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Scalar-tensor theories of gravity are known to allow significant deviations from general relativity
through various astrophysical phenomena. In this paper, we formulate a scalar-connection gravity by
setting up scalars and connection configurations instead of metric. Since the matter sector is not
straightforward to conceive without a metric, we invoke cosmological fluids in terms of their one-form
velocity in the volume element of the invariant action. This leads to gravitational equations with a perfect
fluid source and a generated metric, which are expected to produce reasonable deviations from general
relativity in the strong field regime. As a relevant application, we study a spontaneous scalarization
mechanism and show that the Damour-Esposito-Farèse model arises in a certain class of scalar-connection
gravity. Furthermore, we investigate a general study in which the present framework becomes distinguish-
able from the famed scalar-tensor theories.
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I. INTRODUCTORY REMARKS AND
MOTIVATIONS

The significant advances on observational astrophysics
in the last few decades have finally led to the detection of
the gravitational waves, a promising prediction of general
relativity (GR), and opened a new window towards testing
alternative theories of gravity [1]. Among the prominent
theories is the so-called scalar-tensor gravity (STG) which
has gained much attentions in the last few decades [2]. This
type of theory is expected to reveal important and testable
deviations from GR in strong regimes by studying the
properties of high-density objects such as neutron stars [3].
Recently, a more general form of STG, namely the
Horndeski theory [4], has gained much attention since it
stands viable in astrophysics and cosmology beyond GR
(see also [5] for the problem of well-posedness of the same
type of theories). On the other hand, a scalar tensor theory
in the context of Palatini, metric-affine, and teleparallel
gravity has also been investigated [6].
Although it is considered as an alternative theory of

gravity, STG is however formulated through the strong
foundations of GR as a geometric theory of spacetime.
Given that the gravitational potential is represented by
the components of the metric tensor gμν as a fundamental
field, one may refer to GR then as a “tensor theory”.
Additionally, in STG one incorporates a dynamical scalar
field ϕ so that gravity is mediated by the scalar-tensor
configuration ðϕ; gÞ. Like any alternative or modified

theory of gravity, STG also has some limit in which the
physical predictions are consistent with those of GR,
whereas for weak fields, it would correspond to the
Newtonian regime. For instance, Brans-Dicke theory, a
particular and a former type of STG, reduces to GR when
the scalar field gains a constant value [2,3]. However, in the
general case, specific restrictions must be imposed for
certain values of the coupling between the scalar field and
the spacetime curvature so that the theory possesses a GR
solution (see Ref. [7] for more details.) The presence of one
or multiple scalar field in this type of theories might be
motivated by high-energy physics models that aim in
unifying the fundamental interactions.
On the physics side, one of the most notable conse-

quences arising in some specific STG’s is spontaneous
scalarization. Motivated by spontaneous magnetization
phenomenon, a certain class of STG has been proposed
so that the solutions to the field equations of GR arising
from vanishing scalar field is unstable; i.e., tiny perturba-
tions around this solution can be amplified by high-density
matter such as a neutron star and drive it to a new stable
configurations. The STG action which is the essence of this
mechanism is written (in units GN ¼ 1) as [8]

S½ϕ; g� ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p
½gμνRμνðgÞ − 2gμν∂μϕ∂νϕ�

þ Sm½ψm;Ω2ðϕÞgμν�; ð1Þ

where the first term is the Einstein-Hilbert action and the
last term represents the action of matter fields ψm.
Although the scalar field is chosen to be massless (see [9]

for the massive case), the scaled metric appearing in the
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matter sector induces an effective potential within
matter as1

□ϕ ¼ −4π
�∂ðlnΩÞ

∂ϕ
�
T; ð2Þ

with T being the trace of the stress-energy tensor of matter.
In [8], the coupling function ΩðϕÞ has been chosen as
ΩðϕÞ ¼ eβϕ

2=2 where β is a constant, so that the STG
accepts GR solution at the vacuum ϕ ¼ 0. It turns out that
for negative values of the parameter β this solution is
unstable, and a suitable condition within a neutron star
drive the system toward a new and stable configuration
with nonzero scalar field. This phenomenon has received
much attention recently where it has been considered as one
of the most important phenomenon that can lead to testable
predictions on the physics of neutron stars beyond GR [10].
Returning to the theory of gravity at hand, one notices

that STG described by (1) is based on the following
requirements:

(i) The gravitational sector of the theory is given in
terms of the metric tensor from which arises other
geometric quantities, such as the volume measure
and the curvature.

(ii) The matter sector, on the other hand, is not coupled
directly to this metric but to its scaled version. This
leads to the appearance of the well-known Einstein
and Jordan frames in the theory.

However, generally speaking, the main geometric factor
which is at the heart of relativistic gravity is the spacetime
curvature. It is known that this quantity is constructed from
a “connection” rather than the metric tensor, which can be
reduced to a metric connection only a posteriori at certain
conditions. Thus, it is rather natural to consider a gravi-
tational action alternative to that of STG and which stands
on the following properties:
(1) The gravitational sector is given in terms of an affine

connection ΓðxÞ from which arise all other geo-
metric quantities.

(2) The matter sector is metricless, and hence there is no
notion of Einstein-Jordan frame in the first place.

(3) As in STG, a dynamical scalar field contributes in
mediating gravity.

With these properties, the resulting gravitational action
based on the configuration ðϕ;ΓÞ will describe a scalar-
connection gravity (SCG) which we will present and
explore in details in this paper. We should emphasize here
that the name “scalar-connection gravity” is proposed in
line with the main and new properties of this type of actions
stated above (compared to its counterpart scalar-tensor-
theories).

Forming an action principle without introducing a metric
a priori cannot be trivial as in the philosophy of GR
especially when matter is involved. This can be simply
understood from the fact that, in the standard Lagrangian
formalism, matter fields are placed through their covariant
kinetic terms formed by the metric itself. However, several
attempts have been made to overcome this difficulty and
couple various sources of matter such as scalar and vector
fields through the Ricci curvature [11], and fermions by
integrating out the metric [12] (see also Ref. [13] for scalar
dark matter in this context). For the case of scalar matter, a
less challenging field in a purely affine spacetime, it has
been shown that the proposed Lagrangian densities though
a nonpolynomial produce the same field equations of GR
with a propagating scalar fields. These Lagrangians are
obtained by applying certain transformations analogous to
a Legendre transformation in classical mechanics by
noticing that the metric appears as the canonical momen-
tum conjugate to the connection in the Palatini formalism.
Nevertheless, although this equivalence between GR and
purely affine formulation is easily demonstrated when the
scalars are minimally coupled to gravity, the presence of an
explicit interaction between curvature and matter produces
considerable differences between the two formulations
[14]. For instance, it is known that due to the nonlinearity
(in metric) of the gravitational action of GR, the presence
of any nonminimal interaction induces anisotropic stresses
which in turn source nonadiabatic perturbations. On the
other hand, since the curvature is linear in the connection,
these anisotropic sources do not arise in a purely affine
formulation when matter is nonminimally coupled to
gravity [15]. Concerning vector fields [Uð1Þ in particular],
the proposed Lagrangian densities are such that the field
strength is coupled to the affine curvature the same way it
couples to metric in GR. In this case, the resulting nonlinear
terms in the affine curvature lead to a complicated dynami-
cal equation which impedes the smooth emergence of the
metric as in the scalar models. Nonetheless, it has been
shown that these actions can produce Einstein’s field
equations with a propagating Maxwell field with the aid
of a local reference frame [11]. Last but not least, coupling
fermions to gravity is more challenging than the other kind
of matter. In fact, while the fermion field is a scalar under a
general transformation, the gamma matrices are vectors,
and a flat metric is necessary for the spin transformation to
make sense locally. That being said, the fact remains on
how to include all types of matter fields (vectors, scalar, and
fermions) in a “standard model” where gravity is described
only by an affine connection.
In the present work, in addition to scalar fields, we

intend to incorporate matter as a cosmological fluid by
extending the simplest purely affine (Eddington’s) theo-
ries. Despite some similarities in the structures, the
essential difference between SCG and usual affine theo-
ries including scalar fields is the inclusion of matter as a

1In the original paper [8], instead of Ω2ðϕÞ, the notation A2ðϕÞ
is used to rescale the metric. Here we use the former so that there
will not be confusions with other parameters in the next sections.
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perfect fluid. Additionally, in SCG, the scalar field will
also mediate gravity.
With this new structure we will show that for a massless

scalar, an induced “effective” potential can arise within
matter not in terms of the trace of the energy-momentum
tensor as in (1) but through distinct proportions of both
energy density and pressure of the perfect fluid. Hence,
small perturbations of the scalar field around the unstable
GR solution (ϕ ¼ 0) are augmented by the effects of these
induced quantities, and the system then evolves to a stable
configuration, after high enough growth, due to nonlinear
interactions between matter and the scalar field. We will
show that in a particular class of SCG, one deduces also the
Damour-Esposito-Farèse model of spontaneous growth
where the effective potential comes out within the trace
of the stress-energy tensor of matter.
The paper is organized as follows, in Sec. II we discuss

the motivation behind investigating a gravity based on
connection instead of metric and then construct the invari-
ant action that will be at the heart of the proposed SCG. We
then proceed to deriving the main field equations, the
gravitational and scalar field equations of motion where we
find that matter results through the energy-stress tensor of a
cosmological fluid. In Sec. III we apply this to spontaneous
scalarization mechanism and conclude in Sec. IV.

II. SCALAR-CONNECTION GRAVITY

In this section we present a scalar-connection theory of
gravity based on the properties stated above. To that end,
the first attempt is to set up the main formalism in which we
incorporate matter as a cosmological fluid in a spacetime
endowed with an affine connection as the sole fundamental
geometric quantity. Although the metric is not necessary
for describing spacetime curvature, thus gravity (see the
discussions above), we know however that concepts of
lengths and angles are meaningful in the observable
Universe. In SCG, the metric is an auxiliary quantity of
secondary importance, but it arises from the theory itself.
With the absence of metric tensor, the number of

quantities that one could consider are less than in the
metric case, recalling that scalars formed by contractions
(using metric) are not allowed in the first place. In the
geometric sector, one could however consider vector
velocities in addition to a symmetric connection Γλ

μνðxÞ
and the associated curvature or Ricci tensor RμνðΓÞ.
Although the affine connection and its curvature can be,
in general, taken asymmetric, in the present formulation we
will be dealing with only the symmetric cases that are
sufficient for a geometric description of the gravitational
phenomenon. Nonsymmetric affinity on the other hand
implies the appearance of an additional field in any affine
theory of gravity, namely a torsion tensor, that can be
appropriate for describing a nongravitational phenomena.
In fact, it is shown that theories with asymmetric con-
nections can be treated as an affine theory based on

symmetric connection interacting with an additional matter
fields [16] However, it should be noticed here that con-
sidering a symmetric connection from the beginning, as we
do here, does not require that it is a metric (Levi-Civita)
connection in the first place, and the compatibility relation
(see below) will not be imposed from scratch but as an
outcome of the theory.
Despite its simple structure, forming the familiar poly-

nomial gravitational action in this pure affine background is
a perplexing problem, and several attempts have been made
in this respect [17]. Nevertheless, the SCG invariant action
can be formed in terms of a volume measure as follows:

S½ϕ;Γ�¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jκ−1½RμνðΓÞ−∇μϕ∇νϕ�−Aðx;ϕÞuμuνj

q
Bðx;ϕÞ ;

ð3Þ

where the symbol j:j refers to the absolute value of
determinant and κ ¼ 8πGN is the gravitational constant.
The parameters that appear in the action are as follows:

(i) uμ is a one-form that will be associated to vector
velocities of the fluids.

(ii) Aðx;ϕÞ refers to the kinetic part of the fluid. A
sufficient property for the emergence of the stress-
energy tensor of the perfect fluid from this action
(see the derivation below) is that this quantity is
taken as a scalar and independent of other geometric
entities. Coupling this term to the connection can be
understood implicitly since both the curvature (that
involves the connection) and the kinetic term of
matter contribute to the total expression of the
determinant. In case a connection-dependence is
further imposed on Aðx;ϕÞ, one would deal then
with the existence of an additional dynamical
attribute of matter, namely the hypermomentum
tensor [18]. Studying the latter case puts it beyond
the scope of the present work.

(iii) Bðx;ϕÞ is a scalar and it refers to the “potential” part
of the fluids. An essential requirement here is that
Bðx;ϕÞ ≠ 0 for a well-defined action. As we will
see later on, this stands important in generating the
metric tensor through the dynamical equation ob-
tained from this action.

Additionally, the action contains a dynamical scalar field ϕ.
Here we are referring to the fluid parameters Aðx;ϕÞ and
Bðx;ϕÞ as kinetic and potential only by analogy with the
scalar field. The above action enjoys the general covari-
ance, and it is expected to lead to perfect fluids in terms
of energy density and pressure at cosmological scales. In
general, deriving fluid dynamics from the principle of
variation has been interesting in their own where one can
formulate an Eulerian relativistic hydrodynamics [19]. In
this work we will not be interested in Eulerian analogues of
fluids in affine spacetime. Nevertheless, since the matter
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sector is not trivially conceived without a metric in an
action principle, we intend here to set up an indirect picture
of matter which will manifest as a cosmological fluid and
lead to possibly interesting physics as we shall see in the
subsequent sections on spontaneous scalarization.
Now, requiring the action to be stationary under variation

with respect to the symmetric connection yields

∇λ

�
1

Bðx;ϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jKðΓ;ϕÞj

p
ðK−1Þμν

�
¼ 0; ð4Þ

where for ease of notation we defined the quantity,

KμνðΓ;ϕÞ≡ κ−1½RμνðΓÞ −∇μϕ∇νϕ� −Aðx;ϕÞuμuν: ð5Þ

This simply means that the connection which has been
taken arbitrary in the action is reduced now to the Levi-
Civita connection of an invertible rank-two tensor gμν
satisfying the condition,

ffiffiffiffiffi
jgj

p
gμν ≡ 1

Bðx;ϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jKðΓ;ϕÞj

p
ðK−1Þμν: ð6Þ

Indeed, here we should note that this tensor is meaningful
as long as Kμν is invertible and Bðx;ϕÞ ≠ 0. The first
requirement is not restricted to the present theory, it is in
fact at the heart of most purely affine theories à la
Eddington [20]. On the other hand, the second requirement
implies that in the matter-free case, a nonzero cosmological
term has to replace Bðx;ϕÞ leading to a theory with a
cosmological constant. This shows that unlike the metric
gravity, the purely affine theories of gravity demand
definitely a nonzero vacuum energy [14,20].
Thus, this tensor, which has not been imposed from

the beginning, is now generated dynamically through the
variational principle and will play the role of the metric
tensor. In fact, Eq. (4) is now equivalent to

∇λð
ffiffiffiffiffi
jgj

p
gμνÞ ¼ 0: ð7Þ

It is important to notice however that concerning the
signature of this metric, only those configurations ðϕ;ΓÞ
where the tensor field (5) has the signature ð−;þ;þ;þÞ are
considered. This is a fundamental issue concerning the
signature of the generated metric not only here in scalar-
connection gravity but in all Eddington’s type of purely
affine theories [11]. In other words, one must consider only
those configurations ϕ and Γ where the tensor field Kμν has
a negative determinant to guarantee that the generated
metric tensor has a Lorentz signature. However, generally
speaking, it seems that a more reasonable and convincing
mechanism for fixing the metric signature has to be
explored. In fact, unlike GR, the metric now is related
to the dynamical connection and matter, which may suggest
a varying signature too. Although the contexts are different,

we mention here that in quantum field theories it has
been shown that a spacetime signature could gain also a
dynamical character, and likewise, several attempts have
been considered to devise a mechanism for a dynamical
origin of the physical (Lorentzian) signature [21]. That
being said, we believe that finding a way that guarantees a
Lorentz signature whether within the action itself (in terms
of matter and curvature) or by providing a dynamical origin
for it, would certainly reveal more interesting features of
the affine gravitational theories.
Returning to the previous equations, the curvature

RμνðΓÞ becomes the Ricci tensor RμνðgÞ constructed by
the metric g. Hence, Eq. (6) represents the gravitational
field equations, and with (5) it takes the form,

RμνðgÞ ¼ 8π½Aðx;ϕÞuμuν þ Bðx;ϕÞgμν� þ∇μϕ∇νϕ; ð8Þ

where we have used units GN ¼ 1.
In terms of Einstein tensor, and by taking uμuμ ¼ −1,

the above equation reads

Rμν −
1

2
gμνR ¼ 8π

�
Auμuν þ

�
1

2
A − B

�
gμν

�

þ∇μϕ∇νϕ −
1

2
gμν∇λϕ∇λϕ: ð9Þ

An important remark drawn here is that, besides the
scalar field, these equations coincide with Einstein field
equations sourced by a matter fluid with the stress-energy
tensor,

Tm
μν ¼ Auμuν þ

�
1

2
A − B

�
gμν; ð10Þ

which implies that in the particular case where the fluid
parameters are independent of the scalar field, Aðx; 0Þ ¼
ρþ P and Bðx; 0Þ ¼ ðρ − PÞ=2 with ρ and P being energy
density and pressure respectively. Note that when ϕ is
constant, the cosmological constant case corresponds
to A ¼ 0 which renders the SCG action (3) to be the
Eddington’s action [20].
Next, we vary the action (3) with respect to the field ϕ

and use the expression of the metric (6) to find

□ϕ ¼ 4π

�∂Aðx;ϕÞ
∂ϕ gμνuμuν þ 2

∂Bðx;ϕÞ
∂ϕ

�
: ð11Þ

Indeed, since the matter parameters are ϕ-dependent in
the first place, the system will then develop potential-like
terms. Needless to say, in the absence of matter these
equations will simply describe a propagating massless
scalar field. As we will see in the following section,
Eq. (11) is the basis of the phenomenon of spontaneous
scalarization in the framework of SCG.
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III. SPONTANEOUS SCALARIZATION

Most of the works that have been performed on sponta-
neous scalarization are based on the scalar-tensor theories
of gravity and their modifications. The main essence
behind this is usually the coupling of matter to a rescaled
metric that incorporates the scalar field. However, as we
have seen from the previous section, the metric tensor in the
scalar-connection theory of gravity arises only a posteriori
through the dynamical equations; thus, the matter sector
had to be coupled to the scalar field without metric in the
action through its parameters A and B.
Apart from the gravitational action (3) which reflects

the conceptional difference between SCG and STG, the
obvious way to distinguish between the two theories is
through the dynamics of the scalar field. In (2), the right-
hand side term acts as a potential within the trace of the
energy-momentum tensor of matter which is given explic-
itly in terms of energy density and pressure a priori. In (11),
however, the fluid parameters must be given a posteriori by
respecting the GR-limit. Nevertheless, in what follows we
will show that SCG would lead to the same physics as STG
in particular cases.

A. Damour-Esposito-Farèse model from SCG

Although the scalar-connection gravity can be consid-
ered as an alternative theory of gravity different from
scalar-tensor theory, it might be relevant to produce the
latter for certain cases. In fact, based on the previous
remarks on the limit of the theory (GR), one may choose
the quantitiesAðx;ϕÞ and Bðx;ϕÞ to have following forms:

Aðx;ϕÞ ¼ ðρþ PÞeβϕ2=2; ð12Þ

Bðx;ϕÞ ¼ 1

2
ðρ − PÞeβϕ2

; ð13Þ

where the scalar field-dependence of these parameters
is chosen such that the GR solution arises at ϕ ¼ 0.
Spontaneous scalarization arises when this solution is
unstable and the system then develops a stable solution
at nonzero field. Here, to linear order the small perturbation
δϕ around GR solution leads to

□δϕ ≃ 4πβ½ðuμuμ þ 2Þρþ ðuμuμ − 2ÞP�δϕ: ð14Þ

For perfect fluids where uμuμ ¼ −1, the case that we have
taken for the gravitational field equations (9), we obtain

□δϕ ≃ −4πβð−ρþ 3PÞδϕ; ð15Þ

which coincides with the Damour-Esposito-Farèse model (2)
where in this case the right-hand side of (15) is given
in terms of the trace of the energy momentum tensor
Tμν ¼ ðρþ PÞuμuν þ Pgμν. Hence, the physics of the
scalar-connection theory is equivalent to that of scalar-tensor

theory of gravity as long as the fluid parameters behave
like (12) and (13).
As one notices, the fluid parametersAðx;ϕÞ and Bðx;ϕÞ

respectively are not dependent on the scalar field similarly
(here different exponents). This property can be traced back
to the structure of the SCG Lagrangian where matter is
described by two parameters instead of only one function
(Lagrangian of matter) as in STG. To illustrate this fact, let
us return to the general framework of the scalar-connection
gravity formulated starting from action (3). There, the fluid
parameters described by the functions Aðx;ϕÞ and Bðx;ϕÞ
were considered not only coordinate dependent but also
ϕ-dependent quantities. This implicit coupling between the
scalar field and matter has led us to propose a relevant form
for the fluid parameters as in (12)–(13) allowing for the
GR-limit for ϕ ¼ 0. However, one may show that these
parameters may enter the action, anyway, as ϕ-independent
functions ÃðxÞ and B̃ðxÞ respectively. In this case, the SCG
action may take the following form:

S½φ;Γ�

¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jκ−1½ωðφÞRμνðΓÞ −∇μφ∇νφ� − ÃðxÞuμuνj

q
B̃ðxÞ ;

ð16Þ
whereωðφÞ is an arbitrary function of the scalar field φ and
represents the nonminimal coupling function in the scalar-
connection theory of gravity.
An interesting feature of this action is the fact that

the nonminimal coupling function can be absorbed easily
without geometric transformation as in STG (by using
metric transformation.) Here, this is realized by performing
a simple field-redefinition of the scalar field as

∇μϕ∇νϕ ¼ ω−1ðφÞ∇μφ∇νφ; ð17Þ
so that the last action reads

S½ϕ;Γ� ¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK̃ðΓ;ϕÞj

p
ω−2ðϕÞB̃ðxÞ ; ð18Þ

in which

K̃μνðΓ;ϕÞ ¼ κ−1½RμνðΓÞ −∇μϕ∇νϕ�
− ω−1ðϕÞÃðxÞuμuν: ð19Þ

This minimal coupling picture of SCG described by action
(18) tends to be analogues to (3) where matter (fluid)
is coupled to the scalar field. Now, we notice that the
parameter ÃðxÞ describing the kinetic term of matter is
rescaled by ω−1ðϕÞ, whilst the potential-like term of the
matter is rescaled by ω−2ðϕÞ. Hence, since the matter
(ϕ-independent) parameters ÃðxÞ and B̃ðxÞ leads to the
energy momentum tensor Tμν ¼ ðρþ PÞuμuν þ Pgμν, this
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explains now our choice of the parameters (12)–(13) so that
the scalar-connection theory leads to the Damour-Esposito-
Farèse model. Next, we will investigate the general case in
which the present framework based on SCG produces a
quite different results.

B. The general setup

Here we will not follow the previous mechanism based
on the transition from minimal to nonminimal coupling
which leads to specific rescaling of the fluid parameters via
(18) and (19). Rather, the general setup is based on the fact
that the matter parametersA and B can generally depend on
ϕ in different ways. One generic case is to take

Aðx;ϕÞ ¼ ðρþ PÞeβ1ϕ2=2; ð20Þ

Bðx;ϕÞ ¼ 1

2
ðρ − PÞeβ2ϕ2

; ð21Þ

where unlike the previous case, now one has β2 ≠ β1, and
the linearized equation of motion of the scalar field reads

□δϕ ≃ 4π½ð2β2 − β1Þρ − ð2β2 þ β1ÞP�δϕ; ð22Þ
or

□δϕ ≃ −4πðβ1 − 2β2Þρ
�
1þ β1 þ 2β2

β1 − 2β2
ωðρÞ

�
δϕ; ð23Þ

with ωðρÞ ¼ P=ρ being the equation of state of matter.
Thus, the spontaneous scalarization mechanism in this

class of SCG is to be determined in line with specific
bounds of the two parameters ðβ1; β2Þ. Given this different
structure in terms of energy density and pressure compared
to (15), one may merely point out various scenarios for
instance when β1 ¼ −2β2, the effective potential that drives
spontaneous scalarization arises only through the energy
density of matter. However, in this case the complete
suppression of the instability will not be quite similar
through both parametersAðxÞ and BðxÞ due to the different
signs of the constants β1 and β2. The second scenario is
when the dynamics is driven only by pressure; this arises
here when β1 ¼ 2β2 thus,

□δϕ ≃ −8πβ1Pδϕ: ð24Þ
In this case, if β1 is taken negative which is a trivial choice
to eventually suppress the unstable modes then a negative
effective mass square −8πβ1P requires P < 0. This cannot
describe a physical high density object such as a neutron
star unless the negative sign is conventional, i.e., the inward
gravitational pull.
Nevertheless, a neutron star can be approximated to a

nonrelativistic matter where the energy density term domi-
nates in (22), hence,

□δϕ ≃ 4πð2β2 − β1Þρδϕ: ð25Þ

Again, for β2 < β1=2 spontaneous growth occurs when
the GR solution ϕ ¼ 0 is unstable due to the negative
mass squared m2

eff ¼ 4πð2β2 − β1Þρ with an effective
wavelength,

λeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

j2β2 − β1jρ
r

: ð26Þ

A sufficient approximation of the energy density of a star in
terms of its massM, radius R and compactness C ¼ M=R is
ρ ∼M=R3 which yields

λeff ≃
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2β2 − β1jC

p : ð27Þ

Finally, for a scalarization to occur, this effective wave-
length must fit inside the star, i.e., λeff < R. The last
condition implies a lower bound on the compactness of
the star as

C ≳ 1

j2β2 − β1j
: ð28Þ

Although it appears similar to familiar spontaneous
scalarization with the sole constant β as in (15), here the
two nonzero constants reflect the fact that suppression of
the eventual instability in scalar-connection gravity must
occur through two parts of matter: the kinetic part (20)
given in terms of the inertial gravitational mass density and
the potential-like part (21).
In order to fit various observational constraints such as

those coming from the pulsar-white dwarf binary [22], it
might be necessary even for SCG to embody a massive
scalar field. In fact, one may easily show that in this case,
instead of (25) the system would gain an effective mass as

m2
eff ¼ 4πð2β2 − β1Þρþm2

ϕ; ð29Þ
wheremϕ is now the mass of the scalar field ϕ, and we have
considered again the nonrelativistic scenario in which the
energy density dominates in the effective potential.
The massive case tends to be important on cosmological

scales where it prevents the entire Universe at early times
from scalarization [9,23]. One possible way to constraint
the scalar field mass has been used where the field wave-
length associated to this field is taken much smaller than
the so-called periapsis orbit, i.e., λϕ ≪ rP leading to
mϕ ≫ 10−16 eV [9]. In this case however, we must have
λeff < λϕ which results in

j2β2 − β1jC > m2
ϕR

2: ð30Þ

We should assert here that these results are valid only for
the specific classes that we have considered above, namely
the particular form of the coupling of matter to the scalar
field as well as the direct use of the energy density of matter
without referring to any equations of state of the compact
objects. To that end, in order to accurately probe the SCG,
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one mainly has to examine various classes of the theory
by providing a generic phenomenological study of other
relevant forms different than (20), (21) and adopting
specific equations of state P ¼ wðρÞ of neutron stars
[24]. Last but not least, besides scalarization, it might be
reasonable to accomplish other spontaneous growth mech-
anisms driven by distinct fields like fermions and vector
fields [25] or through a Gauss-Bonnet term [26]. However,
this can be challenging since the structure of the gravita-
tional actions that will be inherited from (3) will not be
obvious for those cases.

IV. CONCLUDING REMARKS

The work done in this paper aims to provide a scalar-
connection gravity where unlike the famed scalar-tensor
theories, gravity is not mediated by the metric tensor
a priori. Instead of that, the gravitational field is charac-
terized by an affine connection as the fundamental element
behind spacetime curvature. In the absence of metric, the
simplest generally covariant action one can form is the
celebrated Eiddington’s action using only curvature [20].
In this paper we have extended this simple action by
introducing a scalar sector to mediate gravity through its
coupling to spacetime connection. As in any theory of
gravity, the gravitational actions must indeed embody
ordinary matter to complete the gravitational dynamics.
In this respect, putting various matter fields in actions
formed only by the connections not the metric, has always
been an exhausting challenge [27]. The reason is simply
that field kinetic terms generally necessitate the physical
metric in the first place to get their covariant form.
Nevertheless, in forming the action of the scalar-connection
gravity, we have proposed a handy method to invoke matter
as a fluid in terms of one-form velocities. We have then

shown that the resulting gravitational equations and the
scalar field dynamics are obviously different from those of
general relativity, the fact that indicates measurable devia-
tions from the latter.
In the second stage of the paper, we have performed a

direct application of this framework by studying the
mechanism of spontaneous scalarization as a relevant
example. By making certain choices of the perfect fluid
parameters that lead to GR solution for vanishing scalar
field, we have seen that small perturbations around this
unstable solution grows up due to an induced effective
potential proportional to both energy density and pressure
of matter. Moreover, we have shown that the theory leads to
an equivalent prediction of scalar-tensor theory, namely the
Damour-Esposito-Farèse model of spontaneous growth, in
particular cases. Furthermore, we have performed a theo-
retical study of the effects of the resulting effective potential
on a compact star and discussed some bounds on our
parameters in terms of the compactness of a star within
which the latter is subject to scalarization.
Finally we should emphasize that although we have

considered it as a relevant example in this paper, sponta-
neous scalarization must not be the only way to probe
scalar-connection gravity. The latter is expected to lead to
rich phenomenology when it is furthered in various aspects
in astrophysics and cosmology.
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