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This paper argues that the weak cosmic censorship hypothesis implies that the Schwarzschild black hole
has maximal entropy in all stationary black holes of fixing temperature, or equivalently, to store a same
amount of information the Schwarzschild black hole has highest temperature. It then gives the independent
mathematical proofs for 4-dimensional general static black holes and stationary-axisymmetric black holes
which have “t-ϕ” reflection isometry. This result does not only provide a new universal bound between
temperature and entropy of black holes but also offers us new evidence to support the weak cosmic
censorship hypothesis.
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I. INTRODUCTION

In general relativity, the Penrose’s and Hawking’s
theorems about singularity show that spacetime singularity
will be inevitable if matters satisfy a few very general
conditions [1,2]. To keep the predicability in general
relativity, it has been conjectured for a long time that
spacetime singularity arising from gravitational collapse of
physically “reasonable” matter must be shrouded by an
event horizon, which is called “weak cosmic censorship”
hypothesis [3,4]. Despite its clear significance, however, a
complete proof is still open [5–7]. In the absence of a
complete proof, theoretical tests of cosmic censorship are
of significant value.
Well-studied, the theoretical test was proposed by

Penrose in the early 1970s. It considers an asymptotically
flat solution of Einstein equations with matter satisfying the
dominant energy condition. Then if a Cauchy slice of this
solution contains an outer-trapped 2-surface S of area AðSÞ,
and if M is the Arnowitt-Deser-Misner (ADM) mass of the
data on the slice, the inequality AðSÞ ≤ 16πM2 must be true
if the “weak cosmic censorship” is true. Though the proof
in general case is still open, people have proven it in a large
class of cases [8–10]. Particularly, if the initial dataset just
forms a stationary black hole, we have

AH ≤ 16πM2: ð1Þ

Here AH is just the area of event horizon. The inequality (1)
has been also generalized into asymptotically anti–de Sitter
(AdS) black holes [11,12]. Recently, a modified version by

taking quantum effects into account was also discussed in
Refs. [13,14].
We have known that the black hole is not only a

mechanical system but also a thermodynamical system,
of which the entropy is given by Bekenstein-Hawking
entropy S ¼ AH=4 and temperature is given by Hawking
temperature TH ¼ κ=ð2πÞ, where κ is the surface gravity of
event horizon. It is clear that the Penrose inequality can be
regarded as an entropy bound. As total energy is fixed, this
is an entropy bound in microcanonical ensemble. Once we
reconsider the inequality (1) from the thermodynamics, it is
natural to ask the question: what will happen if we consider
the black hole in the canonical ensemble? One natural
expectation is that the Schwarzschild back hole may also
have maximal entropy in canonical ensemble, i.e.,

S ≤
1

16πT2
H

i:e:; AH ≤
1

4πT2
H
: ð2Þ

This is not a trivial corollary of bound (1), as the physics of
black holes may be not equivalent in different ensembles.
For example, under certain circumstances, the partition
function obtained by using the path-integral approach turned
out to depend on the boundary conditions [15–17]. Thus, we
cannot use the inequality (1) to directly argue that inequality
(2) must be true in canonical ensemble.
The inequality (2) was first conjectured by Ref. [18]

according to the computation of Hawking temperature in
static spherically symmetric black holes. However, to our
knowledge, no any progress was achieved beyond the static
spherically symmetric case up to now. This paper will make
a first step toward the proof of inequality (2) in general
case. Particularly, we will argue that the bound (2) is a
necessary condition of “weak cosmic censorship.” Then we*aqiu@tju.edu.cn
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will prove that: in 4-dimensional Einstein’s gravity theory,
for a static black hole or a stationary-axisymmetric black
hole which has the “t-ϕ” reflection isometry [19], if (i) the
weak energy condition is satisfied and (ii) the horizon has
topology S2 × R, then inequality (2) is always true. The
requirement (ii) is redundant in an asymptotically flat black
hole if we use dominant energy condition to replace (i) [20–
23]. Note that the temperature (i.e., surface gravity) is
constant automatically in the case considered here [24].

II. A PHYSICAL HEURISTIC ARGUMENT

Let us first argue that, similar to the Penrose inequality
(1), the bound (2) is also implied by “weak cosmic
censorship.” Roughly speaking, the weak cosmic censor-
ship states that the singularity originating from a gravita-
tional collapse should be hidden by the event horizon. To
connect this dynamics process with inequality (2), we
consider the following “thought experiment” shown by
Fig. 1. First, we assume that there is a stationary initial
black hole with temperature TH and horizon area AH. Then
we immersed it into a big thermal source at its boundary
and the thermal source also has a fixed temperature TH.
Though the temperatures of the thermal source and black
hole are same, the black hole and thermal source may have
different chemical potential. The black hole then will
evolve by various isothermal processes and can exchange
energy, particles, charges and so on with the thermal
source.
It needs to note that, the vacuum black hole in asymp-

totically flat spacetime is unstable due to negative heat
capacity. Thus, here we assume that exterior of black hole is
full of classical matters which offer positive heat capacity
during the evolution of the black hole and the dynamics of
these isothermal processes is dominated by classical phys-
ics. The “weak cosmic censorship” guarantees that an
asymptotically flat spacetime with regular initial conditions
will be strongly asymptotically predictable [22]. Then the
null energy condition implies that the area of the event
horizon will not decrease during these processes [25], i.e.,

AH ≤ AH;f: ð3Þ

Here AH;f is the area of event horizon in final black hole. In
physics, it is reasonable to expect the black hole will settle
down to a Kerr-Newman black hole by referring “no-hair”
theorem of black hole. For the final Kerr-Newman black
hole, let us assume that M is the mass, Ma is the angular
momentum and Q is the total charge. We then have the
following relationships

AH;f ¼ 4πðr2h þ a2Þ; TH ¼ 1

2π

rh −M
r2h þ a2

; ð4Þ

with rh ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
. We can verify that

THAH;f ¼ 2rh − 2M ≤ rh ≤
ffiffiffiffiffiffiffiffiffi
AH;f

4π

r
: ð5Þ

Combine Eqs. (3) and (5) and we will obtain desired
inequality (2).
The reader will have noticed that the above argument

makes a lot of global assumptions about the resulting
space-times, and our current understanding is much too
poor to be able to settle those one way or another. The
“no-hair” theorem can also be broken in some physical
acceptable situations [26,27]. It is clear this heuristic cannot
be treated as a valid proof. In the following we will first
give the proof for the general static case and then discuss it
in the stationary-axisymmetric case.

III. COORDINATES GAUGE IN
BONDI-SACHS FORMALISM

In order to prove inequality (2), we will use the Bondi-
Sachs formalism, which foliates the spacetime by a series
of null surfaces [28–30] and can be used for arbitrary
spacetime. Here we first briefly explain about how to build
such formalism when the black hole is static or stationary
axisymmetric with “t-ϕ” reflect isometry. In this paper, the
Greek indexes fμ; ν; � � �g runs from 0 to 3 and the capital
Latin indexes fA; B; � � �g run from 2 to 3.
In the static case or stationary axisymmetric case with

“t-ϕ” reflect isometry, there is a Killing vector ξμ which is
both tangent and normal to event horizon H. The Killing
vector ξμ will generate a 1-parameter group of diffeo-
morphisms Φu, i.e., ∀p in spacetime Φ0ðpÞ ¼ p and the
curve fΦuðpÞju ∈ Rg gives us an orbit of ξμ. Assume that
H is the event horizon (a 3-dimensional null surface) and
Srh is its one spacelike cross section. As H has topology of
S2 ×R, Srh is a topology sphere The outward light rays of
Srh form a 3-dimensional null surfaceW0, which is labeled
by u ¼ 0. See Fig. 2(a). Using map Φu we can obtain a
series of equal-u surfaces Wu ≔ ΦuðW0Þ. We can prove
that Wu are all null by using the fact that ξμ is a Killing

FIG. 1. A schematic diagram of the “thought experiment”
which shows how the inequality (2) is relevant to weak cosmic
censorship.
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vector. These null surfaces are labeled by u ¼ constant and
so we have gμνðduÞμðduÞν ¼ 0.
Let us now explain how to build fr; xAg coordinates. In

the null surface W0, the r-coordinate is chosen to satisfy
equation

ð∂=∂rÞμ ¼ ψgμνðduÞν ð6Þ

with an arbitrary u-independent positive function ψ . The
r-coordinate then is just the integral curve of Eq. (6). We
can adjust the zero point so that the r-coordinate of Srh
satisfies rjSrh ¼ rh. The value of rh will be determined

later. We denote equal-r surface to be Sr and introduce
2-dimensional coordinates fxAg in Sr. The map Φu can
bring fr; xAg fromW0 into all other null surfaces and so we
obtain the coordinates fu; r; xAg for any point outside event
horizon. As the result, we have ξμ ¼ ð∂=∂uÞμ. See Fig. 2(b)
for a schematic explanation.
From Eq. (6) we see that grr ¼ gμνð∂=∂rÞμð∂=∂rÞν ¼ 0

and grA ¼ gμνð∂=∂xAÞμð∂=∂rÞν ¼ ψ∂u=∂xA. As the coor-
dinate lines of xA lie in an equal-u surface, we find
grA ¼ ψ∂u=∂xA ¼ 0. Thus, the metric in coordinates
fu; r; xAg has the following form

ds2 ¼ −
V
r
e2βdu2 − 2e2βdudr

þ r2hABðdxA −UAduÞðdxB − UBduÞ: ð7Þ

At event horizon H we have VjH ¼ 0. As the spacetime is
asymptotically flat, we then fix the boundary conditions
βjr→∞ ¼ 0, and

V
r

����
r→∞

¼ 1; hABjr→∞dx
AdxB ¼ dŝ2; ð8Þ

Here dŝ2 is the metric of unit sphere. In the asymptotic
inertial frame, we require r2UA → 0 at the null infinity. It is
also possible to choose a rotational frame with constant
angular velocity, then we have UA ¼ constant. The ψ in

Eq. (6) is still free and we can fix this gauge freedom by a
requirement

∂rh ¼ 0: ð9Þ

As the result, we have
ffiffiffi
h

p
d2x ¼ ffiffiffi

h
p jr→∞d

2x ¼ dΩ and dΩ
is the surface element of unit sphere. Then the area of event
horizon has a simple formula

AH ¼
Z
fix u;r¼rh

r2
ffiffiffi
h

p
d2x ¼ 4πr2h ð10Þ

and we find rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH=ð4πÞ

p
. The surface gravity of event

horizon is given by

κ2 ¼ −
1

2
ð∇μξνÞ∇μξν

���
H
¼ −

1

8
gσμgτνðdξÞστðdξÞμν

���
H
: ð11Þ

At event horizon κ is a constant [20–23]. Strictly speaking,
the metric (7) with gauge condition (9) may cover only a
neighborhood of the event horizon. Here we assume that
they have no coordinates singularity in the whole spacetime
outside the horizon.
A proposition will be useful in our proofs: for any null

vector rμ which satisfies ξμrμ < 0, if weak energy con-
dition is satisfied, then Tμνξ

μrνjH ≥ 0. Here Tμν is the
energy momentum tensor. The proof contains two steps. At
the first step we use Raychaudhuri’s equation at H

ξμ∂μΘ ¼ ωμνωμν − κΘ −
Θ2

2
− σμνσμν − Rμνξ

μξν: ð12Þ

where Θ, κ, σμν, and ωμν are the expansion, the surface
gravity, the shear, and the rotation of ξμ, respectively. Rμν is
the Ricci tensor. As ξμ is a hypersurface-orthogonal null
Killing vector at H, we find ωμν ¼ σμν ¼ Θ ¼ 0. Then
Einstein’s equation and Eq. (12) imply

Tμνξ
μξνjH ¼ Rμνξ

μξνjH ¼ 0: ð13Þ

In the second step, we take a vector vμ ¼ ξμ þ srμ. One can
verify vμvμjH ¼ 2sξμrμ, so vμjH is timelike for all s > 0.
The direct computation shows

TμνvμvνjH ¼ 2sTμνξ
μrνjH þ s2TμνrμrνjH: ð14Þ

The weak energy condition requires Tμνrμrν ≥ 0 and
TμνvμvνjH ≥ 0 for all s > 0. Then Tμνξ

μrνjH ≥ 0 follows.

IV. PROOF FOR STATIC CASE

We first focus on static case. We then choose the
Killing vector ξμ ¼ ð∂=∂uÞμ to be the one which stands
for the static symmetry. So all components of metric is

FIG. 2. (a) The schematic diagram about the event horizon H,
spacelike cross section Srh , null hypersurface W0 and equal-r
surface Sr. (b) For a point q ¼ ΦuðpÞ ∈ Wu, we define its
coordinate to be ðu; rp; xApÞ, where rp and xAp are the r and xA

coordinates of p.
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independent of u and the reflection u → −u is a symmetry.
Consider the induced metric of equal-r surface,

ds̃2r ¼ −
V
r
e2βdu2 þ r2hABðdxA −UAduÞðdxB −UBduÞ:

ð15Þ

The ξμ ¼ ð∂=∂uÞμ lies in this subspacetime, so the reflec-
tion symmetry implies UA ¼ 0. Applying the metric (7)
with UA ¼ 0, we find that Eq. (11) reduces into

κ2 ¼ −e−4βguuð∂r
ffiffiffiffiffiffiffiffiffiffi
−guu

p Þ2jH: ð16Þ

Using the fact AH ¼ 4πr2h, we finally obtain

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH=4π

p
¼ 1

2
∂rVjH: ð17Þ

Now let us apply Einstein’s equation. Einstein’s equation
shows the following two relevant equations [31,32] (See
Appendix A)

∂rβ ¼ r
16

hAChBDð∂rhABÞð∂rhCDÞ þ 2πrTrr ð18Þ

and

e−2β∂rV ¼
ð2ÞR
2

−D2β − ðDβÞ2

− 8πr2e−2βTur þ 4πrVe−2βTrr: ð19Þ

Here ð2ÞR and DA stand for the scalar curvature and
covariant derivative operator of hAB.
Let us now prove ∂rβ ≥ 0 and β ≤ 0. As Trr is a “null-

null” component of energy momentum tensor, the weak
energy condition insures Trr ≥ 0. We note that, for any
surface of fixed r and u, the XAB ≔ ∂rhAB is a tensor of the
2-dimensional space spanned by the coordinates fxAg,
i.e., XAB will be transformed as a tensor under co-
ordinates transformation xA → x̃A ¼ x̃AðxÞ (note that x̃A

does not depend on u and r). Then it is clear that
hAChBDð∂rhABÞð∂rhCDÞ is invariant under such coordinates
transformation. By using this invariance, we can always
find a suitable coordinates transformation locally so that the
inverse induced metric hAB has a diagonal form with two
positive eigenvalues fλAg. In these special coordinates, the
components of inverse induced metric become λAδAB (no
summation) and we assume that the components of ∂rhAB
become X̃AB. Then we have

hAChBDð∂rhABÞð∂rhCDÞ ¼
X

A;B;C;D

λAλBδACδBDX̃ABX̃CD

¼
X
A;B

λAλBðX̃ABÞ2 ≥ 0: ð20Þ

This proves ∂rβ ≥ 0 and so we find β ≤ βð∞Þ ¼ 0.
Take rμ ¼ ð∂=∂rÞμ and we will find that weak energy

condition insures TurjH ¼ Tμνξ
μrνjH ≥ 0. Then at horizon

we have

e−2β∂rVjH ≤
ð2ÞR
2

−D2β: ð21Þ

Using the fact that ∂rVjH ≥ 0, β ≤ 0 and Eq. (17), we find
e−2β∂rVjH ≥ ∂rVjH ¼ 2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH=4π

p
and so

Z
H

∂rV
e2β

ffiffiffi
h

p
d2x ≥ 2κ

ffiffiffiffiffiffi
AH

4π

r Z
H

ffiffiffi
h

p
d2x ¼ 2κ

ffiffiffiffiffiffiffiffiffiffiffi
4πAH

p
: ð22Þ

Here we have used the fact that κ is constant at event
horizon. Taking Eq. (21) into Eq. (22), we finally obtain

2κ
ffiffiffiffiffiffiffiffiffiffiffi
4πAH

p
≤
Z
r¼rh

�ð2ÞR
2

−D2β

� ffiffiffi
h

p
d2x ¼ 4π: ð23Þ

Here we have neglected the totally divergent term and used
the Gauss-Bonnet theorem. Rewrite the surface gravity in
terms of Hawking temperature TH ¼ κ=ð2πÞ and we will
obtain the desired inequality (2).

V. PROOF OF STATIONARY-AXISYMMETRIC
CASE WITH “t-ϕ” REFLECT ISOMETRY

In the stationary axisymmetric black hole, there are two
commutative Killing vectors tμ ¼ ð∂=∂tÞμ (with tμtμ ¼ −1
at infinity) and Ψμ ¼ ð∂=∂ϕÞμ, which present the time
translation symmetry and rotational symmetry respectively.
In addition, the Killing vector Ψμ is tangent to event
horizon H (but tμ may not be). In the study of stationary
axisymmetric black holes, “t-ϕ” reflected isometry is a
usual assumption, which covers most of the physically
interesting cases [19,33]. By this assumption, there is a
constant ΩH such that Killing vector ξμ ¼ tμ þ ΩHΨμ is
both tangent and normal to event horizon. Here ΩH is a
constant and stands for the angular velocity of event
horizon. The Hawking temperature then is given by the
Killing vector ξμ rather than Killing vector tμ [33].
At horizon, we choose Srh such that ð∂=∂ϕÞμ lies on the

surface Srh . Because of rotational symmetry, we can require
the function ψ in Eq. (6) to satisfyΨμ∂μψ ¼ 0. As the result
we can prove that the orbit of Ψμ, i.e., the coordinate line of
ϕ, will always lie on a Sr. See Appendix B for a proof. We
choose coordinate u by requiring ð∂=∂uÞμ ¼ ξμ and choose
coordinates fx2 ¼ θ; x3 ¼ ϕg for Sr. At null infinity, this
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corresponds to a rotational frame rather than an inter-
nal frame.
Though UA is not zero in general, it still satisfies a few

properties. First, as the Killing vector ξμ is orthogonal
to the event horizon, we then have ξμð∂=∂ϕÞμjH ¼
gμνð∂=∂ϕÞμð∂=∂uÞνjH ¼ 0. This leads to UϕjH ¼ 0. On
the other hand, consider the induced metric of fixing r, i.e.,
metric (15). The vector fields ð∂=∂uÞμ and ð∂=∂ϕÞμ are
both tangent to equal-r hypersurface, so vector tμ is also
tangent to equal-r hypersurface. Thus, the orbits of two
Killing vectors tμ and ð∂=∂ϕÞμ both lay in this timelike
hypersurface. Then the “t-ϕ” reflection isometry requires
metric (15) is invariant under the transformation
ft → −t;ϕ → −ϕg. According to the relationship between
u, t, and ϕ, this requires that metric (15) is invariant under
the transformation fu → −u;ϕ → −ϕg. This leads to
Uθ ¼ 0. To conclude, UA satisfies the following two
properties in our coordinates gauge,

UϕjH ¼ 0; Uθ ¼ 0: ð24Þ

The formula of surface gravity is still given by Eq. (11). By
using metric (7) and Eq. (24), we finally find that the κ is
still give by Eq. (17).
Now we apply Einstein’s equation. The equation of β is

still given by Eq. (18) but Eq. (19) is replaced by [31,32]
(See Appendix A)

e−2β∂rV ¼
ð2ÞR
2

−D2β − ðDβÞ2 þDA

�
e−2β

2r2
∂rðr4UAÞ

�

− ∂rðr4UAÞDA

�
e−2β

2r2

�
−
8πr2

e2β
Tur

− 8πr2UAe−2βTrA þ 4πrVe−2βTrr

−
r4

4
e−4βhABð∂rUAÞð∂rUBÞ: ð25Þ

Here all variables are independent of fu;ϕg. Note that
Uθ ¼ 0 leads to ½∂rðr4UAÞ�DAðe−2β=r2Þ ¼ 0, so Eq. (25)
shows

∂rV
e2β

����
H
≤

ð2ÞR
2

−D2β þDA

�
e−2β

2r
∂rðr4UAÞ

�
: ð26Þ

Here we also used the fact that UAjH ¼ 0, which results
from Eq. (24). Similar to Eq. (23), after integrating
Eq. (26), we can still obtain 2κ

ffiffiffiffiffiffiffiffiffiffiffi
4πAH

p
≤ 4π and so the

bound (2) follows.

VI. CONCLUSION AND DISCUSSION

To conclude, this paper proposes a new entropy bound
(2) for black holes in canonical ensemble and shows the
Schwarzschild black hole has the maximal entropy. This is
a parallel version Penrose inequality in the canonical

ensemble. We argue that, in a certain circumstance, the
bound (2) will be a necessary condition of “weak cosmic
censorship.” We then prove it in the 4-dimensional general
static case and stationary-axisymmetric case with the
“t-ϕ” reflection isometry. The bound (2) also has an
inverse interpretation: to store the same amount of infor-
mation, the Schwarzschild black hole will have the highest
temperature.
It is interesting to study the generalization of bound (2) in

the higher dimensional case, where we assume that the
horizon has topology Sd−1 × R. The bound (2) should
become

AH ≤
�
d − 2

4πTH

�
d−1

Ωd−1 ð27Þ

Here Ωd−1 is the surface area of (d − 1)-dimensional unit
sphere. To derive bound (27) one sufficient condition is

Ω−1
d−1

Z
Srh

ðd−1ÞR ≤ ðd − 1Þðd − 2Þ: ð28Þ

Here ðd−1ÞR is the scalar curvature of metric hAB. In the case
d ¼ 3, this follows from Gauss-Bonnet theorem. For the
case d ≥ 4, the situation is less clear. Inequality (28) will be
true if the horizon has (d − 1)-dimensional spherical
symmetry. If the metric does not have this symmetry
however we have, without further information, little control
of the integrand. Note that the bound (27) may still be true
even if Eq. (28) is broken.
This paper focuses on Einstein gravity theory. It is

interesting to study the generalizations in other gravity
theories in the future, such as coupling with a dilation field
or adding higher order curvature terms. In our proof, we
apply a special coordinates gauge to simplify the discus-
sion. However, outside the event horizon, we cannot prove
that such coordinates system exists globally in all cases.
This leaves an issue for further study. It is also worthy of
studying how to prove bound (2) by a coordinate-inde-
pendent method.
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APPENDIX A: HYPERSURFACE EQUATIONS
IN BONDI-SACHS FORMALISM

In this appendix, we give a few mathematical formulas in
the Bondi-Sachs formalism. In the main text, we focus on
the static spacetime or axisymmetric stationary spacetime
with t-ϕ reflection isometry. In fact, we can build local
coordinates fu; r; xAg for arbitrary spacetime so that the
metric has the following form [28–30]
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ds2 ¼ −
V
r
e2βdu2 − 2e2βdudr

þ r2hABðdxA −UAduÞðdxB − UBduÞ; ðA1Þ

and satisfies the gauge ∂rh ¼ 0. Here all components may
depend on fu; r; xAg. The corresponding nonzero compo-
nents of the inverse metric are

gur ¼ −e−2β; grr ¼ Ve−2β

r
;

grA ¼ −UAe−2β; gAB ¼ hAB
r2

: ðA2Þ

The two relative equations in the main text come from the
null hypersurface constraint equations. Following Ref. [31]
and taking λ ¼ 1 (or following Ref. [32]), we will have

∂rβ ¼ r
16

hAChBDð∂rhABÞð∂rhCDÞ þ 2πrTrr ðA3Þ

and

e−2β∂rV¼
ð2ÞR
2

−D2β− ðDβÞ2

−
r4

4
e−4βhABð∂rUAÞð∂rUBÞþ e−2β

2r2
DA½∂rðr4UAÞ�

þ4πðr2T−hABTABÞ: ðA4Þ

Here TAB is the projection of energy momentum tensor on
the subspace spanned by fxAg and T ¼ gμνTμν. Note here
we use signature ð−;þ;þ;þÞ but Ref. [31] used the
signature ðþ;−;−;−Þ. The convention on the definition
of Riemannian curvature is also different from Ref. [31]. In
the convention of Ref. [31], the unit sphere has curvature
ð2ÞR ¼ −2, however, in this paper the unit sphere has
curvature ð2ÞR ¼ 2.
To obtain the equations used in the main text, we first

note the facts

e−2β

2r2
DA½∂rðr4UAÞ�

¼ DA

�
e−2β

2r2
∂rðr4UAÞ

�
− ∂rðr4UAÞDA

�
e−2β

2r2

�
ðA5Þ

and

T ¼ guuTuu þ 2gurTur þ 2guATuA

þ 2grATrA þ grrTrr þ r−2hABTAB ðA6Þ

Using Eq. (A2), we find Eq. (A6) becomes

T ¼ −2e−2βTur − 2UAe−2βTrA þ Ve−2β

r
Trr

þ r−2hABTAB: ðA7Þ

Then we obtain

e−2β∂rV ¼
ð2ÞR
2

−D2β þDA

�
e−2β

2r2
∂rðr4UAÞ

�

− ðDβÞ2 − 1

4
r4e−4βhABð∂rUAÞð∂rUBÞ

þ 4πrVe−2βTrr − ∂rðr4UAÞDA

�
e−2β

2r2

�

− 8πUAe−2βr2TrA − 8πr2e−2βTur: ðA8Þ

This gives us Eqs. (19) and (25) in the main text.

APPENDIX B: A PROOF ON ð∂=∂ϕÞμ
LYING ON A Sr

In this appendix, we will prove following statement for
stationary axisymmetric case: if (1) one orbit of vector field
Ψμ lies on the surface Srh and (2) the function ψ in Eq. (6)
satisfies Ψμ∂μψ ¼ 0, then any orbit of vector field Ψμ must
lie on a Sr.
The proof contains two parts. At the first part, we prove

that the orbit of Ψμ must lie on a null hypersurface Wu,
i.e., Ψμ is tangent to null hypersurface Wu. To do that, we
only need to prove Ψμ is tangent to null hypersurface W0,
i.e., ΨμðduÞμjW0

¼ 0. Because Ψμ is tangent to Srh and
Srh ⊂ W0, we have

ΨμðduÞμjSrh ¼ ΨμðduÞμjr¼rh ¼ 0: ðB1Þ

Define rμ ¼ ð∂=∂rÞμ. We consider the Lie derivative of
ΨμðduÞμ with respective to rμ. The direct computation
shows

LrðΨμðduÞμÞ ¼ ðduÞμLrΨμ þΨμLrðduÞμ
¼ ðduÞμLrΨμ þΨμðdLruÞμ: ðB2Þ

Here we use the formula dLrω ¼ Lrdω for a p-form
field ω. As

Lru ¼ rμðduÞμ ¼ ψgμνðduÞμðduÞν ¼ 0:

we see

LrðΨμðduÞμÞ ¼ ðduÞμLrΨμ ¼ −ðduÞμLΨrμ: ðB3Þ

Using the fact that Ψμ is a Killing vector and the definition
rμ ¼ ψgμνðduÞν, we find
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ðduÞμLΨrμ ¼ ðduÞμLΨ½ψgμνðduÞν�

¼ 1

2
LΨ½ðduÞμψgμνðduÞν� ¼ 0: ðB4Þ

Here we have used the fact LΨðψgμνÞ ¼ 0. This shows
that ΨμðduÞμ is constant along the vector rμ and so
ΨμðduÞμ ¼ ΨμðduÞμjr¼rh ¼ 0. Thus, we find Ψμ is tangent
to W0 and all orbits of Ψμ lie on the surface W0.
In order to prove that the orbit ofΨμ lies on a Sr, we now

only need to prove Ψμ is tangent to Sr, i.e., ΨμðdrÞμ ¼ 0.
The method is similar. We first note

ΨμðdrÞμjSrh ¼ 0: ðB5Þ

Then we consider the Lie derivative with respect to rμ

Lr½ΨμðdrÞμ� ¼ ΨμðdLrrÞμ − ðdrÞμLΨrμ

¼ −ðdrÞμLΨrμ

¼ −ðdrÞμψgμνLΨðduÞν
¼ −ðdrÞμψgμνðdLΨuÞν ¼ 0: ðB6Þ

In the third line, it uses the facts rμ ¼ ψgμνðduÞν and
LΨðψgμνÞ ¼ 0. In the last line, it uses the fact LΨu ¼ 0 as
Ψμ is tangent to the equal-u hypersurface. Equation (B6)
shows that ΨμðdrÞμ is independent or coordinate r.
Combining this result with Eq. (B5), we find ΨμðdrÞμ ¼ 0

on thewholeW0. Thus,we prove that any orbit ofΨμmust lie
on a surface Sr. Because of this reason, we can choose the
orbit of Ψμ as one coordinate of Sr.
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