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In this work we study the thermodynamics of a (2þ 1)-dimensional static black hole under a
nonlinear electric field. In addition to standard approaches, we investigate black hole thermodynamic
geometry. We compute Weinhold and Ruppeiner metrics and compare the thermodynamic geometries
with the standard description for black hole thermodynamics. We further consider the cosmological
constant as an additional extensive thermodynamic variable. For thermodynamic equilibrium in
three-dimensional space, we compute heat engine efficiency and show that it may be constructed
with this black hole.
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I. INTRODUCTION

Three-dimensional models of gravity have been of great
interest due to their simplicity over four-dimensional and
higher-dimensional models of gravity, and since some of
the properties shared by their higher dimensional analogs
can be more efficiently investigated. In this sense, the well-
known Bañados-Teitelboim-Zanelli (BTZ) black hole [1]—
a solution to the Einstein equations in three dimensions
with a negative cosmological constant—shares several
features of Kerr black holes [2]. Furthermore, topologically
massive gravity (TMG)—constructed by adding a gravi-
tational Chern-Simons term to the action of three-
dimensional General Relativity (GR) [3] and which con-
tains a propagating degree of freedom in the form of a
massive graviton [3,4]—also admits the BTZ (and other)
black holes as exact solutions [5–7].
Next, Bergshoeff, Hohm, and Townsend presented the

standard Einstein-Hilbert term with a specific combination
of the scalar curvature square term and the Ricci tensor
square one, known as BHT massive gravity [8–13].

BHT massive gravity admits interesting solutions [14–18],
for further aspects see [19–23]. Although one might today
consider Lorentz invariance neither fundamental nor exact,
by introducing a preferred foliation and terms that contain
higher-order spatial derivatives, significantly improved UV
behavior can be achieved through what is known as Hořava
gravity [24]. This theory admits a Lorentz-violating version
of the BTZ black hole, as well as black holes with positive
and vanishing cosmological constant [25,26]. Also, three-
dimensional theories of gravity allow GR coupled to
electromagnetic fields—be they Maxwell electrodynamics
or nonlinear, such as Born-Infeld electrodynamics [27].
Here, Born-Infeld gravity has been a growing field of
research, widely applied to black holes. Finally, there are
many exact solutions of charged black holes under different
frameworks considering general relativity or modified
gravity, see [28–40] and references therein. One remarkable
solution corresponds to regular charged black holes, found
by Ayon-Beato and Garcia in Ref. [41].
Given the above precedents, this work considers a three-

dimensional static black hole solution that arises from
nonlinear electrodynamics, and that satisfies weak energy
conditions. The electric field EðrÞ is given by EðrÞ ¼ q=r2,
and thus takes Coulomb’s form for a point charge in
Minkowski spacetime. The solution describes charged
(anti–)de Sitter spacetimes [42]. We explore the general
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formalism for such black holes, and disclose the corre-
sponding thermodynamic properties through both the
standard and geometrothermodynamics approaches.
Nonlinear electrodynamics provides interesting solu-

tions to the self-energy of charged pointlike particles in
Maxwell’s theory [27], and is of great interest in the context
of low energy string theory [43,44]. Moreover, nonlinear
field theories are of interest to different branches of
mathematical physics because most physical systems are
inherently nonlinear in nature. Extending black holes from
Maxwell fields to nonlinear electrodynamics can help to
better understand the nature of different complex systems.
Also, considering that three dimensional black holes help
us find a profound insight in the quantum view of gravity,
the generalization of the charged BTZ black hole to
nonlinear electrodynamics can help to obtain deeper
insights into more information in quantum gravity. It
was even argued that the effect of higher order corrected
Maxwell field may compare with the effect brought by the
correction in gravity. On the other hand, it is known that
when the (2þ 1) gravity is coupled to the Maxwell
electromagnetic field, the solution is the usual charged
BTZ black hole, which is not a spacetime of constant
curvature and there is a logarithmic function in the metric
expression, which makes the analytic investigation difficult
and leads the spacetime not thoroughly investigated. Now,
introducing the nonlinear electrodynamics as the source of
the Einstein equation, a (2þ 1)-static black hole solution
with a nonlinear electric field was obtained [42], that is a
spacetime of constant curvature, which has the Coulomb
form of a point charge in the Minkowski spacetime, instead
of a logarithmic electric potential, keeping the mathemati-
cal simplicity as in the (3þ 1) gravity. Additionally,
considering that three-dimensional black holes help us
find a profound insight in the quantum view of gravity,
the generalization of the charged BTZ black hole to
nonlinear electrodynamics can help to obtain deeper
insights into more information in quantum gravity. As
thermodynamic objects, black holes, and their properties
have been the subject of growing research since the seminal
laws of black hole mechanics were published [45]. From a
modern point of view, the study of the thermodynamic
properties of anti–de Sitter (AdS) black holes provides
important insight into AdS/CFT conjectures and, more
recently, de Sitter/conformal field theory correspondence
(dS/CFT) [46]. In building upon standard descriptions,
Weinhold introduced the first concepts of geometry into
understanding thermodynamics, presenting a Riemannian
metric as a function of the second derivatives of the internal
energy with respect to entropy and other extensive quan-
tities of a thermodynamic system [47]. Ruppeiner further
explored geometrical concepts, defining another metric as
the second derivative of entropy with respect to the internal
energy and other extensive quantities of a thermodynamic
system [48]. This latter is conformally related to the

Weinhold metric by the inverse temperature. The
Ruppeiner geometry has its physical meanings in the
fluctuation theory of equilibrium thermodynamics [49],
and was recently suggested as a possible means to disclose
the microscopic structures of a black hole system [50].
Thus it is interesting to compare the standard and geomet-
rical methods to better understand black hole thermody-
namics. To this end, we will explore in this paper the
thermodynamic geometry of a (2þ 1)-dimensional AdS
black hole under a nonlinear electric field.
The study of black hole thermodynamics has been

generalized to the extended phase space, where the cos-
mological constant is identified with thermodynamic pres-
sure and its variations are included in the first law of black
hole thermodynamics (for a review, please refer to [51]).
In the extended phase space—with cosmological constant
and volume as thermodynamic variables—it was interest-
ingly found that the system admits a more direct and precise
coincidence between the first order small-large black hole
phase transition and the liquid-gas change of phase occur-
ring in fluids [52]. Considering the extended phase space,
and hence treating the cosmological constant as a dynami-
cal quantity, is a very interesting theoretical idea in
disclosing possible phase transitions in AdS black holes
[53]. More discussions in this direction can be found in
existing references. The thermodynamics ofD-dimensional
Born-Infeld AdS black holes in the extended phase space
was examined in [40]. Here we generalize the extended
phase space thermodynamics discussion to (2þ 1)-
dimensional AdS black holes under a nonlinear electric
field. We examine whether critical behavior in the extended
phase space thermodynamics displays special properties.
The paper is organized as follows. In Sec. II we give

a brief review of the literature. In Sec. III, we study
thermodynamics of the spacetime following standard and
geometrothermodynamics approaches. In Sec. IV, we gen-
eralize our discussion to extended space thermodynamics.
Finally, we conclude and discuss the results obtained
in Sec. V.

II. GENERAL FORMALISM FOR
(2 + 1)-DIMENSIONAL GRAVITY UNDER

NONLINEAR ELECTRODYNAMICS

We consider the black hole solution to arise from
nonlinear electrodynamics

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

16π
ðR − 2ΛÞ þ LðFÞ

�
; ð1Þ

where L(F) represents the electromagnetic Lagrangian for
nonlinear electrodynamics, the electromagnetic tensor is
written in the usual form from the vector potential Aμ,
and the electromagnetic tensor as Fμν ¼ ∂μAν − ∂νAμ. The
variation in respect to metric (δgμν) and vector potential
(δAμ) gives the equation of motion
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Gμν ¼ −Λgμν þ 8πTμν; ð2Þ

where the energy-momentum tensor Tμν for the electro-
magnetic field is given by

Tμν ¼ gμνLðFÞ − FμρF
ρ
νL;F: ð3Þ

The electromagnetic equation is given by

∇μðFμνL;FÞ ¼ 0; ð4Þ

The solution to these equations for a vanishing trace
energy-momentum tensor is given in [42]. It is well known
that the electromagnetic energy-momentum tensor in
(3þ 1) Maxwell electrodynamics is trace free, given by
T ¼ Tμνgμν, with standard Coulomb solution. In contrast,
for (2þ 1) dimensions, the trace of the electromagnetic
energy-momentum tensor is not vanished. Under Maxwell
theory, a (2þ 1)-dimensional theory always has trace, and
the electric field for a circularly symmetric static metric
coupled to a Maxwell field is proportional to the inverse of
r, i.e., Er ∝ 1=r. Hence the vector potential A0 is loga-
rithmic, i.e., A ∝ ln r and consequently blows up at r ¼ 0.
In order to find physical quantities like mass, electric
charge, etc., we need to introduce a renormalization
scheme.
This article focuses on electromagnetic theories where

the main condition is having a traceless energy-momentum
tensor. Of course, this condition restricts the class of
nonlinear electrodynamics under consideration. Moreover,
if we demand this condition from the electromagnetic
domain of Eq. (1), Ref. [42] showed that it may only be
fulfilled under a Lagrangian proportional to F3=4. Now,
in this case—a circularly symmetric static metric—the
resulting solution for the electric field is proportional to
the inverse of r2, surprisingly alike the Coulomb law for a
point charge in (3þ 1) dimensions. Furthermore, the
energy-momentum tensor satisfies the weak energy con-
dition. Consider the following metric ansatz

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dϕ2: ð5Þ

Now, to summarize the main results of Maxwell equa-
tion (4) under the condition of vanished trace, we have

T ¼ Tμνgμν ¼ 3LðFÞ − 4FL;F ; ð6Þ

which yields

LðFÞ ¼ CjFj3=4; ð7Þ

where C is an integration constant. Because the magnetic
field is vanished as a consequence of Einstein’s equation,
we get

LðFÞ ¼ CE3=2; ð8Þ

from Maxwell equation

d
dr

ðrEL;F Þ ¼ 0; ð9Þ

which, integrated, gives

EðrÞL;F ¼ −
q
4πr

; ð10Þ

where q is an integration constant. From (8) it follows that

EðrÞ ¼ q2

6πC

2 1

r2
; ð11Þ

and finally, setting C ¼ ffiffiffiffiffiffijqjp
=6π, the electric field

becomes

EðrÞ ¼ q
r2
: ð12Þ

Now, under the traceless condition, the components
of Einstein equations Rtt ¼ ð−f2RrrÞ and Rωω can be
written as

f;rr þ
f;r
r

¼ −2Λþ 2q2

3r2
; ð13Þ

f;r ¼ −2Λ −
4q2

3r2
: ð14Þ

It is easy to show Eq. (13) by virtue of the Maxwell
equations. Therefore the only remaining component of
Einstein equation (14) can be directly integrated, with the
lapse function given by

fðrÞ ¼ −M − Λr2 þ 4q2

3r
; ð15Þ

whereM is a constant related to the physical mass and q is a
constant related to physical charge. We will return to this
point later to discuss the physical meaning of these
constants. Here, for Λ > 0—i.e., asymptotically de Sitter
spacetime—the solution shows a cosmological horizon;
under a vanishing cosmological constant, it has an asymp-
totically flat solution coupled with a Coulomb-like field
that also shows a cosmological horizon; under a negative
cosmological constant (Λ < 0), we have a genuine black
hole solution where its horizon corresponds to the solution

of fðrÞ ¼ −M − Λr2h þ 4q2

3rh
¼ 0, given by

rh1 ¼
h
3Λ

−
M
h
; ð16Þ
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rh2 ¼ −
h
6Λ

þ M
2h

þ i

ffiffiffi
3

p

2

�
h
3Λ

þM
h

�
; ð17Þ

rh3 ¼ −
h
6Λ

þ M
2h

− i

ffiffiffi
3

p

2

�
h
3Λ

þM
h

�
; ð18Þ

where h is

h ¼
  

18q2 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
M3

Λ
þ 12q4

�s !
Λ2

!1
3

: ð19Þ

Figure 1 shows the behavior of the lapse function at
different cosmological constant values, where the horizon
depends on the sign of Λ. Thus, if Λ > 0 or Λ ¼ 0, there is
a cosmological horizon; if Λ < 0, then there are different
ranges for two or single horizon black holes, or naked
singularities. Let us now consider the AdS case. Exploring
black hole descriptions in (15), we will show how the sign
of the radical is crucial to different solutions of

α ≔
M3

Λ
þ 12q4: ð20Þ

For M > 0, the solution is essentially related to compar-
isons of the cosmological constant, black hole mass, and
electric charge. So

(i) Case α < 0 or 0 > Λ > − M3

12q4, we get real solutions
for the event horizon, and the solution represents a
black hole with inner and outer horizons. This
behavior is shown in Fig. 2.

(ii) Case α > 0 or Λ < − M3

12q4. There is one real and two

complex solutions. Their behavior is shown in Fig. 3,

generally naked singularities.
(iii) Case α ¼ 0 or Λ ¼ − M3

12q4, we get one real root
solution, representing an extremal black hole.
Figures 2 and 3 show the extremal solutions in both
cases.

The black hole solution is singular only at r ¼ 0. The first
two invariant curvatures are

R ¼ 6Λ; ð21Þ

RμνRμν ¼ 12Λ2 þ 8q4

3r6
; ð22Þ

As mentioned above, there is a genuine singularity at the
origin; note that these invariants are not singular at the
horizon.
In finishing this section, we would like to do a com-

parison with charged BTZ black holes regarding the major
differences of both solutions in (2þ 1) dimensions with
linear and nonlinear electrodynamic interactions. Briefly,
the BTZ black hole is a solution to Einstein-Maxwell
theory in AdS spacetime:

fðrÞ ¼ −2mþ r2

l2
−
q2

2
ln

�
r
l

�
; ð23Þ

FIG. 1. The behavior of metric function fðrÞ, with M ¼ 1,
q ¼ 1, for different values of cosmological constant. Note that
when Λ ¼ −1, there is a naked singularity.

FIG. 2. The behavior of the metric function fðrÞ, with M ¼ 1,
q ¼ 1, for different values of the cosmological constant
0 > Λ > − M3

12q4. Here, we observe a black hole with two horizons.

Note the extremal configuration at Λ ¼ − 1
12
.

FIG. 3. The behavior of the metric function fðrÞ, with M ¼ 1,
q ¼ 1, for different values of the cosmological constant when
Λ < − M3

12q4. The region is naked singularities: one real negative

solution for the horizon, and two complex solutions. The plot
includes extremal case Λ ¼ − 1

12
.
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where q and m are the black hole charge and mass,
respectively, Λ ¼ − 1

l2 is the cosmological constant, and l
the AdS radius [1]. This case is very challenging to address:
the asymptotic structure renders computation of the mass
more problematic, and requires renormalization. Following
the renormalization scale proposed in [54], the solution
reads as follows:

fðrÞ ¼ −2m0 þ
r2

l2
−
q2

2
ln

�
r
r0

�
; ð24Þ

where m0 ¼ mþ q2

2
lnð rr0Þ.

III. A REVIEW OF THERMODYNAMIC
APPROACHES

A. The Euclidean action

We may compute quasilocal energy and mass [42]
from (1), considering LðFÞ ¼ CjFjn, F¼ 1

4
FμνFμν, and

n ¼ 3=4, given by the Euclidean continuation of the metric

ds2 ¼ NðrÞ2fðrÞdτ2 þ dr2

fðrÞ þ r2dϕ2; AtðrÞ ¼ −q=r;

ð25Þ

where τ ¼ it is Euclidean time. The constant C is set to
the value

C ¼ 8jqj1=2
21=43π

; ð26Þ

given which the metric function takes the value

fðrÞ ¼ −Λr2 −M þ 4q2

3r
; ð27Þ

and the conjugate momentum is given by

πr ¼ sgnðFÞ ffiffiffi
g

p
CnjFjn−1Ftr: ð28Þ

Therefore, the Euclidean action is given by

IE ¼ 2πβ

Z
∞

rh

dr

�
N

�
1

2π
ðf0ðrÞ þ 2ΛrÞ

−
ð1 − 2nÞ½jπrj�2n=ð2n−1Þ

2nðCnr
2n−1

Þ1=ð2n−1Þ
�
− At∂rπ

r

�
þ B: ð29Þ

Now, varying with respect to N, f, πr, and At we obtain
field equations

1

2π
ðf0ðrÞ þ 2ΛrÞ − ð1 − 2nÞ½ðπrÞ2�n=ð2n−1Þ

2nðCnr
2n−1

Þ1=ð2n−1Þ ¼ 0; ð30Þ

N0ðrÞ ¼ 0; ð31Þ

A0
t þ sgnðπrÞN

�
2n−1πr

Cnr

�
1=ð2n−1Þ

¼ 0; ð32Þ

∂rπ
r ¼ 0: ð33Þ

Without loss of generality, we can set NðrÞ ¼ 1 by
coordinate transformation, and for which πr is a constant.
These equations are consistent with the field equations
in (1) and their solution in (25). The boundary term of the
Euclidean action is given by

δB ¼ −2π
�
1

2π
δf þ Atδπ

r

�
∞

rh

: ð34Þ

The variations of the field solutions at infinity are given by

δfj∞ ¼ −δM; Atδπ
rj∞ ¼ 0; ð35Þ

and at the horizon by

δfjrh ¼ −f0jrhδrh ¼ −
4π

β
δrh; Atδπjrh ¼ −Φδπjrh ;

ð36Þ

where Φ ¼ Atð∞Þ − AtðrhÞ ¼ q
rh

is the electric potential.
Then we obtain

IE ¼ βM − 4πrh þ 2βAtðrhÞπr; ð37Þ

and the mass, entropy, and electric charge are, respectively,
given by

M ¼ ∂IE
∂β
����
ϕ

−
ϕ

β

∂IE
∂ϕ
����
β

¼ M; ð38Þ

S ¼ β
∂IE
∂β
����
ϕ

− IE ¼ 4πrh; ð39Þ

Q ¼ −
1

β

∂IE
∂ϕ
����
β

¼ −2ππr; ð40Þ

where

πr ¼ −sgnðqÞ21=4Cnjqj1=2 ¼ −
2q
π
: ð41Þ

Finally, we obtain electric charge Q ¼ 4q. Thus, we can
conclude that the analogous Arnowitt-Deser-Misner mass
is defined to be Mð∞Þ ≔ M, and therefore we do not need
an extra renormalization procedure. Essentially, the inclu-
sion of the nonlinear term for the Maxwell Lagrangian
interacting with gravity in (2þ 1) dimensions acts as a
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regulator, and the problems arising from the logarithmic
term disappears. Notably, the charged BTZ solution exhib-
its a similar behavior, i.e., black holes with two horizons,
naked singularities, and the presence of extremal solutions
depending on charge and mass values. In the following
section, we study the thermodynamics properties of
Coulomb-like black holes, and see the main differences
with the thermodynamics description of BTZ black holes.
Particularly, we explore the possibility of phase transition,
reverse isoperimetric inequality, thermodynamics curva-
ture, extended thermodynamics, and Coulomb-like black
holes as heat engines.

B. Thermodynamics properties under
the standard approach

We begin by determining the entropy of the geometry,
which is assumed to satisfy the Bekenstein-Hawking
entropy space, i.e., S ¼ A

4
¼ 4πrh. There we can obtain

the mass parameter as a function of entropy and charge.
Reference [55] suggests that the mass M of an AdS black
hole can be interpreted as enthalpy in classical thermody-
namics, rather than the total energy of the spacetime
M ¼ HðS; qÞ. This point will be important later when
using the cosmological constant as variable. Meanwhile,
from the mass of the black hole, Eq. (15) yields the
following equation

MðS; qÞ ¼ −
ΛS2

16π2
þ 16πq2

3S
; ð42Þ

and using energy conservation, or the first law of black hole
mechanics, we have

dM ¼ TdSþΦdq; ð43Þ

and then we can obtain the thermodynamic variables as the
temperature

T ¼
�∂M
∂S
�

Φ
¼ −

ΛS
8π2

−
16πq2

3S2
; ð44Þ

and the electric potential

Φ ¼
�∂M
∂q
�

T
¼ 32πq

3S
: ð45Þ

From Eq. (44), the temperature is positive when

3S3 þ 128π3q2

Λ
> 0; ð46Þ

which is a standard requirement of black hole mechanics.
At q ¼ 0, we obtain the well-known result SBTZ > 0. Note

that the temperature is vanished for rh ¼ rextrem ¼ ð− 2
3
q2

ΛÞ
1
3,

and for rh < rextrem we obtain a negative temperature;

therefore, this is a region with nonphysical meaning where
the thermodynamics description breaks down, see Fig. 4.
In order to understand this result and study the thermody-
namic stability of this solution, we compute heat capacity
from Eq. (42), and move toward understanding of the
possible critical behavior of this (2þ 1) AdS black hole

Cq ¼ T

�∂S
∂T
�

q
¼ −S

�
128π3q2 − 3ΛS3

256π3q2 þ 3ΛS3

�
: ð47Þ

Now, from Eqs. (44) and (47), we can see that the
temperature and the heat capacity are always positive when
the condition (46) is satisfied. These results imply that a
(2þ 1)-Coulomb-like black hole with a positive definite
temperature must be a stable thermodynamic configuration.
Figure 5 shows the heat capacity for different values of
electric charge as a function of event horizon. Similar
solutions and description for rotating and charged BTZ
black holes can be found in Refs. [56] and [57–59]. Now,
according to [60], a change in the sign of heat capacity
suggests an instability or a phase transition among the black
hole configurations. We will study this point in more detail
below; however, the main conclusion of Davies’s approach
establishes the correlation among drastic change in stabil-
ity, properties of a thermodynamic black hole system, and

FIG. 4. Lapse function behavior as a function of r (top panel),
and temperature as function of the event horizon rh (bottom
panel). Here, we consider Λ ¼ −0.5 and different values of
electric charge q. When q ¼ 0, the temperature profile of BTZ
black hole is recovered, and q ¼ ð1=6Þ1=4 corresponds to the
extremal case.
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a change in sign of heat capacity. In brief, a negative heat
capacity represents a region of instability, whereas the
stable domain is characterized by a positive heat capacity.
Indeed, it is well described that the canonical ensemble of
black holes resolve to a locally thermodynamic stable
system if its heat capacity is positive or nonvanishing.
Therefore, at points of vanishing or divergent heat capacity,
there is a first or second-order phase transition, respec-
tively. Therefore, we need to determine the positivity of
heat capacity Cq > 0 or also the positivity of ∂S=∂T or
(∂2M=∂S2) with T > 0 as sufficient conditions to ensure
the local stability of the black hole. Figures 4–6 show that
this black hole solution is locally stable from a thermal
point of view—i.e., the heat capacity Cq is positive and free
of divergent terms. Therefore, the heat capacity is a regular
function for all real positive values where r > rh, and has

positive ∂2MðS;qÞ
∂S2 . We will return to this point in more detail

in the next section.

C. Comparison with charged BTZ black holes

In this section, we establish the differences or similarities
in thermodynamics descriptions of charged BTZ black
holes—where m is an integration constant related to the
black hole mass M through M ¼ m

4
(23)—and Coulomb-

like black holes with nonlinear electrodynamics interaction.
We present the main results obtained in Refs. [58,59].
Starting from enthalpy HðS; qÞ ¼ MðS; qÞ of the charged
BTZ black hole, which is given by

MðS; qÞ ¼ 1

16

�
8S2jΛj
π2

− q2Log
�
2S

ffiffiffiffiffiffijΛjp
π

��
; ð48Þ

the temperature then yields

T ¼
�∂M
∂S
�

Φ
¼ ΛS

π2
−

q2

16S
; ð49Þ

and is positive when

16S2Λ − π2q2 > 0; ð50Þ

which is a standard requirement of black hole mechanics.
For q ¼ 0, we obtain the well known result SBTZ > 0.
Using the definition of entropy S ¼ π

2
rh, we obtain van-

ished temperature for rh ¼ rextrem, and, for rh < rextrem, a
negative temperature. Therefore, there is a region with
nonphysical meaning where the thermodynamics descrip-
tion breaks down, see Fig. 7. As in the nonlinear Coulomb-
like case, in order to understand this result and study the
thermodynamics stability of this solution, we compute heat
capacity from (48) and move toward understanding pos-
sible critical behavior, followed by a comparison of our
results with charged BTZ black holes.

Cq ¼ T

�∂S
∂T
�

q
¼ −S

�
π2q2 − 16ΛS2

π2q2 þ 16ΛS2

�
: ð51Þ

Now, from Eqs. (49) and (51), the temperature and the
heat capacity are always positive when condition (50) is
satisfied. This implies that the (2þ 1) charged BTZ black
hole with a positive definite temperature must be a stable

FIG. 5. Heat capacity as function of event horizon rh. Here, we
consider Λ ¼ −0.5 and different values of electric charged q.
When q ¼ 0, we recover the heat capacity profile of a static BTZ
black hole.

FIG. 6. This plot shows ∂2MðS;qÞ
∂S2 as function of event horizon rh.

Here, we consider Λ ¼ −0.5 and different values of electric

charge q. When q ¼ 0, the ∂2MðS;qÞ
∂S2 profile of a BTZ black hole is

obtained.

FIG. 7. Temperature as a function of event horizon rh
(right panel) for a charged BTZ black hole. Here, we consider
Λ ¼ −0.5 and different values of electric charge q. When q ¼ 0,
the temperature profile of BTZ black holes is recovered.
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thermodynamic configuration. Figure 8 shows the heat
capacity for different values of electric charge as a function
of the event horizon. Similar solutions and descriptions for
rotating and charged BTZ black holes can be found in
Refs. [56] and [57–59]. Thus we confirm that there are no
major differences in the standard thermodynamics descrip-
tions between charged BTZ black holes and Coulomb-like
(2þ 1)-dimensional black holes: both have thermody-
namic stability. We have shown in this section that a black
hole under nonlinear electrodynamics in (2þ 1) dimen-
sions with a Coulomb-like potential is a stable thermody-
namic configuration, at least using canonical ensemble
descriptions (for a discussion of ensemble dependency in
charged BTZ black holes, see [61,62]).

D. The geometrothermodynamics approach

This section describes the essential aspects of
geometry in thermodynamic phase space. The geometrical
approach—refined in Ruppeiner [49] and Weinhold [47]—
has been extensively applied to black hole thermodynam-
ics, e.g., [56,63–78]. This approach builds an analogous
space of thermodynamics parameters, and then defines
appropriate metric tensors for this space for which line
elements measure the distance between two neighbouring
fluctuation states in the state space. Other geometric
quantities, such as curvature, represent thermodynamics
properties and critical behavior in black hole systems.
Particularly, this thermodynamic curvature provides infor-
mation on the nature of the interaction among the funda-
mental properties constituent of the system. It is well
known, for example, that the thermodynamics parameter
space for an ideal gas is flat with vanished curvature,
reflecting the nature of a collection of noninteracting
particles. For Van der Waals fluids, in contrast, we find
a curved thermodynamics space, implying an attractive or
repulsive interacting system for positive or negative curva-
ture, respectively. Importantly, geometrothermodynamics
allows for singularity structures, whose presence indicates

phase transitions in the system. Let us start with the
Weinhold metric, defined by the second derivatives of
internal energy with respect to entropy and other extensive
parameters ðS; qÞ

gWbc ¼
∂2MðXaÞ
∂Xb∂Xc ; ð52Þ

where Xa ¼ ðS; xâÞ, S represents entropy, and xâ, all other
extensive variables. Next, taking the Ruppeiner metric—
defined as the second derivatives of entropy with respect to
internal energy and other extensive parameters—we have

gRbc ¼
∂2SðYaÞ
∂Yb∂Yc ; ð53Þ

where Ya ¼ ðM; yâÞ, M represents mass, and yâ, all other
extensive variables. These two metrics are conformally
related by ds2R ¼ 1

T ds
2
W. We may compute both metrics in

their natural coordinates. The Weinhold line element is
given by

ds2W ¼
�
256π3q2 − 3ΛS3

24S3π2

�
dS2 −

64πq
3S2

dSdqþ 32π

3S
dq2:

ð54Þ

Similar to the condition of positivity for ∂2MðS;qÞ
∂S2 in black

hole thermodynamic stability, so too are there conditions
for the Weinhold metric, essentially a Hessian matrix
constructed with the following mass formula (42)

HM
S;q ¼

 
256π3q2−3ΛS3

24S3π2 − 64πq
3S2

− 64πq
3S2

32π
3S

!
; ð55Þ

from which we can determine thermodynamic stability of
the grand canonical ensemble using standard extensive
parameters entropy and charge, using determinant

detðHM
S;qÞ ¼ − 4ð256π3q2þΛS3Þ

3πS4 . The grand canonical ensemble
of this black hole is always stable; however, we know from
Eq. (47) that there is at least one region of instability for
Cq ¼ 0, and another for Cq < 0; and from Davies’s
approach that there is a first-order phase transition. This
is evidence of ensemble dependency. Next, the Weinhold
thermodynamics curvature scalar is given by

RW ¼ −
4π2

ΛS2
; ð56Þ

which is regular and positive. Let us explore different ways
to fix this apparent conflict: first, by computing the
Ruppeiner curvature and, second, by considering the
extended thermodynamics space where the cosmological
constant is another thermodynamics variable. The Ruppeiner
line element is given by

FIG. 8. Heat capacity as function of the event horizon rh. Here,
we consider Λ ¼ −0.5 and different values of electric charge q.
When q ¼ 0, we recover the heat capacity profile of static BTZ
black holes.
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ds2R ¼ −
1

S

�
256π3q2 − 3S3Λ
128π3q2 þ 3S3Λ

�
dS2

þ
�

512π3q
128π3q2 þ 3S3Λ

�
dSdq

−
�

256π3S
128π3q2 þ 3S3Λ

�
dq2: ð57Þ

Thermodynamic stability occurs when metric fluctuation
is positive, written as gRSS > 0, gRqq > 0 and detðgRÞ > 0.
The first two conditions are satisfied at all points of ðS; qÞ
space, except for where the heat capacity becomes vanish-

ing, and the last condition, at detðgRÞ ¼ − 768ð256π6q2þπ3ΛS3Þ
ð128π3q2−3ΛS3Þ2 .

To determine the existence of a phase transition in the
system at this point, we consider the Ruppeiner thermo-
dynamics curvature scalar

RR ¼ 64π3q2

3ΛS4
þ 384π3q2

128π3q2S − 3ΛS4
−
1

S
; ð58Þ

that presents a genuine divergence at

128π3q2 − 3ΛS3 ¼ 0; ð59Þ

i.e., when rh ¼ rextrem is satisfied, see Fig (9). This is
precisely the point where heat capacity becomes vanishing.
This represents microscopic interacting behavior, confirms
a phase transition in this black hole solution, and shows
that the Ruppeiner thermodynamic curvature correctly
describes the transition from a region with positive and
well-defined temperature to a region with a nonphysical
negative temperature.
In sum, we can see that the Coulomb-like black hole

solution considering nonlinear Born-Infeld electrodynam-
ics in (2þ 1) dimensions shows two horizons, with a
phase transition to the extremal solution at the point

rextrem ¼ ð− 2
3
q2

ΛÞ
1
3 where, for distance less than rextrem—

the vanishing temperature limit, or the geometrical extremal
limit—the heat capacity is vanishing and negative, and
temperature is therefore nonphysical. In this sense, the
unstable region (Cq < 0) corresponds to a nonphysical
region with negative temperature. According to Davies, a
heat capacity sign change indicates a strong change in
thermodynamics system stability, while negative heat
capacity represents a region of instability with negative

temperature. Because the third law of thermodynamics
imposes a positive temperature, the description breaks
down at the extremal limit. Similar results were obtained
for the BTZ black hole [56,57]. Additionally, these results
broadly imply for geometrothermodynamics that, while
the Weinhold metric is unable to demonstrate system
divergence and therefore phase transition, the Ruppeiner
metric correctly showed true curvature divergence or

singularity at rextrem ¼ ð− 2
3
q2

ΛÞ
1
3. The capability of one

metric over another for Kerr black holes was similarly
found in Ref. [79].

E. Comparison with charged BTZ black holes

In this case, the Ruppeiner element is given by

ds2BTZR ¼ −
1

S

�
π2q2 þ 16S2Λ
π2q2 − 16S2Λ

�
dS2

þ
�

2π2q
π2q2 − 16S2Λ

�
dSdq

−
�
2π2SLogð2S

ffiffiffiffiffi
jΛj

p
π Þ

π2q2 − 16S2Λ

�
dq2: ð60Þ

Again, positive metric fluctuation implies stability,
which is so for gRSS > 0, gRqq > 0 and detðgRÞ > 0. Again
are the first two conditions satisfied for all points of ðS; qÞ
space, except where heat capacity becomes vanishing and
the last condition, by

detðgBTZR Þ ¼ −
2π2ðπ2q2 logð2

ffiffiffi
Λ

p
S

π Þ þ 2π2q2 þ 16ΛS2 logð2
ffiffiffi
Λ

p
S

π ÞÞ
ðπ2q2 − 16ΛS2Þ2 :

Similarly as above, this may imply a phase transition in the system. The Ruppeiner thermodynamics curvature [80] is
given by

FIG. 9. RR as a function of the event horizon rh. Here, we
consider Λ ¼ −0.5 and different values of electric charge q.
When q ¼ 0, the RR profile of a BTZ static black hole is
obtained.
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RBTZ
R ¼ Aþ B � logð2

ffiffiffi
Λ

p
S

π Þ þ C � log2ð2
ffiffiffi
Λ

p
S

π Þ
πSðπ2q2 − 16ΛS2Þð2π2q2 logð2

ffiffiffi
Λ

p
S

π Þ þ q2 þ 32ΛS2 logð2
ffiffiffi
Λ

p
S

π ÞÞ2
; ð61Þ

where constants A, B, C are

A ¼ 256π3Λ2q2S4 þ 1024π2Λ2q2S4 − 1024πΛ2q2S4 þ 16π5Λq4S2 − 64π4Λq4S2 − 256π3Λq4S2

þ 512π2Λq4S2 − π7q6 þ 4π5q6 − 4096πΛ3S6;

B ¼ −256π3Λ2q2S4 þ 3072π2Λ2q2S4 − 144π5Λq4S2 þ 224π4Λq4S2 þ 256π3Λq4S2

þ π7q6 − 28672πΛ3S6 þ 24576Λ3S6;

C ¼ 2048π3Λ2q2S4 þ 96π5Λq4S2 þ 8192πΛ3S6:

Note that the Ruppeiner scalar shows a true curvature
divergence or singularity at rh ¼ rextrem. In the next section,
we will consider the cosmological constant as an additional
extensive thermodynamic variable; indeed, the cosmologi-
cal constant is treated as a pressure term in extended
thermodynamics [53,55,81,82].

IV. EXTENDED THERMODYNAMICS
DESCRIPTION

The heat capacity expression Eq. (47) and the Hessian
matrix determinant Eq. (55) are incompatible with the
change of phase transition proposed by Davies, and so we
have ensemble dependence. In resolving this, we may
extend the thermodynamics space and consider the cos-
mological constant as another thermodynamics variable.
Here, the standard extensive parameters will be entropy,
charge, and the cosmological constant. We consider the
cosmological constant a source of dynamic pressure using
the relation P ¼ − Λ

8π [81,82]. Now, understanding black
hole mass as the enthalpy, all thermodynamic descriptions
are given by functions H ¼ HðS; P; qÞ as follows

H ¼ MðS; P; qÞ ¼ PS2

2π
þ 16πq2

3S
: ð62Þ

The pressure-related conjugate quantity is thermodynamic
volume,

V ¼
�∂H
∂P
�

S;q
¼ 8πr2h: ð63Þ

The first law of black hole thermodynamics in the extended
phase space reads as

dH ¼ TdSþ PdV þΦdq: ð64Þ

Before continuing, it is worthwhile to analyze a
(2þ 1)-dimensional BTZ black hole under extended
thermodynamics to establish important concepts and

features. Previously studied in Ref. [81], the main results
give black hole mass by

M ¼ HðS; PÞ ¼ 4PS2

π
; ð65Þ

where entropy was defined as S ¼ A
4
and black hole area

A ¼ 2πrh. The following equation of state was obtained

P
ffiffiffiffi
V

p
¼

ffiffiffi
π

p
T

4
; ð66Þ

which corresponds to that of an ideal gas. That author
concluded that static BTZ black holes are associated with
noninteracting microstructures. Next, for rotating BTZ
black hole, as presented in Refs. [53,58,83], the equation
of state is given by

P ¼ T
v
þ 8J2

πv4
; ð67Þ

where v ¼ 4rh is the specific volume. This can be
interpreted as a Van der Waals fluid, as given by [52]

�
Pþ a

v2

�
ðv − bÞ ¼ kT; ð68Þ

where v is the specific volume and k is the Boltzmann
constant. Equation (68) describes an interacting fluid with
critical behavior, and so rotating BTZ black holes are
repulsive and do not have any critical thermodynamics
behavior. Next, in studying lower dimensional black hole
chemistry for charged and rotating BTZ black holes,
Ref. [58] tested the reverse isoperimetric inequality [84]
under the conjecture that its ratio

ℜ ¼
�ðD − 1ÞV

ωD−2

� 1
D−1
�
ωD−2

A

� 1
D−2

; ð69Þ

always satisfies ℜ ≥ 1 for conjugate thermodynamics

volume V, and the horizon area A, where ωd ¼ 2π
dþ1
2

Γðdþ1
2
Þ
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corresponds to the area of a d-dimensional unit sphere.
Those authors found that the rotating case for ℜ ¼ 1
results in a saturated reverse isoperimetric inequality,
i.e., that rotating BTZ black holes have maximal entropy.
References [53,58] give, for the charged BTZ black hole,
the mass as

M ¼ HðS; PÞ ¼ 4PS2

π
−
q2

32
log

�
32PS2

π

�
; ð70Þ

where entropy is S ¼ π
2
r, and the equation of state is [53]

P ¼ T
v
þ q2

2πv4
; ð71Þ

where v ¼ 4rh is the specific volume. Therefore, the
charged BTZ black hole does not show critical behavior.
Reference [58] also discussed the violation of the reverse
isoperimetric inequality for ℜ < 1, for which charged
BTZ black holes are always superentropic. For similar
discussions on different cases of AdS black holes, see
[40,52,85–90].
Now, returning to the (2þ 1) nonlinear Coulomb-like

black hole, temperature and the respective equation of
states is as follows

P ¼
ffiffiffi
π

p
Tffiffiffiffiffiffi

2V
p þ 4

ffiffiffiffiffiffi
2π

p
q2

3V3=2 ; ð72Þ

which may be interpreted as a Van der Waals fluid.
Therefore, the (2þ 1)-Coulomb-like black hole is associ-
ated with repulsive microstructures, consistent with
nonvanishing Ruppeiner curvature and noncritical thermo-
dynamics behavior. As such, the black hole does not
have phase transitions. At q ¼ 0, we obtain an equation
of state similar to a static BTZ black hole, P

ffiffiffiffi
V

p
∝ T. In

computing the reverse isoperimetric inequality, we obtain
ℜ ¼ ffiffiffiffiffiffi

2π
p

> 1. As mentioned previously, the nonlinear
electrodynamics interaction does not require additional
regulating terms.

(i) Holographic heat engine.
Our analysis of efficiency in (2þ 1) nonlinear black

holes as holographic heat engines follows that of PV
criticality as in Refs. [91–96]. Reference [92] defined
holographic heat engines via an analogous extraction of
mechanical work from heat energy. Taking the extended
first law of black hole thermodynamics, which includes the
PdV term in dH ¼ TdSþ PdV þΦdq, the working sub-
stance is a black hole solution of the gravity system with
volume, pressure, temperature, and entropy. To begin, take
the equation of state [function of PðV; TÞ] where the engine
is a closed path in the P-V plane of net input heat flow QH
and net output heat flow QC, such that QH ¼ W þQC. It is
well-known in classical thermodynamics that heat engine
efficiency is η ¼ W

QH
¼ 1 − QH

QC
. Some classic cycles call for

isothermal expansion and compression at temperatures TH
and TC (TH > TC). We can show net heat flows along each
isobar by

Q ¼
Z

Tf

Ti

CPdT; ð73Þ

and so mechanical work is computed by W ¼ R PdV. In
classical thermodynamics, the Carnot cycle—which takes
two pairs of isothermal and adiabatic processes—has the
highest efficiency, given by η ¼ 1 − TC

TH
. Following the

construction of a black hole heat engine in Ref. [93],
we define a simple heat cycle with isotherm pairs at high
TH ¼ T1 and low TC ¼ T2 temperatures, connected
through isochoric paths. As in isothermal expansion and
compression in the Carnot cycle, heat absorbed is QH, and
discharged is QC (Fig. 10). The efficiency of this cycle is
given by the simple expression

η ¼ 1 −
M3 −M4

M2 −M1
: ð74Þ

In cycling along isochoric paths V1 ¼ V4 and V2 ¼ V3 and
isobaric paths P1 ¼ P2 and P3 ¼ P4, engine efficiency is
given by

η ¼ 3
ðP1 − P4ÞS1S2ðS2 þ S1ÞÞ
3P1ðS2 þ S1ÞS1S2 − 32πq2

: ð75Þ

A similar result for nonlinear electrodynamics black holes
was found in Ref. [97]. Note that our expression for the
limit q ¼ 0 is

η ¼ 1 −
TC

TH

ffiffiffiffiffiffi
V2

V4

s
; ð76Þ

and is also consistent with the result reported in Ref. [98]
for static BTZ black holes.

FIG. 10. Isothermal curves for charged monlinear Coulomb-
like black holes.
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V. CONCLUDING COMMENTS

In this paper we have studied the thermodynamics
description of (2þ 1)-dimensional Coulomb-like black
holes under nonlinear electrodynamics and with a
traceless energy-momentum tensor in (2þ 1) dimensions.
Remarkably, this solution was obtained for a circularly
symmetric static metric describing an asymptotically anti–
de Sitter black hole in a Coulomb-like field. Notably—and
in contrast with charged BTZ solutions, which diverge and
yield quasilocal mass due to its logarithmic term—our
derived charged black holes were shown to possess finite
mass. In short, our method of thermodynamics analysis
does not require renormalization. Our solution shows stable
thermodynamic behavior: in all regions where rh > rextrem,
temperature and heat capacity Cq are always positive and
free of singular points, indicative of a stable black hole
thermodynamics configuration where no phase transitions
occur. Although Davies’s approach would suggest the
presence of a first-order phase transition for region
rh < rextrem, where Cq < 0, the temperature in this region
is negative—and nonphysical—and so the thermodynamics
description breaks down. In contrasting these results, we
used thermodynamics phase space geometry curvatures via
Weinhold and Ruppeiner metrics. Of these, the Weinhold
metrics at the grand canonical ensemble conclude a stable,
divergence-free black hole, similar to the heat capacity
canonical ensemble. Second, we obtained a nonvanishing
Rupeinner’s curvature, indicating an interacting system;
however, a divergent point where heat capacity becomes
vanishing was found. Thus, we confirmed that this black
hole solution has a first-order phase transition, but that the
region where Cq < 0 is nonphysical. In this sense, the
unstable region corresponds to a nonphysical region with
negative temperature. According to Davies, a heat capacity
sign change indicates a strong change in thermodynamics
system stability, while negative heat capacity represents a
region of instability with negative temperature. Because the
third law of thermodynamics imposes a positive temper-
ature, the description breaks down at the extremal limit.

Finally, regarding implications of this thermodynamic
stability, we considered the cosmological constant as
source of a dynamical pressure using the relation P ¼
− Λ

8π using the enthalpy function H ¼ HðS; P; qÞ.
Employing the first law of black hole mechanics, we
computed the equation of state

P ¼
ffiffiffi
π

p
Tffiffiffiffiffiffi

2V
p þ 4

ffiffiffiffiffiffi
2π

p
q2

3V3=2 ; ð77Þ

which can be interpreted as a Van der Waals fluid.
Therefore we concluded that the (2þ 1)-dimensional
Coulomb-like black hole is associated with repulsive
microstructures, consistent with nonvanishing Ruppeiner
curvature. From Eq. (77) and its graphic in Fig. 9, we
concluded that there is no critical thermodynamics behav-
ior, and that there are no phase transitions. Here, for q ¼ 0,
we obtain an equation of state similar to that of a static BTZ
black hole, P

ffiffiffiffi
V

p
∝ T. The ratio of reverse isoperimetric

inequality was calculated as ℜ ¼ ffiffiffiffiffiffi
2π

p
> 1. As mentioned

previously, the nonlinear electrodynamics interaction does
not require additional regulating terms. Finally, we con-
structed a simple heat cycle engine in the background of
this black hole—with isotherm pairs at high TH ¼ T1 and
low TC ¼ T2 temperatures connected through isochoric
paths—similar to the Carnot cycle. The heat absorbed (QH)
and discharged (QC) during isothermal expansion and
compression gives either a heat engine efficiency expres-
sion at the limit q ¼ 0, or that of a static BTZ black hole.
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