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It was pointed out that the black hole quasinormal modes resulting from a piecewise approximate
potential are drastically distinct from those pertaining to the original black hole metric. In particular, instead
of lining up parallel to the imaginary axis, the spectrum is found to stretch out along the real axis. In this
work, we prove that if there is a single discontinuity in the effective potential, no matter how insignificant it
is, the asymptotic behavior of the quasinormal modes will be appreciably modified. Besides showing
numerical evidence, we give analytical derivations to support the above assertion even when the
discontinuity is located significantly further away from the maximum of the potential and/or the size
of the step is arbitrarily small. Moreover, we discuss the astrophysical significance of the potential
implications in terms of the present findings.
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I. INTRODUCTION

Reminiscent of the prominent role played by the normal
modes in a conserved physical system, crucial information
about an open system is encoded in terms of its counterpart,
known as quasinormal modes (QNMs). In the context of
black hole configurations, the quasinormal modes describe
the dissipative temporal evolution triggered by the initial
perturbations in the relevant spacetimes, characterized by
the complex frequencies [1–5]. As the exact solution of
quasinormal modes is rather difficult to obtain analytically,
in practice one often resorts to techniques involving a
certain degree of approximation. Notably, the quasinormal
modes can be reasonably evaluated through the use of
the inverse Pöschl-Teller potential [6,7]. By adjusting the
parameters of the potential to approximate that of the
original black hole metric, the quasinormal frequencies are
associated with the normal modes of the corresponding
bound-state problem. Similarly, the WKB method [8–10]
can be employed to calculate the quasinormal frequencies
by using merely the derivatives of the effective potential at
its maximum. To be specific, the latter information allows

to replace the potential in the region between the turning
points by an approximate polynomial form. Subsequently,
the asymptotic wave function becomes accessible and is
utilized to match others with appropriate boundary con-
ditions in the overlap region, where the WKB approxima-
tion is valid. In this regard, the following question arises: is
it always possible to replace the effective potential of a
black hole metric with an approximate form, in the sense
that the underlying physics remains intact?
Intuitively, one might always argue that once a reason-

ably accurate approximate form is adopted for the effective
potential, the resulting physics is not expected to be
drastically different. If this is not the case, any experimental
measurement will be rather sensitive to the fine-tuning of
the system configuration and, subsequently, the determin-
ism of the theory is undermined. Indeed, both examples
regarding the Pöschl-Teller and WKB methods seem to
support the above heuristic arguments. However, sub-
sequent studies revealed a subtlety. In Ref. [11], Nollert
discovered a seeming contradiction by further subjecting
the above considerations to a more stringent test. By
replacing the entire Regge-Wheeler potential with a series
of step functions, the resulting temporal evolutions of
initial perturbations as well as the quasinormal mode were
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examined. The numerical calculations indicate that the
time-domain waveforms are similar to those for the original
smooth potential, a result in favor of the above statement.
Much to one’s surprise, the resultant quasinormal modes,
on the other hand, were found to be drastically different
from those of the Regge-Wheeler potential. More recently,
the initial efforts of Nollert were carried on byDaghigh et al.
[12]. In their study, the authors were motivated to explore
whether the change in the QNM spectrum might be caused
by the jump discontinuities and/or the piecewise constant
nature of step functions. Consequently, they refined the
approach by using a continuous piecewise linear potential to
approximate the Regge-Wheeler potential. It was observed,
for both the staircase and linear piecewise functions, that the
black hole ringdown waveform can be approximated to the
desired precision by moderately increasing the number of
segments. On the other hand, the sizable difference in
corresponding quasinormal frequencies persists. These
results seem to indicate that the previous findings on the
asymptotic properties of the quasinormalmode spectrum are
valid on general grounds.As pointed out inRef. [11], it leads
to a rather serious question regarding the significance of
black hole quasinormalmodes. To be specific, it is important
to understand whether physical content carried by the
quasinormal modes is distorted when the original Regge-
Wheeler potential is replaced by a piecewise approximate
form or, in other words, how to capture the essential physics
of the system when such an approximation is performed.
The significance of the asymptotic behavior of quasinor-

mal modes has been explored extensively in the literature.
Usually, for a broad class of black holes, the asymptotic
quasinormal mode spectrum lines up parallel to the imagi-
nary axis. To be specific, the spacing of the imaginary part of
the quasinormal frequency [13–15] is found to be 2πi

β , with β
being the inverse Hawking temperature. It is in accordance
with the thermal Green’s function [15,16]. Its real part is
speculated to be related to the quantization of black hole
surface area [13,17]. The above results have been confirmed
bymanywell-known analytic and semianalytic methods. As
discovered in Refs. [11,12], when the Regge-Wheeler
potential is approximated by a piecewise function, the
resultant quasinormal modes are found to be drastically
different. In particular, the quasinormal mode spectrum of
the piecewise potential stretches out along the real axis,
rather than the imaginary one. In this context, between the
results from the two potential forms, the match found in
waveforms and the deviation observed in quasinormal
modes pose an apparent contradiction. Moreover, the
physical nature behind the distinct asymptotic behavior of
the spectra also deserves further investigation.
On the practical side, as a numerical scheme, it seems

meaningful to replace the effective potential by an adequate
approximate form. As discussed above, it is expected that
such a procedure will capture the essence of the phy-
sical system while substantially facilitating the numerical

calculations. However, the observed discrepancies in qua-
sinormal modes may lead to a deeper issue associated with
the numerical approach based on the finite difference
method. Usually, the algorithm works on a fixed grid.
As a result, it only utilizes potential values at a finite
number of coordinate points, and thus it may not know
about any sudden jump where the potential has not been
sampled in practice. To be specific, one seems to face the
following “paradox.”On the one hand, one believes that the
resultant quasinormal modes will always converge to those
of the Regge-Wheeler potential, once a sufficiently high
resolution is adopted. Now, let us assume that someone
performs a numerical study of the temporal evolution of
quasinormal oscillations for the Regge-Wheeler potential at
desirably high but finite precision. The resulting quasinor-
mal frequencies, which may be extracted by the Prony
method, are therefore expected to largely line up along the
imaginary axis, close to those of the calculated black hole
metric. However, we note that during the course of the
above calculations, the effective potential has only been
sampled at a well-defined set of spatial grid points. In
particular, those grids furnish the only interface through
which the information about the black hole metric is passed
to the numerical code. In this regard, one may devise a
second effective potential consisting of a staircase piece-
wise function, where the values of the potential are
precisely those of the Regge-Wheeler one at the grids in
question. Consequently, one proceeds by again carrying out
the temporal evolution using the specifically tailored stair-
case “approximate” potential while employing an identical
numerical scheme. The latter guarantees that the same grid
sites are sampled and, subsequently, the resultant quasi-
normal modes will be precisely the same. However, by
employing similar arguments, the calculations using the
piecewise potential are also expected to produce the
quasinormal modes which line along the real axis instead.
Therefore, the drastic difference in the asymptotic behavior
of quasinormal modes indicates a dilemma that might be
encountered in practice.
Motivated by the above concerns, the present paper

involves an attempt to shed some light on the origin of the
asymptotic properties of quasinormal modes in a piecewise
approximate potential. In particular, we explore the follow-
ing aspects which are still ambiguous to us at the moment.
Nollert has speculated [11] that the sensitivity in the

resultant quasinormal modes might be a consequence of
some specific properties of the step potential. We argue that
this is indeed the case. To be specific, we show that either a
single cut or a minor step inserted into the effective
potential will significantly affect the resultant quasinormal
mode spectrum. Also, to steer clear of any unnecessary
complication in the vicinity of the black hole horizon, we
devise our effective potential by using a somewhat different
strategy from those in Refs. [11,12]. Instead of replacing
the entire effective potential by a piecewise function, the
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modifications are only placed in the region further away
from the maximum of the potential. Physically, it is also
reasonable to consider such an ansatz since a discontinuity
in the matter distribution might be present due to the
galactic disc, space dust, or the surface of a compact object.
By using the Prony method [18], the resultant quasinormal
frequencies can be extracted numerically from the temporal
waveform. We show that the asymptotic behavior of the
resultant quasinormal frequencies is qualitatively consistent
with those obtained by using the piecewise function appro-
ximation. More importantly, the effective potential devised
in our approach possesses the advantage of maintaining the
fundamental mode. Besides, using the analytic approach,
we demonstrate that the observed asymptotic behavior of
the quasinormal mode spectrum is in agreement with the
numerical results. Also, we furnish a possible explanation
of how different quasinormal spectra in the frequency
domain give rise to similar waveforms in the time domain.
The derivation given in this paper is discussed and

compared against other standard methods in order to
understand the origin of the difference. Last but not least,
the asymptotic behavior of quasinormal modes is of
physical relevance, besides being an approximation to that
of a realistic black hole metric. In particular, we argue that a
piecewise potential is indeed related to several physically
relevant scenarios. As a result, the drastic difference
calculated theoretically may potentially lead to implications
of astrophysical relevance, which might be observed
experimentally. From the opposite perspective, precise
measurements of wave propagation might offer valuable
insight into the nature of the black hole spacetimes.
The plan for the rest of the paper is as follows. In the next

section, we first present the main features of the resultant
quasinormal mode spectrum by visually illustrating its
distribution in the complex plane. We explain how the
modified effective potential is appropriately devised to
achieve our goal and demonstrate the numerical results.
Furthermore, analytic derivations of high-overtone quasi-
normal modes are given in Sec. III. In Sec. III A, we study
the asymptotic quasinormal frequencies in a modified
Pöschl-Teller potential. Owing to the method proposed
by Ferrari and Mashhoon [6,7], the Pöschl-Teller potential
is both analytically tractable and captures the essence of the
black hole spacetime. In addition, another motivation
involves a somewhat similar scenario explored by other
authors [19,20] regarding high-overtone modes, and
rather distinct results have been obtained. Section III B
is devoted to the study of asymptotic quasinormal frequen-
cies when a discontinuity is planted into the effective
potential in a more general context. In Sec. III C, we further
generalize the results to the case when the discontinuity is
present in a higher-order derivative. In Sec. IV, the relation
with other conventional methods as well as existing results
is compared and discussed. We discuss possible astro-
physical implications of the present findings in Sec. V.

Further discussions, as well as concluding remarks, are
given in the last section.

II. MAIN RESULT AND NUMERICAL
CALCULATIONS

In this section, we start by schematically presenting our
conclusion on the spectrum of quasinormal frequencies due
to the piecewise function approximation of the potential.
The observed drastic impact on the quasinormal modes is
attributed to the discontinuity brought over by the piece-
wise function. In particular, we will concentrate on the
effect of a single “step” and then demonstrate that the
resultant characteristics are valid in a more general ground.
In other words, the observed feature does not depend on the
specific choice regarding the specific type of discontinuity
and the shape of the remaining part of the potential. To give
an instinctive notion, in the present section we demonstrate
the results obtained using the numerical approach. More
rigorous arguments and analytic derivations will be pre-
sented in Sec. III.
In practice, the study of black hole perturbation theory

involves the solution of the radial part of the master
equation [3,5],

∂2

∂t2Ψðt; xÞ þ
�
−

∂2

∂x2 þ V

�
Ψðt; xÞ ¼ 0; ð1Þ

where the effective potential V is determined by the given
spacetime metric, spin s̄, and angular momentum l of the
perturbation. For instance, the Regge-Wheeler potential for
the Schwarzschild black hole metric reads

VRW ¼ f

�
lðlþ 1Þ

r2
þ ð1 − s̄2Þ rh

r3

�
; ð2Þ

where

f ¼ 1 − rh=r; ð3Þ

where the horizon rh ¼ 2M andM is the mass of the black
hole. For simplicity, in the present study we consider the
scalar (s ¼ 0) and vector-type gravitational (s ¼ 2) pertur-
bations with rh ¼ 1 and the multiple index l ¼ 2.
As discussed above, our main goal is to investigate the

drastic modification of the quasinormal mode spectrum due
to the discontinuity in the piecewise function. In
Refs. [11,12] remarkable distinctions were found in the
quasinormal frequencies for both the fundamental modes
and asymptotic behavior. To proceed, our strategy is to
separate the essential cause of the above two features. To
start with, let us consider a scenario where only a single
“cut” or “step” is introduced to the Regge-Wheeler poten-
tial, and is located further away from both the initial
perturbations and an observer. As dictated by causality,
it is expected that the waveform measured by the observer
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will be precisely the same as those for the original Regge-
Wheeler potential, until the signal reaches the discontinuity
and partly bounces back to the observer. As a result, even if
the overall spectrum is dramatically affected for some
reason, the fundamental mode should remain largely
unchanged. In such a way, one manages to isolate the
factor which is crucial to the asymptotic behavior of the
quasinormal modes from those related to the properties
of the spacetime in the vicinity of the horizon. Regarding
the fundamental mode (as will also be further discussed),
the deviation from that of the Regge-Wheeler potential can
be understood as the potential and its derivatives will be
significantly distorted if any discontinuity is located in the
vicinity of its maximum.
In Fig. 1 we present the resultant schematic distribution

of the quasinormal modes in the complex frequency plane.
The spectrum of the quasinormal modes of the scalar
perturbations is shown for both the original Regge-Wheeler
potential and the one with a discontinuity. For the latter, as
discussed above, we consider the case where the tail of the
potential is cut off at r ¼ 10. The low-lying modes for the
original Regge-Wheeler potential are shown as empty black
circles, obtained using the continued fraction method [21].
The red dash-dotted line parallel to the imaginary axis
indicates the asymptotic behavior with a large imaginary
part [13,14,14,15]. For the modified Regge-Wheeler poten-
tial with a cut, although the initial temporal evolution
remains unchanged, the low-lying modes (as shown by the

filled blue triangles) are significantly different. The values
of these modes are obtained by evaluating the temporal
evolution of the initial oscillation using the finite difference
method and then extracting the dominant complex frequen-
cies by employing the Prony method. Indeed, apart from
the fact that the fundamental mode mostly coincides with
that from the original potential, the distribution of the
quasinormal modes is along the real axis, reminiscent of
those obtained in Refs. [11,12]. Moreover, the adopted
configuration facilitates the study of quasinormal frequen-
cies with large real and imaginary parts. The asymptotic
behavior of the quasinormal mode spectrum is indicated by
the green dashed curve. The derivation of the latter will be
given in the next section.
One might doubt whether the observed feature of the

low-lying quasinormal modes for the modified Regge-
Wheeler potential presented in Fig. 1 merely corresponds to
a particular case. The remainder of this section will be
devoted to this issue. To be specific, we argue that the
number, size, location, and even the order of the disconti-
nuity are not determinant factors. First of all, our calcu-
lations indicate that a single continuity suffices to
reproduce the spectrum which lines up along the real axis;
we will continue to concentrate on this simple choice
throughout this paper. In order to show that the feature
observed above is indeed robust, we will explicitly deal
with other possible modifications to the Regge-Wheeler
potential. In particular, we consider two groups of para-
metrizations. The first group, similar to the one demon-
strated in Fig. 1, is devised by cutting off the tail of the
Regge-Wheeler potential from a given radius rcut, namely,

Vcut ¼
�
VRWðrÞ r ≤ rcut;

0 r > rcut:
ð4Þ

The resultant modified potential is investigated by taking
various values of rcut, as shown in the left plot of Fig. 2.
The temporal oscillations presented in Fig. 3 are

obtained by solving Eq. (1) using the finite difference
method implemented in the tortoise coordinates

r� ¼ rþ rh ln

�
r
rh

− 1

�
: ð5Þ

Subsequently, the quasinormal modes are extracted using
the Prony method. The first five primary modes are shown
in the left plot of Fig. 4 and listed in Table I. In Table I, we
present the results for both scalar and vector-type gravita-
tional perturbations. The complex frequencies extracted
using the Prony method are ordered by their respective
importance in constituting the waveform. For both cases,
one observes that these low-lying quasinormal modes are
distributed along the real axis. It is noted that this feature
is found largely independent of the position of the cut.
Also, as expected, when the location of the cut moves further

FIG. 1. Schematic illustration of the quasinormal mode spec-
trum for scalar perturbations with l ¼ 2 in the complex fre-
quency plane. The empty black circles are the results for the
Regge-Wheeler potential (2) obtained using the continued frac-
tion method. The red dash-dotted line parallel to the imaginary
axis indicates the corresponding asymptotic behavior with a large
imaginary part. The filled blue triangles represent the most
dominant quasinormal frequencies when the tail of the Regge-
Wheeler potential is cut off at r ¼ 10, as explicitly given in
Eq. (4). The corresponding asymptotic behavior of the quasi-
normal modes is given by the green dashed curve.
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away from the horizon, the fundamental mode becomes
closer to that of the original Regge-Wheeler potential.
In our calculations, the temporal evolution is carried out

by using the first-order finite difference method by taking
the grid size Δr� ¼ 2Δt ¼ 0.1, and the Prony method is
carried out for the interval (10,200). The precision of the
code is tuned until the extracted frequencies of the first
three overtone modes appropriately match those of the
Regge-Wheeler potential, which are also shown in Table I.
In the case of the modified Regge-Wheeler potential,
however, when using the same settings the resultant modes
with larger real parts are not as precise. This is somewhat
expected as the accuracy of the method decreases when the
period of the oscillations decreases. Therefore, for modes
of higher overtone numbers, the performance of the code
suffers more significantly when the quasinormal modes line
up along the real axis instead of the imaginary one.
Moreover, when compared with the case of the original
Regge-Wheeler potential, we notice that the subtracted

frequencies are more sensitive to the range where the fit of
the Prony method is carried out. Nonetheless, the observed
tendency of the quasinormal frequencies always persists,
and the results here will be fortified further by the
derivation given in the next section.
The “cut” investigated above might introduce a sub-

stantial discontinuity in the potential, especially when rcut
is not so large. To show that the strength of the disconti-
nuity is actually an irrelevant factor, we consider below the
second group of potentials. These potentials feature a minor
“cut,” and the tail is maintained. An explicit definition is
given in Eq. (6). As shown in the right plot of Fig. 2,
visually, the modification to the original potential is rather
insignificant when compared with the left plot.

Vstep ¼
�
VRWðrÞ r ≤ rstep;

VRWðrÞ − ϵ exp½−r=L� r > rstep;
ð6Þ

where in our calculations we take ϵ ¼ VRWðLÞ and L ¼ 50.

FIG. 2. Modified potential based on the Regge-Wheeler one investigated in the present study. The left and right plots show the two
groups of potentials given in Eqs. (4) and (6). The orange dashed, black dotted, blue dot-dashed, and red solid curves correspond to a cut
or step introduced at r ¼ 5, 10, 20, and 50, respectively.

FIG. 3. Resultant temporal evolutions measured by an observer located at r� ¼ 0 for some initial Gaussian distribution centered at
r� ¼ 3 with a width σ ¼ 1. The blue solid curves shown in the left and right plots correspond to the cases where the “cut” and “step”
defined in Eqs. (4) and (6) are located at r� ∼ r ¼ 10. While the initial oscillations for t≲ 15 are identical for the two cases, a late-time
tail for t ≳ 150 is observed for the potential with the “step.” As a comparison, the results for the original Regge-Wheeler potential are
also represented by the orange dotted curves in the right plot.

ASYMPTOTICAL QUASINORMAL MODE SPECTRUM FOR … PHYS. REV. D 103, 024019 (2021)

024019-5



By following a similar procedure, the temporal evolution
is shown in the right plot of Fig. 3. As one compares the
blue solid curve against that in the left plot, it is observed
that the initial oscillations measured by the observer for
t≲ 15 are identical for the two cases. This is understood
since any distinct feature demonstrated by the two poten-
tials must also comply with the requirement of causality.
Moreover, a late-time tail starting at t ∼ 150 is observed for
the potential with the “step,” as its associated effective
potential contains an appropriate tail [22].
From the temporal evolution, one again obtains the

corresponding low-lying quasinormal frequencies as

presented in Table I and the right plot of Fig. 4. By
comparing the right plot of Fig. 4 to the left one, it is
straightforward to observe that the quasinormal mode
spectrum associated with a “step” bears a strong resem-
blance to that with a “cut.” In other words, we have shown
numerically that the strength of the discontinuity plays a
minor role in determining the quasinormal modes.
As a reference, we also show the results obtained using

the original Regge-Wheeler potential. From the right plot of
Fig. 3 one can see that the time evolutions of the two cases
are largely similar. Again, the difference is not significant,
and it is more pronounced at late times, especially when the

FIG. 4. Resultant low-lying quasinormal modes obtained from the potentials given in Fig. 2. The left and right plots show the two
groups of potentials given in Eqs. (4) and (6).

TABLE I. Calculated scalar and vector-type gravitational quasinormal frequencies. The calculations are carried out for the effective
potentials defined in Eqs. (4) and (6), as well as the original Regge-Wheeler potential (2). From left to right, the results shown in the first
three columns are obtained using the Prony method extracted from the temporal evolutions as shown in Fig. 3. The more accurate values
of the quasinormal frequencies for the potential VRW obtained using the continued fraction method are also given in the fourth column as
a reference. Also, the results obtained using the Prony method are ordered by their respective weights in the waveform, which are also
presented next to the values of the quasinormal frequencies.

Prony method Continued fraction

n Vcut ðl ¼ 2; s̄ ¼ 0; rcut ¼ 10Þ Vstep ðl ¼ 2; s̄ ¼ 0; rstep ¼ 10Þ VRW ðl ¼ 2; s̄ ¼ 0Þ VRW ðl ¼ 2; s̄ ¼ 0Þ
0 0.9709 − 0.1853i 10−2 0.9673 − 0.1936i 10−2 0.9673 − 0.1934i 10−2 0.967288 − 0.193518i
1 1.165 − 0.4104i 10−3 0.8926 − 0.6192i 10−3 0.9262 − 0.5912i 10−3 0.927701 − 0.591208i
2 5.675 − 3.102i 10−3 5.017 − 3.506i 10−6 0.8618 − 1.099i 10−4 0.861088 − 1.017117i
3 13.79 − 3.222i 10−4 13.51 − 3.324i 10−6 23.23 − 1.171i 10−11 0.787726 − 1.476193i
4 21.99 − 2.599i 10−5 21.86 − 2.640i 10−6 31.42 − 1.234i 10−11 0.722598 − 1.959843i

n Vcut ðl ¼ 2; s̄ ¼ 2; rcut ¼ 10Þ Vstep ðl ¼ 2; s̄ ¼ 2; rstep ¼ 10Þ VRW ðl ¼ 2; s̄ ¼ 2Þ VRW ðl ¼ 2; s̄ ¼ 2Þ
0 0.7590 − 0.1808i 10−2 0.7476 − 0.1784i 10−2 0.7474 − 0.1779i 10−2 0.747343 − 0.177925i
1 0.9709 − 0.3289i 10−3 0.6889 − 0.5962i 10−4 0.6928 − 0.5465i 10−4 0.693422 − 0.547830i
2 5.662 − 3.222i 10−4 4.719 − 3.930i 10−6 0.4917 − 0.9949i 10−4 0.602107 − 0.956554i
3 13.92 − 3.222i 10−4 13.51 − 3.383i 10−6 40.35 − 2.443i 10−10 0.503010 − 1.410296i
4 22.07 − 2.577i 10−5 21.89 − 2.640i 10−7 55.53 − 2.666i 10−12 0.415029 − 1.893690i
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power-law decay takes place. However, as one takes a
closer look at the resultant modes (as presented in
Table I), the quasinormal modes show a more substantial
difference. For the Regge-Wheeler potential, using the
Prony method, the first three dominant quasinormal modes
are in reasonably good agreement with those from the
standard continued fraction method. However, the weights
of the two other modes are rather insignificant compared
to the others. Therefore, it seems that their deviations
from the results obtained using the continued fraction
method can be attributed entirely to the numerical uncer-
tainties. On the other hand, the amplitudes of the modes
extracted from the modified Regge-Wheeler potentials
decrease gradually with increasing overtone number.
Subsequently, by and large, all of these modes will con-
tribute to the waveform at the initial stage. Moreover, as the
imaginary parts of the modes in question are of the same
order of magnitude, they are expected to persist in the
waveform over an extended period. This is quite different
from the case of the original Regge-Wheeler potential,
where the fundamental mode stands out among others and
dominates the time evolution. To a certain degree, the
above viewpoint might alleviate the difficulties in under-
standing why drastically different quasinormal mode spec-
tra in frequency space are associated with almost identical
waveforms in the time domain. To be specific, one should
not compare one dominant quasinormal mode against
another, but rather compare its waveform with that formed
by a summation of similarly weighted components. Rather
than a continuous spectrum, it consists of a superposition of
temporal oscillations with discrete frequencies. But if these
quasinormal modes furnish a complete set, the summation
in question is nothing but an expansion uniquely deter-
mined by the appropriate boundary conditions.
Nonetheless, by evaluating only a few modes using the

Prony method, it is still not convincing that the entire
spectrum would universally line up alone the real axis.
Also, we have not addressed the impact of a high-order
discontinuity in the potential. These issues will be covered
in the following sections, where we proceed to study the
properties of the quasinormal mode spectrum with a large
frequency.

III. ASYMPTOTIC PROPERTIES
OF QUASINORMAL MODE SPECTRUM
IN PIECEWISE EFFECTIVE POTENTIAL

In this section, we explore the asymptotic properties of
the quasinormal mode spectrum. In Sec. III A, we first
devise a specific simple problem that can be solved more
straightforwardly. We move to a more general proof in
Sec. III B, which is largely based on the proper treatment
of the discontinuity where the WKB approximation
breaks down. In Sec. III C, the results are further gener-
alized to the cases where the discontinuity is only present at
a higher order.

A. An explicit example with the modified
Pöschl-Teller potential

In this subsection, we construct an effective potential that
can be primarily treated analytically, which to some certain
degree reflects a realistic problem. Similar to the effective
potential given above in Eq. (4), we introduce a “cut” in the
Pöschl-Teller potential located at a radius further away
from the maximum of the potential. Since the solution for
the Pöschl-Teller potential is known analytically, it is
feasible to study the asymptotic behavior of the quasinor-
mal mode spectrum analytically.
Before proceeding further, we point out a subtlety in the

derivation. To explore the asymptotic properties of the
quasinormal frequencies due to a cut located spatially distant
from the horizon, one has to deal with two limits. To be
specific, the location of the cut approaches spatial infinity,
xcut → þ∞. Meanwhile, the real part of the frequency also
goes to infinity, Reω≡ ωR → þ∞. However, if one takes
the limit for the cut first, namely, limωR→þ∞ limxcut→þ∞, (as
will become obvious) the “cut” will not play any role in the
final result. Instead, during the course of the derivation, one
should assume that the “cut” is located at a relatively large
but finite radius. One may take the limit of asymptotic spatial
infinity only at the end of the calculation in order to discuss
the physical relevance of the obtained results.
In what follows, we derive the quasinormal frequencies

by evaluating the zeros of the Wronskian determinant

WðωÞ≡Wðg;fÞ ¼ gðω; xÞf0ðω;xÞ−fðω; xÞg0ðω; xÞ; ð7Þ

where 0 ≡ d=dx. Here f and g are the solutions of the
homogenous equation in s-domain [2],

�
−ω2 −

d2

dx2
þ ṼPT

�
Ψ̃ ¼ 0; ð8Þ

with appropriate boundary conditions, namely,

fðω; xÞ ∼ e−iωxx → −∞;

gðω; xÞ ∼ eiωxx → þ∞: ð9Þ

The effective potential

ṼPT ¼
�
VPTðxÞ x ≤ xcut;

0 x > xcut;
ð10Þ

is constructed by introducing a “cut” at xcut in the Pöschl-
Teller potential,

VPT ¼ Vm

cosh2ðκxÞ : ð11Þ

To proceed, we first obtain f and g and then evaluate
the zeros of the Wronskian (7) to find the quasinormal
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frequencies. Based on the well-known method [6,7], the
quasinormal modes for the original (inverse) Pöschl-Teller
potential can be directly obtained from the eigenvalues
of the corresponding bound-state problem. Now, for the
modified potential (10), one cannot straightforwardly apply
the method. However, using an adapted procedure, the
wave function fðω; xÞ satisfying the first line of Eq. (9)
regarding the potential ṼPT can be obtained similarly by
introducing the transformation

�
x → −ix;
κ → iκ;

ð12Þ

while making proper combinations of the analytic forms of
the solutions with well-defined parities [23]. The resultant
form of fðω; xÞ can be written as

fðω; xÞ ¼ Aue þ Buo: ð13Þ

We delegate the specific forms of ue, uo together with the
straightforward but somewhat tedious derivations of the
coefficients A, B to Eqs. (A1)–(A7) in the Appendix. Here
we only note that, as coefficients, A and B are not functions
of the tortoise coordinate x.
On the other hand, the resultant form of the wave

function gðω; xÞ satisfying the boundary condition (9)
can be easily obtained,

gðω; xÞ ¼ eiωx: ð14Þ

Subsequently, the quasinormal frequencies can be
obtained by the requirement that the Wronskian (7)
vanishes. Now, it is interesting to point out that if one
takes the limit xcut → þ∞ in the wave functions ue, uo at
this moment and then substitutes Eq. (13) into the
Wronskian, one finds

fðω; xÞ → Ceiωx þDe−iωx for x → þ∞; ð15Þ

with C, D given by Eq. (A8). The condition for the
Wronskian to vanish therefore occurs at the poles of
C=D, which corresponds to the case of a pure outgoing
wave at x → þ∞. By explicitly making use of Eq. (A8), it
corresponds to the condition for any factor of the product
ΓðbÞΓðbþ 1

2
ÞΓð1 − aÞΓð1

2
− aÞ to diverge. Subsequently,

the quasinormal frequencies are obtained by substituting
Eqs. (12) and (A6), which are

ωPT
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vm −

κ2

4

r
;

ωPT
I ¼ −

�
nþ 1

2

�
κ; ð16Þ

where n is a non-negative integer. Since C=D is nothing but
the ratio of the amplitude of the reflected wave to the

incident one, the above procedure is precisely what the
method dictates [6,7]. It is noted that the quasinormal mode
spectrum climbs up along the imaginary axis.
As mentioned above, what will radically change the

result is that a “cut” is implemented at a finite location. In
particular, the Wronskian is no longer evaluated at
asymptotic spatial infinity, but at xcut. Subsequently, such
a modification leads to a small additional contribution
due to the deviation from the poles of the first line of
Eq. (A8). When the Wronskian vanishes at infinity, the
wave function fðω; xÞ at x ¼ xcut is not purely outgoing
but contains a small fraction of the ingoing wave. For the
present case, however, the requirement that the Wronskian
is zero at the “cut” implies that the small deviations from
the outgoing wave precisely cancel out those related to
the ingoing one. We argue that this novel condition
eventually leads to a dramatic change in the quasinormal
mode spectrum. Although the above arguments seem to be
rather heuristic and only apply to a particular example,
they will become more transparent in the following
subsection where many key features discussed here are
found to be general.
Instead of evaluating the Wronskian entirely, one only

needs to calculate the difference compared to its value for
the Pöschl-Teller potential. As we are more interested in the
asymptotic properties of the quasinormal modes, the above
difference can be estimated by expanding the wave function
at x → þ∞ to the second order. By making use of the
coefficients derived in Eqs. (A10)–(A11), the resultant
deviation reads

WðωÞ ¼ ΔWðωÞ ¼ ΔWCðωÞ þ ΔWDðωÞ: ð17Þ

where

ΔWCðωÞ≐WðΔCeiωx;fÞ¼−2κðΔC̃1þΔC̃2Þe−2κxcuteiωxcut
ð18Þ

and

ΔWCðωÞ ≐ WðDe−iωx; fÞ ¼ −2iωD: ð19Þ

Equating Eq. (17) to zero gives an algebraic equation
for the quasinormal frequencies ω. At the limit ω → ∞,
assisted by the asymptotic relation (A12) derived in the
Appendix, the equation takes the simple form

ω2

Vm
¼ e2iωxcut : ð20Þ

We note that since the equation involves the term eiωxcut , the
real part of ω can be shifted since eiωxcut ¼ eiωxcutþi2πj, with
j being an (in particular, an arbitrarily large) integer.
Subsequently, the asymptotic form of the quasinormal
frequencies is found to be

QIAN, LIN, SHAO, WANG, and YUE PHYS. REV. D 103, 024019 (2021)

024019-8



ωR ¼ πj
xcut

þOð1Þ;

ωI ¼ −
lnðπjÞ
xcut

þ ln xcut
xcut

þ lnVm

2xcut
þOð1Þ; ð21Þ

where j is a (large) integer. In accordance with the
numerical results, the quasinormal frequencies now line
up along the real axis. As discussed above, the poles of the
Gamma function give rise to quasinormal frequencies
located close to the imaginary axis.. Therefore, when a
“cut” is introduced, the relevant frequencies steer clear of
these poles.
Also, if the location of the “cut” is further away from the

horizon, as xcut increases, the real part of the frequency for a
given overtone number becomes smaller. However, the
asymptotic behavior does not change. This confirms
what we have claimed above. To be specific, if the limit
xcut → þ∞ is taken at the end of the calculation, the
conclusion remains unchanged. The resultant quasinormal
modes given in Eq. (21) are indeed drastically different
from Eq. (16).

B. General results for a potential
with a discontinuity

In this subsection, we provide a more general derivation
of the above results. We consider a potential VðxÞ defined
in tortoise coordinates that vanishes asymptotically as
x → ∞. Again, for simplicity, a single “cut” is introduced
to the potential at the position xcutð>1Þ similar to the case
of Eq. (10).
As the potential is cut off beyond x ¼ xcut, it is obvious

that the solution (14), which satisfies the second line of
Eq. (9), remains valid on the rhs of the discontinuity. To
deal with the general form of potential on the lhs of the
“cut,” we assume that the WKB approximation [24] is
valid. In other words, the wave function can be obtained by
the formal integration

fðω; xÞ ¼ CeiSðx0;xÞ þDe−iSðx0;xÞ; ð22Þ

where, at the lowest-order approximation (which suffices
for the present case), we have

Sðx0; xÞ ¼
Z

x

x0

kðx0Þdx0; ð23Þ

where kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − VðxÞ

p
, and x0 is taken somewhat

arbitrarily in the region where the WKB formula is valid.
As already learned from a particular example, the

coefficients C and D are not arbitrary, as they are
determined in order to guarantee the outgoing boundary
condition (9). The evaluation of these coefficients is not
trivial as they are related to the specific form of the
potential. Fortunately, as shown below, under moderate

assumptions their particular forms are not crucial to the
present discussion. What is relevant is that C andD are well
defined in terms of the potential as well as the boundary
condition of the wave function at x → −∞.
The quasinormal mode spectrum can be obtained by

evaluating the Wronskian. Again, if one first takes the
limit xcut → þ∞ the potential vanishes asymptotically,
SðxÞ → iωx. Subsequently, the quasinormal modes would
be dictated by the poles of the ratio C=D, which corre-
sponds to the conventional scenario.
On the contrary, for any finite xcut, it is crucial thatD ≠ 0

at xcut, precisely because of the presence of the disconti-
nuity. As x ¼ xcut is the point where the WKB approxi-
mation breaks down, one has to resort to the Wronskian to
connect the wave function on both sides of the disconti-
nuity. To be specific,

WðωÞ ¼ eiωxcutðikÞðCeiScut −De−iScutÞ
− ðCeiScut þDe−iScutÞðiωÞeiωxcut ¼ 0; ð24Þ

where Scut ¼ Sðx0; xcutÞ. For large ω, it is straightforward to
find

ωR ¼ πj
xcut

þOð1Þ;

ωI ¼ −
lnðπjÞ
xcut

þ ln xcut
xcut

−
lnðD=CÞ
2xcut

þ lnVcut

2xcut
þOð1Þ;

ð25Þ

where j is a (large) integer, Vcut ¼ VðxcutÞ, and we have
expanded k−ω

kþω in terms of 1
ω.

Both the real and imaginary parts of the quasinormal
frequencies bear a strong resemblance to Eq. (A12),
obtained in the preceding subsection for a specific case.
This result confirms the observed tendency of the above
numerical and semianalytical results in the literature
[11,12] regarding the low-lying modes. A certain degree
of uncertainty comes from the term lnðD=CÞ, which might
affect the coefficient of the subleading contributions, as in
the case of Eq. (A12). For a general approach, unfortu-
nately, a more detailed specification is out of reach. Again,
the resulting asymptotic behavior for the spectrum is found
to be suppressed by the location of the cut. Nonetheless, the
ratio between the real and imaginary parts is independent of
xcut and is used to obtain the green dashed curve in Fig. 1.

C. General results for a potential with a
higher-order discontinuity

As has been speculated and numerically shown in
Ref. [12], the asymptotic properties of the quasinormal
mode spectrum do not change if one replaces the step
function by a continuous piecewise linear one. Therefore,
one might wonder whether the resultant quasinormal mode
spectrum will be significantly modified if a more moderate
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discontinuity is introduced to the potential. In this sub-
section, we show in a more general context that this is not
the case.
We refine the potential introduced in the previous section

further by replacing the “step” with an nth-order disconti-
nuity in the potential VðxÞ. For consistency in notation, the
point of discontinuity will still be denoted by xcut, except
now the potential is smoothly connected at the point up to
(n − 1)th order. Also, we assume that the WKB approxi-
mation is valid on both sides. Therefore, the wave function
for x < xcut still possesses the form of Eq. (22), while for
x > xcut we similarly have

gðω; xÞ ¼ EeiSðxcut;xÞ þ Fe−iSðxcut;xÞ; ð26Þ

where the coefficients E, F are determined (reminiscent of
C, D) to ensure the boundary condition at x → þ∞ given
in Eq. (9).
By following a similar procedure to that which led to

Eq. (24), the resultant Wronskian evaluated at x ¼ xcut reads

WðωÞ ¼ ðEþ FÞðiS0ðx−cutÞÞðCeiScut −De−iScutÞ
− ðCeiScut þDe−iScutÞðiS0ðxþcutÞÞðE − FÞ ¼ 0;

ð27Þ

where S0ðx−cutÞ ¼ S0ðxÞjx→x−cut
and S0ðxþcutÞ ¼ S0ðxÞjx→xþcut

.
The above equation can be reorganized to read

ðEþF
E−F − 1ÞS0ðx−cutÞ þ ðS0ðx−cutÞ − S0ðxþcutÞÞ

EþF
E−F S

0ðx−cutÞ þ S0ðxþcutÞ
¼ D

C
e−2iScut : ð28Þ

Before proceeding further, we note that at the limit of our
interest, namely, the quasinormal frequency with an arbi-
trarily large (negative) imaginary part, we have

lim
Imω→−∞

Eþ F
E − F

¼ 1: ð29Þ

By observing Eq. (26), in the limit of large frequency
one may ignore the contribution from the potential and
approximately consider k ∼ ω. Subsequently, the term
associated with F behaves asymptotically as e−iωx. As a
result, for very large quasinormal frequencies Imω → −∞,
it blows up exponentially. However, Eq. (26) is known
to satisfy the outgoing wave boundary condition given in
the second line of Eq. (9) at x → þ∞. Therefore, the
only possibility is that F≡ FðωÞ, when analytically con-
tinued to the complex plane, must vanish as Imω → −∞,
and thus Eq. (29) is obtained. To be more precise, not
only does limImω→−∞

F
E ¼ 0, but it also approaches zero

very fast in order to suppress another exponentially
increasing factor.
An additional concern is that Eq. (23) is no longer valid

in the present context [25]; otherwise, it can be shown that
Eq. (28) leads to a contradiction. This is because as the
potential is a continuous function Vðx−cutÞ¼VðxþcutÞ,
Eq. (23) implies that S0ðx−cutÞ¼S0ðxþcutÞ. As a result, in
the limit Imω → −∞, Eq. (29) indicates that the lhs of
Eq. (28) vanishes while the rhs increases substantially.
The above difficulty can be resolved by considering a

higher-order WKB approximation [25]. Instead of Eq. (23),
one has

Sðx0; xÞ ¼
Z

x

x0

dx0
�
kðx0Þ þ ik0ðx0Þ

2kðx0Þ þ ðiÞ2
�

k00ðx0Þ
ð2kðx0ÞÞ2 −

3k0ðx0Þ2
ð2kðx0ÞÞ3

�
þ � � � þ ðiÞn

�
kðnÞðx0Þ
ð2kðx0ÞÞn þ � � �

�
þ � � �

�

≃
Z

x

x0

dx0
�
kðx0Þ þ ik0ðx0Þ

2kðx0Þ þ
ðiÞ2k00ðx0Þ
ð2kðx0ÞÞ2 þ � � � þ ðiÞnkðnÞðx0Þ

ð2kðx0ÞÞn þ � � �
�
: ð30Þ

In deriving the above expression, for a given order of ℏ, only
the terms which eventually lead to a discontinuity at S0ðxcutÞ
will be considered. Moreover, in the second line, among
different combinations, one only retains the term where the
discontinuity is originated from that in the derivatives of V of
the largest possible order. By observing Eq. (30), it becomes
apparent that the numerator on the lhs of Eq. (28) indeed
does not vanish, as it is dictated by the lowest-order
discontinuity present in the potential. Subsequently, the
latter receives its dominant contribution from the disconti-
nuity of the nth derivative of kðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − VðxÞ

p
.

If one assumes that the discontinuity of the potential is at
nth order, for large frequency, the lhs of Eq. (28) gives

−in

ð2ωÞnþ2
Δ
�
dnV
dxn

�				
xcut

;

and after some algebra the resultant asymptotic quasinor-
mal normal modes are

ωR ¼
πj
xcut

þOð1Þ;

ωI ¼−
lnðπjÞ
xcut

þ lnxcut
xcut

−
lnðD=CÞ
2xcut

þ
lnΔðdnVdxn Þjxcut

2xcut
þOð1Þ:

ð31Þ
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It is noted that the second term on the rhs of Eq. (30), when
evaluated for Scut, gives rise to a contribution to the
exponential on the rhs of Eq. (28), which is found to be
proportional to ln kðxcutÞ ∼ lnω. However, as its coefficient
is smaller by a factor of ℏ (not explicitly shown in the
natural units adopted by us), it is not included in the
resultant expression. The consistency of Eq. (31) can
be readily ascertained as it becomes Eq. (25) when taking
the order of discontinuity n ¼ 0.

IV. RELATION WITH OTHER
CONVENTIONAL METHODS

The asymptotic results obtained in the previous section
are consistent with the numerical results presented in
Sec. II, as well as with the low-lying modes found for
the piecewise potential in Refs. [11,12]. On the other
hand, as mentioned above, it is drastically different from
those obtained by various conventional approaches,
namely, the WKB method [8], the continued fraction
method [14,21,26], and the monodromy method [15],
among others. In a rather general context, they all give
rise to similar asymptotic behavior of quasinormal frequen-
cies with a finite real part and large imaginary part with
equal spacing. In particular, recent studies [19,20] con-
cerning a piecewise Pöschl-Teller potential also indicate
distinct results from ours. In this regard, it is essential to
clarify the difference between the present approach and
other more conventional methods for quasinormal modes
and discuss the related physical interpretations.
First, let us briefly review how the WKB method [8]

leads to the asymptotic quasinormal spectrum lining up
along the imaginary axis. For a quasinormal mode solution,
the amplitudes of the transmitted and reflected waves are of
the same order of magnitude. This is a direct consequence
of the probability flux conservation as the boundary
condition of quasinormal modes does not allow for an
incoming wave. Moreover, in the case of the WKB
approximation, the transmitted amplitude can be estimated
by e−B. Here, B is given by an integral of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V − ω2

p
between

the two classical turning points of the potential, where kðxÞ
vanishes. But since ω2 < VðxÞ between the two turning
points, it mostly leads to an exponentially small ratio of the
transmitted amplitude to the reflected one. Therefore, the
condition for a quasinormal mode corresponds to a par-
ticular case, sometimes referred to as the second-order
turning point. For small overtone numbers, the latter
implies that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V − ω2

p
∼ 0, where the frequency ω can be

complex. The resultant quasinormal frequencies can be
evaluated based only on the information of the effective
potential (as well as its derivatives) at its maximum [8–10].
Consequently, at first glance, a “cut” planted further away
from the maximum of the potential should not affect the
above calculations.
However, to investigate the asymptotic properties of the

quasinormal modes obtained when employing the WKB

approximation, in principle, one has to deal with a contour
integral in the complex coordinate space. In particular, for
the complex frequency with a large imaginary part, the
relevant turning points (originally located on the real axis)
will also migrate to the complex plane. Therefore, caution
must be taken in choosing an appropriate counter in
accordance with the branching cuts [25,27]. In particular,
as shown schematically by Fig. 2 of Ref. [28], all of the
branching cuts are located in the region with finite radius.
The counter C0 can be subsequently deformed and divided
into three parts, with one of them being an integration on
an infinitely large circle. The resulting behavior of the
quasinormal mode spectrum is found to be largely con-
sistent with those obtained by other methods, except that
the real part of the frequency vanishes asymptotically.
The discontinuity introduced in our approach, however,
leads to an additional branching out. The latter emanates
from r ¼ rðxcutÞ and stretches to infinity. As a result, the
procedure carried out above, which leads to an estimation
of the higher-overtone modes, cannot be applied straight-
forwardly to the present case. Our analyses indicate that the
above procedure cannot be applied straightforwardly due to
the infeasibility of analytic continuation of the wave
function around the “cut” on the real axis. Equivalently,
one may consider that there is a branching cut which passes
through the point of discontinuity. Therefore, the contri-
butions from the contour integration on an infinitely large
circle have to be replaced with those on one edge of the
branching cut. The latter turns out to be rather significant,
which in turn gives rise to a large impact on the asymptotic
quasinormal mode spectrum.
Similarly, the monodromy method is also carried out in

terms of the analytic continuation of the wave function in
coordinate space. In particular, as illustrated in Fig. 2 of
Ref. [15], two branching cuts are involved. One of them is
related to the singularity, which can be shown to be
irrelevant by avoiding it through an appropriate choice
of the branching cut’s orientation. The other branching cut,
which originates from the horizon, is crucial to the physical
problem. It can be chosen conveniently to give rise to the
ratio of the wave functions after the contour completes a
counterclockwise circle around the horizon at r ¼ rh ¼ 1.
This approach was developed further by Andersson and
Howls [29] by employing the complex WKB method. In
terms of Stokes lines and constants, the form of the analysis
becomes apparently simpler, and the same results regarding
the highly damped quasinormal frequencies are obtained.
When an additional discontinuity is added to the effective
potential, again, one may imagine that a new branching cut
emanating from r ¼ rðxcutÞ is subsequently planted. As a
result, the analytic continuation cannot be performed
straightforwardly. To be specific, the monodromy method
relies on a deliberate choice of an enclosed contour, which
avoids all possible branching cuts and singularities. One
observes that both of the above approaches involve a part of
the contour that loops around an infinitely large circle.
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However, the additional branching cut discussed above
introduces novel complications which prohibit a straight-
forward application of the residue theorem. Moreover, the
entire analysis of the monodromy method is based on the
assumption that Imω ≫ Reω, which is no longer valid in
the present case.
The continued fraction method is known for its high

precision and versatility in the study of quasinormal modes.
To be specific, the method relies on the expansions of the
wave function and the effective potential around the
horizon r ¼ 1. However, the expansion of the effective
potential becomes infeasible when a discontinuity is
introduced. Subsequently, it is not surprising that the
asymptotic results are also modified.
Moreover, it is essential to point out that the asymptotic

quasinormal frequencies found above in the modified
Pöschl-Teller potential are very different from those
obtained in Refs. [19,20]. In Ref. [19], the “step” was
introduced precisely at xcut ¼ 0. Also, the derivation was
based on the assumption that the quasinormal frequency
possesses a large positive imaginary part but a moderate
real part. In the above derivation, however, the condition
xcut ≫ 1 plays a crucial role, and subsequently leads to
different results. On the other hand, by introducing a
“spike” into the effective potential, the resultant quasinor-
mal frequencies have been shown to be similar to our
results [30]. In this regard, it seems that a discontinuity
planted at the maximum of the effective potential leads to
substantial differences. This aspect certainly deserves
further investigation.
One potentially promising approach is the venerable

Chandrasekhar-Detweiler method [31], which does not
seem to be affected by the discontinuity. In order to avoid
numerical instability, the master equation is first reformu-
lated into a Riccati equation in terms of a phase function
ϕðxÞ. Subsequently, the quasinormal frequencies can be
obtained by numerically integrating the resultant equation
from both ends while requiring that the two solutions meet
each other at an arbitrary point in the middle. It is
straightforward to show that such a connection condition
corresponds to the vanishing of the Wronskian, in the case
of the original master equation. The numerical integration
does not suffer from the instability, which would signifi-
cantly undermine the validity of the procedure if it were
directly applied to the original master equation. In particu-
lar, Chandrasekhar and Detweiler pointed out in their paper
that the procedure is capable of determining the quasinor-
mal frequency so long as jReωj ≥ jImωj. As the quasi-
normal modes of the Regge-Wheeler potential usually
climb up the imaginary axis, the method was only used
to determine the first few modes. For the present case, we
note that the approach is not beset by the discontinuity.
Moreover, the condition jReωj ≥ jImωj is rather favorable
to us as the resultant quasinormal frequencies actually go
along the real axis.

V. POSSIBLE ASTROPHYSICAL
IMPLICATIONS

Besides being a part of the piecewise function approxi-
mation to a realistic black hole metric, one might wonder if
the discontinuity is physically meaningful. We speculate
that a discontinuity might naturally take place in realistic
physical scenarios. If this is the case, then the modification
of the gravitational quasinormal modes discussed above
might lead to direct implications of astrophysical relevance.
The modified asymptotic behavior due to the discontinuity
might be observed as it affects the signal-to-noise ratio of
space-borne laser interferometers [32,33]. Besides gravita-
tional-wave detection, the black hole shadow is also one of
the promising observables for the strong-field regime, as it
is rather sensitive to the details of the matter distribution
and the resultant effect might be experimentally relevant.
Its connection with the quasinormal modes [34], especially
regarding the discontinuity, is also worth exploring.
In practice, a discontinuity in matter distribution may

occur due to the surface of the compact star, cuspy halo, or
related to an unidentified form of matter and energy. In
what follows, we discuss two explicit examples that are
potentially meaningful in the context of astrophysics.
First, let us consider a simple scenario where a thin mass

shell δM is wrapped around a Schwarzschild black hole
metric at the radius r ¼ rshell, located beyond the innermost
stable circular orbit rshell > rISCO ¼ 3rh. In this case, the
effective potential reads

Vstep ¼
�
VRWðrh; rÞ r ≤ rshell;

VRWðr0h; rÞ r > rshell;
ð32Þ

where rh ¼ 2M; r0h ¼ 2ðM þ δMÞ. This subsequently
gives rise to a “step up” in the effective potential for scalar
perturbations, and a “step down” for the vector-type
gravitational perturbations. For both cases, the findings
of the present study can be readily applied.
Second, for a spherically symmetric compact object,

the matter distribution is governed by the Tolman-
Oppenheimer-Volkoff equation [35]

dp
dr

¼ −
ðρþ pÞ½mðrÞ þ 4πr3p�

r½r − 2mðrÞ� : ð33Þ

In this case, a discontinuity may appear on the surface of
the star, an interior interface separating two distinct layers
of matter, or a sharp edge of an accretion disk. The last case
may occur, for instance, due to orbital instability [36,37]
such as when the inner edge of the accretion disk coincides
with the innermost stable circular orbit. In general, the
difference may be characterized by distinct equations of
state, namely, ρ1ðpÞ ≠ ρ2ðpÞ, and a discontinuity is present
in the first-order derivative of the pressure. This sub-
sequently leads to a discontinuity in the energy-momentum
tensor and therefore the backreaction received by the
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spacetime metric. Our derivation indicates that no matter
how insignificant such a discontinuity is, the asymptotic
behavior of the quasinormal modes will be significantly
modified. Indeed, one family of standard w modes, known
as the curvature modes, is observed to possess similar
asymptotic behavior to that found in the piecewise potential
[38]. To be specific, the imaginary part of the quasinormal
frequencies increases moderately with the overtone num-
ber, while their real part increases more rapidly.

VI. FURTHER DISCUSSIONS AND
CONCLUDING REMARKS

In this work, we investigated the resultant modification
in the quasinormal mode spectrum due to the piecewise
approximate potential. The study was motivated by recent
findings on the apparent contradiction between the evolu-
tion of perturbations in the time domain and the quasi-
normal mode spectrum in the frequency domain. While the
temporal evolution gives rise to a desirable match with the
case of the Regge-Wheeler potential, the resultant asymp-
totic quasinormal modes present a distinct feature. The
spectrum is found to mostly lie along the real axis, which
appears rather different from that obtained by using
the realistic potential for physical black hole metrics.
Subsequently, the present study thus involved an attempt
to answer the points raised at the beginning of the paper.
Our investigation consisted of numerical as well as ana-
lytical approaches.
As for the numerical approach, we devised a modified

Regge-Wheeler potential in order to separate the two
features related to the fundamental mode and the asymp-
totic behavior of the spectrum. The asymptotic quasinormal
modes are thus attributed to the discontinuity introduced by
the piecewise function approximation. In particular, our
findings remain valid even though the strength of the “step”
is insignificant and/or located further away from the black
hole horizon. The analytic derivation was initiated by
exploring a modified Pöschl-Teller potential. The analytic
arguments were then generalized. The discussions were
first extended to the case of an arbitrary form of the
potential where the WKB approximation is valid on both
sides of the discontinuity. Then, we explored the case
where the discontinuity in the potential originates from a
higher-order derivation. As a result, we demonstrated that
the numerically observed feature is sound in a rather
general context.
The derivation given in this paper was compared against

other standard methods. For instance, the WKB method
evaluates the quasinormal frequencies by using merely
the derivatives of the effective potential at its maximum.
Also, by replacing the Regge-Wheeler potential by a
Pöschl-Teller one mainly around its maximum, a reason-
able agreement can be achieved. The above well-known
results seem to indicate that only the region near the black
hole is relevant for the quasinormal modes. Also, the

monodromy method is usually employed to handle the
asymptotic properties of the quasinormal modes with a
large imaginary part. When compared with the case of a
piecewise potential, the observed distinction can be traced
back to the infeasibility of analytic continuation or the
additional branching cut caused by the discontinuity. The
results discussed in the present study were examined in a
consistent framework with other conventional methods and
related physical interpretations. It was argued that some
specific methods cease to apply to this particular case since
either an analytic continuation becomes nontrivial or the
Taylor expansion turns out to be inaccessible due to
the discontinuity. Some subtleties regarding the details
of the technique were clarified and apprehended.
The Prony method utilized in the present study has been

shown to be an efficient tool for evaluating the low-lying
quasinormal modes. In conjunction with appropriately tuned
numerical integration for the temporal evolution, it can
successfully extract the first few overtones of the Regge-
Wheeler potential. The method is rather universal as it does
not depend on the specific form of the potential, and the
fitting process is quite efficient. The downside of the
approach is that it cannot be used for quasinormal modes
of higher overtone. Moreover, one cannot straightforwardly
estimate the error bound of the extracted frequencies. In
certain circumstances, the subtracted frequencies are found
to be sensitive to the range where the fit of the Prony method
is carried out. As a result, we had to resort to an analytic
approach for the asymptotic behavior of the quasinormal
modes. Therefore, it is desirable to also evaluate the
quasinormal frequencies by using other independent
approaches, such as the Chandrasekhar-Detweiler method.
There are, however, still a few issues that deserve to be

explored further. The difference observed in the quasinor-
mal mode spectrum between the piecewise potential and
the Regge-Wheeler one was only partly resolved. We found
that as the quasinormal modes lie along the real axis, their
imaginary parts are of the same order of magnitude. As a
result, such modes may constitute the resultant waveform
with similar importance. In other words, the observed
quasinormal oscillations cannot be overwhelmed by one
single mode. On the other hand, when the quasinormal
modes line up along the imaginary axis, the fundamental
mode has a more significant role than others. The above
argument partly explains why the fundamental modes in the
two cases do not match each other, even though the long-
term temporal evolutions are identical. However, as pointed
out by other authors [11,12], a deeper understanding of the
problem stems from the completeness of quasinormal
modes [30,39–42]. Indeed, this is a rather intriguing topic.
If one can show that the quasinormal modes are complete,
any physical solution is then expected to be represented as a
sum of quasinormal modes. Less ambitiously [11], even if
the quasinormal modes do not form a complete set, it would
still be rewarding if one manages to capture the main
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characteristics of the physical system quantitatively using
a few low-lying fundamental modes [30]. Besides, it is
meaningful to understand whether the information on
quasinormal modes can be unambiguously extracted from
the time evolution even though other components persist.
Moreover, discontinuities are physically relevant, as they
could be present in the matter distribution associated with
space dust or the surface of a compact object. Therefore,
it might be interesting to study implications regarding
possible observations owing to the different quasinormal
modes.
We pointed out that there is a “paradox” regarding the

resultant quasinormal mode spectrum. To be specific, it
seems to be indistinguishable from a numerical viewpoint
whether the computation is carried out for the Regge-
Wheeler potential or a piecewise one. This is because the
algorithm is not aware of any sudden jump where the
potential has not been sampled. The above consideration
seems to indicate a substantial uncertainty about the
numerical outcome. Nonetheless, we speculate that there
might be one possible scenario to resolve the seeming
“paradox,” i.e., when one utilizes a piecewise approximate
potential with sufficiently high resolution. The resultant
low-lying modes from the numerical calculations would be
largely identical to those of the black hole metric, while the
asymptotic spectrum would still follow those of the piece-
wise potential. We note that such an assertion remains to be
confirmed by straightforward calculations, and it would be
interesting to systematically investigate the uncertainty
associated with the precision of the sampling process.
Recently, the effects of a perturbative but continuously

deformed effective potential have been investigated [43].
There, the impact on the quasinormal modes was studied
with respect to different underlying theories of gravity.
From our viewpoint, we argued that the discontinuity plays
a physically relevant role, and focused on asymptotic
properties of the resultant quasinormal mode spectrum.
Further studies along this direction are in progress.
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APPENDIX

In this Appendix, we derive the specific expressions that
are utilized in the main text regarding the problem of the
(modified) Pöschl-Teller potential. The formal solutions of
the Schrödinger equation (8) with the potential U ¼ −VPT
can be found in standard textbooks, such as Ref. [23]. One
may conveniently choose two independent solutions with
even and odd parities, namely, ueð−xÞ ¼ ueðxÞ and
uoð−xÞ ¼ −uoðxÞ, which read

ueðxÞ ¼ coshλ κx2F1

�
a;b;

1

2
;− sinh2 κx

�
;

uoðxÞ ¼ coshλ κx sinhκx2F1

�
aþ 1

2
;bþ 1

2
;
3

2
;− sinh2 κx

�
;

ðA1Þ
where

a ¼ 1

2

�
λþ i

ω

κ

�
;

b ¼ 1

2

�
λ − i

ω

κ

�
; ðA2Þ

and

λ ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Vm þ κ2

p
2κ

: ðA3Þ

It is noted that λ > 1 when Vm and κ are positive real
numbers.
We are aiming at an appropriate combination defined in

Eq. (13), which agrees with the boundary condition given
in the first line of Eq. (9). By using the expansion formulas
of 2F1ða; b; 12 ; zÞ and 2F1ða; b; 32 ; zÞ at z → ∞ to the first
order, one has

ueðxÞ → Γ
�
1

2

��
Γð−iωκ Þeiωκ ln 2

Γðλ
2
− i ω

2κÞΓð1−λ2 − i ω
2κÞ

eiωx þ Γðiωκ Þe−i
ω
κ ln 2

Γðλ
2
þ i ω

2κÞΓð1−λ2 þ i ω
2κÞ

e−iωx
�
;

uoðxÞ → −Γ
�
3

2

��
Γð−iωκ Þeiωκ ln 2

Γðλþ1
2
− i ω

2κÞΓð2−λ2 − i ω
2κÞ

eiωx þ Γðiωκ Þe−i
ω
κ ln 2

Γðλþ1
2
þ i ω

2κÞΓð2−λ2 þ i ω
2κÞ

e−iωx
�

ðA4Þ
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for x → −∞, and

ueðxÞ → Γ
�
1

2

��
Γð−iωκ Þeiωκ ln 2

Γðλ
2
− i ω

2κÞΓð1−λ2 − i ω
2κÞ

e−iωx þ Γðiωκ Þe−i
ω
κ ln 2

Γðλ
2
þ i ω

2κÞΓð1−λ2 þ i ω
2κÞ

eiωx
�
;

uoðxÞ → þΓ
�
3

2

��
Γð−iωκ Þeiωκ ln 2

Γðλþ1
2
− i ω

2κÞΓð2−λ2 − i ω
2κÞ

e−iωx þ Γðiωκ Þe−i
ω
κ ln 2

Γðλþ1
2
þ i ω

2κÞΓð2−λ2 þ i ω
2κÞ

eiωx
�

ðA5Þ

for x → þ∞.
Based on Refs. [6,7], one considers the bound state

where ω is imaginary. We introduce the transformation

ω → iω0 ðA6Þ

together with those defined in Eq. (12), namely,

�
x → −ix0;
κ → iκ0:

After implementing the above substitution, it is noted
that the asymptotic forms for the wave functions are still
valid for the limit x0 → −∞, since κ0x0 and ω0x0 continue to
be real numbers so that the limits for the quantities such as

κx and z≡ − sinh2 κx remain unchanged. A tricky factor is
that now λ is complex owing to Eq. (A3), which involves
the substitution of κ. Fortunately, one still has the asymp-
totic relation coshλ κxð−zÞ−a → ei

ω
κ ln 2e−iωx, as it is easy to

verify that the real part of λ remains positive.
Subsequently, it is straightforward to find that

A ¼ Γ
�
λ

2
− i

ω

2κ

�
Γ
�
1 − λ

2
− i

ω

2κ

�
;

B ¼ 2Γ
�
λþ 1

2
− i

ω

2κ

�
Γ
�
2 − λ

2
− i

ω

2κ

�
; ðA7Þ

from which one also encounters the specific forms for C, D
given in Eq. (15) by comparing against Eqs. (A5),

C ¼ Γ
�
1

2

��
Γðλ

2
− i ω

2κÞΓð1−λ2 − i ω
2κÞ

Γðλ
2
þ i ω

2κÞΓð1−λ2 þ i ω
2κÞ

þ Γðλþ1
2
− i ω

2κÞΓð2−λ2 − i ω
2κÞ

Γðλþ1
2
þ i ω

2κÞΓð2−λ2 þ i ω
2κÞ

�
Γ
�
iω
κ

�
ei

ω
κ ln 2;

D ¼ 2Γ
�
1

2

�
Γ
�
−iω
κ

�
ei

ω
κ ln 2: ðA8Þ

For the reasons given in the main text, one also has to work out the expansions up to the second order in the limit
x → þ∞. After some algebra, one finds

ueðxÞ → Γ
�
1

2

���
1 −

λðλ − 1Þ
ð1þ i ωκÞ

e−2κx
�

Γð−iωκ Þeiωκ ln 2
Γðλ

2
− i ω

2κÞΓð1−λ2 − i ω
2κÞ

e−iωx

þ
�
1 −

λðλ − 1Þ
ð1 − i ωκÞ

e−2κx
�

Γðiωκ Þe−i
ω
κ ln 2

Γðλ
2
þ i ω

2κÞΓð1−λ2 þ i ω
2κÞ

eiωx
�
;

uoðxÞ → þΓ
�
3

2

���
1 −

λðλ − 1Þ
ð1þ i ωκÞ

e−2κx
�

Γð−iωκ Þeiωκ ln 2
Γðλþ1

2
− i ω

2κÞΓð2−λ2 − i ω
2κÞ

e−iωx

þ
�
1 −

λðλ − 1Þ
ð1 − i ωκÞ

e−2κx
�

Γðiωκ Þe−i
ω
κ ln 2

Γðλþ1
2
þ i ω

2κÞΓð2−λ2 þ i ω
2κÞ

eiωx
�
: ðA9Þ

Subsequently, in place of Eq. (A8), we now have

C̃≡ Cþ ΔC ¼ Cþ ðΔC̃1 þ ΔC̃2Þe−2κx;
D̃≡Dþ ΔD ¼ Dþ ΔD̃e−2κx; ðA10Þ

where
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ΔC̃1 ¼ −
λðλ − 1Þ
ð1 − i ωκÞ

Γðλ
2
− i ω

2κÞΓð1−λ2 − i ω
2κÞ

Γðλ
2
þ i ω

2κÞΓð1−λ2 þ i ω
2κÞ

Γ
�
1

2

�
Γ
�
iω
κ

�
ei

ω
κ ln 2;

ΔC̃2 ¼ −
λðλ − 1Þ
ð1 − i ωκÞ

Γðλþ1
2
− i ω

2κÞΓð2−λ2 − i ω
2κÞ

Γðλþ1
2
þ i ω

2κÞΓð2−λ2 þ i ω
2κÞ

Γ
�
1

2

�
Γ
�
iω
κ

�
ei

ω
κ ln 2;

ΔD̃ ¼ −
2λðλ − 1Þ
ð1þ i ωκÞ

Γ
�
1

2

�
Γ
�
−iω
κ

�
ei

ω
κ ln 2: ðA11Þ

Also (as is utilized in the main text), we have the
following ratio in the limit of large frequency ω:

D

ΔC̃1 þ ΔC̃2

∼
�

iω
κλðλ − 1Þ −

1

λðλ − 1Þ
�
eiϕ: ðA12Þ

In the derivation, one makes use of the properties ΓðzÞ ¼
Γðz̄Þ and notices that λ is a complete but finite number. We
note that ϕ is a phase which will give a further correction to
the first line of Eq. (21), but the resultant expression found
in the text remains valid.
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