ω2

�
1=3

�
ω2

A

�
1=2

¼H−1=3r−1=2þ

�
r2þ
2
−
q2L2

8

�
1=3

; ðB7Þ

where we have ω2 ¼ 2πH. Depending on the parameter q
and the integrated warp factor H, the ratio R can be either
larger or smaller than unity. That is, charged BTZ black
string can be super-entropic but only for suitable choices of
the charge value and the form of the warped function.
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