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The Jordan and Einstein frames are studied under the light of the Hamiltonian formalism. Dirac’s
constraint theory for Hamiltonian systems is applied to Brans-Dicke theory in the Jordan frame. In both the
Jordan and Einstein frames, Brans-Dicke theory has four secondary first class constraints and their
constraint algebra is closed. We show, contrary to what is generally believed, the Weyl (conformal)
transformation, between the two frames, is not a canonical transformation, in the sense of the Hamiltonian
formalism. This addresses quantum mechanical inequivalence as well. A canonical transformation is
shown.
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I. INTRODUCTION

It is fairly well known that we never measure in physics
absolute quantities, but ratios of absolute quantities. In fact
we need to define a unit of measurement u and determine
how many times this unit of measurement is contained in
the quantity we want to measure. For example suppose we
work in natural units where the mass has the dimension of
the inverse of length [1]. Be mp the proton mass respect to
unit of measurement mu and rescale the unit of measure-
ment by a factor λ−1, that is m̃u ¼ λ−1mu, this implies that
in this new unit of measurement m̃p ¼ λ−1mp and the ratio
[2] stays constant

m̃p

m̃u
¼ λ−1mp

λ−1mu
¼ mp

mu
: ð1Þ

This rescaling appears more intuitive repeating these
reasoning on length scales. In fact, in natural units, [1] the
above rescaling on the masses implies a length rescaling
dx̃μ ¼ λdxμ and on the metric coefficients g̃μν ¼ λ2gμν.
Therefore [1] invariance of the physical observables under
rescaling of units of measurements implies invariance
under Weyl rescaling of the metric tensor. This is at the
basis of the physical equivalence between the Jordan and
Einstein frames.
Nowadays the general procedure [2] is to start with a

scalar-tensor theory action [3] with the Gibbons-Hawking-
York (GHY) boundary term [4–6] in what is called Jordan
frame

S ¼
Z
M
dnx

ffiffiffiffiffiffi
−g

p �
fðϕÞR −

1

2
λðϕÞgμν∂μϕ∂νϕ −UðϕÞ

�

þ 2

Z
∂M

dn−1
ffiffiffi
h

p
fðϕÞK: ð2Þ

where fðϕÞ is a generic function of ϕ as well as λðϕÞ, K is
the trace of the extrinsic curvature. This theory represents a
generic scalar field nonminimally coupled to the gravita-
tional field. If we perform the variation with respect the
metric gμνðxÞ and set its variation δgμνðxÞ ¼ 0 on the
boundary, we get the equations of motion for it

fðϕÞ
�
Rμν −

1

2
gμνR

�
þ gμν□fðϕÞ −∇μ∇νfðϕÞ ¼ Tϕ

μν;

ð3Þ
where

Tϕ
μν ¼ 1

2

�
λðϕÞ∂μϕ∂νϕ −

1

2
gμνλðϕÞgαβ∂αϕ∂βϕ

�
: ð4Þ

Variations respect to ϕðxÞ and imposing these variations
are zero at the boundary δϕðxÞ ¼ 0 provide equation of
motion for the scalar field ϕðxÞ

f0ðϕÞRþ 1

2
λ0ðϕÞð∂ϕÞ2 þ λðϕÞ□ϕ −U0ðϕÞ ¼ 0: ð5Þ

In the literature one passes from the Jordan to the
Einstein frame [1,2] through a Weyl transformation of
the metric, above mentioned, which now, for convenience,
we choose to be*ggionti@specola.va
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g̃μν ¼ ð16πGfðϕÞÞ 2
n−2gμν; ð6Þ

g̃μν being the metric tensor in the Einstein frame. In the
Einstein frame the action (2) becomes

S ¼
Z
M
dnx

ffiffiffiffiffiffi
−g̃

p �
1

16πG
R̃ − AðϕÞg̃μν∂μϕ∂νϕ − VðϕÞ

�

þ 1

8πG

Z
∂M

dn−1
ffiffiffĩ
h

p
K̃; ð7Þ

where

AðϕÞ ¼ 1

16πG

�
λðϕÞ
2fðϕÞ þ

n − 1

n − 2

ðf0ðϕÞÞ2
f2ðϕÞ

�
;

VðϕÞ ¼ UðϕÞ
½16πGfðϕÞ� n

n−2
: ð8Þ

varying this equation respect to g̃μν we get Einstein
equations and varying respect to ϕ we get the equation
for ϕðxÞ. As is well known [1,2], if ðgμνðxÞ;ϕðxÞÞ is a
solution of the equations in the Jordan frame, then, by
construction, ðg̃μνðx;ϕÞ;ϕðxÞÞ is solution of the equations
in the Einstein frame. Therefore the two frames are
physically equivalent provided the scaling relations among
observables quantities in the two frames [1,2,7]. Recently
much work has been devoted to the study of Hamiltonian
equivalence between the two frames [8,9] as well as at
quantum equivalence [10–13]. In the following section we
will perform the Dirac’s constraint Hamiltonian analysis
[14,15](see also [16–20] for complementary cases) of
Brans-Dicke theory and we will continue with the same
analysis in the Einstein frame in order to confront and
contrast these results in the two frames.

II. HAMILTONIAN ANALYSIS
OF BRANS-DICKE THEORY

Brans-Dicke theory [21] is a particular case of (2) when
fðϕÞ ¼ ϕ and λðϕÞ ¼ ω

ϕ [3]:

S ¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
ϕ4R −

ω

ϕ
gμν∂μϕ∂νϕ −UðϕÞ

�

þ 2

Z
∂M

d3x
ffiffiffi
h

p
ϕK: ð9Þ

We implement the Arnowitt-Deser-Misner (ADM)-
decomposition [22], the space-time ðM; gÞ is M ¼ R × Σ
[15]; R is a one dimensional space, the time direction, Σ is a
three dimensional spacelike surface embedded in M. The
ADM metric tensor g has the form as in [15]. The ADM
decomposition of the trace of the Ricci tensor 4R is [23]

ffiffiffiffiffiffi
−g

p 4R ¼ N
ffiffiffi
h

p
ð3Rþ KijKij − K2Þ

− ð2K
ffiffiffi
h

p
Þ;0þ2fi;i; f

i ≡ ffiffiffi
h

p
ðKNi − hijN;jÞ;

ð10Þ
and involves terms which disappear, respectively, by the
introduction of the boundary term in (9) and assuming Σ’s
boundary compact. N ¼ Nðt; xÞ is the so called lapse
function and Ni ¼ Niðt; xÞ are the shift functions. The
ADM Lagrangian density LADM is,

LADM ¼
ffiffiffi
h

p �
Nϕðð3ÞRþ KijKij − K2Þ

−
ω

Nϕ
ðN2hijDiϕDjϕ − ð _ϕ − NiDiϕÞ2Þ

þ 2Kð _ϕ − NiDiϕÞ − NUðϕÞ þ 2hijDiNDjϕ

�
:

ð11Þ
The canonical momenta ðπ; πi; πij; πϕÞ associated to

ðN;Ni; hij;ϕÞ are then

π ¼ ∂LADM

∂ _N
≈ 0; πi ¼

∂LADM

∂ _Ni ≈ 0; πij ¼ ∂LADM

∂ _hij
¼ −

ffiffiffi
h

p �
ϕðKij −KhijÞ þ hij

N
ð _ϕ−NiDiϕÞ

�
;

πϕ ¼
∂LADM

∂ _ϕ ¼
ffiffiffi
h

p �
2Kþ 2ω

Nϕ
ð _ϕ−NiDiϕÞ

�
; ð12Þ

which show the momenta π and πi associated to the lapseN
and shifts Ni are primary constraints according to the
theory of Dirac’s constrained systems [14,15]. Once
we have defined the Legendre transformation (12) to pass
from velocities to momenta, we are able to define the
Hamiltonian density HADM knowing the Lagrangian
density LADM

HADM ¼ πij _hij þ πϕ _ϕ − LADM: ð13Þ

This definition holds on the constraint surface defined by
the Dirac’s primary constraints π ≈ 0 and πi ≈ 0 [14,15]
found above (12). Therefore the Hamiltonian density
HADM is (πh ≡ πijhij)

HADM ¼
ffiffiffi
h

p �
N

�
−ϕ3Rþ 1

ϕh

�
πijπij −

πh
2

2

��

þ Nω

ϕ
DiϕDiϕþ N2DiDiϕþ NVðϕÞ

þ 1

2hϕ

�
N

3þ 2ω

�
ðπh − ϕπϕÞ2

�

− 2NiDjπ
j
i þ NiDiϕπϕ; ð14Þ
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and can be written in the following form

HADM ¼ NHþ NiHi; ð15Þ

where the H is the Hamiltonian density constraint, and is
just the quantity in square parenthesis of (14) divided by N
and Hi is the momentum constraint

Hi ¼ −2Djπ
j
i þDiϕπϕ: ð16Þ

The total Hamiltonian HT [15] is at this point

HT ¼
Z

d3xðλπ þ λiπi þ NHþ NiHiÞ; ð17Þ

where λ ¼ λðt; xÞ and λiðt; xÞ are Lagrange multipliers. If
we indicate the canonical variables ðN;Ni; hij; π; πi; πijÞ
generically with ðQi;ΠiÞ the Poisson brackets between two
arbitrary function A and B of the canonical variables is

fA; Bg ¼
Z

d3y

�
δA

δQiðyÞ
δB

δΠiðyÞ
−

δA
δΠiðyÞ

δB
δQiðyÞ

�
: ð18Þ

Following [24], it is possible to show the momentum
constraints Hi are the generators of the space-diffeomor-
phisms on the three-dimensional spacelike surface Σ. The
constraint algebra among the momentum constraints, and
momentum constraints with Hamiltonian constraint can be
easily calculated [24] and provides the same results as for
Einstein geometrodynamics [24,25].
In fact, imposing the primary constraint π ≈ 0 and πi ≈ 0

be preserved on the dynamic, we get

_π ¼ fπ; HTg ¼ −H ≈ 0; ð19Þ

and

_πi ¼ fπi; HTg ¼ −Hi ≈ 0: ð20Þ

We are now in the position to calculate the preservation
of the secondary constraint along the dynamic. In doing this
we will follow Ref. [24] adapted to our case of the Brans-
Dicke theory. First we notice the following

�
hijðxÞ;

Z
d3yNlðyÞHlðyÞ

�
¼ LNhijðxÞ; ð21Þ

where LN is the Lie derivative along the three-dimensional
vector field N defined by the shifts functions Nl. In an
analogous way, but with a bit longer calculation [24]

�
πijðxÞ;

Z
d3yNlðyÞHlðyÞ

�
¼ LNπ

ijðxÞ: ð22Þ

We observe that

�
ϕðxÞ;

Z
NlðyÞHlðyÞd3y

�

¼ δ

δπϕðxÞ
Z

d3yπϕðyÞDiϕðyÞNiðyÞ

¼ NiðxÞDiϕðxÞ ¼ LNϕðxÞ; ð23Þ

while repeating the same reasoning on the momentum πϕ
conjugated to ϕ, we obtain

�
πϕðxÞ;

Z
NlðyÞHlðyÞd3y

�

¼ −
δ

δϕðxÞ
Z

d3yπϕðyÞDiϕðyÞNiðyÞ ¼DiðπϕðxÞNiðxÞÞ:

ð24Þ

The momenta calculated by the Legendre transformation
using the Lagrangian LADM are densities as well, as it is
immediate looking at (11) (12). Then πϕffiffi

h
p is a scalar

function. So

LNπϕðxÞ ¼ LN

� ffiffiffi
h

p �
πϕffiffiffi
h

p
��

¼ LNð
ffiffiffi
h

p
Þ πϕffiffiffi

h
p þ

ffiffiffi
h

p
LN

�
πϕffiffiffi
h

p
�

¼ πϕDiNi þ
ffiffiffi
h

p ∂i

�
πϕffiffiffi
h

p
�
Ni

¼ πϕ
1ffiffiffi
h

p ∂ið
ffiffiffi
h

p
NiÞ þ ∂iðπϕÞNi −

πϕ
2h

∂iðhÞNi

¼ πϕ∂iNi þ ∂iðπϕÞNi ¼ DiðπϕðxÞNiðxÞÞ; ð25Þ

therefore
R
d3xNlHl is the generator of space diffeomor-

phisms on the three surfaces Σ of the canonical variables
ðhij;ϕ; πij; πϕÞ, and any function Fðhij;ϕ; πij; πϕÞ of them,
in particular of the density functions H and Hi. Therefore
we have (following [24])

LNHi ¼
ffiffiffi
h

p
LN

Hiffiffiffi
h

p þHiDlNl

¼ Nl∂lHi þHl∂iNl þHl∂iNl; ð26Þ

which entitle us to write

�
Hi;

Z
NsðyÞHsðyÞd3y

�
¼ Nl∂lHi þHl∂iNl þHl∂iNl;

ð27Þ

and then the constraint algebra among the momenta
constraints
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fHiðxÞ;Hjðx0Þg ¼ Hiðx0Þ∂jδðx; x0Þ −HiðxÞ∂ 0
jδðx; x0Þ:

ð28Þ

As regard the Hamiltonian constraint H, we start from
the following

LNH ¼
�
H;

Z
NsðyÞHsðyÞd3y

�
; ð29Þ

and repeating the same reasoning above, we get

LNH ¼
ffiffiffi
h

p
LN

Hffiffiffi
h

p þ Hffiffiffi
h

p LN

ffiffiffi
h

p
¼ Nl∂lHþH∂iNi; ð30Þ

finally we can write

fHðxÞ;Hiðx0Þg ¼ −Hðx0Þ∂ 0
iδðx; x0Þ: ð31Þ

As usual, the calculation of the Poisson brackets of
Hamiltonian constraint is more involved.

�Z
d3xNðxÞHðxÞ;

Z
d3x0N0ðx0ÞHðx0Þ

�
: ð32Þ

Following [24], we observe that hij is present in H both
in algebraic and nonalgebraic way via its derivatives. Its
conjugate variable πij only in algebraic way. The same
thing happens for ϕ and πϕ. The algebraic-algebraic
variation contributes to the Poisson brackets (32), as regard
the couple ðhij; πijÞ, always zero as shown in [24], which
we report here for clarity [the same holds for ðϕ; πϕÞ],

δHðxÞ
δhijðyÞ

¼ fhijðxÞδðx; yÞ;
δHðxÞ
δπijðyÞ ¼ fπijðxÞδðx; yÞ;

ð33Þ

and then

Z
d3yðfhijðxÞδðx; yÞfπijðx0Þδðx0; yÞNðxÞN0ðx0Þ

− fπijðxÞδðx; yÞfhijðx0Þδðx0; yÞNðxÞN0ðx0ÞÞ ¼ 0: ð34Þ

The only nonzero terms of the Poisson brackets originate
by nonalgebraic variation of hij combined with the alge-
braic variation of πij and by the nonalgebraic variation of ϕ
with the algebraic variation of πϕ. The nonalgebraic
contribution to the Poisson brackets of the variation δhij
of hij is contained both in the term −N

ffiffiffi
h

p
ϕ3R, which can

be derived, easily, from Ref. [24]

−
Z

d3y
ffiffiffi
h

p
δhijððDiDjÞðNϕÞ − hijðDkDkÞðNϕÞÞ; ð35Þ

and in the term 2N
ffiffiffi
h

p
DiDiϕ (integrated by parts is

equivalent to −2
ffiffiffi
h

p
DiNDiϕ), that is

−2
Z

d3y
ffiffiffi
h

p
δhij

�
1

2
hijðDkNÞðDkϕÞ − ðDiNÞðDjϕÞ

�
:

ð36Þ

In a parallel manner, the nonalgebraic contribution to the
Poisson brackets of the variation δϕ of ϕ is contained in the
terms −N

ffiffiffi
h

p
ω
ϕDiϕDiϕ and −2N

ffiffiffi
h

p
DiDiϕ, that is

Z
d3y

ffiffiffi
h

p
δϕ

�
−
2ω

ϕ
ðDkNÞðDkϕÞ þ 2ðDkDkÞðNÞ

�
: ð37Þ

At this point, it is immediate to write

Z
d3y

δ
R
d3xNðxÞHðxÞ
δhijðyÞ

δ
R
d3x0N0ðx0ÞHðx0Þ

δπijðyÞ

¼ −
�Z

d3y½ðDiDjÞðNϕÞ − hijðDkDkÞðNϕÞ�N
0

ϕ

�
πij − hij

ð2þ 2ωÞπh þ ϕπϕ
ð2ωþ 3Þ

��

− 2

Z
d3y

�
1

2
hijðDkNÞðDkϕÞ − ðDiNÞðDjϕÞ

�
N0

ϕ

�
πij − hij

ð2þ 2ωÞπh þ ϕπϕ
ð2ωþ 3Þ

�
; ð38Þ

and

Z
d3y

δ
R
d3xNðxÞHðxÞ
δϕðyÞ

δ
R
d3x0N0ðx0ÞHðx0Þ

δπϕðyÞ
¼

Z
d3y

�
−
2ω

ϕ
ðDkNÞðDkϕÞ þ 2ðDkDkÞðNÞ

�
N0
�
−
ðπh − ϕπϕÞ
ð2ωþ 3Þ

�
: ð39Þ
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Grouping together all the terms, we get

�Z
d3xNðxÞHðxÞ;

Z
d3x0N0ðx0ÞHðx0Þ

�
¼ −

�Z
d3y½ðDiDjÞðNϕÞ − hijðDkDkÞðNϕÞ�N

0

ϕ

×

�
πij − hij

ð2þ 2ωÞπh þ ϕπϕ
ð2ωþ 3Þ

�
− N ↦ N0

�

þ
Z

d3y

�
−
2ω

ϕ
ðDkNÞðDkϕÞ þ 2ðDkDkÞðNÞ

�
N0
�
−
ðπh − ϕπϕÞ
ð2ωþ 3Þ

�
− N

↦ N0 − 2

Z
d3y

�
1

2
hijðDkNÞðDkϕÞ − ðDiNÞðDjϕÞ

�
N0

ϕ

×

�
πij − hij

ð2þ 2ωÞπh þ ϕπϕ
ð2ωþ 3Þ

�
− N ↦ N0: ð40Þ

Simplifying, the second member of the previous equation becomes

−
�Z

d3yðDiDjÞðNÞN0ð2πijÞ − N ↦ N0
�

þ
Z

d3yðDiDiÞðNÞN0
�ð2þ 2ωÞπh þ ϕπϕ

2ωþ 3
−
2ωπh þ 3ϕπϕ

2ωþ 3
− 2

πh − ϕπϕ
2ωþ 3

�
− N ↦ N0

þ
Z

d3yðDiNÞðDiϕÞN
0

ϕ

�
2ωðπh − ϕπϕÞ

2ωþ 3
þ 2ωπh þ 3ϕπϕ

2ωþ 3
− 2

2ωπh þ 3ϕπϕ
2ωþ 3

�
− N ↦ N0: ð41Þ

And then we have

�Z
d3xNðxÞHðxÞ;

Z
d3x0N0ðx0ÞHðx0Þ

�

¼
Z

d3yðNDiðN0Þ − N0DiðNÞÞHi; ð42Þ

equivalent to

fHðxÞ;Hðx0Þg ¼ HiðxÞ∂iδðx; x0Þ −Hiðx0Þ∂ 0
iδðx; x0Þ: ð43Þ

Interesting enough it is the same secondary first class
constraint algebra like pure Einstein geometrodynamics. As
extensively argued in [26,25], once matter source is
introduced with its own canonical variables, many different
inequivalent theory of gravity coupled with matter can
generate the same constraint algebra (28) (31) (43).

III. CANONICAL TRANSFORMATIONS

One notice, see for example [27,8], the transformation
(6) entails ADM metric in the Einstein frame

g̃ ¼ −ðÑ2 − ÑiÑiÞdt ⊗ dt

þ Ñiðdxi ⊗ dtþ dt ⊗ dxiÞ þ h̃ijdxi ⊗ dxj; ð44Þ

where

Ñ ¼ ð16πGfðϕÞÞ 1
n−2N; Ñi ¼ ð16πGfðϕÞÞ 2

n−2Ni;

h̃ij ¼ ð16πGfðϕÞÞ 2
n−2hij: ð45Þ

The scalar-tensor action (7) in the Einstein frame for
n ¼ 4 for Brans-Dicke in the particular case λðϕÞ ¼ 2ω

ϕ and

fðϕÞ ¼ ϕ reduces to Eq. (7) with AðϕÞ ¼ ðωþ3
2
Þ

16πGϕ2.

Applying the ADM decomposition in the Einstein frame
(44), we can derive the ADM Lagrangian density L̃ADM.
The canonical momenta in the Einstein frame are defined
through the Legendre transformation. Using Weyl (con-
formal) transformations [28], one can confront them with
the analogous quantities in the Jordan frame

π̃ij ¼ ∂L̃ADM

∂ _̃hij
¼ −

ffiffiffĩ
h

p

16πG
ðK̃ij − K̃h̃ijÞ ¼ πij

16πGϕ
;

π̃ϕ ¼ ∂L̃ADM

∂ _ϕ ¼
ffiffiffĩ
h

p
ðωþ 3

2
Þ

8πGÑϕ2
ð _ϕ − Ñi∂iϕÞ

¼ 1

ϕ
ðϕπϕ − πhÞ: ð46Þ

The canonical Hamiltonian density HADM is defined in
analogy to (13) (we pose ṼðϕÞ ¼ 16πGVðϕÞ)
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HADM ¼
ffiffiffĩ
h

p
Ñ

16πG

�
−3R̃þ ð16πGÞ2

h̃

�
π̃ijπ̃ij −

π̃h
2

2

�

þ ðωþ 3
2
Þ

ϕ2
∂iϕ∂iϕþ 64ðπGÞ2ϕ2

hðωþ 3
2
Þ π̃2ϕ þ ṼðϕÞ

�

− 2ÑiD̃jπ̃
j
i þ Ñi∂iϕπ̃ϕ: ð47Þ

TheHamiltonian constraintH is, in parallel to the previous
section, the quantity in square parenthesis divided by Ñ while
the momentum constraints Hi ¼ −2D̃jπ̃

j
i þ ∂iϕπ̃ϕ.

The Hamiltonian H and momentum Hi constraints are
first class constraints and behave like in standard Einstein
geometrodynamics [25].
We recall that in the Hamiltonian theory the transforma-

tion ðQiðq; pÞ; Piðq; pÞÞ between two sets of variables
ðqi; piÞ and ðQi; PiÞ is canonical if the “symplectic two
form” ω ¼ dqi ∧ dpi is invariant that is ω ¼ dQi ∧ dPi,
which is equivalent to say that the Poisson brackets fulfill the
following conditions

fQiðq; pÞ; Pjðq; pÞgq;p ¼ δij

fQiðq; pÞ; Qjðq; pÞgq;p ¼ fPiðq; pÞ; Pjðq; pÞgq;p ¼ 0:

ð48Þ

The transformations (45) (46), (cf. [8]), represent a
canonical, in Hamiltonian sense, change of variable. But
if we include the lapse N and shifts Ni, and their conjugate
momenta π and πi, this is not completely true (cf. [29])
since

fÑ; π̃ϕg¼
8πGNffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGϕ

p ≠0; and fÑi; π̃ϕg¼16πGNi≠0;

ð49Þ

where, obviously, the Poisson brackets are calculated in the
Jordan frame. Therefore, strictly speaking, it is not correct to
pass form the Jordan frame to the Einstein frame in order to
perform the constraint analysis of the Brans-Dicke theory as
it is usually done (cf. [27]). The right Hamiltonian canonical
transformations hold the lapse and the shifts Ñ� ¼ N and
Ñ�i ¼ Ni while hij and ϕ and their respective momenta πij

and πϕ transform according to the equations (45) and (46).
These transformations generate an anti-Newtonian gravity as
explained in [30]. The ADMHamiltonianHADM, in this new
set of variables, is

HADM ¼
ffiffiffĩ
h

p
Ñ�ðϕÞ12

ð16πGÞ12
�
−3R̃þ ð16πGÞ2

h̃

�
π̃ijπ̃ij −

π̃h
2

2

�

þ ðωþ 3
2
Þ

ϕ2
∂iϕ∂iϕþ 64ðπGÞ2ϕ2

hðωþ 3
2
Þ π̃2ϕ þ ṼðϕÞ

�

− 2Ñ�iD̃jπ̃
j
i þ Ñ�i∂iϕπ̃ϕ: ð50Þ

This theory is canonically equivalent to Brans-Dicke but
not equivalent to the Hamiltonian of Brans-Dicke theory in
the Einstein frame (48).
As a simple application, one can consider the high

symmetrical case of flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe with spatial curvature k ¼ 0

ds2 ¼ −N2ðtÞ þ a2ðtÞðdr2 þ r2dθ2 þ r2sin2θdφ2Þ: ð51Þ

We derive the Lagrangian function L of this minisuper-
space model by substituting this metric in the action (9)
(cf. [31])

L¼−
6a _a2

NðtÞϕðtÞ−
6a2 _a
NðtÞ

_ϕðtÞþ ωa3

NϕðtÞð
_ϕðtÞÞ2−Na3UðϕðtÞÞ:

ð52Þ

The “configuration” variables are the Lapse N ¼ NðtÞ,
the scale factor of the Universe aðtÞ of FLRW metric and
the field ϕ ¼ ϕðtÞ which now depends only on time t for
symmetry reasons. Given the minisuperspace Lagrangian
L, we can define the HamiltonianHADM in analogy to (13).
We start with the definition of the canonical momenta

π ¼ ∂L
∂ _N

≈ 0; πa ¼
∂L
∂ _a ¼ −

12a _a
NðtÞ ϕðtÞ −

6a2 _a
NðtÞ

_ϕðtÞ;

πϕ ¼ ∂L
∂ _ϕ ¼ −

6a2 _a
NðtÞ þ

2ωa3

NϕðtÞ
_ϕðtÞ; ð53Þ

and

HADM ¼ N

�
−

ωπ2a
12aϕð2ωþ 3Þ −

πaπϕ
2a2ð2ωþ 3Þ

×
ϕπ2ϕ

2a3ð2ωþ 3Þ þ a3UðϕÞ
�
; ð54Þ

where the Hamiltonian constraint H is just the quantity
under parenthesis. One can check that the following set of
transformations

Ñ� ¼ N; π̃� ¼ π; ã ¼ ð16πGϕÞ12a;

π̃a ¼
πa

16πGϕ
; ϕ ¼ ϕ; π̃ϕ ¼ 1

ϕ

�
ϕπϕ −

1

2
aπa

�
; ð55Þ

are canonical according to the definition (48). The ADM-
Hamiltonian in this new canonical variables is

HADM ¼ ã3Ñ�ϕ1
2

ð16πGÞ12
�
−
ð16πGÞ3ϕπ̃a

24ã4

þ ð16πGÞ2ϕ2π2ϕ
2ã6ð2ωþ 3Þ þ ṼðϕÞ

�
: ð56Þ
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This minisuperspace Hamiltonian has an overall multi-
plicative factor ðϕÞ12, as the Hamiltonian constraint in (50).
The set of transformations which differs from previous one
for Ñ ¼ ð16πGϕÞ12N and π̃ ¼ π

ð16πGϕÞ12
, analogous to the

transformation from the Jordan to the Einstein frame (45)
(46), is not canonical for the same reason as in (49).
If one wants to get rid of the variable N, and π, a method

is to perform a gauge fixing. For example, one fixes N ¼ 1
(cf. [31]) and treats it as a secondary Dirac’s constraint.
Performing Dirac’s constraint analysis [14], N and π are
eliminated by imposing strongly the secondary constraints
and substituting the Poisson’s brackets with the Dirac’s
brackets.

IV. CONCLUSIONS

We have introduced the action of a scalar tensor theory of
gravity with boundary terms and derived the equations of
motion both in the Jordan and Einstein frame. Motivated by
recent works on the quantum inequivalence between Jordan
and Einstein Frame [10,12,11], we have performed ADM-
Dirac’s constraint analysis of Brans-Dicke theory as a
particular case of scalar tensor theory. This Hamiltonian
analysis in the Jordan frame exhibits secondary first class
constraints, H and Hi, whose Poisson brackets close like
Einstein geometrodynamics [25], although the calculation
of the Poisson Brackets between Hamiltonian-Hamiltonian
constraints is more involved. The Weyl (conformal) trans-
formations from the Jordan to the Einstein frame result to
be not a Hamiltonian canonical transformation. Therefore,

strictly speaking, the procedure of making the constraint
analysis of the Brans-Dicke theory by passing from Jordan
to Einstein frame is not correct. Furthermore we are not
sure that solutions of the equations of motions, in the
Hamiltonian formalism, in the Jordan Frame are solution of
the equations of motion also in the Einstein frame. The
Legendre map is not a one to one transformation for
Dirac’s constrained systems. This is one of the reasons
of Hamiltonian in-equivalence between Jordan and
Einstein frame. We exhibit a canonical transformation
from Brans-Dicke to a theory of gravity with nonminimally
coupled matter, Brans-Dicke like. This fact addresses
quantum inequivalence as well. In Ref. [32], it is shown
Hamiltonian quantization in the minisuperspace case with
flat FLRW metric generates two physical inequivalent
solutions in the two frames. As regards the path integral
[10,11,13], it has been already mentioned in-equivalence
between the two frames. At level of pure speculations,
following Dicke’s reasoning of the physical equivalence
between the two frames, it could be possible, in order to
restore full physical equivalence also at Hamiltonian level,
to pursue the path of a redefinition of the Poisson brackets
like in noncommutative geometry [9].
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