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We carry on a comprehensive study on static fluid distributions endowed with hyperbolical symmetry.
Their physical properties are analyzed in detail. The energy density appears to be necessarily negative,
which suggests that any possible application of this kind of fluids requires extreme physical conditions
where quantum effects are expected to play an important role. Also, it is found that the fluid distribution
cannot fill the region close to the center of symmetry. Such a region may be represented by a vacuum cavity
around the center. A suitable definition of mass function, as well as the Tolman mass are explicitly
calculated. While the former is positive defined, the latter is negative in most cases, revealing the repulsive
nature of gravitational interaction. A general approach to obtain exact solutions is presented and some exact
analytical solutions are exhibited.
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I. INTRODUCTION

In recent papers [1,2] an alternative global description
of the Schwarzschild black hole has been proposed,
motivated on the one hand by the well known fact that
any transformation that maintains the static form of the
Schwarzschild metric (in the whole space–time) is unable
to remove the coordinate singularity in the line element [3].
On the other hand, based on the physically reasonable

point of view that any equilibrium final state of a physical
process should be static, it would be desirable to have a
static solution over the whole space-time.
However, as is well known, no static observers can be

defined inside the horizon (see [4,5] for a discussion on this
point), this conclusion becomes intelligible if we recall that
the Schwarzschild horizon is also a Killing horizon,
implying that the timelike Killing vector existing outside
the horizon, becomes space–like inside it.
Thus, outside the horizon (R > 2M) one has the usual

Schwarzschild line element corresponding to the spheri-
cally symmetric vacuum solution to the Einstein equations,
which in polar coordinate reads (with signature þ2)

ds2 ¼ −
�
1 −

2M
R

�
dt2 þ dR2

ð1 − 2M
R Þ þ R2dΩ2;

dΩ2 ¼ dθ2 þ sin2 θdϕ2: ð1Þ

This metric is static and spherically symmetric, meaning
that it admits four Killing vectors:

χð0Þ ¼ ∂t; χð2Þ ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ

χð1Þ ¼ ∂ϕ χð3Þ ¼ sinϕ∂θ þ cot θ cosϕ∂ϕ: ð2Þ

However, when R < 2M the signature remains þ2 but
the gtt and the gRR terms switch their signs, which explains
the fact that the time–like Killing vector outside the
horizon, becomes spacelike inside it. Also, an apparent
line element singularity appears at R ¼ 2M. Of course, as is
well known, these drawbacks can be removed by coor-
dinate transformations, but at the price that, as mentioned
before, the staticity is lost within the horizon.
In order to save the staticity inside the horizon, the model

proposed in [1] describes the space time as consisting of a
complete four dimensional manifold [described by (1)] on
the exterior side of the horizon and a second (different)
complete four dimensional solution in the interior of it.
More specifically, to ensure that the vector χð0Þ ¼ ∂t be
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time–like (inside the horizon), a change in signature as well
as a change in the symmetry at the horizon was required.
The θ − ϕ sub-manifolds have spherical symmetry on the
exterior and hyperbolic symmetry in the interior. The two
meet only at R ¼ 2M, θ ¼ 0.
Thus the model permits for a change in symmetry,

from spherical outside the horizon to hyperbolic inside
the horizon. Doing so, one has a static solution everywhere,
but the symmetry of the R ¼ 2M surface is different at both
sides of it. We have to stress that we do not know if there is
any specific mechanism behind such a change of symmetry
and signature. However, the main point is that the change of
symmetry (and signature) was the way followed in [1] to
obtain a globally static solution.
Thus, the solution proposed for R < 2M is (with

signature ðþ − −−Þ):

ds2 ¼
�
2M
R

− 1

�
dt2 −

dR2

ð2MR − 1Þ − R2dΩ2;

dΩ2 ¼ dθ2 þ sinh2 θdϕ2: ð3Þ

This is a static solution with the ðθ;ϕÞ space describing
a positive Gaussian curvature. It admits the four Killing
vectors

χð0Þ ¼ ∂t; χð2Þ ¼ − cosϕ∂θ þ coth θ sinϕ∂ϕ

χð1Þ ¼ ∂ϕ χð3Þ ¼ sinϕ∂θ þ coth θ cosϕ∂ϕ: ð4Þ

A solution to the Einstein equations of the form given
by (3), defined by the hyperbolic symmetry (4), was first
considered by Harrison [6], and has been more recently the
subject of research in different contexts (see [7–15] and
references therein).
In [2], a general study of geodesics in the spacetime

described by (3) was presented, leading to some interesting
conclusions about the behavior of a test particle in this
new picture of the Schwarzschild black hole. Our purpose
in this work is to carry out a complete study on the physical
properties of a fluid distribution in the region inner to the
horizon, endowed with the symmetry given by (4). Such a
fluid distribution might serve as the source of (3).
The mass function (m) as well as the Tolman mass (mT)

are defined for our fluid distribution. It is shown that within
the region r < 2m the energy density is negative, a
discussion about the physical implications of this fact is
presented. A general approach to obtain any exact solution
corresponding to a spacetime admitting hyperbolical sym-
metry is provided and some examples are found and
analyzed.

II. BASIC DEFINITIONS, NOTATION,
AND EQUATIONS

In this section we shall present the physical variables
and the relevant equations necessary for describing a static

self-gravitating locally anisotropic fluid admitting the four
Killing vectors (4).

A. The metric

We consider hyperbolically symmetric distributions of
static fluid, which for the sake of completeness we assume
to be locally anisotropic and which may be (or may be not)
bounded from the exterior by a surface Σe whose equation
is r ¼ rΣe ¼ constant. On the other hand as we shall see
below, the fluid distribution cannot fill the central region, in
which case we may assume that such a region is represented
by an empty vacuole, implying that the fluid distribution
is also bounded from the inside by a surface Σi whose
equation is r ¼ rΣi ¼ constant.
The line element is given in polar coordinates [with the

same signature as (3)] by

ds2 ¼ eνdt2 − eλdr2 − r2ðdθ2 þ sinh2 θdϕ2Þ; ð5Þ

where, due to the imposed symmetry νðrÞ and λðrÞ are
exclusively functions of r. We number the coordinates:
x0 ¼ t; x1 ¼ r; x2 ¼ θ; x3 ¼ ϕ.
The metric (5) has to satisfy Einstein field equations

Gν
μ ¼ 8πTν

μ: ð6Þ

Let us next provide a full description of the source.

B. The source

We shall first consider the most general source, com-
patible with staticity and axial symmetry. Afterward we
shall impose the hyperbolical symmetry.
Thus we may write for the energy momentum tensor

Tαβ ¼ ðμþ PÞVαVβ − Pgαβ þ Παβ: ð7Þ

The above is the canonical algebraic decomposition of a
second order symmetric tensor with respect to unit timelike
vector, which has the standard physical meaning when Tαβ

is the energy-momentum tensor describing some energy
distribution, and Vμ the four-velocity assigned by certain
observer.
Then, it is clear that μ is the energy density (the

eigenvalue of Tαβ for eigenvector Vα), whereas P is the
isotropic pressure, and Παβ is the anisotropic tensor. We are
considering an Eckart frame where fluid elements are
at rest.
Thus, it is immediate to see that

μ ¼ TαβVαVβ; ð8Þ

P ¼ −
1

3
hαβTαβ; Παβ ¼ hμαhνβðTμν þ PhμνÞ; ð9Þ

with hμν ¼ gμν − VνVμ.
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The introduction of pressure anisotropy in the study of
self-gravitating fluids (Newtonian or relativistic) is justified
by the fact that it appears in a large number of physically
meaningful situations (see [16] and references therein).
Furthermore, as it has been recently shown [17], physical
processes of the kind expected in stellar evolution will
always tend to produce pressure anisotropy, even if the
system is initially assumed to be isotropic. The important
point to stress here is that any equilibrium configuration is
the final stage of a dynamic regime and there is no reason to
believe that the acquired anisotropy during this dynamic
process, would disappear in the final equilibrium state, and
therefore the resulting configuration, even if initially had
isotropic pressure, should in principle exhibit pressure
anisotropy.
Since we choose the fluid to be comoving in our

coordinates, then

Vα ¼ ðe−ν=2; 0; 0; 0Þ; Vα ¼ ðeν=2; 0; 0; 0Þ: ð10Þ

Let us now define a canonical orthonormal tetrad (say

eðaÞα ), by adding to the four-velocity vector eð0Þα ≡ Vα, three
spacelike unitary vectors

eð1Þα ≡ Kα ¼ ð0;−eλ=2; 0; 0Þ; eð2Þα ≡ Lα ¼ ð0; 0;−r; 0Þ;
ð11Þ

eð3Þα ≡ Sα ¼ ð0; 0; 0;−r sinh θÞ; ð12Þ

with a ¼ 0, 1, 2, 3 (latin indices labeling different vectors
of the tetrad).
The dual vector tetrad eαðaÞ is easily computed from the

condition

ηðaÞðbÞ ¼ gαβeαðaÞe
β
ðbÞ; eαðaÞe

ðbÞ
α ¼ δðbÞðaÞ; ð13Þ

where ηðaÞðbÞ denotes the Minkowski metric.
In order to provide physical significance to the compo-

nents of the energy momentum tensor, it is instructive to
apply the Bondi approach [18].
Thus, following Bondi, let us introduce a purely locally

Minkowski frame (l.M.f) with coordinates (τ, x, y, z)
(or equivalently, consider a tetrad field attached to such
l.M.f.) by:

dτ ¼ eν=2dt; dx ¼ eλ=2dr;

dy ¼ rdθ; dz ¼ r sinh θdϕ: ð14Þ

Denoting by a hat the components of the energy
momentum tensor in such l.M.f., we have that the matter
content is given by

T̂αβ ¼

0
BBB@

μ 0 0 0

0 Pxx Pxy 0

0 Pyx Pyy 0

0 0 0 Pzz

1
CCCA; ð15Þ

where μ; Pxy; Pxx; Pyy; Pzz denote the energy density and
different stresses, respectively, as measured by our locally
defined Minkowskian observer.
This is the general expression for the energy–momentum

tensor (in the l.M.f.) only assuming axial symmetry.
However, as consequence of the hyperbolical symmetry
of the system, it follows from the Einstein equations
that the off diagonal term Pxy vanishes and, in general,
Pxx ≠ Pyy ¼ Pzz.
The components of our tetrad field in the Minkowski

coordinates read

V̂α ¼ ð1; 0; 0; 0Þ; K̂α ¼ ð0;−1; 0; 0Þ;
L̂α ¼ ð0; 0;−1; 0Þ; Ŝα ¼ ð0; 0; 0;−1Þ; ð16Þ

from which we may write

T̂αβ ¼ ðμþ PzzÞV̂αV̂β − Pzzηαβ þ ðPxx − PzzÞK̂αK̂β;

ð17Þ

where ηαβ denotes the Minkowski metric.
Then transforming back to the coordinates of (5), we

obtain the components of the energy momentum tensor in
terms of the physical variables as defined in the l.M.f.

Tαβ ¼ ðμþ PzzÞVαVβ − Pzzgαβ þ ðPxx − PzzÞKαKβ: ð18Þ

It would be useful to express the anisotropic tensor in
the form

Παβ ¼ Π
�
KαKβ þ

hαβ
3

�
; ð19Þ

with

Π ¼ Pxx − Pzz; ð20Þ
and

P ¼ Pxx þ 2Pzz

3
: ð21Þ

Or, inversely

Pzz ¼ P −
1

3
Π; ð22Þ

Pxx ¼ Pþ 2

3
Π: ð23Þ

HYPERBOLICALLY SYMMETRIC STATIC FLUIDS: A GENERAL … PHYS. REV. D 103, 024037 (2021)

024037-3



Since the Lie derivative and the partial derivative
commute, then

Lχ

�
Rαβ −

1

2
gαβR

�
¼ 8πLχTαβ ¼ 0; ð24Þ

for any χ defined by (4), implying that all physical variables
only depend on r.
If the fluid is bounded from the exterior by a hypersur-

face Σe described by the equation r ¼ rΣe ¼ constant,
then the smooth matching of (3) and (5) on Σe requires
the fulfillment of the Darmois conditions [19], imposing
the continuity of the first and the second fundamental
forms, which imply

eνΣe ¼ 2M
rΣe

− 1; eλΣe ¼ 1
2M
rΣe

− 1
; PxxðrΣeÞ ¼ 0; ð25Þ

and the continuity of the mass functionmðrÞ defined below.
If we assume that the central region is surrounded by
an empty cavity whose delimiting surface is r ¼ rΣi ¼
constant, then the fulfillment of Darmois conditions on Σi

implies

eνΣi ¼ 1; eλΣi ¼ 1; PxxðrΣiÞ ¼ 0; ð26Þ
and mðrΣiÞ ¼ 0.
If either of conditions above (or both) are not satisfied,

then we have to resort to Israel conditions [20], implying
that thin shells are present at either boundary surface
(or both).

C. The Einstein equations

The nonvanishing components of the Einstein equations
for the metric (5) and the energy momentum tensor (18) are

8πμ ¼ −
ðe−λ þ 1Þ

r2
þ λ0

r
e−λ; ð27Þ

8πPr ¼
ðe−λ þ 1Þ

r2
þ ν0

r
e−λ; ð28Þ

8πP⊥ ¼ e−λ

2

�
ν00 þ ν02

2
−
λ0ν0

2
þ ν0

r
−
λ0

r

�
; ð29Þ

where we have used the standard notation Pxx ≡ Pr
and Pzz ¼ Pyy ≡ P⊥, and primes denote derivatives with
respect to r.
It is worth stressing the differences between these

equations and the corresponding to the spherically sym-
metric case (see for example Eqs. (2–4) in [21]).
From the equations above or using the conservation

laws Tα
β;α ¼ 0 we obtain, besides the identity _μ ¼ 0 (where

dot denotes derivative with respect to t), the corresponding
hydrostatic equilibrium equation (the generalized Tolman–
Oppenheimer–Volkoff equation)

P0
r þ ðμþ PrÞ

ν0

2
þ 2

r
Π ¼ 0: ð30Þ

Let us now define the mass function m ¼ mðrÞ. For
doing so, let us notice that using (3) we have that outside
the fluid distribution (but inside the horizon)

M ¼ −
�
R
2

�
R3
232; ð31Þ

where the Riemann tensor component R3
232, has been

calculated with (3).
Then generalizing the above definition of mass for the

interior of the fluid distribution we may write

mðrÞ ¼ −
�
r
2

�
R3
232 ¼

rð1þ e−λÞ
2

ð32Þ

where now the Riemann tensor component is calculated
with (5).
Feeding back (32) into (27) we obtain

m0ðrÞ ¼ −4πr2μ ⇒ m ¼ −4π
Z

r

0

μr2dr: ð33Þ

Since m as defined by (32) is a positive quantity, then μ
should be negative and therefore the weak energy condition
is violated, a result already obtained in [15]. However it
is important to stress that our definition of mass function
differs from the one introduced in [15]. In particular our m
is positive defined whereas the expression used in [15] is
negative (for the hyperbolically symmetric fluid).
The following comments are in order at this point.
(i) It is worth noticing that while the total energy (mass)

of the bounded distribution is unique (M), the
definition of the energy localized in a given piece
of the fluid distribution is not. As a matter of fact,
this ambiguity in the localization of energy, which
is present even in classical electrodynamics [22],
has been extensively discussed in general relativity,
leading to different definitions of energy (see for
example [23–29] and references therein).

(ii) Our main motivation to study hyperbolically sym-
metric fluids is directly related to the black hole
picture described in the Introduction, according to
which the region interior to the horizon is described
by (3), whereas the spacetime outside the horizon is
described by the usual Schwarzschild metric (1).
Now, the parameter M appearing in (3) is the same
as the M appearing in (1), i.e., the total mass of the
source, which is positive defined. Then, if we wish
that our mass function be continuous at the boundary
surface of our fluid distribution, which in turn is the
source of (3), it is natural to assume (32) as the
definition of the mass function. However it should
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be clear that any other scenario different from the
one described above, allows for other alternative
definitions of mass function.

(iii) Equation (32), as expected, is at variance with the
definition in the spherically symmetric case (e−λ ¼
1 − 2m

r ), since we are interested in the region 2m > r.
(iv) If the energy density is regular everywhere then the

mass function must vanish at the center as m ∼ r3,
this implies [as it follows from (32)] that the fluid
cannot fill the space in the neighborhood of the
center, i.e., there is a cavity around the center which
may be either empty or filled with a fluid distribution
nonendowed with hyperbolical symmetry. Thus the
hyperbolically symmetric fluid spans from a mini-
mal value of the coordinate r until its external
boundary. For the extreme case μ ¼ constant, this
minimal value rmin. is defined by − 8π

3
μr2min > 1.

Obviously, if the energy density is singular in the
neighborhood of the center, then this region must
also be excluded by physical reasons.

From the above it follows that, strictly speaking, we
should write instead of (33)

m ¼ 4π

Z
r

rmin

jμjr2dr; ð34Þ

where due to the fact that μ is negative, we have replaced it
by −jμj (as we shall do from now on).
The situation described above is fully consistent with the

results obtained in [2] where it was shown that test particles
cannot reach the center for any finite value of its energy.
Next, using (28) and (32) we obtain

ν0 ¼ 2
4πr3Pr −m
rð2m − rÞ ; ð35Þ

from which we may write (30) as

P0
r þ ðPr − jμjÞ 4πr

3Pr −m
rð2m − rÞ þ 2

r
Π ¼ 0: ð36Þ

This is the hydrostatic equilibrium equation for our fluid.
Let us analyze in some detail the physical meaning of its
different terms. The first term is just the gradient of
pressure, which is usually negative and opposing gravity.
The second term describes the gravitational “force” and
contains two different contributions: on the one hand the
term Pr − jμj which we expect to be negative (or zero for
the stiff equation of state) and is usually interpreted as the
“passive gravitational mass density” (p.g.m.d.), and on
the other hand the term 4πr3Pr −m that is proportional to
the “active gravitational mass” (a.g.m.), and which is
negative if 4πr3Pr < m. Finally the third term describes
the effect of the pressure anisotropy, whose sign depends on

the difference between principal stresses. Two important
remarks are in order at this point:

(i) It is worth stressing that while the self-regenerative
pressure effect [described by the 4πr3Pr term in
(36)] has the same sign as in the spherically
symmetric case, the mass function contribution in
the second term has the opposite sign with respect to
the latter case. This of course is due to the fact that
the energy density is negative.

(ii) If, both, the p.g.m.d. and the a.g.m. are negative,
the final effect of the gravitational interaction
would be as usual, to oppose the negative pressure
gradient. However, because of the equivalence
principle, a negative p.g.m.d. implies a negative
inertial mass, which in turn implies that the hydro-
static force term (the pressure gradient and the
anisotropic term), and the gravitational force term,
switch their roles with respect to the positive energy
density case.

D. The Riemann and the Weyl tensor

As is well known, the Riemann tensor may be expressed
through the Weyl tensor Cρ

αβμ, the Ricci tensor Rαβ, and the
scalar curvature R, as

Rρ
αβμ ¼ Cρ

αβμ þ
1

2
Rρ
βgαμ −

1

2
Rαβδ

ρ
μ þ 1

2
Rαμδ

ρ
β

−
1

2
Rρ
μgαβ −

1

6
Rðδρβgαμ − gαβδ

ρ
μÞ: ð37Þ

In our case, the magnetic part of theWeyl tensor vanishes
and we can express the Weyl tensor in terms of its electric
part (Eαβ ¼ CαγβδVγVδ) as

Cμνκλ ¼ ðgμναβgκλγδ − ημναβηκλγδÞVαVγEβδ; ð38Þ

with gμναβ ¼ gμαgνβ − gμβgνα, and ημναβ denoting the
Levi–Civita tensor.
The electric part of the Weyl tensor for our metric (5)

may be written as

Eαβ ¼ E
�
KαKβ þ

1

3
hαβ

�
; ð39Þ

satisfying the following properties:

Eα
α ¼ 0; Eαγ ¼ EðαγÞ; EαγVγ ¼ 0; ð40Þ

where

E ¼ −
e−λ

4

�
ν00 þ ν02

2
−
λ0ν0

2
−
ν0

r
þ λ0

r

�
−

1

2r2
ð1þ e−λÞ:

ð41Þ
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Using the field equations (27)–(29), (32), and (41) the
following relationship may be obtained

3m
r3

¼ 4πjμj þ 4πΠ − E: ð42Þ

Taking the r-derivative of the expression above and
using (33) we find

E ¼ 4π

r3

Z
r

0

r̃3jμj0dr̃þ 4πΠ: ð43Þ

Finally, inserting (43) into (42) we obtain

mðrÞ ¼ 4π

3
r3jμj − 4π

3

Z
r

0

r̃3jμj0dr̃: ð44Þ

Equation (43) relates the Weyl tensor to two fundamental
physical properties of the fluid distribution, namely: energy
density inhomogeneity and local anisotropy of pressure,
whereas (44) expresses the mass function in terms of its
value in the case of a homogeneous energy density
distribution, plus the change induced by energy density
inhomogeneity. In the expressions (43), (44) above it must
be kept in mind that the center of the distribution should
be excluded.

E. Tolman mass

An alternative definition to describe the energy content
of a fluid sphere was proposed by Tolman many years ago
[23]. The Tolman mass generalized for any fluid element of
our static fluid distribution inside Σe reads

mT ¼
Z

2π

0

Z
π

0

Z
r

0

ffiffiffiffiffiffi
−g

p ðT0
0 − T1

1 − 2T2
2Þdr̃dθdϕ

¼ 2πðcosh π − 1Þ
Z

r

0

eðνþλÞ=2r̃2ð−jμj þ Pr þ 2P⊥Þdr̃:

ð45Þ

Using the field equations (27)–(29), the integration of
(45) produces

mT ¼ ðcosh π − 1Þ
4

eðν−λÞ=2r2ν0; ð46Þ

or combining (35) with (46)

mT ¼ ðcosh π − 1Þ
2

eðνþλÞ=2ð4πPrr3 −mÞ: ð47Þ

In the light of equation (47) [or (46)] and (36) [or (30)],
the usual physical interpretation of mT as a measure of the
active gravitational mass becomes evident. It must be
stressed the fact that this quantity is negative provided
4πPrr3 < m, which would imply the repulsive character

of the gravitational interaction in the spacetime under
consideration.
Indeed, let us consider the four-acceleration aα, defined

as usually by

aα ¼ Vα;βVβ; ð48Þ

that in our case may be written as

aα ¼ aKα; ð49Þ

where

a ¼ ν0

2
e−λ=2; ð50Þ

which allows us to write

a ¼ 2mT

r2
e−ν=2

ðcosh π − 1Þ : ð51Þ

Thus the four-acceleration is directed inwardly (if
4πPrr3 < m). Now, let us recall that aμ represents the
inertial radial acceleration which is necessary in order to
maintain static the frame by canceling the gravitational
acceleration exerted on the frame. Therefore the fact that
the four–acceleration is directed radially inward, reveals the
repulsive nature of the gravitational force.
Next, taking the r-derivative of (45) and using (47) we

find

m0
T −

3

r
mT ¼ −

ðcosh π − 1Þ
2

eðνþλÞ=2r2ð4πΠþ EÞ; ð52Þ

whose integration produces

mT ¼ ðmTÞΣe

�
r
rΣe

�
3

þ ðcosh π − 1Þ
2

r3

×
Z

rΣe

r

eðνþλÞ=2

r̃
ðE þ 4πΠÞdr̃; ð53Þ

or using (43)

mT ¼ ðmTÞΣe

�
r
rΣe

�
3

þ ðcosh π − 1Þ
2

r3

×
Z

rΣe

r

eðνþλÞ=2

r̃

�
4π

r̃3

Z
r̃

0

jμj0s3dsþ 8πΠ
�
dr̃: ð54Þ

The above expressions are equivalent to the ones
obtained for the spherically symmetric case [30].
We shall next present the orthogonal splitting of the

Riemann tensor, and express it in terms of the variables
considered so far. Doing so we shall be able to define the
structure scalars for our fluid distribution.
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III. THE ORTHOGONAL SPLITTING OF
THE RIEMANN TENSOR AND THE

STRUCTURE SCALARS

Following the orthogonal splitting scheme of the
Riemann tensor considered by Bel [31], let us introduce
the following tensors (we shall follow closely, with some
changes, the notation of [32]),

Yαβ ¼ RαγβδVγVδ; ð55Þ

Zαβ ¼� RαγβδVγVδ ¼ 1

2
ηαγϵμRϵμ

βδVγVδ; ð56Þ

Xαβ ¼� R�
αγβδV

γVδ ¼ 1

2
ηαγ

ϵμR�
ϵμβδV

γVδ; ð57Þ

where � denotes the dual tensor, i.e., R�
αβγδ ¼ 1

2
ηϵμγδRαβ

ϵμ.
It can be shown that the Riemann tensor can be

expressed through these tensors in what is called the
orthogonal splitting of the Riemann tensor (see [32] for
details). However, instead of using the explicit form of the
splitting of Riemann tensor (Eq. (4.6) in [32]), we shall
proceed as follows (for details see [33], where the general
nonstatic case has been considered).
Using the Einstein equations we may write (37) as

Rαγ
βδ ¼ Cαγ

βδ þ 28πT ½α½βδγ�δ�

þ 8πT

�
1

3
δα½βδγδ� − δ½α½βδγ�δ�

�
; ð58Þ

then feeding back (7) into (58) we split the Riemann
tensor as

Rαγ
βδ ¼ Rαγ

ðIÞ βδ þ Rαγ
ðIIÞ βδ þ Rαγ

ðIIIÞ βδ; ð59Þ

where

Rαγ
ðIÞ βδ ¼ 16πμV ½αV ½βδγ�δ� − 16πPh½α½βδγ�δ�

þ 8πðμ − 3PÞ
�
1

3
δα½βδγδ� − δ½α½βδγ�δ�

�
ð60Þ

Rαγ
ðIIÞ βδ ¼ 16πΠ½α½βδγ�δ� ð61Þ

Rαγ
ðIIIÞ βδ ¼ 4V ½αV ½βEγ�

δ� − ϵαγμϵβδνEμν ð62Þ

with

ϵαγβ ¼ Vμημαγβ; ϵαγβVβ ¼ 0; ð63Þ

and where the vanishing of the magnetic part of the Weyl
tensor (Hαβ ¼� CαγβδVγVδ) has been used.

Using the results above, we can now find the explicit
expressions for the three tensors Yαβ; Zαβ and Xαβ in terms
of the physical variables, we obtain

Yαβ ¼
4π

3
ðμþ 3PÞhαβ þ 4πΠαβ þ Eαβ; ð64Þ

Zαβ ¼ 0; ð65Þ

and

Xαβ ¼ −
8π

3
jμjhαβ þ 4πΠαβ − Eαβ: ð66Þ

As shown in [33], the tensors above may be expressed in
terms of some scalar functions, referred to as structure
scalars, by decomposing them into their trace-free part and
their trace, as

Xαβ ¼ XT
hαβ
3

þ XTF

�
KαKβ þ

hαβ
3

�
; ð67Þ

Yαβ ¼ YT
hαβ
3

þ YTF

�
KαKβ þ

hαβ
3

�
: ð68Þ

These scalars in turn may written as:

XT ¼ −8πjμj; ð69Þ

XTF ¼ 4πΠ − E; ð70Þ

or using (43)

XTF ¼ −
4π

r3

Z
r

0

r̃3jμj0dr̃; ð71Þ

and

YT ¼ 4πð−jμj þ 3PÞ; ð72Þ

YTF ¼ 4πΠþ E; ð73Þ

or using (43)

YTF ¼ 8πΠþ 4π

r3

Z
r

0

r̃3jμj0dr̃: ð74Þ

From the above it follows that local anisotropy of
pressure is determined by XTF and YTF by

8πΠ ¼ XTF þ YTF: ð75Þ

To establish the physical meaning of YT and YTF let us
get back to Eqs. (45) and (54), using (72) and (74) we get
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mT ¼ ðmTÞΣe

�
r
rΣe

�
3

þðcosh π− 1Þ
2

r3
Z

rΣe

r

eðνþλÞ=2

r̃
YTFdr̃;

ð76Þ

and

mT ¼ ðcosh π − 1Þ
2

Z
r

0

r̃2eðνþλÞ=2YTdr̃: ð77Þ

We see that YTF encompasses the influence of the local
anisotropy of pressure and density inhomogeneity on the
Tolman mass. Or, in other words, YTF describes how these
two factors modify the value of the Tolman mass, with
respect to its value for the homogeneous isotropic fluid.
This fact was at the origin of the definition of complexity
provided in [34]. Indeed, if we assume that the homo-
geneous (in the energy density) fluid with isotropic
pressure is endowed with minimal complexity, then the
variable responsible for measuring complexity, which we
call the complexity factor, should vanish for this kind of
fluid distribution, as it happens for YTF.
Also, it is worth noticing that from (77) YT appears to be

proportional to the Tolman mass “density.”

IV. ALL STATIC SOLUTIONS

We shall next present a general formalism to express any
static hyperbolically symmetric solution in terms of two
generating functions. Afterward we shall also present
some explicit solutions and their generating functions.
The procedure is similar to the one proposed for the
spherically symmetric case (see [21,35]).
Thus, from (28) and (29) we may write

8πðPr −P⊥Þ ¼
ðe−λ þ 1Þ

r2
−
e−λ

2

�
ν00 þ ν02

2
−
λ0ν0

2
−
ν0

r
−
λ0

r

�
;

ð78Þ

which, by introducing the following auxiliary functions

ν0

2
¼ z −

1

r
; e−λ ¼ y; ð79Þ

becomes

y0 þ y

�
2z0

z
þ 2z −

6

r
þ 4

zr2

�
¼ 2

z

�
1

r2
− 8πΠ

�
: ð80Þ

The integration of (80) produces

eλðrÞ ¼ z2e
R
ð 4

zr2
þ2zÞdr

r6
�
2
R zð1−8πΠr2Þ

r8 e
R
ð 4

zr2
þ2zÞdrdrþ C1

� : ð81Þ

Therefore, any static solution is fully described by the
two generating functions Π and z.
For the physical variables we may write

4πjμj ¼ m0

r2
; ð82Þ

4πPr ¼
zð2mr − r2Þ −mþ r

r3
; ð83Þ

8πP⊥ ¼
�
2m
r

− 1

��
z0 þ z2 −

z
r
þ 1

r2

�
þ z

�
m0

r
−
m
r2

�
:

ð84Þ

We shall now find some explicit solutions and their
respective generating functions.

A. The conformally flat solutions

Due to the conspicuous role played by the Weyl tensor in
the structure of the fluid distribution, as indicated by (43)
and (53), it is worth considering the special case E ¼ 0
(conformal flatness).
Thus we shall now proceed to integrate the condition

E ¼ 0; ð85Þ

which, using (41), may be written as

�
e−λν0

2r

�0
þ e−ðνþλÞ

�
eνν0

2r

�0
−
�
e−λ þ 1

r2

�0
¼ 0: ð86Þ

Introducing the new variables

y ¼ e−λ;
ν0

2
¼ u0

u
ð87Þ

the Eq. (86) is cast into

y0 þ 2yðu00 − u0=rþ u=r2Þ
ðu0 − u=rÞ þ 2u

r2ðu0 − u=rÞ ¼ 0; ð88Þ

whose formal solution is

y ¼ e−
R

kðrÞdr
�Z

e
R

kðrÞdrfðrÞdrþ C1

�
; ð89Þ

where C1 is a constant of integration, and

kðrÞ ¼ 2
d
dr

�
ln

�
u0 −

u
r

��
; ð90Þ

fðrÞ ¼ −
2u

r2ðu0 − u=rÞ : ð91Þ
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Changing back to the original variables, Eq. (89) becomes

ν0

2
−
1

r
¼ eλ=2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr2e−ν − 1

p
; ð92Þ

where α is a constant of integration which using the
matching conditions (25) becomes

α ¼ Mð9M − 4rΣeÞ
r4Σe

: ð93Þ

Next, (92) may be formally integrated, to obtain

eν ¼ αr2 sin2
�Z

eλ=2

r
drþ γ

�
ð94Þ

where γ is a constant of integration which using (25) reads,

γ ¼ arcsin

2
64rΣe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MrΣe − 1Þ

Mð9M − 4rΣeÞ

s 3
75 −

�Z
eλ=2

r
dr

�
Σe
:

ð95Þ

It is worth noticing the difference between (94) and the
corresponding expression in the spherically symmetric case
(Eq. (40) in [36]).
Obviously the conformally flat condition only deter-

mines one generating function, therefore in order to find a
specific model we have to impose an additional restriction.
As an example we shall consider the extreme case Pr ¼ 0.
This solution represents the hyperbolically symmetric
analogue of the model I found in [36] for the spherically
symmetric case.
Thus assuming Pr ¼ 0, we find from (28)

ν0 ¼ −
ð1þ eλÞ

r
: ð96Þ

Replacing (96) in (41) and using E ¼ 0 the following
relationship may be easily obtained

8ð1þ eλÞ þ ð1þ eλÞ2 þ 3rλ0 − rλ0eλ ¼ 0; ð97Þ

or

gð9g − 4Þ − g0rð3g − 2Þ ¼ 0; ð98Þ

where e−λ ¼ 2g − 1. The integration of (98) produces

C1r6 ¼
4g3

9g − 4
; ð99Þ

where C1 is a constant of integration.

Next, combining (92) and (96) we obtain

eν ¼ αr2ð2g − 1Þ
gð9g − 4Þ : ð100Þ

For the physical variables we get

jμj ¼ 3g
2πr2

ð2g − 1Þ
ð3g − 2Þ ; ð101Þ

P⊥ ¼ 3

4πr2
g2

ð3g − 2Þ : ð102Þ

From the above it follows that g > 2=3 ensuring that eν is
positive, and defining the minimum value of r for the fluid
distribution. The model may be completed by assuming an
empty vacuole with boundary surface r ¼ rmin. Since Pr is
zero, then both the a.g.m. and the p.g.m.d. are negative.
It should be noticed that while the matching conditions may
be satisfied on Σe, the mass function would be discontinu-
ous across Σi. Thus a thin shell appears at the boundary
surface r ¼ rmin.
The generating functions for this model are easily found

to be

z ¼ g − 1

rð2g − 1Þ ; ð103Þ

and

ΠðrÞ ¼ −
3

4πr2
g2

ð3g − 2Þ : ð104Þ

B. Two anisotropic solutions
from given energy density profiles

We shall next find two solutions, by extending to the
hyperbolically symmetric case the procedure developed in
[37] which allows to find an anisotropic solution from any
known isotropic one, in the spherically symmetric case.
The basic ansatz of the method is based on a specific

form of the anisotropy, more specifically it is assumed that

P⊥ − Pr ¼ Cð−jμj þ PrÞ
ν0

2
r; ð105Þ

where C is a constant measuring the anisotropy of the
pressure.
Then, using (105) in (30) we obtain

P0
r þ ð−jμj þ PrÞ

ν0

2
h ¼ 0; ð106Þ

with h≡ 1–2C.
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Obviously h ¼ 1 corresponds to the isotropic pressure
case. Then assuming the energy density distribution of a
given isotropic solution we may find the corresponding
anisotropic model satisfying (105).

1. The incompressible fluid

Let us first consider a fluid distribution with constant
energy density (μ ¼ constant). If the fluid has isotropic
pressure then the solution is unique and would be the
hyperbolically symmetric version of the interior
Schwarzschild solution, such a solution has been found in
[15]. However if the pressure is anisotropic there are an
infinite number of possible solutions. Herewe find a solution
which would be the generalization of the Bowers–Liang
solution [38], for the hyperbolically symmetric fluid.
Thus, assuming μ ¼ constant we may integrate (106)

obtaining

Pr − jμj ¼ βe−νh=2; ð107Þ
where β is a constant of integration.
From the junction condition ðPrÞΣe ¼ 0, we obtain for β

β ¼ −jμjeνΣe h=2; ð108Þ
producing

Pr ¼ jμj½1 − eðνΣe−νÞh=2�: ð109Þ

Also, from (33) we have

mðrÞ ¼ 4π

3
jμjr3: ð110Þ

Combining (109) with (28) we obtain

ν0
�
8πr2jμj

3
− 1

�
−
16πjμjr

3
þ 8πjμjreðνΣe−νÞh=2 ¼ 0;

ð111Þ

where (32) has been used.
The integration of (111) produces

eνh ¼ 1

4

�
3

�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

�
2

;

ð112Þ
where junction conditions (25) have been used.
Combining the above expression with (109) we obtain,

Pr ¼
jμj

h�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

i
3
�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

; ð113Þ

and for the tangential pressure we have

P⊥ ¼
jμj

h�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

i
3
�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

þ
ð1 − hÞ8πjμj2r2

�
8πjμjr2Σe

3
− 1

�
h=2

�
8πjμjr2

3
− 1

�h
2
−1

3
h
3
�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

i
2

:

ð114Þ

As mentioned before, the fluid distribution described
above cannot fill the whole space, but is restricted by a

minimal value of the r coordinate, satisfying rmin >
ffiffiffiffiffiffiffiffi
3

8πjμj
q

.

For 0 < r < rmin we may assume an empty cavity sur-
rounding the center. Also, it is a simple matter to check that
both, the a.g.m. and the p.g.m.d., are negative. As in the
previous case, this solution may be matched on Σe but not
on Σi, due to the discontinuity of the mass function across
that hypersurface.
For h ¼ 1 we recover the incompressible isotropic fluid

solution found in [15], whereas for h ≠ 1 we obtain the
solution equivalent to the Bowers–Liang fluid distribution,
corresponding to the hyperbolically symmetric case.
It is not difficult to see that the two generating functions

of this solution are

z ¼ 1

r

2
643

�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�h
2
−1
�
16πjμjr2

3
− 1

�
3
�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

3
75;

ð115Þ

and

ΠðrÞ ¼ −
ð1 − hÞ8πjμj2r2

�
8πjμjr2Σe

3
− 1

�
h=2

�
8πjμjr2

3
− 1

�h
2
−1

3
h
3
�
8πjμjr2Σe

3
− 1

�
h=2

−
�
8πjμjr2

3
− 1

�
h=2

i
2

:

ð116Þ

2. Tolman VI type solution

As a second application of the approach sketched abovewe
shall now find a solution inspired in the well-known Tolman
VI model [39]. It is worth recalling that in the spherically
symmetric case with isotropic pressure, the equation of state
of this model corresponds to the equation of state of a Fermi
gas in the limit of very large energy density.
Thus, following the approach described above, let us

assume

μ ¼ K
r2
; ⇒ m ¼ −4πKr ð117Þ

where K is a negative constant.
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Then (106) for this case may be written as

P0
r ¼

αPr

r
þ βrP2

r þ
γ

r3
; ð118Þ

where the constants α, β, γ are defined by

α≡ 8πKh
8πK þ 1

; β≡ 4πh
8πK þ 1

; γ ≡ 4πhK2

8πK þ 1
:

ð119Þ

Equation (118) may be integrated, producing

Pr ¼
ð2þ αþ ϵÞð2þ α − ϵÞðrϵΣe − rϵÞ

2βr2½rϵð2þ α − ϵÞ − rϵΣeð2þ αþ ϵÞ� ; ð120Þ

where ϵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4αþ α2 − 4γβ

p
, and the boundary con-

dition PrðrΣeÞ ¼ 0 has been used. Thus the matching on Σe

is assured, while the discontinuity of the mass function
(117) across Σi produces a thin shell on the inner boundary
surface.
For the metric functions and the tangential pressure the

corresponding expressions are

e−λ ¼ −ð8πK þ 1Þ; ð121Þ

eν¼
ð2MrΣe −1Þ

ð2ϵÞ2nrnð2þϵÞ
Σe

frnð2−ϵÞ½rϵð2þα−ϵÞ−rϵΣeð2þαþϵÞ�2ng;

ð122Þ

with n ¼ 4π
βð8πKþ1Þ, and

P⊥ ¼ ð2þ αþ ϵÞð2þ α − ϵÞðrϵΣe − rϵÞ
2βr2½rϵð2þ α − ϵÞ − rϵΣeð2þ αþ ϵÞ� þ

2πðh − 1Þ
ð8πK þ 1Þ

	
rϵΣeð2þ αþ ϵÞð2 − ϵÞ − rϵð2þ α − ϵÞð2þ ϵÞ

2βr½rϵð2þ α − ϵÞ − rϵΣeð2þ αþ ϵÞ�



2

: ð123Þ

As it is obvious this fluid distribution is singular at the center, and therefore the central region should be excluded by
elementary physical reasons. Furthermore from (121) it follows that 8πjKj > 1, implying α > 0; β < 0; γ < 0; n > 0.
Finally, for the generating functions of this model we obtain:

z ¼ rϵð2nþ nϵþ 2Þð2þ α − ϵÞ − rϵΣeð2þ αþ ϵÞð2n − nϵþ 2Þ
2r½rϵð2þ α − ϵÞ − rϵΣeð2þ αþ ϵÞ� ; ð124Þ

and

ΠðrÞ ¼ −
2πðh − 1Þ
ð8πK þ 1Þ

	
rϵΣeð2þ αþ ϵÞð2 − ϵÞ − rϵð2þ α − ϵÞð2þ ϵÞ

2βr½rϵð2þ α − ϵÞ − rϵΣeð2þ αþ ϵÞ�



2

: ð125Þ

C. A model with vanishing complexity factor

As mentioned before, the scalar YTF has been shown to
be a suitable measure of the complexity of the fluid
distribution (see the discussion on this issue in [34]),
therefore it would be interesting to find a model (besides
the homogeneous and isotropic solution) satisfying the
condition of vanishing complexity (YTF ¼ 0). Since there
are an infinite number of such solutions, we have to impose
an additional restriction in order to obtain a specific model.
Here we shall assume (besides the vanishing complexity
factor), the condition Pr ¼ 0.
Thus, assuming Pr ¼ 0, we obtain from (28)

ν0 ¼ −
2g

ð2g − 1Þr ; ð126Þ

where g is defined by

e−λ ¼ 2g − 1: ð127Þ

Next, imposing YTF ¼ 0 in (76) it follows that

mT ¼ ðmTÞΣe
r3

r3Σ
: ð128Þ

The combination of (46), (126), (127), and (128)
produces

eν ¼ 4ðm2
TÞΣer4

r6Σðcos hπ − 1Þ2
ð2g − 1Þ

g2
: ð129Þ

On the other hand the condition YTF ¼ 0 may be
written as

g0rð1 − gÞ þ gð5g − 2Þ ¼ 0; ð130Þ

whose solution reads

HYPERBOLICALLY SYMMETRIC STATIC FLUIDS: A GENERAL … PHYS. REV. D 103, 024037 (2021)

024037-11



C2r10 ¼
g5

ð5g − 2Þ3 ; ð131Þ

where C2 is a constant of integration.
Then for the physical variables we obtain

jμj ¼ 3

4πr2
gð2g − 1Þ
ðg − 1Þ ; ð132Þ

P⊥ ¼ 3

8πr2
g2

ðg − 1Þ : ð133Þ

In this case, the fluid distribution is restricted by a
minimal value of the r coordinate, satisfying gðrminÞ > 1.
The specific value of rmin is obtained from (131). For
0 < r < rmin we may assume, as in precedent models, an
empty cavity surrounding the center. Also as in precedent
models, the discontinuity of the mass function across Σi

implies that a thin shell appears on it. Finally, since the
radial pressure is assumed to be zero, both the a.g.m. and
the p.g.m.d. are negative.
The generating functions for this model are easily found

to be

z ¼ g − 1

rð2g − 1Þ ; ð134Þ

and

ΠðrÞ ¼ −
3

8πr2
g2

ðg − 1Þ : ð135Þ

D. The stiff equation of state

Finally we shall consider a couple of solutions satisfying
the so called stiff equation of state, which as far as we know
was proposed for the first time by Zeldovich [40], and
is believed to be suitable to describe ultradense matter
(in particular for neutral vector mesons ω0 and ϕ0). In its
original form it assumes that energy density equals pressure
(in relativistic units). In our case we shall assume

jμj ¼ Pr: ð136Þ

then (36) becomes

P0
r þ

2

r
Π ¼ 0: ð137Þ

To obtain specific solutions, additional information is
required. Here, as examples, we shall consider two par-
ticular cases.

1. P⊥ = 0

Let us first assume that tangential pressure vanishes.
Then (137) can be easily integrated, producing

Pr ¼
K
r2

⇒ jμj ¼ K
r2

; ð138Þ

where K is a positive constant of integration.
The above equation, together with (32), (33), and (35)

produces

m ¼ 4πKr; e−λ ¼ 8πK − 1; ν ¼ constant: ð139Þ

In this model, both, the a.g.m. and the p.g.m.d. vanish.
Obviously there are not vanishing pressure surfaces

for this solution, and the corresponding generating func-
tions are

Π ¼ K
r2
; z ¼ 1

r
: ð140Þ

2. YTF = 0

Let us next consider the simplest stiff fluid model (i.e.,
the one satisfying, besides (136), the vanishing complexity
factor condition).
Then, using this latter condition in (74) and feeding back

the resulting expression into (137) one obtains

P00
r þ

3

r
P0
r ¼ 0; ð141Þ

whose solution reads

Pr ¼
b
r2

− a ð142Þ

where a and b are two positive constants of integration.
Then from (32) and (33) it follows at once

m ¼ 4πr

�
b −

ar2

3

�
; ð143Þ

from which we easily obtain λ. Finally, feeding back these
expressions into (35) we may obtain ν.
Assuming the fluid distribution to be bounded from the

exterior by the surface Σe described by r ¼ rΣe ¼ constant,
then we may write

Pr ¼ b

�
1

r2
−

1

r2Σe

�
; ð144Þ

and

m ¼ 4πbr
3r2Σe

ð3r2Σe − r2Þ: ð145Þ
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Thus, while matching conditions are satisfied on Σe, they
are not on Σi.
From the above expressions it follows at once that

4πr3Pr −m ¼ −
8πbr3

3r2Σe

: ð146Þ

Finally, for the tangential pressure we obtain

P⊥ ¼ −
b
r2Σe

ð147Þ

Thus, for this model the p.g.m.d vanishes, whereas, unlike
the previous case, the a.g.m. ðmTÞ does not, and is negative.

V. CONCLUSIONS

Motivated by the physical interest of the black hole
picture described in the Introduction, and which assumes
that the spacetime inside the horizon is described by (3),
we have carried out a general study on the properties of
static fluid distributions endowed with hyperbolical sym-
metry, which eventually could serve as the source of such
spacetime. Thus we have found that such fluid distributions
may be anisotropic in the pressure, with only two main
stresses unequal and the energy density is necessarily
negative. Furthermore, the fluid cannot fill the whole space
within the horizon, the central region being excluded. This
is so, whether the energy density within the fluid distri-
bution is regular or not. This last result implies that the
central region should consist in a vacuum cavity, or should
be described by a different type of source. On the other
hand, the fact that the fluid distribution cannot attain the
center concurs with the result obtained in [2] indicating that
no test particle with finite energy can reach the center.
The violation of the weak energy condition (μ < 0),

which in turn implies that the Tolman mass is negative (if
4πPrr3 < m), requires some discussion.
Let us start by mentioning that in spite of the fact that

from classical physics considerations we expect the energy
density to be positive, negative energy densities are often
invoked in extremes cosmological and astrophysical sce-
narios, usually in relation with possible quantum effects, of
the kind we could expect within the horizon (see [41–45]
and references therein).
Besides, it is worth recalling that at purely classical level,

it has been shown that any spherically symmetric distri-
bution of charged fluid (independently of its equation of
state) whose total mass-radius and charge correspond to the
observed values of the electron, must have negative energy
distribution (at least for some values of the radial coor-
dinate) [46–48]. The possible origin of this intriguing result
may be found in a remark by Papapetrou about the
finiteness of the total mass of the Reissner-Nordstrom

solution [49]. Indeed, since the electrostatic energy of a
point charge is infinite, the only way to produce a finite
total mass is the presence of an infinite amount of negative
energy at the center of symmetry. Without entering into a
detailed analysis of this issue, which is beyond the scope of
this manuscript, we speculate that the violation of the weak
energy condition might be related to quantum vacuum of
the gravitational field.
Next, we recall that in [2] it has been obtained that

any test particle within the horizon, for the metric (3),
would experience a repulsive force. In the case of a fluid
distribution, this repulsive nature of the gravitational
interaction was already brought out in Sec. II as due to
the fact that the a.g.m. (if 4πPrr3 < m) is negative. On the
other hand, as we have already mentioned, we expect the
p.g.m.d. to be negative, or at most zero, which according to
the equivalence principle (stating that the inertial mass
equals the passive gravitational mass) would imply that the
inertial mass is negative too, therefore a negative pressure
gradient even if directed outwardly, would push any fluid
element inwardly. In other words, the forces acting on any
fluid element look as if they have switched their role, with
respect to the positive energy density case.
Finally, we have developed a general formalism to express

any static hyperbolically symmetric fluid solution in terms of
two generating functions. Some explicit solutions have been
found and their physical variables have been exhibited. In all
of them it appears clearly that the central region cannot be
filled with the fluid distribution. Further study on the
physical properties of these solutions, although out of the
scope of this work, would be necessary.
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APPENDIX: SOME BASIC FORMULAS

In what follows we shall deploy some formulas used in
our discussion.

1. Christoffel symbols

Γ0
10 ¼

ν0

2
; Γ1

00 ¼
ν0

2
eðν−λÞ; Γ1

11 ¼
λ0

2
;

Γ1
22 ¼ −re−λ; Γ1

33 ¼ −re−λsinh2θ;

Γ2
12 ¼

1

r
; Γ2

33 ¼ −
1

2
sinh 2θ;

Γ3
32 ¼ coth θ; Γ3

13 ¼
1

r
: ðA1Þ
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2. Ricci tensor and curvature scalar

R0
0 ¼

e−λ

4r
½ν0ð4 − rλ0 þ rν0Þ þ 2rν00�;

R1
1 ¼

e−λ

4r
½−λ0ð4þ rν0Þ þ rðν0Þ2 þ 2rν00�;

R2
2 ¼ R3

3 ¼
e−λ

2r2
ð2þ 2eλ − rλ0 þ rν0Þ; ðA2Þ

R ¼ e−λ

2r2
½4ð1þ eλÞ þ 4rν0 − 4λ0rþ r2ðν0Þ2 − λ0ν0r2 þ 2r2ν00�: ðA3Þ
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