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Canonical analysis of Brans-Dicke theory addresses Hamiltonian
inequivalence between the Jordan and Einstein frames
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The Jordan and Einstein frames are studied under the light of the Hamiltonian formalism. Dirac’s
constraint theory for Hamiltonian systems is applied to Brans-Dicke theory in the Jordan frame. In both the
Jordan and Einstein frames, Brans-Dicke theory has four secondary first class constraints and their
constraint algebra is closed. We show, contrary to what is generally believed, the Weyl (conformal)
transformation, between the two frames, is not a canonical transformation, in the sense of the Hamiltonian
formalism. This addresses quantum mechanical inequivalence as well. A canonical transformation is

shown.
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I. INTRODUCTION

It is fairly well known that we never measure in physics
absolute quantities, but ratios of absolute quantities. In fact
we need to define a unit of measurement u and determine
how many times this unit of measurement is contained in
the quantity we want to measure. For example suppose we
work in natural units where the mass has the dimension of
the inverse of length [1]. Be m,, the proton mass respect to
unit of measurement m, and rescale the unit of measure-
ment by a factor 47!, that is 7z, = A~'m,,, this implies that
in this new unit of measurement 712, = A 'm p» and the ratio
[2] stays constant

7l Alm, m
Ry Ay )
m, A7m, m,

This rescaling appears more intuitive repeating these
reasoning on length scales. In fact, in natural units, [1] the
above rescaling on the masses implies a length rescaling
dx* = Adx* and on the metric coefficients g,, = /lzgﬂ,,.
Therefore [1] invariance of the physical observables under
rescaling of units of measurements implies invariance
under Weyl rescaling of the metric tensor. This is at the
basis of the physical equivalence between the Jordan and
Einstein frames.

Nowadays the general procedure [2] is to start with a
scalar-tensor theory action [3] with the Gibbons-Hawking-
York (GHY) boundary term [4—6] in what is called Jordan
frame
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where f(¢) is a generic function of ¢ as well as A(¢), K is
the trace of the extrinsic curvature. This theory represents a
generic scalar field nonminimally coupled to the gravita-
tional field. If we perform the variation with respect the
metric g,,(x) and set its variation &g, (x) =0 on the
boundary, we get the equations of motion for it

1
f(¢) <Rw/ - 2g;wR> + g/wljf(¢) - Vuvyf(¢) - TZ)I/’

(3)

where

1

TZJL/ = 5 (l(fﬁ)au(f’aud’ - %g;w’l(qﬁ)gaﬂaaqsaﬁd’)' (4)

Variations respect to ¢(x) and imposing these variations
are zero at the boundary 5¢(x) = 0 provide equation of
motion for the scalar field ¢(x)

PR + 31 (8) 09 + A$)T - U () 0. (5)

In the literature one passes from the Jordan to the
Einstein frame [1,2] through a Weyl transformation of
the metric, above mentioned, which now, for convenience,
we choose to be
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G = (162Gf(¢))72g,,. (6)

Gy being the metric tensor in the Einstein frame. In the
Einstein frame the action (2) becomes

/ dnxf<mze A)7" 0,40, V<¢>>

I S
506 o, Wik, (7)
where
o1 Ap)  n=1(f'(¢)*
AP = 1606 <2f(¢) a2 ) )
B U(p)
V(g) = 672G/ (@)= (8)

varying this equation respect to §* we get FEinstein
equations and varying respect to ¢ we get the equation
for ¢(x). As is well known [1.,2], if (g,,(x).¢(x)) is a
solution of the equations in the Jordan frame, then, by
construction, (g, (x,¢),$(x)) is solution of the equations
in the Einstein frame. Therefore the two frames are
physically equivalent provided the scaling relations among
observables quantities in the two frames [1,2,7]. Recently
much work has been devoted to the study of Hamiltonian
equivalence between the two frames [8,9] as well as at
quantum equivalence [10-13]. In the following section we
will perform the Dirac’s constraint Hamiltonian analysis
[14,15](see also [16-20] for complementary cases) of
Brans-Dicke theory and we will continue with the same
analysis in the Einstein frame in order to confront and
contrast these results in the two frames.

II. HAMILTONIAN ANALYSIS
OF BRANS-DICKE THEORY

Brans-Dicke theory [21] is a particular case of (2) when

f(#) = ¢ and A(¢) = 7 [3]:

s= [ d4x¢_—g(¢4R i b~ U<¢>)
M ¢

+2 /a ’ BxVhgK. (9)

We implement the Arnowitt-Deser-Misner (ADM)-
decomposition [22], the space-time (M, g) is M = Rx X
[15]; R is a one dimensional space, the time direction, X is a
three dimensional spacelike surface embedded in M. The
ADM metric tensor g has the form as in [15]. The ADM
decomposition of the trace of the Ricci tensor 4R is [23]

V=R = NVh(R + K;;K" — K?)
— (2KVR).o+2f%: f'= VR(KN' = BN ),

(10)
and involves terms which disappear, respectively, by the
introduction of the boundary term in (9) and assuming X’s
boundary compact. N = N(¢,x) is the so called lapse
function and N’ = N'(t,x) are the shift functions. The
ADM Lagrangian density L£apy iS,

Loy = Vh h|Neg(© R+K K- K?)
- % (N2HID,pD i — ( — N'D;gh)?)
+2K(¢p — N'D;gp) — NU(¢p) + 2hD;ND 1 |

(11)

The canonical momenta (z,7;, 7", x,) associated to
(N.N',h;;, ) are then

Lo, _OLaou

ﬂ_l’jiaﬁADM
oN ~ T ’ h

oN' Oh;
=—Vh {4;(10’1 — Kh) +
o 0L Apm

%U(éﬁ - NfDmﬁ)],

:\/E<2K+]%,—Z(¢—NiDi¢)>v (12)

which show the momenta z and z; associated to the lapse N
and shifts N’ are primary constraints according to the
theory of Dirac’s constrained systems [14,15]. Once
we have defined the Legendre transformation (12) to pass
from velocities to momenta, we are able to define the
Hamiltonian density Hapy knowing the Lagrangian
density L ADM

Hapm = ”ij]:lij + ”(pf.ﬁ — Lapm- (13)

This definition holds on the constraint surface defined by
the Dirac’s primary constraints 7 ~ 0 and 7' =~ 0 [14,15]
found above (12). Therefore the Hamiltonian density
Hapwm 18 (7, = ”ijhij)

Haow = VAN [-gR + L (i, -T2
)

n %Di¢Di¢ +N2D'Dip + NV()

1 [ N
g <3 + 2w> (- ¢”¢)2}

—2N'D;x + N'Dypny. (14)
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and can be written in the following form

HADM :NH+NiHi, (15)
where the H is the Hamiltonian density constraint, and is
just the quantity in square parenthesis of (14) divided by N
and H; is the momentum constraint

H; = —2D;z! + Dipry. (16)
The total Hamiltonian H7 [15] is at this point
Hy = /d3x(/17r+/1i7ri+NH—|—NiH,»), (17)

where A = A(t, x) and A(t, x) are Lagrange multipliers. If
we indicate the canonical variables (N,N', h;;, 7, ;. z)
generically with (Q', T1;) the Poisson brackets between two
arbitrary function A and B of the canonical variables is

X 5B 6A OB
(5= [a <5Q’(y 5T1,00) 6n,-<y>5Qf<y>>' (18)

Following [24], it is possible to show the momentum
constraints H; are the generators of the space-diffeomor-
phisms on the three-dimensional spacelike surface . The
constraint algebra among the momentum constraints, and
momentum constraints with Hamiltonian constraint can be
easily calculated [24] and provides the same results as for
Einstein geometrodynamics [24,25].

In fact, imposing the primary constraint 7 ~ 0 and z; =~ 0
be preserved on the dynamic, we get

7= {n Hy} = ~Hw0, (19)

and
7.1'1‘ = {ﬂi’HT} = —le() (20)
We are now in the position to calculate the preservation
of the secondary constraint along the dynamic. In doing this

we will follow Ref. [24] adapted to our case of the Brans-
Dicke theory. First we notice the following

{hgto. [ @sworn } = exo. @1

where Ly is the Lie derivative along the three-dimensional
vector field N defined by the shifts functions N’. In an
analogous way, but with a bit longer calculation [24]

{#00. [ @m0} = o). 22)

We observe that

{ / N () H, d3}
[ DN )
= Lno(x),

while repeating the same reasoning on the momentum 7,
conjugated to ¢, we obtain

{%(X),/N’(y)Hz(y)fy}

= —%(x) / &y, (y)Dip(y)N'(y) =

57r¢ (x)

= N'(x)Digh(x) (23)

Dy (x)N'(x)).
(24)

The momenta calculated by the Legendre transformation
using the Lagrangian Lapy; are densities as well, as it is
immediate looking at (11) (12). Then \/’. is a scalar

function. So

)

= Ln(Vh) % + VLN (%)

n¢DN'+\fa (\/E)N’
Oi(VIN') + 0,(zy)N' =220, (n)N

ﬂ'¢ \/_
= myO;N' + 9;(my)N" = Di(my(x)N'(x)), (25)
therefore [ d®xN'H, is the generator of space diffeomor-
phisms on the three surfaces X of the canonical variables
(hij. ¢, 7", zp), and any function F(h;;, ¢, "/, z) of them,
in particular of the density functions H and H;. Therefore
we have (following [24])

LaH: = Vh LN L+ H,D,N!

Vh

— Nla[H[ + 'H;@iNl + H[aiNl, (26)

which entitle us to write
{Hi’ / N? (y )H

and then the constraint algebra among the momenta
constraints

d3y} = N'O/H; + H)9;N' + H,9;N',

(27)

024022-3



GABRIELE GIONTT S.J.

PHYS. REV. D 103, 024022 (2021)

{Hi(x), H;(x")} = H;(x')0;0(x, x') = H;(x)D;8(x, x').

(28)

As regard the Hamiltonian constraint H, we start from
the following

LyH = {H, / Ns(y)Hs(y)cﬁy}, (29)

and repeating the same reasoning above, we get

LaH = \/',cN cNf N'O/H +HO:N', (30)

Vi i

finally we can write
{H(x), Hi(x')} = —H(x')9;6(x, ). (31)

As usual, the calculation of the Poisson brackets of
Hamiltonian constraint is more involved.

{ / BN (xYH(), / d3x’N’(x’)H(x’)}. (32)

Following [24], we observe that &;; is present in H both
in algebraic and nonalgebraic way V1a its derivatives. Its
conjugate variable 7/ only in algebraic way. The same
thing happens for ¢ and z,. The algebraic-algebraic
variation contributes to the Poisson brackets (32), as regard
the couple (h;;, 7'/), always zero as shown in [24], which
we report here for clarity [the same holds for (¢, 7,)],

and then

/ By (f, ()06, ¥) 0 ()3, YIN (XN ()
— ()38, 3) i, () YNON'(F)) = 0. (34)

The only nonzero terms of the Poisson brackets originate
by nonalgebraic variation of /;; combined with the alge-

braic variation of 7'/ and by the nonalgebralc variation of ¢
with the algebraic variation of z,. The nonalgebraic
contribution to the Poisson brackets of the variation &h;;

of h is contained both in the term —N \/_ ¢3R which can
be denved, easily, from Ref. [24]

- / Pyv/hdh, (D'DV)(Np) - W (DD)(N)). (35

and in the term 2NvAhD;Di¢ (integrated by parts is
equivalent to —2v/AD;ND'¢), that is

2 [y 6hl,(1 W (DN (D) — (DW)(M)).
(36)

In a parallel manner, the nonalgebraic contribution to the
Poisson brackets of the variation §¢ of ¢ is contained in the

terms —N\/ﬁiDi(ﬁDi(ﬁ and —2N+v/hD;D'¢, that is

2w
55]:—5(();)) — fh,-,- ()C)5()C, y)’ g];l_-,[j(();)) _ fﬂij (x)é(x, y)’ / d3y\/ﬁ5¢ <_ E (DkN) (Dk¢) + 2(Dka)(N)) . (37)
(33) At this point, it is immediate to write
|
/d3y6fd3xN(x)H(x) § [dx'N'(x')H(x")
5hij(y) 5””()’)
— - ([ st D)) - DY) (g~ 0 )

=2 [ @y (G0N D) - N0 ) T (=g T (38)

and
3 O [BPINXHx)S [ EXN' (VHE) [ 5 (20 . . o (n—gmy)

K T (-5 wavwte +200gm v (-G 09

024022-4



CANONICAL ANALYSIS OF BRANS-DICKE THEORY ... PHYS. REV. D 103, 024022 (2021)

Grouping together all the terms, we get

{ [ eweom, [ exvwmen | =-( [ esopwe - woome)’y

« ﬂi._hi.(2+2w)ﬂh+¢ﬂ¢ —NI—)N/
o (2w +3)

+ [ @r(-2omo)+ 200 v (- B0

!

o v =2 [ @y (G - 0w

8 (24 20)7), + ¢pmy
ﬂ. . — ..
v 2w + 3)

> ~ N N. (40)

Simplifying, the second member of the previous equation becomes

A (24 2w)m, + ¢y 2wm), + 3¢y 7w — Py
d*y(D'D;)(N)N' — -2 —N— N
+/ y(D'Di)(N) ( 20+ 3 20+ 3 2013 ~
N 2w(n, — ¢pr,) 2wnm, +3¢ry _20n, + 3¢z,
dy(D;N)(Di¢p) — -2 —N— N. 41
+/ Y(DiN)( ¢)¢< wt3 | 2043 20+ 3 ~ (41)

And then we have N = (167;Gf(¢))ﬁN; N; = (16ﬂGf(¢))£Ni;

hij = (162G ())7=hy;. (45)
{ / BxN(x)H(x), / d3x’N’(x’)H(x’)} ! !
; i The scalar-tensor action (7) in the Einstein frame for
= [ &y(ND(N') = N'D'(N))H,, 42
/ o (V) (N))H, (42) n = 4 for Brans-Dicke in the particular case 1(¢) = 22 and

¢

f(@) = ¢ reduces to Eq. (7) with A(¢p) = 120;2/32'

Applying the ADM decomposition in the Einstein frame

equivalent to

{H(x), H(x)} = H(x)0;6(x, x') = H! (x')Di5(x, x'). (43)

Interesting enough it is the same secondary first class
constraint algebra like pure Einstein geometrodynamics. As
extensively argued in [26,25], once matter source is
introduced with its own canonical variables, many different
inequivalent theory of gravity coupled with matter can
generate the same constraint algebra (28) (31) (43).

III. CANONICAL TRANSFORMATIONS

One notice, see for example [27,8], the transformation
(6) entails ADM metric in the Einstein frame

+ Ny(dx' @ di + dt @ dx') + hy;dx' @ dx/,  (44)

where

(44), we can derive the ADM Lagrangian density £xpy.
The canonical momenta in the Einstein frame are defined
through the Legendre transformation. Using Weyl (con-
formal) transformations [28], one can confront them with
the analogous quantities in the Jordan frame

.. OLpm N i
] — — ij _ ijy —
T ok, 16aG (K= KhY) = T6xGg
aZ:ADM \/71(0) + %) . -
= - — - — Nla
=0y~ saahg 0N
1
=507 = 7). (46)

The canonical Hamiltonian density H ypy; is defined in
analogy to (13) (we pose V(¢) = 162GV (¢))

024022-5



GABRIELE GIONTT S.J.

PHYS. REV. D 103, 024022 (2021)

Hapm = [ 16ﬂG <7T Uity — %hz>
< +3) 64(zG)*¢” }
+ 0.0+ ——L " 72 + V(¢
e h(w +3) 7y + V(&)
—2N'D; + N'0pi,. (47)

The Hamiltonian constraint 7 is, in parallel to the previous
section, the quantity in square parenthesis divided by N while
the momentum constraints H; = —2D jz”r,’ + 0ipiy.

The Hamiltonian H and momentum H; constraints are
first class constraints and behave like in standard Einstein
geometrodynamics [25].

We recall that in the Hamiltonian theory the transforma-
tion (Q'(q,p),Pi(q,p)) between two sets of variables
(¢', p;) and (Q', P;) is canonical if the “symplectic two
form” @ = dq' A dp; is invariant that is @ = dQ' A dP;,
which is equivalent to say that the Poisson brackets fulfill the
following conditions

{Q (C] p) ( )}qp {Pi(q7p)’Pj(q’p)}q,p:

(48)

The transformations (45) (46), (cf. [8]), represent a
canonical, in Hamiltonian sense, change of variable. But
if we include the lapse N and shifts N’, and their conjugate
momenta 7 and 7z;, this is not completely true (cf. [29])
since

87GN

————+#0, and {N,,7,} =162GN,#0,
m# and {N,.7,} aGN,; #

{N.7,} =
(49)

where, obviously, the Poisson brackets are calculated in the
Jordan frame. Therefore, strictly speaking, it is not correct to
pass form the Jordan frame to the Einstein frame in order to
perform the constraint analysis of the Brans-Dicke theory as
it is usually done (cf. [27]). The right Hamiltonian canonical
transformations hold the lapse and the shifts N* = N and
N*' = N’ while h;; and ¢ and their respective momenta 'l
and 7, transform accordlng to the equations (45) and (46).
These transformations generate an anti-Newtonian gravity as
explained in [30]. The ADM Hamiltonian H spy;, in this new
set of variables, is

_ViN'( ?1[ s 4 167G)° ﬁiifn‘ﬁhz)
(167G): h 72

ADM —

(@43) 5 o 4GP, | -

— 2N*'D;i] + N*9,¢,. (50)

+

This theory is canonically equivalent to Brans-Dicke but
not equivalent to the Hamiltonian of Brans-Dicke theory in
the Einstein frame (48).

As a simple application, one can consider the high
symmetrical case of flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe with spatial curvature k = 0
ds> = —=N?(t) + a®(t)(dr* + r*d0* + r’sin’0dgp?).  (51)

We derive the Lagrangian function £ of this minisuper-
space model by substituting this metric in the action (9)
(ctf. [31])

6aa’ 6a*a - wa’

EZ——¢(I)—W¢(1)+W

NG —Na*U(¢(1)).

(52)

(1))

The “configuration” variables are the Lapse N = N(t),
the scale factor of the Universe a(¢) of FLRW metric and
the field ¢ = ¢(¢) which now depends only on time ¢ for
symmetry reasons. Given the minisuperspace Lagrangian
L, we can define the Hamiltonian H zpy; in analogy to (13).
We start with the definition of the canonical momenta

oL oL 12aa 6a’a -

8N 0’ Ty = % = - N(l) ¢(t) - N([) ¢(t)7

ocr _ 6a’a 2wa’ .
= oh N0 g >
and

Mo = N wn’ Ty
ADM (‘ 12a¢2w +3)  2d*(2w + 3)
X L”é + a3U(¢)> (54)
243 (20 + 3) ’

where the Hamiltonian constraint H is just the quantity
under parenthesis. One can check that the following set of
transformations

a = (162Ge)a;

Ty 1

1
ﬁa:16”G¢, b= ¢; 7f¢—$<¢”¢—50”a>’ (55)

are canonical according to the definition (48). The ADM-
Hamiltonian in this new canonical variables is

(167G):
242 2
(162G) "¢ my
23%(2w + 3)

(162G)3 ¢z,
24a*

). 6o

7-[ADM =
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This minisuperspace Hamiltonian has an overall multi-

plicative factor (¢)z, as the Hamiltonian constraint in (50).
The set of transformations which differs from previous one

for N = (162G¢)’N and # = —=
or (162G¢p):N and 7 oG

analogous to the

iy
transformation from the Jordan to the Einstein frame (45)
(46), is not canonical for the same reason as in (49).

If one wants to get rid of the variable N, and 7, a method
is to perform a gauge fixing. For example, one fixes N = 1
(cf. [31]) and treats it as a secondary Dirac’s constraint.
Performing Dirac’s constraint analysis [14], N and =z are
eliminated by imposing strongly the secondary constraints
and substituting the Poisson’s brackets with the Dirac’s
brackets.

IV. CONCLUSIONS

We have introduced the action of a scalar tensor theory of
gravity with boundary terms and derived the equations of
motion both in the Jordan and Einstein frame. Motivated by
recent works on the quantum inequivalence between Jordan
and Einstein Frame [10,12,11], we have performed ADM-
Dirac’s constraint analysis of Brans-Dicke theory as a
particular case of scalar tensor theory. This Hamiltonian
analysis in the Jordan frame exhibits secondary first class
constraints, H and H;, whose Poisson brackets close like
Einstein geometrodynamics [25], although the calculation
of the Poisson Brackets between Hamiltonian-Hamiltonian
constraints is more involved. The Weyl (conformal) trans-
formations from the Jordan to the Einstein frame result to
be not a Hamiltonian canonical transformation. Therefore,

strictly speaking, the procedure of making the constraint
analysis of the Brans-Dicke theory by passing from Jordan
to Einstein frame is not correct. Furthermore we are not
sure that solutions of the equations of motions, in the
Hamiltonian formalism, in the Jordan Frame are solution of
the equations of motion also in the Einstein frame. The
Legendre map is not a one to one transformation for
Dirac’s constrained systems. This is one of the reasons
of Hamiltonian in-equivalence between Jordan and
Einstein frame. We exhibit a canonical transformation
from Brans-Dicke to a theory of gravity with nonminimally
coupled matter, Brans-Dicke like. This fact addresses
quantum inequivalence as well. In Ref. [32], it is shown
Hamiltonian quantization in the minisuperspace case with
flat FLRW metric generates two physical inequivalent
solutions in the two frames. As regards the path integral
[10,11,13], it has been already mentioned in-equivalence
between the two frames. At level of pure speculations,
following Dicke’s reasoning of the physical equivalence
between the two frames, it could be possible, in order to
restore full physical equivalence also at Hamiltonian level,
to pursue the path of a redefinition of the Poisson brackets
like in noncommutative geometry [9].
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