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We discuss a simple symplectic formulation for tetrad gravity that leads to the real Ashtekar variables in
a direct and transparent way. It also sheds light on the role of the Immirzi parameter and the time gauge.
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I. INTRODUCTION

The purpose of this paper is to present a new symplectic
formulation for tetrad gravity. Among its most salient
features, we would like to highlight the very simple
polynomial form of the constraints, its full SOð1; 3Þ
invariance and the fact that the Immirzi parameter appears
only in the (pre)symplectic form.
The usual (real) Ashtekar formulation [1,2] can be

derived from the results presented here in a straightforward
way that illuminates the role of the time gauge. In our
opinion, our formulation (which shares some features with
the one presented in [3], despite the use of very different
methods) provides a viewpoint that neatly complements the
one obtained by using Dirac’s algorithm (see, for instance,
[4–7]). It also sheds light on other issues such as the role of
the Immirzi parameter—both at the classical and quantum
levels—and the appearance of constraints quadratic in
momenta.
In general, the Hamiltonian dynamics of a (singular)

system is determined by Hamiltonian vector fields Z
satisfying

ιZΩ ¼ dH; ð1Þ

whereΩ is a presymplectic form on a phase space F andH
the Hamiltonian of the system. We will denote by d and ⩕
the exterior derivative and the wedge product in F ,

respectively. By requiring the Hamiltonian vector field to
be consistent (i.e., tangent to the manifold where the
dynamics takes place), the Gotay-Nester-Hinds (GNH)
algorithm [8] leads to a sequence of constraint submani-
folds of F . When the algorithm terminates, it provides a
constructive and neat method for finding a submanifold ϒ
of F where Eq. (1) makes sense.

II. SYMPLECTIC FORMULATION FOR THE
HOLST ACTION

The Hamiltonian description of tetrad gravity discussed
here can be obtained from the Holst action [9] by using the
geometrically inspired GNH method [8,10–12]. Instead of
following this approach, which is interesting in itself and
will be presented in an upcoming publication [13], we will
justify the validity of our formulation by deriving the real
Ashtekar formulation from it.
LetM be a four-dimensional manifold diffeomorphic to

Σ ×R where Σ is a closed (i.e., compact without boun-
dary), orientable, three-dimensional manifold (this implies
that Σ is parallelizable). General relativity in tetrad form
can be derived from the Holst action [9]

Sðe;ωÞ ¼
Z
M

PIJKLeI ∧ eJ ∧ FKL; ð2Þ

where eI ∈ Ω1ðMÞ are 1-forms (nondegenerate tetrads),
FI

J ≔ dωI
J þ ωI

K ∧ ωK
J is the curvature of an SOð1; 3Þ

connection ωI
J ∈ Ω1ðMÞ (we use boldface letters to

represent four-dimensional objects),
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PIJKL ≔
1

2

�
ϵIJKL þ ε

γ
ηIKηJL −

ε

γ
ηJKηIL

�
;

ϵIJKL is the Levi-Civita symbol (ϵ0123 ¼ þ1), and γ denotes
the Immirzi parameter. Here the latin capital indices I; J…
range from 0 to 3 and are raised and lowered with the help
of the Minkowski metric η ¼ ðε;þ1;þ1;þ1Þ with ε ¼ −1
(we introduce ε as a simple device to recover the
Riemannian case if so desired).
The field equations given by [9] are equivalent to those

obtained from the standard Hilbert-Palatini action and can
be written as [3,9]

DeI ¼ 0; ð3aÞ
ϵIJKLeJ ∧ FKL ¼ 0; ð3bÞ

where DeI ≔ deI þωI
J ∧ eJ.

By using the GNH method, we arrive at a Hamiltonian
formulation defined in a space of fields F consisting of
scalar functions etI;ωt

IJ ∈ C∞ðΣÞ and 1-forms eI;ωIJ ∈
Ω1ðΣÞ (we use nonbold fonts for the objects living on Σ to
distinguish them from those defined on M). The basic
elements of the formulation are as follows:

(i) The field space F is endowed with the presymplec-
tic form

ΩP ¼
Z
Σ
dωIJ⩕dðPIJKLeK ∧ eLÞ: ð4Þ

(ii) The dynamics is restricted to a submanifold Υ of F
defined by the constraints

DeI ¼ 0; ð5aÞ

ϵIJKLeJ ∧ FKL ¼ 0; ð5bÞ

where the curvature FI
J ≔ dωI

J þ ωI
K ∧ ωK

J sat-
isfies the identity DFI

J ¼ 0 with D given by a
suitable extension of DαI ¼ dαI þ ωI

J ∧ αJ for
1-forms.

(iii) Let Z be the Hamiltonian vector field tangent to ϒ
that defines the evolution of the system, then its
components satisfy

ZI
e ¼ DetI − ωt

I
JeJ; ð6aÞ

ϵIJKLðeJ ∧ ðZKL
ω −Dωt

KLÞ − etJFKLÞ ¼ 0; ð6bÞ

ZI
et; arbitrary; ð6cÞ

ZIJ
ωt; arbitrary: ð6dÞ

On F , the vector field Z is Hamiltonian in the
sense that it satisfies ιZΩP ¼ dH with

H ¼
Z
Σ
PIJKLðeI ∧ eJ ∧ Dωt

KL − 2etIeJ ∧ FKLÞ:

Notice that the arbitrariness of ZI
et and ZIJ

ωt implies that eIt
and ωIJ

t are themselves arbitrary. This is to be expected, as
eIt play the role of the lapse and the shift, while ωIJ

t
parametrize local Lorentz transformations.
Although the most efficient way to get the previous

formulation is to use the GNH method, it can also be
obtained by employing the geometric implementation of
Dirac’s algorithm [14,15].
One striking feature of the constraints (5a) and (5b) is

their structural resemblance with the field equations (3a)
and (3b). This suggests a direct approach to obtain the
Hamiltonian formulation presented here that takes advan-
tage of the fact that the Holst action is first order, back-
ground independent, and it is written in terms of differential
forms. Actually, there is a very quick and neat way to get
Eqs. (5a)–(6d) as necessary conditions. This is a conse-
quence of the fact that differential forms, pullbacks, and the
exterior derivative interact in a natural way. Although in
order to prove that they are sufficient some additional work
is necessary (tangency requirements must be checked), it is
very useful to know that there is a simple way to write the
constraints (a fact that is not obvious at all within Dirac’s
approach).
The starting point is the field equations (3a) and (3b)

which are equivalent to those given by the Holst action. Let
us introduce onM a foliation defined by the level surfaces
Στ of a scalar function τ, a vector field ∂τ ∈ XðMÞ
transverse to the foliation with dτð∂τÞ ¼ 1, and the inclu-
sion |τ∶ Στ ↪ M. Finally, let us introduce

eIt ≔ ι∂τ
eI ∈ C∞ðMÞ;

eI ≔ eI − dτ ∧ eIt ∈ Ω1ðMÞ;
ωIJ

t ≔ ι∂τ
ωIJ ∈ C∞ðMÞ;

ωIJ ≔ ωIJ − dτ ∧ ωIJ
t ∈ Ω1ðMÞ

(ι denotes the interior product) so that

eI ¼ eI þ dτ ∧ eIt ;

ωIJ ¼ ωIJ þ dτ ∧ ωIJ
t :

Now, if we pull back (3a) and (3b) to Στ and define
etI ≔ |�τeIt , eI ≔ |�τeI , ωt

IJ ≔ |�τωIJ
t , and ωIJ ≔ |�τωIJ, we

get (5a) and (5b). If we take the interior product of (3a) and
(3b) with ∂τ and then pull back the result to Στ, we obtain
(6a)–(6d).

III. DERIVING THE REAL ASHTEKAR
FORMULATION

We derive now the real Ashtekar formulation from the
symplectic description given above. This can be taken as an
independent consistency check of our formulation.
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The presymplectic form (4) can be written as (here, ϵijk is
the three-dimensional Levi-Civita tensor with ϵ123 ¼ þ1)

ΩP ¼
Z
Σ
dðωij þ εγϵijkω

0kÞ⩕d

�
ε

γ
ei ∧ ej

�

þ
Z
Σ
d

�
2

γ
ω0

i þ ϵi
jkωjk

�
⩕dðe0 ∧ eiÞ ð7Þ

by considering the different terms with I; J… ¼ 0 and
I; J… ¼ i; j… (i; j ¼ 1; 2; 3). The particular form of (7)
hints at the possibility of finding canonically conjugate
variables. Notice, however, that something does not quite
fit. On one hand, the 2-forms ei ∧ ej have nine independent
components written in terms of the nine independent
components of ei. On the other hand, a direct counting
shows thatωij þ εγϵijkω

0k consists of three 1-forms labeled
by the antisymmetrized pair ij (nine independent compo-
nents), but it is written in terms of 18 independent objects
(the components of ω0k and ωij). Similar considerations
apply to the second integral in (7).
In order to find bona fide canonically conjugate variables

and solve this apparent mismatch, we consider a partial
gauge fixing (time gauge) e0 ¼ 0 and pull back all geo-
metric objects to the submanifold F 0 ≔ fe0 ¼ 0g ⊂ F
given by this gauge condition. In particular, this fixes
some of the arbitrary pieces of the components of the
Hamiltonian vector field. Specifically, we must have

0 ¼ Z0
e ¼ det0 þ ω0

ieti − ωt
0
iei: ð8Þ

As et0 and eti will play in the following the role of lapse and
shift, the best course of action is to solve (8) for ωt

0
i. By

doing this, the three components of ωt
0
i are fixed and the

boost part of the SOð1; 3Þ symmetry of the Holst action is
broken.
The pullback of the symplectic form ΩP to F 0 is

obtained just by plugging e0 ¼ 0 into (7)

Ω0 ¼
Z
Σ
dðωij þ εγϵijkω

0kÞ⩕d

�
ε

γ
ei ∧ ej

�
: ð9Þ

We discuss now in detail the constraints in the
time gauge.
▸ DeI ¼ 0 for I ¼ i,

0 ¼ dei þ ωi
0 ∧ e0 þ ωi

j ∧ ej

⟶
time gauge

dei þ ωi
j ∧ ej ¼ 0: ð10Þ

▸ DeI ¼ 0 for I ¼ 0,

0 ¼ de0 þ ω0
i ∧ ei ⟶

time gauge
ω0

i ∧ ei ¼ 0: ð11Þ

The key insight to arrive at the Ashtekar formulation
for arbitrary values of the Immirzi parameter is to solve
for ωi

j in (10). We do this by writing ωi
j ¼ −ϵijkΓk and

solving

dei þ ϵijkΓj ∧ ek ¼ 0: ð12Þ

Plugging the expression for Γi in (9) leads to

Ω0 ¼
Z
Σ
dðΓi − εγω0iÞ⩕d

�
−
ε

γ
ϵijkej ∧ ek

�
; ð13Þ

so we can define the following pair of canonically con-
jugate variables:

Ai ≔ Γi − εγω0i; ð14aÞ

Ei ≔ −
ε

γ
ϵijkej ∧ ek: ð14bÞ

Notice that both of them depend on nine independent
objects: the components of ω0i and those of ei, respectively.
In the following, we will rewrite the constraints in terms of
Ai and Ei.
As we have already solved (10), the only remaining

condition coming from DeI ¼ 0 is (11). This gives the
usual Gauss law of the Ashtekar formulation because

ω0
i ∧ ei ¼ 0 ⇔ ðAi − ΓiÞ ∧ ei ¼ 0

⇔ dEi þ ϵijkAj ∧ Ek ¼ 0:

This can be written in terms of the vector density Ẽi

associated with the 2-form Ei in the usual way

divwẼi þ ϵijkιẼkAj ¼ 0; ð15Þ

where the volume form w ∈ Ω3ðΣÞ is given by 3!w ¼
ϵijkei ∧ ej ∧ ek.
▸ ϵIJKLeJ ∧ FKL ¼ 0 for I ¼ i,

0 ¼ 2ϵijkej ∧ F0k − ϵijke0 ∧ Fjk

⟶
time gauge

ϵijkej ∧ ðdω0k þ ω0
l ∧ ωlkÞ ¼ 0: ð16Þ

Taking into account that εγω0k¼Γk−Ak and ωi
j¼−ϵijkΓk,

the previous condition becomes

ϵijkðej ∧ dðAk − ΓkÞ − ϵlkmej ∧ ðAl − ΓlÞ ∧ ΓmÞ ¼ 0;

which can be rewritten in the form

ϵijkej ∧ ðFk − RkÞ þ ej ∧ ðAj − ΓjÞ ∧ ðAi − ΓiÞ ¼ 0;

where
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Fi ≔ dAi þ 1

2
ϵijkAj ∧ Ak;

Ri ≔ dΓi þ 1

2
ϵijkΓj ∧ Γk:

Now, using the Gauss law and the identity ϵijkej ∧ Rk ¼ 0,
we finally get

ϵijkej ∧ Fk ¼ 0: ð17Þ
In terms of the density Ẽi, this expression takes the usual
form of the vector constraint

ιẼi
Fi ¼ 0: ð18Þ

▸ ϵIJKLeJ ∧ FKL ¼ 0 for I ¼ 0,

ϵijkei ∧ ðdωjk þ ωj
0 ∧ ω0k þ ωj

l ∧ ωlkÞ ¼ 0:

Using again εγω0k ¼ Γk − Ak and ωi
j ¼ −ϵijkΓk, we can

rewrite the previous expression as

2ei ∧ Ri þ
ε

γ2
ϵijkei ∧ ðAj − ΓjÞ ∧ ðAk − ΓkÞ ¼ 0: ð19Þ

By computing the exterior derivative of (11) and using (12),
we can write

2ei ∧ ðFi − RiÞ − ϵijkei ∧ ðAj − ΓjÞ ∧ ðAk − ΓkÞ ¼ 0:

Plugging this into (19), we obtain

2ei ∧ Fi −
�
1 −

ε

γ2

�
ϵijkei ∧ ðAj − ΓjÞ ∧ ðAk − ΓkÞ ¼ 0;

ð20Þ
or equivalently,

ei ∧ ðFi þ ðεγ2 − 1ÞRiÞ ¼ 0;

which, in terms of Ẽi becomes the familiar scalar constraint
of the real Ashtekar formulation

ϵijk{Ẽi
{Ẽj

ðFk þ ðεγ2 − 1ÞRkÞ ¼ 0: ð21Þ

IV. CONCLUSIONS

We end the paper with several comments.
(i) The fact that we have been able to obtain the real

Ashtekar formulation for general relativity pro-
vides a proof a posteriori of the soundness of our
approach (which, we emphasize again, can be
obtained from the Holst action).

(ii) It is important to point out that (6c) and (6d) tell us
that at every instant of time, et0 and eti can be taken
to be arbitrary. This allows us to remove them from
the list of configuration variables of the system and

just think of them as given functions of time. These
objects are the lapse N ≔ et0, the shift Ni ≔ eti, and
ωIJ
t are the parameters of the local Lorentz trans-

formations.
(iii) At variance with the situation with the presymplectic

form (4) on F , the final symplectic form (13) is
independent of the Immirzi parameter γ because the
term involving Γi is actually zero (remember that Σ
is closed). There is nothing strange here because we
know that (14a) defines a canonical transformation.
The symplectic form is also independent of γ when
written in terms of the new variables Ai and Ei
but then the Hamiltonian constraint becomes γ
dependent.

(iv) By removing theΓi term from (13), it is straightforward
to get the SOð1; 3Þ-ADM formulation by using the
canonical variables Ki ≔ ω0i and Ei ≔ ϵijkej ∧ ek.

(v) The role of the usual quadratic constraints in mo-
menta [16] is also clarified in our approach. As it can
be seen, by using the time gauge e0 ¼ 0 and pulling
back to the submanifold F 0 ≔ fe0 ¼ 0g ⊂ F , we
end up with a well-defined symplectic structure—in
canonical form—on the phase space defined by the
Ashtekar variables. The counting issues that lead to
the introduction of quadratic constraints involving
momenta simply disappear.

(vi) The formulation presented here is fully SOð1; 3Þ
invariant. If we stick to it, the presymplectic form (4)
depends on γ, so the Immirzi parameter should play
a role at the quantum level. This may also be the
case—both at the classical and quantum levels—if
surface terms are added to the Holst action.

(vii) The Hilbert-Palatini action, as well as the corre-
sponding field equations, can be formally recovered
by taking the γ → ∞ limit. Notice, however, that the
canonically conjugate variables (14a) and (14b) are
not defined in this limit. This explains why the
Ashtekar formulation cannot be derived from the
Hilbert-Palatini action.
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