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Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, BP4229, 06304, Nice Cedex 4, France

(Received 1 December 2020; accepted 22 December 2020; published 15 January 2021)

We describe the first numerical Tolman-Oppenheimer-Volkoff solutions of compact objects in entangled
relativity, which is an alternative to the framework of general relativity that does not have any additional
free parameter. Assuming a simple polytropic equation of state and the conservation of the rest-mass
density, we notably show that, for any given density, compact objects are always heavier (up to ∼8%) in
entangled relativity than in general relativity—for any given central density within the usual range of
neutron stars’ central densities, or for a given radius of the resulting compact object.
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I. INTRODUCTION

Recently, a new theory of relativity has been proposed in
which matter and geometry cannot be treated separately
[1,2]. The reason being that in the Lagrangian that depicts
the theory, matter and geometry are unequivocally related
through a pure multiplicative coupling. In some sense,
matter and geometry are entangled in this theory [2], since
it is not possible to turn one off in order to study the other:
the very definition of the theory of relativity becomes
intertwined to the definition of matter fields. Hence we
shall name this theory entangled relativity.
One consequence of the pure multiplicative coupling is

that one would expect that the theory predicts phenomena
that are violently in contradiction with several aspects of
general relativity, which are however thought to be in good
adequation with observations and experiments. But it turns
out that the theory’s phenomenology often boils down to the
one of general relativity due to an intrinsic decoupling that
arises at the level of the classical field equations—which
had initially been found in the framework of scalar-tensor
theories with a specific nonminimal scalar-matter coupling
[2–5]. In particular, deviations from general relativity in the
solar system may only happen at the post-post-Newtonian
order [3]—which is beyond current testing capabilities.
Nevertheless, the theory is not without its own open

issues. Notably, it is still not clear whether or not the theory
can explain the acceleration of the expansion of the universe
[2,4]—although a recent proposal goes in the right direction
[6]—nor is it clear to which quantitative level the universality
of free fall may be violated in this theory [2,5]—despite the

intrinsic decoupling at the level of the classical field
equations previously mentioned. Not to mention that the
situation with respect to a quantum field theoretic treatment
of such a pure multiplicative Lagrangian is entirely open and
probably not without its own problems—whether or not the
standard model paradigm for matter fields is still the most
appropriate description of matter in this novel context.
One of the unusual aspects of the theory—with respect to

general relativity and its usual modifications—is that there
cannot exist such a thing as a vacuum solution of the field
equations. For instance, a Minkowski space-time is not a
solution of the field equations. What it implies at a practical
level, more broadly, is that most of the simplifications
that are usually used in order to study extreme spacetime
solutions—such as black holes—cannot be used in
entangled relativity. Nevertheless, it has recently been
argued that vacuum solutions of general relativity can be
accurate enough approximation of nonvacuum solutions in
entangled relativity in a near vacuum situation outside the
event horizon [7]—such that astrophysical black holes may
be described by their usual mathematical idealization like
the Schwarzschild and Kerr solutions.
On the other hand, it seems that the standard tools and

methods are still useful for less extreme objects—such as
neutron stars. In this manuscript, we therefore propose
an exploratory study of static and non-rotating compact
objects with the spherical symmetry through the use of the
Tolman-Oppenheimer-Volkoff (TOV) framework, in order
to get the first glimpse of what compact objects may look
like in entangled relativity.
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II. FIELD EQUATIONS

The action of entangled relativity is defined by [2]

S ¼ −
ξ

2c

Z
d4gx

L2
m

R
; ð1Þ

where d4gx≡ d4x
ffiffiffiffiffiffi−gp

is the space-time volume element,
the coupling constant ξ has the dimension of κ≡
8πG=c4—where G is the Newtonian constant and c the
speed of light—but not its value. In fact, ξ does not appear
in the classical field equations and therefore is purely
related to the quantum field sector of the theory. It is yet to
be discovered what value of ξ would likely be consistent
with our universe, if any. It is important to note that apart
from ξ, the theory does not have any coupling constant
related to the link between matter and geometry. Hence, at
the classical level, entangled relativity has one parameter
less than general relativity in order to describe the link
between matter and geometry, in the sense that no param-
eter replaces the parameter κ of general relativity at the
classical level in entangled relativity [2]: the effective
coupling that appears at the level of the field equation is
dynamical.
For spacetimes that are such that R ≠ 0, there is a one

to one correspondence at the classical level between the
action of entangled relativity and a dilaton theory with the
following action [1,2]

S ¼ 1

c
ξ

κ̃

Z
d4gx

�
ϕR
2κ̃

þ
ffiffiffiffi
ϕ

p
Lm

�
; ð2Þ

where κ̃ is an effective coupling constant between matter
and geometry, with the dimension of κ. The corresponding
field equations read

Gαβ ¼ κ̃
Tαβffiffiffiffi
ϕ

p þ 1

ϕ
½∇α∇β − gαβ□�ϕ; ð3Þ

3

ϕ
□ϕ ¼ κ̃ffiffiffiffi

ϕ
p ðT − LmÞ; ð4Þ

and the conservation equation reads

∇σð
ffiffiffiffi
ϕ

p
TασÞ ¼ Lm∇α

ffiffiffiffi
ϕ

p
; ð5Þ

with

Tμν ≡ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð6Þ

The intrinsic decoupling discussed in the introduction
comes from the fact that the right hand side of Eq. (4) is
minute for matter fields that are such that Lm ∼ T, hence

leaving the scalar field mostly unsourced, and therefore
constant [2–5].

III. TOV EQUATIONS

In order to derive the TOVequations, we assume that the
system is static and has a spherical symmetry, such that we
assume a metric with the following form

ds2 ¼ −aðrÞdt2 þ bðrÞdr2 þ r2dΩ2; ð7Þ

in unit c ¼ 1, where dΩ2 stands for the S2-sphere metric.
We further assume a perfect fluid matter content, whose
energy-momentum tensor in a general frame reads

Tα
β ¼ ðρþ PÞuαuβ þ Pδαβ; ð8Þ

where ρ and P are the total energy density and the pressure
of the fluid respectively, related to the equation of state
defined in (30).

A. Metric’s components and a definition of the mass

First of all, we note as

Dα
β ¼

1

ϕ
ð∇α∇β − δαβ□Þϕ: ð9Þ

the dilaton energy-momentum tensor part in Eq. (3). The
time-time component of the Einstein equations, leads to the
following first order differential equation for grr ≡ bmetric
component

_b
b
¼ 1 − b

r
þ rb

�
κ̃ρffiffiffiffi
ϕ

p −D0
0

�
; ð10Þ

where

D0
0 ¼

1

2b

_ϕ

ϕ

_a
a
þ κ̃

3
ffiffiffiffi
ϕ

p ðLm − TÞ: ð11Þ

One can formally integrate equation (10) for b, which
leads to

b ¼ 1

1 −mκ̃=4πr
; ð12Þ

where

mðrÞ≡ 4π

κ̃

Z
r

0

dr

�
ρffiffiffiffi
ϕ

p κ̃ −
1

2b

_ϕ

ϕ

_a
a
−

κ̃

3
ffiffiffiffi
ϕ

p ðLm − TÞ
�
r2:

ð13Þ

From (12), the ADM mass reads
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MADM ¼ lim
r→∞

mðrÞ; ð14Þ

and does not necessarily coincide with the star mass m�
defined by

m� ¼ mðR�Þ; with pðR�Þ ¼ 0: ð15Þ

Indeed, outside the star, matter energy density and pressure
are negligible, so that they are set to zero and the relation
between the ADM mass and the star mass reads

MADM ¼ m� −
2π

κ̃
lim
r→∞

Z
r

R�
dr

r2

b

_ϕ

ϕ

_a
a

ð16Þ

On the other side, the r-r component of the Einstein
equation yield a first order differential equation for gtt ≡ a

_a
a
¼ b

r

�
Pr2κ̃ffiffiffiffi

ϕ
p þ 1 −

1

b
−
2r
b

_ϕ

ϕ

��
1þ r

2

_ϕ

ϕ

�−1
: ð17Þ

B. Equation for pressure

Following Wald [8], we compute the pressure using the
conservation equation from the diffeomorphism invariance

∇αTα
β ¼ ðδαβLm − Tα

βÞ∂α log
ffiffiffiffi
ϕ

p ≡ Fβ ð18Þ

where the covariant derivative of a perfect fluid stress-
energy tensor reads

∇αTα
β ¼ ðδαβ þ uαuβÞ∂αPþ ðPþ ρÞuα∇αuβ

þ uβ½uα∂αρþ ðPþ ρÞ∇αuα�: ð19Þ

Projecting the last equation on ∂r and using ð∂rÞμuμ ¼ 0

brings up a derivative of the pressure with respect to the
radius and we end up with

_P ¼ −
_a
2a

ðPþ ρÞ þ
_ϕ

2ϕ
ðLm − PÞ: ð20Þ

C. Equation for the scalar field

The scalar-field equation reduces to

ϕ̈ ¼ −
_ϕ

2

�
_a
a
−

_b
b
þ 4

r

�
þ κ̃

ffiffiffiffi
ϕ

p
3

bðT − LmÞ: ð21Þ

At this point, the system can be fully inverted from
ða; b;ϕÞ to ðm;P;ϕÞ. Indeed, b has been expressed as a
function of m and differential equation for a and b are
function of ðb; P;ϕÞ. Then, we end up with the following
system of first order differential equation

_P ¼ −
F1

2
ðPþ ρÞ þ Ψ

2ϕ
ðLm − PÞ ð22Þ

_m ¼ 4πr2
�

ρffiffiffiffi
ϕ

p −
F3

κ̃

�
ð23Þ

_ϕ ¼ Ψ ð24Þ

_Ψ ¼ −
Ψ
2

�
F1 − F2 þ

4

r

�
þ κ̃

ffiffiffiffi
ϕ

p
3

bðT − LmÞ ð25Þ

with

F1 ¼
b
r

�
Pr2κ̃ffiffiffiffi

ϕ
p þ 1 −

1

b
−
2r
b
Ψ
ϕ

��
1þ r

2

Ψ
ϕ

�
−1

ð26Þ

F2 ¼
1 − b
r

þ rb

�
κ̃ρffiffiffiffi
ϕ

p − F3

�
ð27Þ

F3 ¼
1

2b
Ψ
ϕ
F1 þ

κ̃

3
ffiffiffiffi
ϕ

p ðLm − TÞ ð28Þ

b ¼ 1

1 −mκ̃=4πr
ð29Þ

IV. NUMERICAL IMPLEMENTATION
AND RESULTS

The code, as well as a script that generates all the figures
that are presented in this manuscript, are freely available on
GitHub [9].

A. Equation of state

We assume a simple polytropic equation of state in this
exploratory study, as the goal of this study is to see the
broad behavior of compact object solutions in entangled
relativity, compared to general relativity. Besides, the
equations for matter fields are modified in entangled
relativity due to the nonminimal coupling between geom-
etry and matter—see Eq. (5). As a consequence, nuclear
physics may be impacted at high density, which leads to
many new open questions that are beyond the scope of this
manuscript.
The equation of state that we shall consider reads

P ¼ Kργ; ð30Þ

with γ ¼ 5=3 and K ¼ 1.475 × 10−3 ðfm3=MeVÞ2=3 [10].
We shall limit our investigations to solutions that have a

subluminal speed of sound vS everywhere in the compact
object. The condition implemented in our code reads

COMPACT OBJECTS IN ENTANGLED RELATIVITY PHYS. REV. D 103, 024034 (2021)

024034-3



vS
c
≡

�
dP
dρ

�
1=2

¼
�
γ
P
ρ

�
1=2

< 1 ∀ r ∈�0; R��; ð31Þ

where R� is the radius of the compact object.

B. On-shell matter Lagrangian

Now, one ought to know what is the value of the on-shell
matter Lagrangian.1 Eventually, one may be able to derive it
from first principles. However, the task is somewhat
complex, given the additional complication that the
matter field equations are modified with respect to general
relativity, due to the nonminimal coupling between matter
and geometry in entangled relativity—for instance, the
modified Maxwell equation reads ∇νð

ffiffiffiffi
ϕ

p
FμνÞ ¼ 0, where

Fμν is the usual electromagnetic tensor.
In what follows we will assume an effective perfect fluid

description of matter fields, whose matter field density is
conserved ∇σðρ0uσÞ ¼ 0—where ρ0 is the rest-mass
energy density—such that one can show that the matter
Lagrangian reduces toLm ¼ −ρ, where ρ is the total energy
density of the fluid [11,12]—see the Appendix A. In that
case, one can see in Eq. (4) that the scalar-field would only
be sourced by pressure, such that this type of scalar-fields
has been dubbed pressuron in [4].
However, it has recently been argued that for generic

solitons, the on-shell Lagrangian ought to reduce to the
trace of the stress-energy tensor Lm ¼ T [13]. If that
argument held for compact objects such as neutron stars,
one can see from Eq. (4) that the decoupling of the scalar-
field would be total, such that one could expect to recover
the results of general relativity. We checked that if we
assumeLm ¼ T instead ofLm ¼ −ρ, we indeed recover the
TOV solutions of general relativity.2

Another interesting thing to keep in mind is that, since
the on-shell Lagrangian Lm depends on the field solutions,
one cannot a priori exclude the possibility that it could
transition from, say, Lm ¼ −ρ to Lm ¼ T, or Lm ¼ T to
Lm ¼ P, etc., after a phase transition of matter fields at
some density inside the compact object. Studying this is
beyond the scope of the present paper, as it would require to
derive the behavior of matter fields from first principles;
whereas we assume here an effective perfect fluid descrip-
tion. What is clear however, is that in the dust limit, one
has Lm ¼ −ρ ¼ T. Hence, Lm ¼ P seems to be excluded,

unless the aforementioned transition of phase can occur at
high enough energy or pressure. But again, this is beyond
the scope of the present manuscript.

C. Scalar field normalization

We normalize the scalar field such that κ̃=
ffiffiffiffiffiffi
ϕL

p ¼
8πG=c4, where G is the measured value of the constant
of Newton in the solar system, and ϕL the asymptotic value
of the scalar field at a distance r ¼ L where the derivative
of the gravitational potential becomes negligible, such that
it matches the zeroth order of the post-Newtonian expan-
sion of the theory in the weak-field regime of the solar
system [3]. Note however that in practice, the effective
value of ϕL can in principle take different values at different
locations of the universe, which corresponds in effect to a
constant of Newton that actually depends on the location.
However, given the fact that the scalar field is not sourced
by pressureless matter fields in the weak field regime [3],
one does not expect the two values to differ significantly in
a dust3 dominated environment such as our own galaxy.
Numerically, the choice κ̃ ¼ κ has been made, so that

the normalization of the scalar field reads ϕ∞ ≡ ϕL ¼ 1.
The goal is then to find the central value ϕ0 that leads to
that normalization. In order to do so, one could run the
simulation several times with different central values of the
scalar field, until the one that corresponds to the desired
normalization is reached. However, for the sake of com-
putational speed, one could take the advantage of the
following property: if ðϕ;ψ ; m; PÞðrÞ are solution of
(22)–(25), then ðαϕ;ψ ; α−1=4m; αPÞðα−1=4rÞ are another
solution ∀ α. If a simulation starts with a random initial
value ϕ0 and lead to a star radius R�, and an asymptotic
scalar field value ϕ∞, then, the radius with the appropriate
units is R� ¼ ϕ1=4

∞ R�, where the property has been used
with α ¼ ϕ−1

∞ .

D. Mass and radius comparison

Because the dilaton field is sourced by pressure when
Lm ¼ −ρ, and because the pressure increases with the
density, one expects to have an increasing deviation from
general relativity with the growth of the density. In Figs. 1
and 2, one can see that this is broadly the case, although one
should have a look at the metric in different cases in order
to have a full picture of this. In particular, the denser the
object, the more the metric deviates from the Schwarzschild
metric outside the compact object—see Sec. IV F. Also,
one can see that, for central densities between 100 and
8200 Mev=fm3, both the mass and the radius of the
compact object are always higher in entangled relativity.
The limit at 8200 Mev=fm3 is set by the condition that the
speed of sound in the compact object never exceeds the
causality speed limit c.

1By on-shell, here we mean the effective value that takes the
Lagrangian when the matter field solutions are injected into its
formal definition.

2Note that entangled relativity would nevertheless be different
from general relativity for any matter field that do not satisfy
Lm ¼ T, such as, for instance a pure magnetic field—which leads
to Lm ∝ B2 ≠ T [14]—or an homogeneous scalar field—which
leads to Lm ¼ P ≠ T [15]. In particular, one can expect the Higgs
field to lead to a different behavior of the cosmic solution of
entangled relativity close to the big bang, compared to general
relativity. 3Baryonic and cold dark matter.
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One can see that, for a given central density, the mass
m�—defined in Eq. (15)—is always bigger in entangled
relativity with respect to general relativity. The same is true
for the ADM massMADM—defined in Eq. (14)—although
the ADM mass is always smaller than the mass m�, as one
can see in Fig. 4. The difference between m� and MADM
simply comes from the infinite range contribution of the
scalar-field to the mass—defined in Eq. (13).
At this stage, it would be tempting to argue that, as a

consequence, entangled relativity may be a good candidate
to explain the relatively high masses of neutron stars
observed over the last decade [16], and which seem to
lead to a tension between astrophysical observations and
the union of general relativity and nuclear physics [17].
However, this is way too premature given that one has to

check first how the observables that are used to infer those
masses from observations are actually affected in entangled
relativity. For instance, one has to see how the Shapiro
delay is modified in entangled relativity with respect to
general relativity, and see how the inferred mass depends
on the adjustment of the data in the new framework of
entangled relativity. One has to note in particular that,
unlike in general relativity, the mass of a compact object—
defined in Eq. (13)—continues to change outside the
compact object due to the contribution of the scalar-field.
It continuously goes from m�—defined in Eq. (15)—to
MADM—defined in Eq. (14). This will affect observables
that are sensitive to the metric outside the compact object—
see Sec. IVG.

FIG. 3. Diagram of the mass m� of the compact object with
respect to its radius in both theories, for central densities between
100 and 8200 Mev=fm3.

FIG. 4. Diagram of the masses m� and MADM of the compact
object with respect to its radius in entangled relativity, for central
densities between 100 and 8200 Mev=fm3.

FIG. 2. Diagram of the radius of the compact object with
respect to its central density, for central densities between 100
and 8200 Mev=fm3.

FIG. 1. Diagram of the mass m� of the compact object with
respect to its central density, for central densities between 100
and 8200 Mev=fm3.
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Another interesting thing to point out is that, for a given
central density, there is not a big difference in terms of
radius between the predictions of general relativity and
entangled relativity, as one can see in Fig. 2. On the other
hand, for a given mass, the radius of high density (small
radius) objects in entangled relativity are always smaller
than in general relativity; whereas it is the opposite for low
density (large radius) objects.4

E. Scalar field behavior

One can see in Fig. 5 that the scalar field grows
monotonically from the center to infinity—where it reaches
its normalized value ϕ∞ ¼ 1. In both the cases that
lead to, e.g., M ¼ 1.25 M⊙—that is, the solutions with
400 MeV=fm3 and 4150 MeV=fm3 central densities—the
scalar field derivative reaches a maximum toward roughly

half the radius before monotonically decreasing to zero.
Since matter physics depends on this derivative—see for
instance Eq. (5)—it means that most of the effect of
the scalar field happens inside the compact object.
Nevertheless, the scalar field derivative is not null outside
the compact object, such that one can expect entangled
relativity to have a richer phenomenology with respect to
general relativity—because of the scalar field’s behavior
outside the compact object.

F. Metrics comparison

Most of the time, the mass of the compact object is
degenerate with respect to the value of its central density, as
one can see in Fig. 1. In general relativity, the specific value
of the central density for two solutions with the same mass
only plays a role with respect to the radius of the compact
object, as Birkhoff’s theorem implies that the external
metric ought to be the same for different solutions of an
object of a given mass. However, Birkhoff’s theorem no
longer holds in entangled relativity. Notably, unlike the
case of general relativity, the scalar product between the
time-time and space-space components of the metric out-
side a body is not a constant in entangled relativity. In
Fig. 6, we show the product of the metric’s components
g00grr of the two solutions of an object of mass M ¼
1.25 M⊙ for each theory. In general relativity, the central
density for this massM can either be around 550 MeV=fm3

or 2800 MeV=fm3, corresponding to a radius of 15.4 km or
9.3 km respectively; whereas in entangled relativity, it can
either be around 400 MeV=fm3 or 4150 MeV=fm3, corre-
sponding to a radius of 17.0 km or 8.3 km respectively.
As one can see, one has g00grr ¼ cst outside the compact

object in general relativity in each case, whereas it is no

FIG. 5. Scalar field and its derivative profiles for the two
solutions in entangled relativity with M ¼ 1.25 M⊙, with den-
sities 400 MeV=fm3 or 4150 MeV=fm3 (R� ¼ 17.0 or R� ¼
8.3 km respectively). The vertical lines mark the radius of the
solutions.

FIG. 6. Product of the metric’s components g00grr of the two
solutions of an object of massM ¼ 1.25 M⊙ in general relativity
and entangled relativity. The vertical lines mark the radius of the
solutions. In the parenthesis are displayed the central density for
each solution, in MeV=fm3.4resp. lhs and rhs of Fig. 3.
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longer the case in entangled relativity. In particular,
the denser the object, the more different is the metric’s
components with respect to general relativity. It is the
expected behavior, given that the scalar field is more
sourced for denser objects.
Since the metric’s components deviate from the one of

general relativity, one should expect the Shapiro delay to
be modified accordingly. In particular, we shall expect
that (what we shall call) the Shapiro potential—defined
here as equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr=g00

p
—should be modified with

respect to general relativity. However, we see in Fig. 7
that the Shapiro potential remains qualitatively the same in
entangled relativity.

G. Discussion on how to test the theory

The prediction of the mass and radius of neutron stars
is not enough in order to test the theory for two reasons.
First, those quantities depend significantly on the unknown
equation of state of neutron stars. As a consequence, it may
always be possible to tune the equation of state to recover
the observed radius and mass. Second, the mass is not an
observable, but is inferred from observables—such as the
differential Shapiro time delay. Hence, one has to readjust
the model parameters (such as the mass and the radius)
from observations within the new framework before being
able to say whether or not the theory explains the actual
data well. For instance, regarding the Shapiro delay,
because the metric outside the neutron star is not the
Schwarzschild metric, the differential Shapiro delay does
not follow the equation of general relativity that links the
effect to the mass of the spherical compact object.
Therefore, the mass of various neutron stars that have
been inferred by measuring the differential Shapiro delay

and assuming general relativity [18–20] are likely no
longer the best fit for entangled relativity. Unfortunately,
because the Birkhoff’s theorem is not valid in entangled
relativity, the differential Shapiro delay is not uniquely
defined with the mass of the source and the differential
distance of the light-ray to the source. For instance, one can
see in Fig. 6 that the outside metrics for two more or less
dense compact objects with the same mass are not the same
in entangled relativity—unlike what happens in general
relativity. This may complicate the inversion from the
observables to the model parameters in entangled relativity.
A potential way to test the theory would be to use

x-ray pulse profiles from NASA’s Neutron star Interior
Composition Explorer (NICER) [21], as it was recently
proposed in order to probe strong-field effects in scalar-
tensor theory [22–24]. In order to do so, one would have to
extend the present work to the rotating case, as well as to
consider more realistic equations of state. However, let us
stress again that the matter field equations are modified in
entangled relativity with respect to general relativity. This
may induce yet another complication in such a study.
Finally, let us note that unlike in the cases considered in
[22–24], the electromagnetic intensity is not conserved in
entangled relativity due to the nonminimal coupling
between the scalar degree of freedom and the electromag-
netic field in the action [4]. This additional effect will have
to be taken into account in order to correctly predict the
variety of x-ray pulse profiles in entangled relativity.
Obviously, another way to test the theory would be

through the observation of gravitational waves that have
been emitted during the fusion of neutron stars [25]—
although, again, the potential degeneracy with the unknown
neutron star equation of state might limit the constraining
power of such tests. This has yet to be explored.

V. CONCLUSION

We provided the first study of compact objects within
the framework of entangled relativity. Assuming a simple
polytropic equation of state and the conservation of the
rest-mass density, we showed that compact objects are
always heavier in entangled relativity than in general
relativity—for any given central density within the usual
range of neutron stars central densities, or for a given radius
of the resulting compact object. Because entangled rela-
tivity is parameter free at the classical level, the results
presented in the manuscript do not depend on any param-
eter. Nevertheless, they are still dependent on a perfect fluid
description of matter fluid, and on the assumption that the
rest-mass density is conserved—which is not a straightfor-
ward property in theories with a nonminimal coupling
between a scalar degree of freedom and matter fields, see
the Appendix. This would eventually have to be obtained
from first principles with an accurate description of the
microphysical properties of nuclear matter in neutron stars.
But this may turn out to be very demanding, notably

FIG. 7. Shapiro potential with respect to the radius for each
solution of mass M ¼ 1.25 M⊙ in both theories. The vertical
lines mark the radius of the solutions. In the parenthesis are
displayed the central density for each solution, in MeV=fm3.
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because of the modifications of the usual matter field
equations due to the nonminimal scalar-matter coupling in
the action Eq. (2).

APPENDIX: PERFECT FLUID LAGRANGIAN
AND CONSERVATION OF THE

REST-MASS DENSITY

In this section, we slightly modify a demonstration that
can already be found in [12]. Let us assume that the rest-
mass energy density is not conserved, such that

∇σðρ0uσÞ ¼ D; ðA1Þ

whereD is a scalar to be determined. Furthermore, one uses
the usual definition of the total energy density, given in
terms of the rest-mass energy density and pressure

ρ≡ ρ0

�
1 −

P
ρ0

þ
Z

dP
ρ0

�
: ðA2Þ

Injecting this definition into Eq. (A1), one gets

∇σðρuσÞ ¼
�
ρþ P
ρ0

�
D − P∇σuσ: ðA3Þ

Now, let us write the effective on-shell matter
Lagrangian as

Lm ¼ −αρþ βP; ðA4Þ

where α and β are merely constants that are used in order to
parametrize the three potential cases considered Lm ¼ −ρ,
P or T—respectively ðα ¼ 1; β ¼ 0Þ,ðα ¼ 0; β ¼ 1Þ or

ðα ¼ 1; β ¼ 3Þ. Taking the divergence of the perfect fluid
stress-energy tensor (8), one gets

∇σTμσ ¼ ðρþ PÞuσ∇σuμ þ ðgμσ þ uμuσÞ∇σP

þ uμ
�
ρþ P
ρ0

�
D: ðA5Þ

On the other side, the conservation equation (5), together
with Eq. (A4) and the perfect fluid stress-energy tensor (8)
leads to

∇σTμσ ¼ −ðρþ PÞ½gμσ þ uμuσ�∂σ ln
ffiffiffiffi
ϕ

p
þ ½ð1 − αÞρþ βP�gμσ∂σ ln

ffiffiffiffi
ϕ

p
: ðA6Þ

Multiplying by uμ the previous two equations and equating
them gives

D ¼ −
ρ0

ρþ P
½ð1 − αÞρþ βP�uσ∂σ ln

ffiffiffiffi
ϕ

p
: ðA7Þ

Hence, one has Dðα ¼ 1; β ¼ 0Þ ¼ 0 in Eq. (A1), which
corresponds to Lm ¼ −ρ in Eq. (A4). Therefore, the
conservation of the rest-mass energy density corresponds
to a fluid that is such that its on-shell Lagrangian is
Lm ¼ −ρ—which is the main assumption in this work.
However, note that D ¼ 0 when ∂σϕ ¼ 0. Therefore,

due to the intrinsic decoupling in Eq. (4) when Lm ¼ T,
entangled relativity also leads to the usual conservation of
energy (i.e., D ¼ 0) for Lm ¼ T. This is specific to
entangled relativity compared to other fðR;LmÞ theo-
ries [26].
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