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A Simpson-Visser spacetime has two non-negative parameters a and m and its metric is correspond with
(1) a Schwarzschild metric for a = 0 and m # 0, (ii) a regular black hole metric for a < 2m, (iii) a one-way
traversable wormhole metric for a = 2m, (vi) a two-way traversable wormhole metric for a > 2m, and
(v) an Ellis-Bronnikov wormhole metric for a # 0 and m = 0. The spacetime is one of the most useful
spacetimes for the purpose of comprehensively understanding gravitational lensing of light rays reflected
by a photon sphere of black holes and wormholes. We have investigated gravitational lensing in the
Simpson-Visser spacetime in a strong deflection limit in all the non-negative parameters of a and m. In a
case of a = 3m, two photon spheres and an antiphoton sphere at the throat degenerate into a marginally
unstable photon sphere. The deflection angle of the light rays reflected by the marginally unstable photon
sphere at the throat diverges nonlogarithmically in the strong deflection limit.
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I. INTRODUCTION

Recently, the detections of gravitational waves emitted
by binary black holes and of the shadow of a supermassive
black hole candidate at center of a giant elliptical galaxy
MS87 have been reported by the LIGO and VIRGO
Collaborations [1] and by Event Horizon Telescope
Collaboration [2], respectively. The phenomena in a strong
gravitational field near compact objects can be more
important in general relativity and astrophysics.

Static and spherically symmetric compact objects with a
strong gravitational field in general relativity have unstable
(stable) circular photon orbits called photon spheres (anti-
photon spheres) [3,4] and its property, such as the upper
bound of the radius [5] and the number [6], has been
studied. The relations between (anti)photon spheres and the
photon absorption cross section [7-9] quasinormal modes
[10-13], a centrifugal force and gyroscopic precession
[14—17], Bondi’s sonic horizon of a radial fluid [18-23],
stability of thin-shell wormholes [24,25], and an apparent
shape during a collapsing star to be a black hole [26-28]
have been investigated. Extensions and alternatives of the
(anti)photon spheres to low symmetry have also been
investigated [4,29-40] and there is concerned that stable
photon rings of compact objects lead to instability caused
by the slow decay of linear waves [41-43].

Gravitational lensing has been studied not only in a weak
gravitational field [44,45] but also in a strong gravitational
field. In 1931, Hagihara pointed out that light rays are
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strongly deflected by the photon sphere and that an
observer will see the light rays coming from all the
directions of our universe [46]. Infinite number of the
dim images of the light rays reflected by the photon sphere
have been revived by many authors [47-66]. The dim
images are named relativistic images in Ref. [53].

The deflection angle of a light scattered by the photon
sphere in a general asymptotically flat, static and spheri-
cally symmetric spacetime in a strong deflection limit
b — b, where b is the impact parameter of the light
and b,, is the critical impact parameter, is expressed by

a = —alog (%—1) +b
+0<<bl:n— 1>log (bl:n— 1>> (1.1)

where a@ and b are parameters, and its application to a lens
equation has been investigated by Bozza [55] and the
formalism has been extend by many authors [60,63-82].
Recently, deflection angles in the strong deflection limit
with some different forms from Eq. (1.1) such as a =
a,(b/by—1)"Y + b, +O((b/by, —1)"/¢), where a, and
b, are constant, have been reported in Refs. [65,83] when
an antiphoton sphere and a photon sphere degenerate to a
marginally unstable photon sphere. These recent studies on

Tn Ref. [55], the subleading term of Eq. (1.1) has been
considered as O(b — b,,), However, it should be read as
O((£ = 1)log (2 —1)) as discussed in Refs. [75,77.80].
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the strong deflection limit analysis show that Bozza’s
standard method [55] and alternative methods [80] do
not always work in the case of all parameters of spacetimes.
Thus, we have to choose carefully appropriate coordinates,
variable z, and methods of the analysis.

Wormholes are hypothetical objects permitted as a
solution of Einstein equations with nontrivial topology
[84,85] and they do not have an event horizon but they can
have photon spheres and antiphoton spheres. It is known
that any static and spherically symmetric wormhole vio-
lates energy conditions on a throat at least if we assume
general relativity [85]. Gravitational lensing of light rays
passing through the throat or passing near the photon
sphere [56,57,60,61,77,81,82,86-91], the visualizations
of wormholes [92,93], and shadows in an accretion gas
[94-96], wave optics [97], and gravitational waves [98] in
wormbhole spacetimes have been investigated.

Recently, Simpson and Visser have suggested a metric
which can correspond with a Schwarzschild metric (a = 0
and m # 0), a regular black hole metric (a < 2m), and a
wormhole metric (a > 2m) including an Ellis-Bronnikov
wormhole metric (a # 0 and m = 0), where a and m are
parameters of the spacetime [99]. Assuming general
relativity, the energy conditions must be violated as shown
in [99]. This is not surprising because the Simpson-Visser
metric includes the wormhole metric as a special case.
We notice that Simpson and Visser have disregarded the
photon sphere of the wormhole with a > 3m. Its gravita-
tional lensing in the strong deflection limit for a < 3m
[100] and the one under a weak-field approximation
[100,101] have been studied. New examples of spacetimes
similar to the Simpson-Visser spacetime have been pro-
posed in Ref. [102].

In this paper, we investigate the gravitational lensing in
the strong deflection limit in the Simpson-Visser spacetime
in all the cases of the non-negative parameters a and m. We
show that the observation of the black hole shadow [2] does
not reject the wormhole with a > 3m which is disregarded
in [99,100]. We also show that two photon spheres and one
antiphoton sphere degenerate into a marginally unstable
photon sphere at a wormhole throat for @ = 3m and that the
deflection angle in the strong deflection limit becomes

(1.2)

where ¢ and d are constant while it has the form of Eq. (1.1)
for a # 3m.

This paper is organized as follows. In Sec. I, we review
the Simpson-Visser spacetime and the deflection angle
of the light ray. In Secs. III and IV, we investigate the
deflection angle and observables in the strong deflection
limit. Gravitational lensing under a weak-field approxima-
tion is shortly reviewed in Sec. V, and this paper is

concluded in Sec. VI. In this paper we use the units in
which a light speed and Newton’s constant are unity.

II. SIMPSON-VISSER SPACETIME

The Simpson-Visser spacetime is described by a line
element, in Buchdahl coordinates [103,104], —c0 < f < o0,
—0<r<o0,0<9<7z and 0 < ¢ <2z,

ds> = —A(r)dt* + B(r)dr? + C(r)(d8* + sin’9d¢?),

(2.1)
where A(r), B(r), and C(r) are given by
I 2m
SO )
Crny=r+ad® (2.2)

and where m and a are non-negative parameters. It is (i) a
Schwarzschild metric if @ =0 and m # 0, (ii) a regular
black hole metric if a < 2m, (iii) a one-way traversable
wormhole metric with a null throat if a =2m, (vi) a
traversable wormhole metric with a two-way throat at
r=0 if a >2m, and (v) an Ellis-Bronnikov metric if
a # 0 and m = 0. On this paper, we use not only the radial

coordinate r but also a standard radial coordinate p =
v/ r* + a® which is related to the surface area 47p> of a two-
dimensional sphere. See the end of this section for the
standard radial coordinate p. There are time-translational
and axial Killing vectors #9, = 0, and ¢*0, = 0,, because
of stationarity and axisymmetric symmetry of the space-
time, respectively. Without loss of generality, we concen-
trate on 9 = /2 and r > 0.

The trajectory of the light ray is described by Kk, = 0,
where k* = x* is the wave number of the light and where
the dot denotes the differentiation with respect to an affine
parameter along the trajectory. The equation of the trajec-
tory of the light is written as

—A(r)#? + B(r)i* + C(r)p* = 0. (2.3)

We consider a light ray comes from spatial infinity, it is

reflected by a black hole or wormhole at the closest

distance r = r, it goes back to spatial infinity. At the

closest distance r = ry, Eq. (2.3) becomes

Aoi2 = Coih 24)

Here and hereafter, functions with subscript O denote the

functions at r = ry. From Eq. (2.4), an impact parameter b
is expressed by

L Copo _

b(ro) =— = i\/g,

E Ayl

(2.5)
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where E = —g, k" and L = g,,¢"k" are the conserved
energy and angular momentum of the light, respectively,
and they are constant along the trajectory.

Equation (2.3) is rewritten as

i?+V(r)=0, (2.6)
where V(r) is an effective potential defined as
L2F(r) L2
V(r)=- = - E? 2.7
"= "B0c0) ~ CmB =7
where F(r) is given by
C(r)
F(r)= -1 2.8
T 2.8

The light ray can exist in a region for V(r) < 0. The first,
second, third, and fourth derivatives of V(r) with respect to
the radial coordinate r are given by

_2L%r(Bm —Va* 4 r?)

Vl
(a® + r2)

, (2.9)

217
Ve 2 (e TR

(® + 1)t

—|—a2(3m— \/m)},

(2.10)

S [ (sm— Va1 )

(a®+r2)

+ a? (—15m +4va* + rz)},

V/Il —
(2.11)

and

61>
e [20a2r2 (9m —2Va® + r2)
(a* +r2)>

+204(=6m + v + 77

+a* (—ISm +4va* + rz)},

V//// —

(2.12)

respectively. We name a stable (unstable) circular light
orbit which satisfies V=V’ =0 and V" <0 (V' > 0)
photon sphere (antiphoton sphere). Let r, the radius of
the outermost circular light orbit which satisfies V , =
V1, = 0. Here and hereafter, functions with the subscript m
denotes the functions at the outermost circular light orbit.
The light ray with the impact parameter b < b,,, where

0.8 r r r r r
0.6
04 t

FIG. 1. A dimensionless effective potential V/E? of a light ray
with b = b,, as a function of the radial coordinate r. Solid (red),
dashed (green), long-dashed (cyan), dotted (magenta), dotted-
dashed (brown), double-dotted-dashed (blue), long-dashed-short-
dashed (black) curves denote V/E? for I (Schwarzschild metric
with ¢ = 0 and m = 1), II (regular black hole with ¢ = 1 and
m = 1), Il (one-way traversable wormhole with ¢ =2 and
m = 1), IV (traversable wormhole with a =2.5 and m = 1),
V (traversable wormhole with a marginally unstable photon
sphere with @ = 3 and m = 1), VI (traversable wormhole with
a =10 and m = 1), and VII (Ellis-Bronnikov wormhole metric
with @ = 1 and m = 0), respectively.

by, = b(ry) is the critical impact parameter, falls into the
black hole or the wormhole while the light ray with the
impact parameter b > b, is scattered by the black hole
or the wormhole. Figure 1 shows a dimensionless
effective potential V(r)/E? for the light ray with the critical
impact parameter b = b,,. In Refs. [99,100], a circular
light orbit at r = 0 has been disregarded. It is inside the
event horizon for ¢ < 2m while it is an antiphoton sphere
for 2m < a < 3m, which is the stable circular light orbit

with the impact parameter b = \/ﬁ, satisfies V(0) =

V/(0) =0 and V”(0) > 0 and it is coincident with the
wormhole throat at » = 0. However, we cannot disregard
the gravitational lensing by the circular light orbit at » = 0
for 3m < a since it becomes the (marginally unstable)
photon sphere as shown in Fig. 1. We concentrate on the
scattering case b > b,. We name rq — r, or b — b,
strong deflection limit.
A deflection angle a is obtained as, from Eq. (2.3),

a=1(ry) —r, (2.13)
where
c© dr
I(ry) =2 _—. 2.14
) / FCt) 214)

B(r)
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A. Standard radial coordinate p

By using the standard radial coordinate p = v/ r* + a?,
the line element (2.1) is rewritten as

ds*> = —A(p)dt> + B(p)dp* + C(p)(d9? + sin>dg?),

(2.15)
where A(p), B(p), and C(p) are given by
Alp)=1 _2_m’ (2.16)
P
B(p)E(l_z_m)l(l_ﬁ), (2.17)
Iz »”

Clp) = p*. (2.18)

The trajectory of a light ray is expressed as
PP+ V(p) =0, (2.19)

where V(p) is an effective potential for the radial coor-
dinate p defined as

. L’F(p
V(o)=L (2.20)
B(p)C(p)
The deflection angle a (2.13) is rewritten as
a=1(py) —m, (2.21)
where I(pg) is given by
oo dp
I o - -
(o) P F(p)Clp)
B(p)
(2.22)

III. DEFLECTION ANGLE IN THE STRONG
DEFLECTION LIMIT

In this section, we investigate the deflection angle in the
strong deflection limit ry - r, or b — b,. By using a
variable z defined by

:gtt(r)_gtt(rO)_ _
°= 1= g,(ro) a

(3.1)

I(ry) can be expressed by

Hr)e ' 2(a®+1r3)¥4dz
(ro)= > ) 7 3’
0 /12 +2a%z—a*7\/c\(ro)z+cy(rg)z2 —2mz
(3.2)
where
ci(rg) E2<\/a2+r%—3m), (3.3)
cy(rg) =6m —/a> + 1. (3.4)

A. Case of a < 3m

For a < 3m, from V,, = V,, = 0, we find a circular light

orbit at r,, = V9m? — a2 with b, = 3v/3m. From V/, < 0,
the circular light orbit forms a photon sphere. We express
I(ry) as

1

1) = [ Rem)femd (39
where R(z,ry) and f(z,ry) are defined by

a2 4 r2)3/4
R(z,r9) = @+ ) (3.6)
V1t +2a%z — a?7?
and
1
f(z.ro) = . (37

Vei(ro)z + ca(rg)? = 2mz?

respectively. ¢;(rg) and c,(rg) are expanded in power of
ro— Iy as

(o) = 2202 = ) £ Ol(ro = ra), (3
cr(rg) =3m~+ O(rg — ry). (3.9)

Thus, f(z,ry) diverges as z!

limit ry — ry.
We separate (ry) as

in the strong deflection

I(rg) = In(ro) + Ir(ro). (3.10)
where Ip(ry) is a divergent term defined by
1
()= [ ROrfp(zn)dz (1)

where fp(z, rg) is defined as

024033-4
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1
fo(z.ro) = (3.12)
Ver(ro)z + ex(rg)?
and R(0, ry) is given by
R(0, r,,) — _mv3m_ (3.13)
9m? — a*

The divergent term Ip(rg) yields

\/Cz ”o

+v/ei(r) + Cz(”o)_

V ci(ro)

Ip(ry) =

V Cz(ro)

(3.14)
From Egs. (3.8), (3.9) and

om?* — a?
3 (rO_ rm)z + 0((7‘0 _rm)3)’

b(ry) = by + - — 4

(3.15)

the divergent term Ip(ry) becomes in the strong deflection
limit b — b,

3m

b 3m
Iolro) =~ om? — a? log <E_ 1) * Om? — a? log6

b b
Ol (—-1)log{—-1]). 3.16
o Gom)eei)) e
We define a regular part Iz(ry) as
1
(o) = [ gtz o)tz (3.17)
where ¢(z, ry) defined by
9(z.r0) = R(z,19)f (2, 70) = R(0, ro)fp (2. 70)  (3.18)
and it is expanded in the power of ry — ry, as
=1 Ldlg
r(ro) :Z—‘ 0= Tm) / . (3.19)
=07 0'ro=rm
We are interested in the term of j = 0 given by
1
Ir(ro) = / 9(z, rm)dz, (3.20)
0

where ¢(z, ry,) is expressed by

) = | v3
e Vom? —a® +a?(2-z2)z2v/3 -2z
1 6m
—9m2 _a2:| 7 (321)

Therefore, the deflection angle in the strong deflection
limit has the form of Eq. (1.1) and the parameters @ and b
are obtained as

_ 3m
Vow-a 52
- 3m

Figure 2 shows @ and b as a function of a/m. Note that I is
obtained numerically in usual. In the Schwarzschild case of
a = 0, we obtain Iy = log [36(7 — 4\/§)} a=1,and b =
log [216(7 — 4v/3)] — x ~ —0.40023 analytically. They are
equivalent to a result in Refs. [47,54,55].

We notice that a given by Eq. (3.22) is the same as
Eq. (27) shown by Nascimento et al. [100]. Nascimento
et al. chose a variable z, = 1 — r,/r as shown Eq. (17) and
the variable z, gave a complicated form of b which is
calculated by Egs. (28) and (31) in Ref. [100]. We have
chosen the variable z instead of z, to get the simpler form
of b. We have confirmed our result by comparing Eq. (1.1)
with Eq. (2.13) in numerical as shown Fig. 3.

B. Case of a > 3m

In the case of a > 3m, the wormhole throat at r =0
correspond with the photon sphere with V < 0. Notice
rm = 0 and

4
2
=)
Eoor
S
-2
a
_4 z
Do
0 2 4 6 8 10

FIG. 2. The solid (red) and broken (green) curves denote a and
b, respectively, as a function of a/m.
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14 t Eq. (1.1)
Eq. (2.13) --oooe-
12
10 +
< 87
6 L
41
2+
0 L L L L L L L
0.9 0.95 1 1.0 1.1 1.15 12 125 1.3
b/ben
FIG. 3. The deflection angle in the case of a = 2m. A solid

(red) curve is calculated by the strong deflection limit (1.1) and a
dashed (green) curve is calculated by Eq. (2.13) in numerical.

a’

= 3.24
m=A\ s, (3.24)
due to V,, = Vi, = 0. We express I(rg) as
1
I(ry) = / S(ro)h(z, ro)dz, (3.25)
0
where S(ry) and h(z, ry) are defined by
S(ro) =2(a® + rg)** (3.26)
and
h(z, ro)
_ 1
Ves(ro)z+ ea(ro) 2 + ¢s(r0)2 + co(ro) e + 2ma’z>
(3.27)

respectively, and where c¢3(ry), c4(rg), ¢5(rg), and cg(rg)
are defined by

c3(ro) = rdey, (3.28)

cy(ro) = rdcy + 2a’cy, (3.29)
cs(rg) = =2r3m + 2a’c, — a’cy, (3.30)
ce(rg) = —4a’*m — a’c,. (3.31)

We can expand c3(ry) and c4(rg) in the power of
ro— I'm as

c3(ro) = 2(a = 3m)(ro - rm)2 + O((ro = "m>3)’ (3.32)

cy(ro) =4a*(a=3m)+ O(rg—ryp).  (3.33)

Thus, h(z,ry) diverges as z7!
limit ry — r,,.
In the case, we separate I(ry) as

in the strong deflection
1(rg) = I4(ro) + 1:(ro), (3.34)

where I,4(ry) is a divergent term and I,(r) is a regular part.
We define the divergent term I4(ry) as

()= [ Stz m)dz, (339)
where hy(z, rg) is defined by
ha(z.ro) = : (3.36)
Ves(ro)z + ea(ro)2?
and S(ry,) is
S(ry) = 2a%2. (3.37)

The divergent term is obtained as

Ly(ro) = 28(rm) log Vea(ro) + v/ es(r) + ea(ro) '
c4(ro) c3(ro)
(3.38)
From
b(FO) - bm +2\/E((la_—3;1m)3/2 (r() - rm)2 + 0((?‘() - rm>3)

(3.39)

and Egs. (3.32) and (3.33), we get the divergent term in the
strong deflection limit b — by, as

a b
I4(ro) = — a—3m10g<b__1>
m
[ a 4(a—3m)
+ a—3m10g a—2m
b b

We define the regular term I.(r) as

I,(ro) = Al k(z. ro)dz. (3.41)

where k(z, ry) is given by

024033-6
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k(z,ro) = S(ro)h(z, ro) — S(rm)ha(z, ro). (3.42)
We expand I,(ry) in the power of ry — ry, as
1 1 6"k
He =3 =) T8 de Ga)
j '1‘ 0lrg=ry
and the term of j = 0 is given by
1
I, :/ k(z, rm)dz, (3.44)
0
where k(z, rpp) is
2
k(z,ryg) = {
(%) V2 —2\/2a — 6m + (6m — a)z — 2mz>
1
- —] va (3.45)
va—3m] z

The deflection angle in the strong deflection limit has the
form of Eq. (1.1) and parameters @ and b are obtained as

a
7 , 3.46
“ a—3m ( )
- [ a 4(a —3m)
b= a—BmIOg - +1I,—n  (3.47)

and they have been shown in Fig. 2. We have confirmed
our result in numerical as shown Fig. 4. When a # 0 and
m = 0, the metric coincides with the Ellis-Bronnikov
wormhole metric which is a solution of Einstein and
scalar field equations [105-107]. Gravitational lensing
by the Ellis-Bronnikov wormhole has investigated eagerly

14 +

12 +

10

0.9 0.95 1 1.0 1.1 115 1.2 125 1.3
/b
FIG. 4. The deflection angle for a = 4m. A solid (red) curve is

calculated by the strong deflection limit (1.1) and a dashed
(green) curve is calculated by Eq. (2.13) in numerical.

[56,57,60,61,77,81,86-91,108—-125]. See Ref. [77] and
references therein for the details of the Ellis-Bronnikov
wormhole. In the case, we obtain I/, =log?2, and then
a=1and b =3log2 — 7 ~—1.06215. This is equivalent
to a result in Refs. [77,80,91].

C. Case of a=3m

In the case of @ = 3m, the photon sphere at r = r, = 0,
which is correspond with a wormhole throat, is marginally
unstable since the light ray with b, = 3/3m satisfies
Va=Vn=Via=Vr=0 and V) <0. From c3(ry),
c4(rg), c5(rp), and cg(ry) which are expanded in the power
of rg —ry as

ex(r0) =5 (ro =) + O((ro = ra)?). (3.48)
ca(ro) = 9m(ro — rm)? + O((ro — r)?).  (3.49)
cs(ro) = 54m® 4+ O(rg — ry). (3.50)
ce(ro) = =63m> + O(rg — ry), (3.51)

h(z. ry) is obtained as
h(z, ry) = : (3.52)

3m323/2\/6 =77 + 272

Thus, in the case, we define hy as not Eq. (3.36) but

V6

The divergent term /4 is given by

2V2
? z=0 - 2\/5

2V2

o
Pm P0=Pm

IdN

~

- 2V2. (3.54)

Notice that the position of the marginally unstable photon
sphere or the wormhole throat is given by p = p,, = 3m
and the variable z is expressed by

Po
z=1-— (3.55)
p
by using the standard radial coordinate p. From the relation

between the impact parameter » and the closest distance p

b—-by, = ;/n:):(p() _pm)2 + O((pO _pm)3)’ (356)

024033-7
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the divergent term /; is given by

95/431/4

bm
From
2V 3 1 6
k(z,rm) = ;C( —£>, (3.58)
2/ V6 =77+ 272 6

the regular term (3.44) is obtained as

il o) o

where K(x) and E(x) are complete elliptic integrals of the
first and second kinds defined by

H do
K(x) = /24 3.60
) 0 V1 —x*sin%0 (3.60)
and
E(x) = / P V1 = x2sin20do), (3.61)
0
respectively.

The parameters ¢ and d in the deflection angle in the
strong deflection limit with the form of Eq. (1.2) are
obtained as

¢ = 2%/431/4 ~3.13017, (3.62)

20 T T
Eq. (1.2)
Eq. (2.13) --------
15 :
s 10 t i
5 L
0
1 1.2 1.4 1.6 1.8 2
b/ b,
FIG. 5. The deflection angle for a = 3m. A solid (red) curve is

calculated by the strong deflection limit (1.2) and a dashed
(green) curve is calculated by Eq. (2.13) in numerical.

- 1 1
d=2V2|K|(+\/=| —-E[+\/=]) | -
~ —2.74546. (3.63)
We confirm the deflection angle in the strong deflection
limit by comparing Eq. (1.2) with Eq. (2.13). The error

of the deflection angles for a = # is small enough as
shown Fig. 5.

IV. OBSERVABLES IN THE STRONG
DEFLECTION LIMIT

We consider that a light ray, which is emitted by a source
S with a source angle ¢, is scattered by a lens L with
an deflection angle @, and that it is observed as an image /
with an image angle 6 by an observer O. The lens
configuration is shown in Fig. 6. We define an effective
deflection angle as

a=a mod2x (4.1)

and we assume ¢ < 1, a < 1,and 0 = b/Dg;, < 1, where
Dqp, is a distance between the observer and the lens.
A small angle lens equation [126] is obtained as

S I

Dis
Dos

Doy,

0)

FIG. 6. A lens configuration. A light ray emitted by a source S
at a source angle ¢ is scattered by a lens L with an effective
deflection angle @, and it is observed as an image / with an image
angle 0 by an observer O. b is the impact parameter of the light
ray. Dog, D1 g, and Do = Dgg — Dy g are distances between the
observer and the source, between the lens and the source, and
between the observer and the lens, respectively.
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Dysa = Dos(0 — ¢), (4.2)
where Dy g and Dgg = Dgp + Dy g are distances between
the lens and the source and between the observer and
the source, respectively. By using a winding number n
which is a non-negative integer, the deflection angle is
expressed by

(4.3)

a=a+ 2zxn.
We expand the deflection angle a(6) around 6 = 69 as

da

a@) =a@)+—  (0-60)+0(0-6)%). (44)
dfg_g
where 69 is defined by
a(60) = 2zn. (4.5)
A.a #3m

In the case of a # 3m, the deflection angle in the strong
deflection limit is written in

a(0) = —alog (g— 1> +b

[Se]

co(-1)re (-1)). o)

where 6, is the image angle of the photon sphere defined
by 0., = b,,/Do;. and we obtain

da a

— == 4.7
From Egs. (4.5) and (4.6), we get

00 = (1 4 )0, (4.8)

The effective deflection angle @ is given by, from
Eqgs. (4.3)-(4.5), (4.7), and (4.8),

_ a
a(en) = 0 b2 (62 - 9,,),

€

(4.9)

where 0 = 6, is a solution of the lens equation (4.2) with
the winding number n.

By substituting the effective deflection angle (4.9) into
the lens equation (4.2), the image angle is obtained as
B¢+ Dos (¢ — 68)

g ~ 00
(@) ~ 0y + aD.s

(4.10)

When the observer, the lens, and the source are aligned
in a line, ring images called relativistic Einstein rings are
formed. The ring angle 6, is

Ose " Dos

O, = 0,(0) = (1 - )6'9,. (4.11)

The difference of the image angles between the outermost
relativistic images and the photon sphere is obtained as

b=2x

$=0, -0~ —0% =0,¢7 . (4.12)
The magnification of the image is obtained as
0,do,
Hn =—1
¢ de
62 D 1 E—{%Jm l;—;‘;/m
~ o0 OS( j_e )e (413)
$paDys

The sum of the magnifications of the images from n =1
to oo is given by

- H%ODos(l + e%ﬂ + eé)eé

H Z iz
n=1 ¢aDLS(e4‘_’ - 1)

(4.14)

The ratio of the magnification of the outermost relativistic
image to the others

p (€F—1)(eF + )

r= ~ —
4x 21 b
ea + ea + ea

. (4.15)

[c]
n=2 Mn

where the magnification without the outermost relativistic
image is given by

T T b B— T
= N 0% Dos(e% + €5 + ei)e’s

n

H _ iz
n=2 ¢aDyg(e7 — 1)

(4.16)

B.a=3m

In the case of a = 3m, the deflection angle in the strong
deflection limit is given by

+d (4.17)

and it yields

da
do

¢ [(6° =
=———(2=1) . 4.18
0=6" 4900 (000 ) ( )

We obtain, from Eqgs. (4.5) and (4.17),
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e 1 ¢ ) 0 4.19
0= |1+ ) | Oeo- .

) o
The effective deflection angle is obtained as, from
Eqgs. (4.3)-(4.5), (4.18), and (4.19),

(2zn — d)®

(0,) =

(6°-0,). (4.20)

By substituting the effective deflection angle (4.20) into
the lens equation (4.2), the image angle and the relativistic
Einstein ring angle are given by

4¢*Dosbe (¢ — 69)

0 () ~ 6" ] 421
@ e )
and
42 Dogt)
Op, = [1— 057 |0 (4.22)
(2zn — d)’Dy 5

respectively. The difference of the image angles between
the outermost relativistic image and the photon sphere is

¢ 4

s=60, -0, = = | 0. (4.23)

2r—d

The magnification of the image is given by

4¢*Dos0% F

1, ~ 1€ P08V ln (4.24)
$Dys
where F, is defined as

1+ c _ 4

F,= %__d) . (4.25)

(2zn — d)?

The sum of magnifications of images from n = 1 and oo is
obtain as

0 4¢* D562, &
py ot OST N 4.26
2 e 2 (426)
where
> F,~184131 x 107, (4.27)
n=1

The ratio of the magnifications of the outermost relativistic
image to the other images is given by

R BV BN T YPT

(s (s
n=2Hn n=2"%"n

(4.28)

where
F ~1.69089 x 1075 (4.29)
and
> F, ~1.50420 x 1076, (4.30)
n=2

V. GRAVITATIONAL LENS UNDER A
WEAK-FIELD APPROXIMATION

Let us review gravitational lensing under a weak-field
approximation m/py < 1 and a/py < 1 in the standard
radial coordinate p briefly. In this section, we consider not
only the positive impact parameter b but also negative one.
Under the weak-field approximation, the line element given
by Eqgs. (2.15)—(2.18) becomes

2 2 2
ds® = —(1—m>dr2+ <1+m> <1+az>dp2
p p p

+ p2(d9? + sin29dy?) (5.1)

and the deflection angle a (2.21) is obtained as [100,101],

4
a~7m for m # 0 (5.2)
and
LT e m=0 (5.3)
o 4b2 or m = U. .

Here and hereafter, the upper sign is chosen for » > 0 and
the lower one is chosen for b < 0.

A.m#0

In the case of m # 0, by substituting the deflection angle
(5.3) into the lens equation (4.2) with Eq. (4.3), n = 0, and
b = 0D¢, reduced image angles 0= 0/0, are given by

A A 1 /4 -
) =3 (9 /i 14),

where ¢ = ¢/6g, is a reduced source angle and where g,
is the Einstein ring angle given by

4dmD
0o = 019(0) = \/ﬁ-

The magnifications of the image angles and its total
magnification are given by

(5.4)

(5.5)
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_ 0.0 d0.
Hio = — 7>

¢ dp

:Z 2:': ~
/P +4 ¢
B
(910 + 1)(910 +1)

(5.6)

and

Hotort = |,“+0| + |:“—0‘

R . P+ 4

\prea 0

respectively.

B.m=0

In the case of m = 0, from the deflection angle (5.3),
the lens equation (4.2), Eq. (4.3), n =0, and b = 0D¢,
the magnifications of the image angles 6., are
expressed by

o
(93i0 + 1)(93i0 +2)

Hio = (5.8)

and they can be calculated numerically by solving the
lens equation. The Einstein ring angle 6, is given by

2p 1/3
Oy = (M) '

5.9
4DosD?; (59)

TABLE L

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated gravitational lensing
in the strong deflection limit in the Simpson-Visser
spacetime. There are an antiphoton sphere on the throat
and two photon spheres in a side and the other side of the
throat for 2m < a < 3m while the antiphoton sphere and
the throat coincide with the photon spheres and a margin-
ally unstable photon sphere is formed at the throat for
a = 3m. The deflection angle in the strong deflection limit
has the form of Eq. (1.1) for a # 3m and the form of
Eq. (1.2) for a = 3m. In Appendix, we will show that the
Simpson-Visser spacetime for a = 3m violates the assump-
tions of the strong deflection limit analysis for the margin-
ally unstable photon sphere formed by the degeneracy of an
antiphoton sphere and a photon sphere in Ref. [65]. This is
similar to gravitational lensing in the strong deflection limit
in a Damour-Solodukhin wormhole spacetime [127] which
has been investigated in Ref. [64].

We concentrate on only positive impact parameters or
image angles in the strong deflection limit analysis.
However, the lens equation has negative solutions 6_, ~
—0, that represent negative image angles and every
negative image angle makes a pair with the positive image
angle. The diameter of the pair images is given by
0, —0_, ~20,. Its magnification u_, of the image with
6_, is obtained as p_, ~ —u,,.

The parameters a, b, ¢, and d of the deflection angles
are shown in Table I. We apply the strong deflection
limit analysis into the supermassive object with its mass
m=m,=4x10° My and its distant Do = 8 kpc at
center of our galaxy and the observables in the strong
deflection limit is shown in Table I. We notice that the size
of the photon sphere do not depend on the value of a/m for
a/m < 3. Therefore, we cannot distinguish the black hole

Parameters a, b, ¢, and d of the deflection angle in the strong deflection limit and observables for given a and m.

The diameters of the innermost ring 26, the outermost ring among rings scattered by the photon sphere 20g;, the difference of
the radii of the outermost ring and the innermost ring s = 6g; — 0, the magnification of the pair images of the outermost ring
Uit (@) ~ 2|uy| for the source angle ¢ = 1 arcsecond, and the ratio of the magnification of the outermost ring to the other rings
r=uy/Y %, p, are shown in a case of Dog = 16 kpc, Do = D g = 8 kpc. m, and a, are defined as m, = 4 x 10 Mg and a, =
4(2/7)"?(D sDor/Dos)" 43/t =72 %107 km, respectively. Notice that we have defined a, so that the Ellis wormhole has the same
diameter of the Einstein ring 26y, = 2.8618 arcsecond as the ones in the cases of m = m,,.

a 0 m, 1.5m, 2m, 2.5m, 3m, 4m, 20m, 100m,, a,
m m, m, m, m, m, m, m, m, m, 0

a 1.0000 1.0607 1.1547 1.3416 1.8091 2.0000 1.0847 1.0153 1.0000
b —0.40023 —-0.46474 -0.59088 —0.92738 —-2.1867 —1.6138 —1.0031 —-1.0499 —-1.06215
¢ 3.13017
d —2.74546
20, [uas] 51.580 51.580 51.580 51.580 51.580 51.580 56.153 209.27 1002.7 12028
20g; [pas] 51.645 51.669 51.714 51.819 52.058 52.325 57236  209.52 1003.5 12036
s [uas] 0.032276  0.044522 0.066996  0.11948  0.23887 0.37259 0.54142 0.12658 0.36596  3.8827
Hio(@) x 10V 1.6163 2.1029 2.9093 4.4747 6.6649 8.3751 15.024  23.709 350.71 45314
r 535.16 373.40 230.36 107.62 31.517 11.2412 22550  327.24  486.47 534.84
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from the wormhole if we assume Simpson-Visser metric
and if there is no light source in the other side of the
wormhole throat and if the mass, the distant, and the size of
the photon sphere 20, were given. It is very challenging
future work to distinguish the black hole from the worm-
hole by detecting the difference of the radii of the outermost
relativistic ring and the photon sphere s = 6| — 0.

We can estimate the value of a/m from the observation
of the photon sphere of the supermassive object at center
of the giant elliptical galaxy M87. Given mass m =
6.2 x 10° Mg and Do = 16.9 Mpc, and if we assume
that the diameter of the photon ring reported by Event
Horizon Telescope Collaboration [2] is equivalent to the
diameter of the photon sphere 26, = 42 pas, we obtain
a/m ~ 4.2. Thus, the observation of the black hole shadow
does not reject the wormhole with a/m > 3.0 which is
disregarded in Refs. [99,100].
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APPENDIX: COMPARISON
WITH TSUKAMOTO [65]

The deflection angle in the strong deflection limit can
be classified by D,, and its derivatives, where D(r) is
defined by

(A1)

A usual strong deflection limit analysis [55,80] for a photon
sphere works only under assumptions D, = 0 and D}, > 0

and a strong deflection limit analysis for a marginally
unstable photon sphere investigated in Ref. [65] works
under assumptions D,, = D}, =0 and D}, > 0.

In the cases of a < 3m and a > 3m, we obtain

D, =0, (A2)
2(a® — 9m?)
D, = - 0 A3
m 27m* ( )
and
D, =0, (A4)
2(a-3
p, = 2a=3m (A5)
a*(a—2m)
for the photon sphere at r=r, = V9m?> —a’> and

r=r, =0, respectively. Therefore, we can apply the
usual strong deflection limit analysis [55,80] to the cases.
On the other hand, in the case of a = 3m, we get

D, =D, = D! =0, (A6)

2
Dy = ot > 0,

(A7)
at the marginally unstable photon sphere at r = r, = 0.
Therefore, we cannot apply the strong deflection limit
analysis for the marginally unstable photon sphere in
Ref. [65] to the case of a = 3m since the assumption
D}, > 0 does not hold.
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