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We show that light scalars can form quasibound states around binaries. In the nonrelativistic
regime, these states are formally described by the quantum-mechanical Schrödinger equation for a
one-electron heteronuclear diatomic molecule. We performed extensive numerical simulations of scalar
fields around black hole binaries, showing that a scalar structure condenses around the binary—we dub
these states “gravitational molecules.” We further show that these are well described by the perturbative,
nonrelativistic description.
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I. INTRODUCTION

More than one century after Einstein wrote down the
field equations of general relativity, black holes (BHs)
remain one of its most outstanding and intriguing predic-
tions. Among all of its features, the inherent simplicity of
stationary BHs is possibly the most remarkable one: just
two numbers (mass and angular momentum) suffice to fully
characterize these objects in vacuum [1–4].
This simplicity and fundamental nature has led to

analogies being drawn between BHs in general relativity
and the hydrogen atom in quantum mechanics. In fact, in
the context of fundamental fields in curved spacetime, BHs
do behave as atoms: massive scalar fields can form long-
lived states which are, in a certain limit, mathematically
described by the nonrelativistic Schrödinger equation for
the hydrogen atom [5–8]; such states have been dubbed
“gravitational atoms” [8].
The horizon of nonspinning BHs acts as a dissipative

surface, and hence these scalar states are in general “quasi-
bound.” When the host BH is spinning, these configura-
tions may grow via superradiance, extracting a substantial
fraction of the BH rotation energy to a bosonic “cloud” in
the BH exterior. The process slows the BH spin down and
releases monochromatic gravitational waves, giving rise to
very particular imprints. These states may form, through a
different process, as a consequence of boson star collisions
[9] or collisions between axion stars and BHs [10]. Thus,
BHs can be used as efficient particle detectors of ultralight
fields across a wide range of mass [5,11,12]. For fine-tuned
conditions, the states can become truly bound states, and
new BH solutions become possible [13].
Black hole binaries were recently shown to have char-

acteristic vibration modes [14]. Together with the above

discussion on gravitational atoms, one is led to ask whether
the program can be taken a step further: Does it make sense
to talk about “gravitational molecules”? Recent work using
effective field theory techniques indicates that quasibound
states of light scalars engulfing binaries could exist [15].
We explore this question further here both analytically
and numerically, and give a positive answer providing
(under certain mild conditions), an equivalence between
BH binaries and dihydrogen molecules.
We will study this issue by looking at the dynamics

of massive scalar fields in a BH binary (BHB) spacetime.
We thus consider a Klein-Gordon scalar, governed by the
equation

□ϕ ¼ μ2ϕ; ð1Þ

in a nontrivial background describing a binary—in par-
ticular, a BHB. We always neglect backreaction of the
field in the spacetime geometry, which in all but extreme
situations should be a very accurate approximation. Here,
the mass parameter μ is related to the boson massmB ¼ ℏμ.
We use geometric units G ¼ c ¼ 1 and a ð−þþþÞ

convention for the metric signature throughout.

II. NONRELATIVISTIC SCALARS
AROUND BINARIES

We first explore the problem in a nonrelativistic setting.
This means that the spacetime is taken to be weakly curved,
and could describe, for instance, two noncompact stars. It
also means that the rest mass of the scalar dominates over
its kinetic energy.
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A. Equivalence with dihydrogen molecules

In a nonrelativistic setting, the Klein-Gordon equation
around a single BH reduces to the Schrödinger equation
[5,7,8]. There is thus a quasibound state structure for scalar
fields around a BH which is identical to the spectrum of the
hydrogen atom. Let us now consider the nonrelativistic
limit of a scalar field around a BHB. To lowest order in a
post-Newtonian expansion, the geometry of a binary
(including that of a BHB, if we are not interested in
near-horizon phenomena) can be written in the form

ds2 ¼ −ð1þ 2ΦNÞdt2 þ ð1 − 2ΦNÞδijdxidxj; ð2Þ

where

ΦNðt; xiÞ ¼ −
M1

jr⃗ − r⃗1ðtÞj
−

M2

jr⃗ − r⃗2ðtÞj
ð3Þ

is Newton’s potential. Here,Mi (i ¼ 1, 2) are the individual
component masses, and r⃗iðtÞ are their position vectors.
There are higher-order terms which depend on the specifics
of the system, and which become relevant for relativistic
and strongly gravitating systems, but which do not affect
the physics we are interested in.
Using standard nonrelativistic limit procedures, we

define the complex field Ψðt; r⃗Þ as

ϕ ¼ 1ffiffiffiffiffi
2μ

p ðΨe−iμt þΨ�eiμtÞ: ð4Þ

Note that the Klein-Gordon field ϕ is assumed to be real
throughout this work. The field Ψ is, in general, complex.
Assuming that the binary components are widely separated
and that the angular frequency is so small that time-
dependent terms in the Newtonian potential can be
neglected, the Klein-Gordon equation (1) reduces to the
Schrödinger equation

i∂tΨðt; xiÞ ¼
�
−
∇2

2μ
þ μΦN

�
Ψðt; xiÞ; ð5Þ

where we neglect the subleading (for weakly gravitating,
nonrelativistic systems) terms

2

μ
∂tΦN∂tΨ; 2i∂tΦNΨ;

∂2
tΨ
2μ

;
2

μ
ΦN∇2Ψ:

We can also recover Eq. (5) via a Lagrangian approach [16].
Equation (5) is written in the lab frame, xμ ¼ ðt; r; θ;φÞ.

It will be useful to write it in the binary rest frame
(corotating frame), x̄μ ¼ ðt̄; r̄; θ̄; φ̄Þ, which we can do with
the usual coordinate transformation

∂t ¼ ∂ t̄ −Ω∂φ̄; ∂φ ¼ ∂φ̄; ð6Þ

where ∂φ̄ ¼ −ȳ∂ x̄ þ x̄∂ ȳ spans the orbital plane, and Ω is
the BHB orbital angular velocity. The frames are related
through

t̄ ¼ t; r̄ ¼ r; θ̄ ¼ θ; φ̄ ¼ φ −Ωt: ð7Þ

Denoting Ψ̄ðt̄; r̄; θ̄; φ̄Þ≡Ψðt̄; r̄; θ̄; φ̄þ Ωt̄Þ ¼ Ψðt; r; θ;φÞ,
and remembering that∇2 ¼ ∇̄2, we can then rewrite Eq. (5)
in the corotating frame as

i∂ t̄Ψ̄ðt̄; x̄iÞ ¼ H0Ψ̄ðt̄; x̄iÞ þ iΩ∂φ̄Ψ̄ðt̄; x̄iÞ; ð8Þ

where

H0 ¼ −
1

2μ
∇̄2 þ V; ð9Þ

and the (time-independent) potential V is given by

V ¼ −
μM1

r1
−
μM2

r2
; ð10Þ

where r1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̄ ∓ aÞ2 þ ȳ2 þ z̄2

p
is the distance to BH i,

and x̄ ¼ �a are the positions of each BH.
Equation (8) can be treated perturbatively when Ω is

small. Let us first consider the unperturbed system,

i∂ t̄Ψ̄ ¼ H0Ψ̄:

Since the potential V is not time dependent, we can
consider the energy eigenstate problem; writing

Ψ̄ðt̄; x̄iÞ ¼ ψ̄ðx̄iÞe−iĒ t̄; ð11Þ

we then have

Ē ψ̄ ¼ −
1

2μ
∇̄2ψ̄ þ Vψ̄ : ð12Þ

Introducing prolate spheroidal coordinates

x̄ðξ; η; χÞ ¼ aηξ;

ȳðξ; η; χÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sinðχÞ;

z̄ðξ; η; χÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
cosðχÞ; ð13Þ

where 2a is the separation between the two BHs on the x̄
axis and −1 ≤ η ≤ 1, 1 ≤ ξ, and 0 ≤ χ < 2π, Eq. (12)
becomes separable. Using the ansatz

ψ̄ðξ; η; χÞ ¼ eimχχffiffiffiffiffiffi
2π

p RðξÞSðηÞ ð14Þ

with mχ ¼ 0;�1;�2;…, we then find
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0 ¼ ∂ηðð1 − η2Þ∂ηSÞ

þ
�
A − 2μa2Ēη2 þ 2aμΔαηþ m2

χ

η2 − 1

�
S; ð15aÞ

0 ¼ ∂ξððξ2 − 1Þ∂ξRÞ

þ
�
−A −

m2
χ

ξ2 − 1
þ 2αμaξþ 2μa2Ēξ2

�
R; ð15bÞ

where we define

αi ¼ Miμ; α ¼ α1 þ α2; Δα ¼ α1 − α2:

Here, A is a separation constant. Ē and A are labeled by
three integers mξ, mη, mχ , characterizing the properties of
the solutions of the coupled system. We will focus on
bound-state solutions, for which Ē < 0.
It is then easily seen that this gravitational problem

is completely equivalent to the quantum-mechanical
Schrödinger equation for the electronic energy of a one-
electron heteronuclear diatomic molecule. In particular, if
we identify Z1 þ Z2 ¼ μα, Z2 − Z1 ¼ μΔα, then the equa-
tions above are mathematically equivalent to the quantum-
mechanical problem (in atomic units), where the nuclei
have atomic numbers Zi each and are separated by a fixed
distance D≡ 2a [17–21]. In particular, this system also
describes the ionized dihydrogen molecule [17,18]. We
thus have a formal equivalence between two similar
systems, that of a molecule governed by electromagnetism
and a simple binary system in a Newtonian setting. We will
see below that the inclusion of full general-relativistic
effects alters this picture only slightly.
Equations (15a) and (15b) are of spheroidal type. The

first is an “angular”-type scalar spheroidal equation
[21,22], and it is coupled to the second (radial) equation
through the (unknown) energy Ē and separation constant A.
We have solved this system to find the characteristic
energies Ē with two different methods. We use direct
integration of the ordinary differential equations, shooting
to the energy; in addition, we use a high-accuracy con-
tinued fraction approach to solve the same problem [21].
Our numerical results for selected values of the separation
are shown in Table I.

B. The single black hole limit

At zero separation, we are effectively dealing with one
single BH, for which the energy levels are known to high
precision. In spherical polar coordinates ðr̄; θ̄; φ̄Þ, the
eigenfunction is

ψ̄ ¼ e−iĒ t̄γlYm
l ðθ̄; φ̄Þe−γ=2L2lþ1

n ðγÞ; ð16Þ

γ ≡ 2Mμ2r̄
lþ nþ 1

; ð17Þ

with Ym
l being the scalar spherical harmonics and L2lþ1

n a
generalized Laguerre polynomial (it is a polynomial of
order n in its argument). Note that M ¼ M1 þM2 is the
BHB mass. With these definitions and conventions, the
energy eigenvalue is

Ē ¼ −
μα2

2ðlþ nþ 1Þ2 ð18Þ

up to Oðα3Þ. Higher-order expansions in α can be calcu-
lated using well-known techniques and are shown in
Ref. [8], with a different state label. Notice that we follow
the state labeling of Ref. [5]. The scalar profile of mode
ðn;l; mÞ decays spatially as rlþne−γ=2, and the angular
profile is dictated by the corresponding spherical harmonic.
The spatial extent of the scalar configuration is defined by
the exponential decay, and is of order S ∼ 1=ðMμ2Þ.
Note that the prolate coordinates [Eq. (13)] are also

given by

ξ ¼ r1 þ r2
2a

; η ¼ r1 − r2
2a

: ð19Þ

Defining spherical coordinates such that

x̄ ¼ r̄ cos θ̄;

ȳ ¼ r̄ sin θ̄ sin φ̄;

z̄ ¼ r̄ sin θ̄ cos φ̄;

one finds, when a → 0,

ξ →
r̄
a
; η → cos θ̄; χ ¼ φ̄:

The relation between quantum numbers is then, in this
limit [23],

TABLE I. Eigenvalues for equal-mass binaries corresponding
to α ¼ 0.2, and to two different binary separations 2a ¼ 10M;
60M. The energy Ē and angular separation A are labeled by three
integers ðmξ; mη; mχÞ in a manner analogous to the eigenvalues of
the hydrogen atom in quantum mechanics.

a ¼ 5M a ¼ 30M

ðmξ; mη; mχÞ A 102 × ĒM A 102 × ĒM

(0, 0, 0) −0.0129 −0.386 −0.342 −0.272
(1, 0, 0) −0.00327 −0.0981 −0.0993 −0.0817
(2, 0, 0) −0.00146 −0.0439 −0.0468 −0.0387
(0, 2, 0) 5.998 −0.0445 5.915 −0.0453
(1, 2, 0) 5.999 −0.0250 5.952 −0.0254
(2, 2, 0) 5.999 −0.0160 5.970 −0.0162
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mξ ¼ n; mη ¼ l − jmj; mχ ¼ m: ð20Þ

For small separations aμ, our results—shown in
Table I—for the fundamental (n ¼ 0) mode are compatible
with [up to terms of order Oða3μ3Þ]

Ē ¼ −
μα2

2ðlþ 1Þ2

×

�
1þ 4a2μ2ðlðlþ 1Þ − 3m2

χÞðα2 − Δα2Þ
lðlþ 1Þ2ð2l − 1Þð2lþ 1Þð2lþ 3Þ

�
: ð21Þ

This analytic expansion was derived by Bethe, and in
subsequent analytical work for the dihydrogen molecule
and generalizations thereof [19,20,23–26]. Our own
numerical results in the limit of small binary separation
are in perfect agreement with such an expression.
We note that for our numerical simulations, shown in

Sec. IV, we will use a frame rotated by 90 degrees, which
therefore superposes different m states. In addition, and
more importantly, at finite separation a, we can no longer
use Eq. (20): a given state in the ðmξ; mη; mχÞ basis
involves, generically, a superposition of all modes in a
spherical harmonic decomposition, such as that of Sec. IV.

C. Relation with classical closed orbits

Particle analogies of wave equations often play an
important role in several physical phenomena. In particular,
a lot of BH physics described by wave equations have
particle descriptions, which helps us to understand the
system from a different point of view. For example, BH
quasinormal modes (QNMs) can be related to closed null
orbits around the BH based on the WKB approximation,
where the QNM frequencies can be estimated from the
orbital periods [27]. Conversely, the existence of closed
null orbits around relativistic objects may hint at the
possibility of the existence of QNMs [14].
We will therefore study the particle analog of the system

we have been considering of a massive scalar field around a

BHB. As we will now see, this particle description can be
derived from the WKB approximation of Schrödinger’s
equation and can be applied to states around a general
separable spacetime.
In quantum mechanics, it is well known that the first

order of the WKB approximation corresponds to the
Hamilton-Jacobi equation for a classical particle, and the
energy spectrum can be related to the particle motion
through the Bohr-Sommerfeld condition [28]1

I
pkdqk ¼ 2πnk; ð22Þ

where qk and pk are the canonical coordinates and nk is an
integer. The integral is performed over a closed classical
orbit which is described by the corresponding Hamilton-
Jacobi equation. Since this is derived from the WKB
approximation, we can use this relation in the large-nk
limit to estimate the frequency of the bound states of
Sec. II A.
Furthermore, from the classically allowed regions of the

Hamilton-Jacobi equation, we can have an idea about the
spatial profile of the wave function. Since, as shown in
the previous subsection, our system can be described by
Schrödinger’s equation, we can apply these arguments to
get the relation between (truly) bound states and closed
orbits of a massive particle.2

Let us then consider the classical motion under Newton’s
potential [Eq. (10)], which corresponds to the motion of a
massive particle (of mass μ) around a BHB in the binary
rest frame. The Lagrangian for the particle is

Lðx̄iðt̄Þ; ∂tx̄iðt̄ÞÞ ¼
μ

2
ð∂ t̄x̄ðt̄Þ2 þ ∂ t̄ȳðt̄Þ2 þ ∂ t̄z̄ðt̄Þ2Þ − V;

where ðx̄ðt̄Þ, ȳðt̄Þ, z̄ðt̄ÞÞ are the particle’s coordinates.
Using the coordinates ðξ; η; χÞ, the Hamilton-Jacobi equa-
tion reads

2μa2∂ t̄Sþ ðξ2 − 1Þð∂ξSÞ2 þ ð1 − η2Þð∂ηSÞ2 − 2μ2a½ðM1 þM2Þξþ ðM1 −M2Þη�
ðξ − ηÞðξþ ηÞ þ ð∂χSÞ2

ð1 − η2Þðξ2 − 1Þ ¼ 0; ð23Þ

where Sðt̄; ξ; η; χÞ is Hamilton’s principal function. In these
coordinates, the Hamilton-Jacobi equation is separable; we
thus write

Sðt̄; ξ; η; χÞ ¼ SξðξÞ þ SηðηÞ þmχχ − Ē t̄;

and after substituting into Eq. (23), we obtain

ðS0ηÞ2 ¼
2a2μ
1 − η2

�
C0 − Ēη2 þ Δα

a
η −

m2
χ

2a2μ
1

1 − η2

�
;

ðS0ξÞ2 ¼
2a2μ
ξ2 − 1

�
−C0 þ Ēξ2 þ α

a
ξ −

m2
χ

2a2μ
1

ξ2 − 1

�
; ð24Þ

1Strictly speaking, theBohr-Sommerfeld condition is
H
pkdqk ¼

2πðnk þ 1
2
Þ; however, since we are only interested in its large-nk

limit, we have neglected the 1
2
term in Eq. (22).

2These are actual bound states, because we are using a
Newtonian approximation, and horizons are not present.
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where C0 is a separation constant. Comparing with
Eq. (15), we see that 2a2μC0 corresponds to A. For classical
motion, the right-hand side of Eq. (24) must be positive,
and the parameter space where this happens corresponds to
the classically allowed region. The topology of this region
can change depending on the parameters; for simplicity, we
will focus on equal-mass binaries (Δα ¼ 0) and on bound
states around the binary (Ē < 0) with mχ ¼ 0.
Considering first the C0 > 0 case, we see from Eq. (24)

that η is unconstrained (−1 ≤ η ≤ 1), and the allowed
region for ξ is determined from

jĒjξ2 − α

a
ξþ C0 < 0: ð25Þ

When jĒj − α
a þ C0 < 0, the allowed region for ξ is

ξ ∈ ½1; ξþ�, and when jĒj − α
a þ C0 > 0, the allowed region

is ξ ∈ ½ξ−; ξþ�. Here, ξ� are solutions of the equation
jĒjξ2 − α

a ξþ C0 ¼ 0:

ξ� ¼ 1

jĒj

0
B@ α

2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2

4a2
− jĒjC0

s 1
CA: ð26Þ

Therefore, when C0 > 0, the particle motion is an orbit
around the binary (see the first and second panels in Fig. 1).
We now focus on the C0 < 0 case. The allowed region

for η is η ∈
h
−1;−

ffiffiffiffiffiffi
jC0j
jĒj

q i
∪
h ffiffiffiffiffiffi

jC0j
jĒj

q
; 1
i

for jC0j < jĒj.
Existence of solutions to Eq. (25) then implies that
jĒj − α

a − jC0j < 0, and the corresponding allowed region
for ξ is then ½1; ξþ� (see the third panel in Fig. 1). In this
case, the motion is an orbit around each individual BH.
Since the WKB approximation is valid only in the

high-frequency limit, we cannot easily apply this classical
picture to the states from the previous subsection. We can,

however, see that there are two distinct profiles for these
states: one corresponding to configurations bound to each
individual BH, and another corresponding to a configura-
tion bound to the binary as a whole.
In order to compare the particle picture to the states of the

previous subsection, let us discuss the spectrum of these
states using the Bohr-Sommerfeld condition [Eq. (22)].
From this condition we immediately see that mχ must be
the integer nχ, and we further get

Z
ηþ

η−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2μ
1− η2

�
C0− Ēη2þΔα

a
η−

m2
χ

2a2μ
1

1− η2

�s
dη¼ 2πnη;

ð27aÞ

Z
ξþ

ξ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2μ
ξ2 − 1

�
−C0 þ Ēξ2 þ α

a
ξ−

m2
χ

2a2μ
1

ξ2 − 1

�s
dξ¼ 2πnξ;

ð27bÞ

where nξ and nη are integers, and the integration limits η�
and ξ� are the roots of the expressions inside each square
root. Since Eqs. (27a) and (27b) cannot be integrated
analytically, let us consider the hydrogen atom limit
(a → 0) by fixing l2 ¼ 2a2μC0 and r ¼ aξ in the equal-
mass case (Δα ¼ 0). We obtain the spectrum

l − jmχ j ¼ nη;

−α
ffiffiffiffiffiffiffiffiffi
μ

2jĒj
r

− l ¼ nξ:

These expressions are in good agreement with the spectrum
of the hydrogen atom in the large-nη and large-nξ limit,
confirming the validity of this particle picture.

FIG. 1. Typical shape of the classically allowed region for a massive particle with mχ ¼ 0 around an equal-mass BHB. Black circles
denote the BHs. The first panel shows the allowed region for C0 > 0 and jĒj − α=aþ C0 < 0, and the second panel shows the allowed
region for C0 > 0 and jĒj − α=aþ C0 > 0. These describe orbits around the binary. The third panel stands for C0 < 0 and
jĒj − α=aþ C0 < 0, and describes orbits around each individual BH.
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D. Corrections induced by orbital motion

Having solved Eq. (8) to zeroth order in Ω, let us now
consider, perturbatively, the effect of rotation. The first-
order correction in Ω to the unperturbed energy levels that
we have just computed is given by the expectation value
of the rotation operator Lz̄ ¼ −i∂φ̄ for the system in the
unperturbed state. In the coordinates ðξ; η; χÞ, this operator
takes the form

Lz̄ ¼
iȳ

aðξ2 − η2Þ ðξ∂η þ η∂ξÞ þ
iz̄ξη

aðξ2 − 1Þð1 − η2Þ ∂χ :

ð28Þ
Since z̄ ∼ cos χ and ȳ ∼ sin χ, we can easily see that the
expectation value of this operator in an eigenstate [Eq. (14)]
is zero, hLz̄iψ̄ ¼ 0. This shows that rotation effects only
manifest themselves at order Ω2 and will therefore be
neglected.

III. SETUP FOR TIME EVOLUTIONS

In the previous section, we discussed, in a perturbative
setup, the nonrelativistic limit of a massive scalar field
around a BHB and found molecule-like states which were
labeled therein with three parameters ðmξ; mη; mχÞ. We will
now numerically solve the Klein-Gordon equation around a
BHB to construct these (quasi)bound states through time
evolutions.

A. Numerical implementation

For our numerical implementation, we ignore the back-
reaction of the massive scalar field on the BHB spacetime
and follow the approach described in Ref. [14]. In this
approach, one builds an approximate BHB background
metric using the construction outlined in detail in Mundim
et al. [29] (see also Ref. [30] for the equivalent construction
used in the context of generating BHB initial data). It is
important to mention that for our present construction, we
turn off the emission of gravitational radiation and therefore
always consider binaries with constant separation. We do
not turn off scalar radiation; the Klein-Gordon equation is
evolved in full generality.
Our approach then consists in using this approximate

BHB metric construction and solving the Klein-Gordon
equation (1) in this spacetime. We emphasize that this
metric, even though it is time-dependent, is prescribed—
that is, it is not time-evolved. Our task is then to numerically
solve Eq. (1) on a time-dependent background. To do so, we
write the equation in a first-order form by introducing

Kϕ ≡ −
1

2N
ð∂t − LβÞϕ; ð29Þ

where N and βi are the lapse function and shift vector,
respectively. The resulting system is numerically evolved
with a method of lines approach.

For our numerical evolutions, we use the Einstein Toolkit
infrastructure [31–33] with Carpet [34,35] for mesh refine-
ment capabilities and the multipatch infrastructure Llama
[36]. The scalar field equations are evolved in time by
adapting the ScalarEvolve code available in Ref. [37],
which was first used and described in Ref. [38]. Since the
background metric uses harmonic coordinates, in our
evolutions we further excise the BH interior with the
procedure outlined in Ref. [39]. The overall infrastructure
and evolution are essentially the same as those used and
tested in Ref. [14]. We employ fourth-order-accurate finite-
differencing stencils to approximate spatial derivatives,
but there are lower-order elements in the code—in par-
ticular, the so-called prolongation operation is only second-
order accurate in time. Our results are compatible with a
convergence order between orders 2 and 3, which is
consistent with the overall setup. See the Appendix B
for further details.

B. Initial data

We will evolve two different types of scalar field initial
data, which will be referred to as “nonspinning” and
“spinning” initial data. The first of these consists of a
momentarily static Gaussian profile given by

ϕ ¼ Ae−r
2=ð2σ2Þ; Kϕ ¼ 0; ð30Þ

where A and σ denote the amplitude and width of the
Gaussian pulse, respectively.
Second, we will evolve configurations which, unlike the

previous construction, have angular momentum. These are
the “spinning” initial data, for which

ϕ ¼ RðrÞAðt; θ;φÞ; ð31Þ

with

RðrÞ ¼ r
σ
e−

r
2σ; ð32Þ

Aðt; θ;φÞ ¼ A1;1
1

2

ffiffiffiffiffiffi
3

2π

r
sin θ cosðφþ ωtÞ

þ A1;−1
1

2

ffiffiffiffiffiffi
3

2π

r
sin θ cosð−φþ ωtÞ; ð33Þ

and the initial configuration for the Kϕ field can be trivially
obtained from Eq. (29). Here, Al;m is the amplitude of each
ðl; mÞ mode, which can be freely specified, and σ is a
typical width of the clump. ðr; θ;φÞ are the standard
spherical coordinates around the center of mass of the
system. The time dependence mφþ ωtðm ¼ �1Þ in each
term introduces angular momentum on the z axis. Initial
data with negative m are corotating with the BHB, while
initial data with positive m are antirotating.
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C. Frequency extraction

To analyze our results, we decompose the evolved field
at fixed radial distance into spherical harmonics Ym

l ðθ;φÞ
as follows:

ϕðt; r ¼ rext; θ;φÞ ¼
X∞
l¼0

Xl

m¼−l
Ym
l ðθ;φÞϕlmðtÞ: ð34Þ

Note that, since ϕ is real, ϕlmðtÞ ¼ ð−Þmϕ�
l;−mðtÞ, where �

denotes complex conjugation. We will further Fourier-
transform ϕlmðtÞ to check its frequency spectra and
compare with the results obtained in Sec. II A. In order
to do so, however, we must note that the frequencies
computed in Sec. II A were computed in the rest frame of
the binary, whereas here we will be extracting the data in
the lab frame. To compare the data, we then need to change
frames once again, which can be done as follows:
The Fourier spectra in the lab frame is computed through

[ϕ ¼ ϕðt; rext; θ;φÞ]

F ½ϕlm�ðωÞ ¼
Z

dteiωtϕlmðtÞ

¼
Z

dteiωt sin θdθdφYm�
l ðθ;φÞϕ: ð35Þ

Given that Ym
l ðθ;φÞ ¼ NeimφPm

l ðcos θÞ, where Pm
l are the

Legendre polynomials and N is the normalization constant,
using Eq. (6), we can write

F ½ϕlm�ðωÞ ¼
Z

dt̄ sin θ̄dθ̄dφ̄eit̄ðω−mΩÞ

× Ne−imφ̄Pm
l ðcos θ̄Þϕðt̄; rext; θ̄; φ̄þ Ωt̄Þ

¼
Z

dt̄ sin θ̄dθ̄dφ̄eit̄ðω−mΩÞ

× Ym�
l ðθ̄; φ̄Þϕ̄ðt̄; rext; θ̄; φ̄Þ

¼ F ½ϕ̄lm�ðω −mΩÞ; ð36Þ

relating the frequencies computed in the lab frame to the
ones computed in the comoving frame.
Since in the following section we will be focusing on the

real part of the multipolar components, let us also write

FR ¼
Z

dteiωtRðϕlmðtÞÞ

¼ 1

2

Z
dteiωtðϕlmðtÞ þ ϕ�

lmðtÞÞ

¼ 1

2
ðF ½ϕlm�ðωÞ þ ð−ÞmF ½ϕl;−m�ðωÞÞ

¼ 1

2
ðF ½ϕ̄lm�ðω −mΩÞ

þ ð−ÞmF ½ϕ̄l;−m�ðωþmΩÞÞ; ð37Þ

where FR ≡ F ½RðϕlmÞ�ðωÞ and Eq. (36) is used in the last
step. To connect with our upcoming results, we further need
to take the real part of Eq. (37),

RðFRÞ ¼
1

4
ðF ½ϕ̄lm�ðω −mΩÞ þ ð−ÞmF ½ϕ̄l;−m�ðωþmΩÞ

þ ð−ÞmF ½ϕ̄l;−m�ð−ωþmΩÞ
þ F ½ϕ̄lm�ð−ω −mΩÞÞ;

where we have used

F ½ϕ�
lm�ðωÞ ¼ ð−ÞmF ½ϕl;−m�ð−ωÞ:

In conclusion, in the lab frame we expect to see a super-
position of ω�mΩ frequencies for each m mode of the
corotating frame.

IV. GRAVITATIONAL MOLECULES

We are now in a position to discuss the evolution of
scalar fields on a background describing realistic BHBs.
We have evolved a battery of different configurations
with the initial data of Eqs. (30) and (31) on background
spacetimes described by equal-mass binaries, M1 ¼ M2 ¼
M=2, for different values of binary separation D. In this
section, we will report on the results obtained with a subset
of these runs, summarized in Tables II and III. The
numerical convergence for the simulations nonspin2
is discussed in Appendix B. These results, as described
below, are in good agreement with the nonrelativistic
analysis of Sec. II, and provide strong evidence for the
existence and formation of gravitational molecules with
scalar fields.
It is useful to keep in mind the different length scales

involved in this problem. As we saw in Sec. II B, the scale
S of a state around an isolated BH of mass Mi is of order

TABLE II. List of simulations analyzed for the momentarily
static Gaussian initial data of Eq. (30). Note that we have run a
much larger set of simulations—listed here are only those that are
analyzed later on.

Run D=M μM σ=M

nonspin1 60 0.5 12
nonspin2 10 0.2 25
nonspin3 60 0.2 25

TABLE III. List of simulations analyzed for the spinning initial
data of Eq. (31).

Run D=M μM σ=M A1;1 A1;−1 ωM

spin1 10 0.2 25 0 1 0.2
spin2 60 0.2 25 0 1 0.2
spin3 60 0.2 25 1 0 0.2
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Si ∼ 1=ðMiμ
2Þ in the small-Miμ limit. In a binary of

component masses M1, M2, we thus have scales Si, and
a global scale SBHB ∼ μ−2=M where the total BHB mass is
M ¼ M1 þM2. If Si is much smaller than D ¼ 2a, the
quasibound state can be formed around each BH and feels a
tidal force from the companion object. On the other hand, if
Si is much larger than D, the companion BH strongly
disturbs such a state, destroying it. However, as discussed
in Sec. II, we can expect that a quasibound state forms
around the BHB. Furthermore, if this state around the
binary is stable, it should be formed starting from generic
initial conditions.
Note also that timescales are important. A light-crossing

timescale is of order D=M, whereas an orbital timescale is
of order 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D3=M

p
∼ 200M or 3000M for binaries sep-

arated by D ¼ 10M or 60M, respectively.

A. Quasibound states around individual BHs

Based on the scales above, we expect that for large
enough couplingsMμ, the scale Si obeys Si < D, in which
case the scalar cloud localizes around each BH but not
around the binary. In other words, we expect that BHs
sufficiently far apart can support clouds as if in isolation. To
test this, we evolve momentarily static Gaussian initial data
[Eq. (30)], corresponding to configuration nonspin1 in
Table II. For these parameters, the typical size of the cloud
around each BH is S1 ¼ S2 ∼ 8M, which is smaller than
the BH separation. We therefore expect that quasibound
states form around each BH, and our results confirm this, as
shown in Fig. 2. As can be seen, localized structures are
apparent with the dominant mode being an l ¼ 1, m ¼ 0

state around each individual BH. Our results show that
these configurations remain localized to the binary with
negligible variation in its shape and topology for thousands
of dynamical timescales, with only a slight variation in
amplitude, hence qualifying as true quasibound states.

B. Global quasibound states from evolution
of static initial data

We will now discuss molecular-like structures—i.e.,
scalar clouds around BHBs. We focus on BH separations
D ¼ 10M; 60M, and we fix the mass of the scalar field to
μM ¼ 0.2. This corresponds to configurations nonspin2
and nonspin3, respectively. The scales are such that
now the size of the quasibound states, if present, would
encompass the binary when D ¼ 10M. We will see that
even for D ¼ 60M, such global states exist.
The evolution of these configurations is shown in Fig. 3.

Perhaps the most evident aspect of these simulations is that
there is a persistent structure, a cloud or quasibound state
of scalar field around the binary for a relatively long time.
In the context of Fig. 3, the evolution timescale is large
enough that the binary performed over ten periods for
configuration nonspin2 and two periods for configura-
tion nonspin3. This timescale is orders of magnitude
larger than the free fall time, and yet the scalar structure
persists throughout the evolution.
The second noteworthy aspect is that the state keeps,

roughly, the symmetry of the initial conditions. This is
clearly seen in the energy density plots in Fig. 3. However,
it is clear also that fine structure arises, clearly seen for
larger binary separations, excited by the presence of the

FIG. 2. Profile of a massive scalar field around an equal-mass BHB of total mass M. The field has a dipolar, l ¼ 1, m ¼ 0 profile
around each BH, which was obtained from evolving configuration nonspin1 in Table II. The left panel shows the contours of a
constant scalar field. Purple, green, and red lines represent lines of the constant scalar field which are 0.05, −0.05, and −0.16,
respectively. Note that since the Klein-Gordon equation is linear in the scalar field and there is no backreaction on the metric, only their
relative values are meaningful. Colormaps are therefore unimportant to interpreting the results and will be omitted henceforth. The right
panel shows a contour plot of (scalar field) energy density. The snapshots were taken at t ¼ 1600M.
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binary, an asymmetric perturber. In particular, we observe
the excitation of the quadrupole mode by the BHB. This
is clearly shown in Fig. 4, where we show the monopole
l ¼ m ¼ 0 and quadrupole l ¼ m ¼ 2 components of the
field at selected “extraction” rex=M ¼ 40, 60, 90.
Figure 4 shows that this is indeed a quasibound state,

decaying exponentially in time, albeit on long timescales.
This is exactly as expected from an analysis of massive
fields around nonspinning BHs [5]. The scalar at late times
behaves as an exponentially damped sinusoid, as expected
for quasibound states. A fit to the late-time behavior
(see Fig. 4) shows that the lifetime of such structures is
3 × 103M for D ¼ 10M, and 104M for D ¼ 60M. These
scales should be compared with the analytical prediction
Eq. (4.13) in Ref. [15]. That expression is applicable to
D ¼ 10M and yields a timescale ∼3.9 × 103M, in excellent
agreement with our numerical results.
In accordance with our analysis in Sec. II, the scalar field

is oscillating with a frequency ∼μ. To quantify the

agreement with the nonrelativistic analysis, we computed
the Fourier spectrum of the monopole and quadrupole
modes at different radii, and averaged the result. We find
clear peaks at different frequencies; the dominant ones
are shown in Table IV for D ¼ 60M and compared against
the nonrelativistic prediction of Sec. II.3 The agreement is
of order 0.1% or better, providing strong evidence that
bound, molecular-like gravitational states do form around
BHBs. Notice also that we find two (or more) peaks for
l ¼ m modes. For D ¼ 60M, we can read from the table
that their separation in frequency Δω

m ≡Mðωm − ω−mÞ is
Δω

m¼2 ¼ 0.0082, in good agreement with the expected
prediction of Sec. III C, Δω

m ¼ 2mMΩ (MΩ ∼ 0.0022 for
this example).

FIG. 3. Snapshots depicting the evolution of a scalar field around an equal-mass BHB. The first two rows correspond to evolutions of
configuration nonspin2 (cf. Table II), whereas the last two rows depict evolutions of configuration nonspin3. First and third rows:
scalar field. Second and fourth rows: energy density. At late times, the scalar and energy density profile rotates counterclockwise at a
frequency equal to the binary Keplerian orbital frequency.

3One needs to pay attention when comparing against the
results of Sec. II, since a rotation of axes is involved and, as we
mentioned, at finite separations, a spherical harmonic mode maps
into a superposition of the ðmξ; mη; mχÞ states used in Table I.
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The interpretation of these states as molecular-like is
further supported by the spatial profile of the scalar and
energy density, shown in Fig. 5. The time evolution of the
energy density along the x axis is depicted in the three
panels of this figure. The late-time profile around the binary
is well described by a density ∼e−2r=ð25MÞ. This profile is in
accord with the nonrelativistic, single BH expression
[Eq. (16)] for the quasibound state. Our results indicate
that this is also a good expression, even for the moderately
large separations that we studied. Figure 5 shows that the
exponential falloff gives rise to a slowly decaying but small
tail of energy density for distances r≳ 100M. This looks to
be a slow, radiative component part of the signal.

In fact, this gravitational system behaves like a rotating
molecule in quantum mechanics.4 The snapshots of the
scalar field and energy density shown in Fig. 3 show that
the scalar field is not only localized around the BHB, but
that it is also dragged by it, rotating counterclockwise,
along the orbital motion of the binary. The field shows
modulations at low frequencies—in particular, at 2mΩ—as
can be seen in the figures. Such modulation is the expected
for an equal-mass binary. Notice that the signal is almost
equally modulated in amplitude at different extraction radii;
thus the low-frequency envelope is not the result of beat-
ings caused by overtone excitation. In other words, the
scalar is indeed gravitationally dragged by the binary. The
period of such a pattern is the same as the orbital period
of the binary.

C. Corotating dipolar global states

The previous evolutions referred to spherically symmet-
ric, momentarily static initial data. We now consider time-
asymmetric initial data. Let us focus on dipolar initial data
corotating with the binary—i.e., configurations spin1 and
spin2 of Table III. The evolution of the spatial profile
of the field and its energy density is shown in Figs. 6 and 7.
A dipolar pattern stands out from these plots.
Figures 6 and 7 show that for compact binaries (when the

BH separation is smaller than the typical size of the cloud),
the energy density of the state acquires a torus-like shape,
centered on the binary, and supported by its angular
momentum. This is similar to the topology of quasibound

FIG. 4. Monopolar l ¼ m ¼ 0 and dipolar l ¼ m ¼ 2 components of the scalar, at selected extraction radius rex, are shown for
configuration nonspin2 (left panel) and configuration nonspin3 (right panel) of Table II. The signal modulation is not due to the
beating of higher overtones, but to the binary orbital motion. The modulation frequency is 2mΩ to a good approximation.

TABLE IV. Spectrum content of waveforms and comparison
against nonrelativistic results. The third column of this table
shows the location of the dominant peak of the waveform, from
time evolutions, in Fourier space (for l ¼ m ¼ 1, 2, there are two
dominant peaks). The fourth column shows the nonrelativistic
prediction, obtained by solving the coupled system Eq. (15)
(these values are also in Table I in a slightly different form),
which is formally equivalent to solving the dihydrogen molecule.
As we noted before, the fundamental mode E000 should always be
present in each spherical harmonic ðl; mÞ basis used for the
simulations. Other components are also present, but we find those
to be subdominant. The agreement between both is very good and
lends strong support to the interpretation that these are “molecu-
lar” gravitational quasibound states.

Run ðl; mÞ Mω Mðμþ E000 �mΩÞ
nonspin3 (0, 0) 0.1976 0.1973

spin2 (1, 1) 0.1992 0.1994
0.1948 0.1951

nonspin3 (2, 2) 0.2012 0.2016
0.1930 0.1930

4Disclaimer: One should not read too much into this analogy.
The shared electron cloud in a molecule is what binds the atoms
together. Here, the “atoms” (two BHs) are bound together by
gravity, and then the “electron cloud” is a solution of the scalar
wave equation on that background.
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states around single BHs. On the other hand, for large BH
separations as in Fig. 7, the profile is no longer connected;
the torus “breaks up” and leaves two overdensity clumps of
scalar field corotating with the BHB.
The presence of the binary excites other modes with

similar symmetries to that in the initial data. In particular,
we see a strong octupole l ¼ m ¼ 3 mode, shown in Fig. 8
forD ¼ 60M. Notice that the octupolar mode grows from a

negligible value to roughly 10% in amplitude of the dipolar
component. Notice also the large timescales involved: the
amplitude of these components is approximately constant
up to timescales of order ∼104M or larger. The modulation
in the signal is, as we explained before, due to the motion of
the binary, and has a frequency 2mΩ as expected for an
equal-mass binary.
These results indicate that the evolution drove the system

to a quasibound state, a relativistic analog of the molecular
solutions discussed in Sec. II A for the nonrelativistic
system. Together with the previous results, and as we will
insist below, these features indicate that the formation of
quasibound states is a robust result for general initial

FIG. 5. Energy density of the scalar field on the x axis for the configurations nonspin2 (left panel) and nonspin3 (right panel).
Dashed lines are best fits to the numerical results and agree well with the analytical, nonrelativistic predictions (see text).

FIG. 6. Snapshots depicting the evolution of a scalar around
an equal-mass BHB for configuration spin1 of Table III. The
initial conditions are therefore those of a dipolar l ¼ 1; m ¼ −1
scalar configuration corotating with the binary in a counterclock-
wise direction. Top panels: evolution of scalar field. Bottom
panels: evolution of energy density. At late times, the scalar and
energy density profile rotate counterclockwise at a frequency
dictated by the binary orbital frequency.

FIG. 7. Same as Fig. 6, but for configuration spin2 of
Table III.
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conditions. The analysis of the Fourier-decomposed
signal shows a frequency content which is peaked at
Mω ¼ 0.1992, 0.1948. This is in good agreement with
the nonrelativistic predictions of Sec. II A (which yield
0.1994 and 0.1951, respectively). One finds (see Table IV)
Δω

m¼1 ¼ 0.0044, also in very good agreement with the
expectations. The energy density of the configuration is
shown in Fig. 9. These results show clearly that the initial
conditions are similar to those of a quasibound state, and
the system evolution does not take it away significantly
from the initial conditions. The asymptotic behavior of the
density profile is well described by ðre−r=50MÞ2. Note that

the nonrelativistic prediction [Eq. (16)] for the scalar profile
is of the form ∼e−Mμ2r=ðlþ1Þ ¼ e−r=ð50MÞ for the fundamen-
tal mode whenMμ ¼ 0.2. This is in perfect agreement with
our time-evolution results around a BHB.

D. Counterrotating dipolar global states

Similar results hold for the evolution of counterrotating
initial data (with respect to the binary, thus data rotating
clockwise). We have evolved configuration spin3 of
Table III, and the corresponding profiles of the field and
energy density are shown in Fig. 10.
Since the initial profile has an angular momentum which

is opposite to that of the binary, the scalar field rotates in a
direction opposite to the BHB. However, the energy density
of the scalar cloud does rotate in the same direction as
that of the binary. The asymptotic late-time spatial dis-
tribution of the energy density is well described by a radial
dependence ðre−r=50MÞ2, consistent with a nonrelativistic
analysis of quasibound states.
As we discuss in Appendix A, selection rules imply that

other modes must be excited—in particular, the l ¼ m ¼ 3
mode. Figure 11 shows precisely this. It is also clear that a
very long-lived quasibound state forms (the lifetime is so
large, in fact, that we were unable to estimate it).

E. General initial data

We investigated other types of initial conditions, such as
narrower pulses, with smaller width σ. This changes the

FIG. 8. Dipolar (l ¼ m ¼ 1) and octupolar (l ¼ m ¼ 3) com-
ponents of the scalar field, measured at various rex, for configu-
ration spin2 of Table III. Notice that a dipolar mode is already
present initially. This is the same initial data as that of Fig. 7. The
signal modulation is not due to beating of higher overtones, but
due to the binary orbital motion. The modulation frequency is
2mΩ to a good approximation.

FIG. 9. Energy density of a quasibound state around a BHB
separated by D ¼ 60M. The density is measured along the x
axis. Initial data is that of configuration spin2 in Table III,
corresponding to a corotating dipole. The density was
measured at different instants, and our results show that the
late-time profile is in accordance with the nonrelativistic
prediction for a bound state.

FIG. 10. Evolution of configuration spin3 in Table III,
corresponding to a dipolar (l ¼ m ¼ 1) scalar field counter-
rotating with the binary. Top panels: evolution of scalar field.
Bottom panels: evolution of energy density.
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amount of field that is dissipated in the early stages, but a
quasibound state always ends up forming, with a phenom-
enology similar to what we described.
We also studied data with higher initial frequency

content: since quasibound states have ω ∼ μ, it is conceiv-
able that high-frequency initial data just dissipates away.
Our results show that this does not happen. Instead, again,
the system evolves towards a frequency contentω ∼ μ and a
spatial distribution described well by a nonrelativistic
quasibound state. It seems that these quasibound states
are an attractor in the phase space.
We should also add that quasibound states decay

exponentially in space, far away from the binary. At large
distances, the dominant behavior is controlled by power-
law tails [40–43]. Asymptotically, our results are consistent
with a late-time decay ϕlm ∼ t−p sinðμtÞ, where the expo-
nent p ¼ lþ 3=2 at intermediate times, and p ¼ 5=6 at
very late times. Our results are consistent with analytical
predictions [40–43].
Finally, we note that if the quasibound states described

above did not exist, the evolution of initial data would lead,
on relatively short timescales, to the total depletion of scalar
field everywhere. It would quickly be absorbed by the BHs
or dispersed to infinity.

V. CONCLUSIONS

Light scalar fields are interesting solutions to some of the
most pressing problems in physics. One example is the dark
matter problem. It is tempting to introduce fields with a
scale (the Compton wavelength) similar to the size of
galactic cores. One would thus be dealing with fields of
mass 10−21 eV or similar, in what are known as fuzzy dark
matter models [44,45]. Understanding the physics and
evolution of compact binaries in such environments is

crucial to modeling their evolution and to searching for
such fields [46,47].
Our results indicate that, in the presence of a background

scalar, the scalar field dynamics close to a BHB parallels
very closely that of an electron in a one-electron hetero-
nuclear diatomic molecule. We do note that there are very
important differences between realistic BHBs and mole-
cules. In particular, a BHB is a dissipative system. Our
numerical results for the time evolution of initial data show
that nonrelativistic bound states turn into quasibound states,
via absorption at the horizon.
A BHB is dissipative in another way, not included (for

simplicity) in our simulations: the system loses energy
through gravitational wave emission. We focused on time-
scales much shorter than the typical scale for BH coales-
cence. Naturally, there are systems for which this
assumption is not justified. The typical timescale until
coalescence is tc ∼D4=M3 [48] (for simplicity, we assume
a circular orbit and an equal mass binary). The timescale is
tc ∼ 107M forD ¼ 60M, and tc ∼ 104M forD ¼ 10M. Our
numerical simulations clearly show that the quasibound
state lifetime is at leastOð104ÞM. Thus, BHB evolution via
gravitational-wave emission is indeed relevant for the
evolution of these states, especially at small separations,
and left for future work.
We have not dealt with eccentricity, nor did we

consider unequal-mass binaries, although it is straightfor-
ward to apply our formalism and methods to these
situations. Unequal-mass binary evolution might lead,
due to asymmetric accretion and drag, to substantial
center-of-mass velocities making it especially interesting
to study [49].
In the context of gravitational-wave imprints, dynamical

friction caused by such fields and its impact on the
gravitational-wave phase was recently described [46,47].
However, such description does not include possible quasi-
bound-state formation. The clouds have a size 1=ðMμ2Þ,
and according to general considerations and specific
calculations [50], they should contribute an extra attracting
force which scales linearly with the scalar density. Since
this is a conservative effect, its only consequence is a slight
renormalization of the binary mass, and we do not expect
changes to the dephasing introduced by dissipative effects
[46,47] (in particular, a dephasing appearing at post-
Newtonian order “−6” with respect to the leading vacuum
general relativity prediction).
Still in the context of ultralight dark matter, consider a

BHB evolving within a “cloud” of coherently oscillating
scalars. This cloud could have primordial origin—and be a
component of ultralight dark matter, or could simply arise
as a consequence of superradiant instabilities, and be
localized around a supermassive, spinning BH. Now, when
this cloud is much larger than any scale in a BHB system,
the corresponding boundary conditions are different. It is
possible that molecular-like states arise, but their study

FIG. 11. Multipolar l ¼ m ¼ 1, 3 components of the scalar
field, corresponding to configuration spin3. These are the same
initial conditions as those of Fig. 10. The signal modulation is not
due to the beating of higher overtones, but due to the binary
orbital motion.
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requires understanding the time evolution of scalar fields
with coherent oscillating boundary conditions [51].
The tidal disruption of scalar clouds by orbiting com-

panions was recently discussed [52]. Our results raise the
interesting possibility that the final state of such a dis-
ruption can be a gravitational molecule.
We note that the response of BHBs to external fluctua-

tions has been studied recently. In particular, the response
to high-frequency and low-frequency scalars was studied in
toy models [39,53,54]. A realistic BHB configuration
revealed already universal ringdown for binaries, and hints
of superradiance [5,14,55]. Together with the results we
discussed here, these studies show that compact binaries are
a fertile ground for new phenomenology.
Our results can also be put into the context of stationary

solutions of the field equations. One can show that
minimally coupling gravity to a real scalar field cannot
give rise to stationary BH geometries with a nontrivial
scalar field—as this would give rise to a time-dependent
stress-energy tensor, and hence the emission of gravita-
tional waves—or absorption of the scalar field at the BH
horizon. However, these results can be circumvented for
single-BH spacetimes if the field is complex (hence giving
rise to a time-independent stress-energy tensor) and the BH
is spinning (where superradiance prevents absorption by
the horizon) [5,13]. Thus, stationary BH solutions sur-
rounded by scalar fields are possible [13]. Given the very
nature of BH binaries, and the fact that they are bound by
gravity and hence evolve via gravitational-wave emission,
the existence of stationary solutions is a priori not
expected. What we have shown is that on timescales short
compared to those caused by energy loss through gravi-
tational radiation, quasibound states of scalar fields are
possible and form naturally.
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APPENDIX A: MODE EXCITATION BY A
BINARY SPACETIME

To understand which modes are excited by the BHB, let
us again consider the metric in Eq. (2). Expanding the
Newtonian potential [Eq. (3)], we obtain

Φ ≃ −
M1 þM2

r
þM1r1ðtÞ2 þM2r2ðtÞ2

2r3

−
M1ðr⃗ · r⃗1ðtÞÞ2 þM2ðr⃗ · r⃗2ðtÞÞ2

2r5
: ðA1Þ

The Klein-Gordon equation on this spacetime can be
written as

ð−∂2
t þ∇2 − μ2Þϕ ¼ −4∂tΦ∂tϕ − 4Φ∇2ϕþ 2μ2Φϕ:

The formal solution of this equation is

ϕ − ϕhom ¼
Z

dt0d3x⃗0Gðt − t0; x⃗ − x⃗0Þ

× ð−4∂t0Φ∂t0ϕ − 4Φ∇02ϕþ 2μ2ΦϕÞðt0; x⃗0Þ

where ϕhom is the homogeneous solution, fixed by the
initial data. Gðt − t0; x⃗ − x⃗0Þ is the Green’s function,

Gðt; x⃗Þ ¼
Z

d3k⃗
ð2πÞ32ωk

e−iωktþik⃗·x⃗iθðtÞ þ c:c:; ðA2Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k⃗2

q
, and c.c. is a complex conjugate.

For weak couplings, ϕ ∼ ϕhom,

ϕ − ϕhom

¼
Z

dt0d3x⃗0Gðt − t0; x⃗ − x⃗0Þ

× ð−4∂t0Φ∂t0ϕ
hom − 4Φ∇02ϕhom þ 2μ2ΦϕhomÞðt0; x⃗0Þ:

ðA3Þ

Let us now expand the right-hand side of this equation in
spherical harmonics,

ϕhom ¼
X
lm

ϕhom
lm ðt; rÞYm

l ðθ;φÞ; ðA4Þ
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Φ ¼
X
lm

Φlmðt; rÞYm
l ðθ;ϕÞ

¼ Φ00ðt; rÞY0
0ðθ;ϕÞ þ

X
l¼2;4;6;���

X
m¼�2

Φlmðt; rÞYm
l ðθ;ϕÞ;

ðA5Þ

where

Φ00 ¼
M1 þM2

r
þM1R2

1 þM2R2
2

2r3
−
3

4

M1R2
1 þM2R2

2

r3

Φl;�2 ¼ −
3

2

M1R2
1 þM2R2

2

r3
cle∓2iΩt

and c2 ¼ 1
2

ffiffiffiffi
5π
6

q
; c4 ¼ 1

2

ffiffiffiffi
π
10

p
; c6 ¼ 1

4

ffiffiffiffiffiffi
13π
105

q
;…. The Green

function can also be expanded in spherical harmonics
through the plane wave expansion

eik⃗·x⃗ ¼ 4π
X∞
l¼0

Xl

m¼−l
iljlðkrÞYm

l ðˆk⃗ÞYm�
l ðˆx⃗Þ;

where the jl’s are the spherical Bessel functions and the
hat ˆ denotes a unit vector. Thus,

ϕðt; x⃗Þ − ϕhomðt; x⃗Þ ¼
Z

dt0d3x⃗0
d3k⃗

ð2πÞ32ωk

�
e−iωkðt−t0Þiθðt − t0Þeik⃗·x⃗

×
X
l;m

X
l0;m0

X
l00;m00

4πð−iÞl00jl00 ðkr0ÞYm00�
l00 ðˆk⃗ÞYm00

l00 ðθ0;φ0ÞYm
l ðθ0;φ0ÞYm0

l0 ðθ0;φ0ÞAlml0m0 ðt0; r0Þ þ c:c:

�
;

where

Alml0m0 ðt; rÞ ¼ −4∂tΦlmðt; rÞ∂tϕ
hom
l0m0 ðt; rÞ − 4Φlmðt; rÞ

�
∂rrϕ

hom
l0m0 ðt; rÞ þ 2

r
∂rϕ

hom
l0m0 ðt; rÞ − l0ðl0 þ 1Þ

r2
ϕhom
l0m0 ðt; rÞ

�
þ 2μ2Φlmðt; rÞϕhom

l0m0 ðt; rÞ:

Let us consider the modes of the scattered field, ðϕðt; x⃗Þ − ϕhomðt; x⃗ÞÞlm. Performing the integration in the angular

directions of k⃗, we obtain

ðϕðt; x⃗Þ − ϕhomðt; x⃗ÞÞlm ¼
Z

dt0dr0r02dkk2

πωk
e−iωkðt−t0Þiθðt − t0ÞjlðkrÞjlðkr0Þ

×
X
l0m0

X
l00m00

fΛm;m0;m00
l;l0;l00 Al00m00l0m0 ðt0; r0Þ þ ð−ÞmΛ−m;m0;m00

l;l0;l00 Al00m00l0m0 ðt0; r0Þg; ðA6Þ

where

Λm;m0;m00
l;l0;l00 ≡

Z
dΩYm

l ðθ;φÞYm0
l0 ðθ;φÞYm00

l00 ðθ;φÞ:

This integral is nonzero only when m0 þm ¼ −m00.
Since, from Eq. (A5), Al00m00l0m0 ðt; rÞ is nonzero only for
m00 ¼ 0;�2, we see that ðϕðt; x⃗Þ − ϕhomðt; x⃗ÞÞlm is non-
trivial only when m ¼ �m0, m ¼ m0 � 2 or m ¼ −m0 � 2,
for nontrivial values of ϕhom

l0m0 .

APPENDIX B: CONVERGENCE TEST

As mentioned in Sec. III A, for our numerical imple-
mentation we approximate spatial derivatives with fourth-
order-accurate finite difference stencils and integrate
in time with a fourth-order Runge-Kutta scheme.
Communication between refinement levels is done by

Carpet with second- and fifth-order accuracy in time and
space, respectively.
To assess the convergence properties of our results, we

performed three simulations for configuration nonspin2,
with resolutions (on the coarsest refinement level)
Δc¼1.0M, Δm ¼ 0.75M, and Δh ¼ 0.5M. We define
the usual convergence factor

Qn ¼
fΔc

− fΔm

fΔm
− fΔh

¼ Δn
c − Δn

m

Δn
m − Δn

h
; ðB1Þ

where n is the expected convergence order, and depict the
corresponding results for the l ¼ 0, m ¼ 0 multipole of the
evolved function ϕ in Fig. 12. The results are compatible
with a convergence order between orders 2 and 3, which is
consistent with the numerical scheme used.
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