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We investigate gravitational lensing effects of spherically symmetric black holes in Einstein quartic
gravity (EQG). Using an approximate analytic solution obtained by continued fraction methods we
consider the predictions of EQG for lensing effects by supermassive black holes at the center of our galaxy
and others in comparison with general relativity (GR). We numerically compute both time delays and
angular positions of images and find that they can deviate from GR by as much as milliarcseconds,
suggesting that observational tests of EQG are feasible in the near future. We discuss the challenges of
distinguishing the predictions of EQG from those of Einstein cubic gravity.
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I. INTRODUCTION

Originally the phenomenon of gravitational lensing (GL),
namely the bending of light [1], was the most significant
demonstration of the validity of general relativity (GR) [2]. It
has since become a fruitful and primary tool for studying
some of the most important aspects of cosmology and
astrophysics, such as the distribution of dark matter in
galaxy clusters [3]. The phenomenon has been studied in
both weak field and strong field regimes [4]. For strong
gravitational fields an infinite number of images (called
relativistic images) on each side of the optical axis of a
Schwarzschild black hole have been found [4–6]. A calcu-
lation of time delay between the outermost two relativistic
images has been useful in obtaining the mass of the black
hole with high precision. Furthermore, a given mass and
angular separation between relativistic images can be used to
calculate the distance to the black hole [7,8].
Strong gravitational fields are significantly modified by

higher curvature corrections. The most well known such
corrections are given by the Lovelock class of theories [9].
This class has a number of noteworthy features of interest,
including having second order differential equations and a
particle spectrum that is the same as Einstein gravity.
However from a phenomenological perspective they have
the disadvantage that they are trivial in 4 space-time
dimensions. Recently two newer classes of higher-
curvature gravity have been discovered. One is quasitopo-
logical gravity [10–12], whose formulation is also in more
than 4 dimensions. Another is generalized quasitopolog-
ical gravity (GQTG) [13–15], constructed by requiring that
there is a single independent field equation for only one
metric function under the restriction of spherical symmetry.

They have attracted interest because such theories have the
same graviton spectrum as general relativity on constant
curvature backgrounds and are nontrivial in 4 space-
time dimensions. As such they provide a new set of
phenomenological competitors to general relativity in
strong-field regimes, whose parameters can be constrained
by observation.
Here we investigate GL of black holes in Einstein quartic

gravity (EQG), the next simplest GQTG after Einsteinian
cubic gravity (ECG) [13]. Although the systematic con-
struction of actions that are nth order in curvature from
lower order ones via recursive formulas have been obtained
that allow for construction of any GQTG [16], EQGs have
the highest degree of curvature possible that allows for an
analytic solution of the near horizon equations for the
temperature and mass in terms of the horizon radius rþ. As
such they are of particular interest and merit further study.
We also note that the EQG theory we study does not meet
the general criteria used to construct an alternative class of
“Einsteinian” higher-curvature theories [17] (though its
cubic counterpart [14] satisfies these criteria), apart from a
particular quartic GQTG. We therefore expect that some
combination of the EQG invariants we consider (perhaps
with some possibly trivial densities) could satisfy these
other criteria.
The Lagrangian of EQG is

L ¼ 1

16π

�
R −

X6
i¼1

λ̂ðiÞS
ðiÞ
4

�
; ð1Þ

where R is the usual Ricci scalar and SðiÞ
4 are called

quasitopological Lagrangian densities [15]. Clearly there
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are six such quartic curvature combinations that are non-
trivial in (3þ 1) dimensions, leading to the introduction of
six dimension-independent new coupling constants. Under
the imposition of spherical symmetry the field equations
differ by terms that vanish for a static spherically symmetric
(SSS) metric, leading to a degeneracy that yields one new
effective coupling constant that is a linear combination of
the six couplings. We shall henceforth only consider
this case.
Although the technical challenges in solving GTQG

equations are formidable, even if spherical symmetry is
imposed, approximate analytic solutions to the field
equations of ECG [18–20] and EQG [21] have been
obtained using continued fraction methods [22–25]. This
type of solution provides an excellent approximation to
the actual solution everywhere outside the horizon
provided the continued fraction is taken to sufficiently
high order.
GL effects have been investigated analytically in the

strong field limit approximation [26,27] for many different
black holes in GR and alternative theories [28–36], but
have also been criticized for their accuracy [8]. In what
follows we shall employ the continued fraction solution
[21] adapting methods developed for Schwarzschild black
holes [6] to investigate GL by black holes in EQG.
We find that the difference between the angular positions

of primary and secondary images in EQG and GR could be
as large as milliarcseconds for values of the EQG parameter
consistent with other observations. Furthermore, the pre-
dicted values of time delay between these images in GR and
EQG could be as large as seconds for a lots of number of
angular source position. Our results indicate that observa-
tional tests of EQG are no less feasible than for ECG [19].
We also compare the predictions of EQG with those of
ECG and show that these two cases are marginally
distinguishable at best.
Our paper is organized as follows: In Sec. II we give a

review of the continued fraction method to obtain the
approximate analytic asymptotically flat, static and spheri-
cally symmetric vacuum solution (SSS) to EQG. In Sec. III
we consider the Lagrangian of massless particle to calculate
equations needed to study the GL effects such as the
relation for the bending angle, time delay and magnifica-
tion of images. In the next section, using these equations we
investigate GL of SMBHs, for Sgr A* and those at the
centers of thirteen other galaxies and in the last section we
explain our conclusion and remarks. Our calculations are in
units where G ¼ c ¼ 1.

II. BLACK HOLE SOLUTION IN EINSTEIN
QUARTIC GRAVITY

We review here the continued fraction method for
obtaining the metric function of EQG under the ansatz

of spherical symmetry [21]. Consider an asymptotically
flat, static and spherically symmetric vacuum black hole
whose metric is of the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

in which we have limr→∞fðrÞ ¼ 1. Substituting this metric
into the Lagrangian (1), the field equation for EQG can be
written, after performing an integration, as

rð1 − fÞ − 24

5
K

�
1

r2
ff0f00

�
f − 1 −

1

2
rf0

�
þ 1

8r
f04

þ 1

6r2
f03ðf þ 2Þ þ 1

r3
ff02ð1 − fÞ

�
¼ 2M; ð3Þ

where M is a constant of integration and the prime
denotes differentiation with respect to r. The constant
K is a linear combination of the six EQG coupling
constants

λð1Þ ¼ −
6

5
λ̂ð1Þ; λð2Þ ¼ −3λ̂ð2Þ;

λð3Þ ¼ −
12

5
λ̂ð3Þ; λð4Þ ¼ −

24

5
λ̂ð4Þ;

λð5Þ ¼ −
24

5
λ̂ð5Þ; λð6Þ ¼ −

96

5
λ̂ð6Þ: ð4Þ

and is

K ≡ −
5

6

�X6
i¼1

λðiÞ

�
; ð5Þ

because each term SðiÞ
4 has the same contribution to the

field equation under spherical symmetry [15]. The
quantity M in the field equation is the ADM mass of
the black hole [14,37]. We should assume that K > 0 if
we consider an asymptotically flat solution.
To obtain the continued fraction solution, we begin

with the near horizon series expansion of the metric
function

fnhðrÞ ¼ 4πTðr − rþÞ þ
Xn¼∞

n¼2

anðr − rþÞn; ð6Þ

where T ¼ f0ðrþÞ=4π is the Hawking temperature.
Upon inserting this ansatz into the field equations (3),
we obtain
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T ¼ 1

4πrþ

�
1

2
ðξ − ffiffiffi

τ
p Þ − 2

�
;

M ¼ rþ
2

�
−
2048K
5r6þ

− 20

�
þ ffiffiffi

τ
p �

−
32K
r5þ

þ 2ð25KÞ13
5rþ

−
3rþ
4

−
8K

ð25KÞ13r3þ

�
þ 1ffiffiffi

τ
p

�
−
1536K
5r5þ

− 24rþ

�

þ ξ

�
128K
5r5þ

−
8K

ð25KÞ13r3þ
þ 2ð25KÞ13

5rþ
þ 3rþ

4

�
þ ξffiffiffi

τ
p

�
128K
5r5þ

þ 2rþ

�
þ ðξ ffiffiffi

τ
p Þ 24K

5r5þ
; ð7Þ

in which we have

τ≡ 16 −
20

ð25KÞ13 r
2þ þ ð25KÞ13

K
r4þ

ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48þ 128ffiffiffi

τ
p þ 10

K
ffiffiffi
τ

p r6þ − τ

s
; ð8Þ

determining temperature and mass in terms of rþ and K.
Note that all an for n > 2 can be determined from the field
equation in terms of Tðrþ; KÞ, Mðrþ; KÞ, rþ, and a2; the
constant a2 cannot be so determined.
Likewise we can write the asymptotic solution to (3)

as [14,21]

fðrÞ≈1−
2M
r

−
864

5

KM3

r9
þ1552

5

K
r10

þO

�
K2M5

r17

�
: ð9Þ

The Komar mass is

m ¼ −
1

8π

Z
S∞

ϵabcd∇aξb ¼ 1

2
lim
r→∞

r2
dfðrÞ
dr

¼ M ð10Þ

and we see that the asymptotic structure of the solution
ensures that the parameter M has the same interpretation
as in Einstein gravity. We can match this solution to the
near horizon approximation by numerically solving the
equations of motion in the intermediate regime. We do so
by picking a value for a2 for given values of M and K
and use these in the near horizon expansion to obtain the
initial data

fðrþ þ ϵÞ ¼ 4πTϵþ a2ϵ2;

f0ðrþ þ ϵÞ ¼ 4πT þ 2a2ϵ; ð11Þ

in which ϵ is some small, positive quantity. We find
that [21]

a�2ðx¼K=M6Þ¼−
1

M2

1þ2.23817xþ0.0322907x2

4þ15.0556xþ6.70964x2
; ð12Þ

is the unique value of a2 for which the numerical solution
agrees with the asymptotic expansion at a sufficiently large

value of r, where the expression (12) is accurate to at least
three decimal places in the interval K=M6 ∈ ½0; 5�.
To obtain an approximate continued fraction solution we

compactify the space-time interval outside of the horizon
using the coordinate x ¼ 1 − rþ=r, and then write

fðxÞ ¼ x½1 − εð1 − xÞ þ ðb0 − εÞð1 − xÞ2 þ B̃ðxÞð1 − xÞ3�;
ð13Þ

where

B̃ðxÞ ¼ b1
1þ b2x

1þ b3x
1þ���

: ð14Þ

Inserting the ansatz (13) into the field equation (3) yields

ε ¼ 2M
rþ

− 1; b0 ¼ 0; ð15Þ

and by expanding (13) near the horizon (x ¼ 0), successive
terms in the expansion provide expressions for all coef-
ficients in terms of T, M, rþ and one free parameter, b2,
given by

b1 ¼ 4πrþT þ 4M
rþ

− 3;

b2 ¼ −
r3þa2 þ 16πr2þT þ 6ðM − rþÞ

4πr2þT þ 4M − 3rþ
: ð16Þ

where we see that b2 is dependent on the coefficient a2
appearing in the near horizon expansion (6). We obtain the
relevant value of b2 from a⋆2 (as determined numerically).
While numerical integration of the field equations is quite
sensitive to the precision of a⋆2 , the continued fraction is
much less so, and a good approximation is obtained even
with just a few significant digits.

III. BLACK HOLE LENSING

In this section we review briefly some basic equations
needed to study GL by black holes [19]. The Lagrangian
can be written as
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2L ¼ gμν _xμ _xν ¼ −f_t2 þ _r2

f
þ r2 _ϕ2 ð17Þ

using (2), assuming without loss of generality that the
observer, black hole and the source are on the equatorial
plane ϑ ¼ π=2. For null geodesics we obtain

1

fr2

�
dr
dϕ

�
2

¼ r2

f
E2

L2
z
− 1 ð18Þ

where

E ¼ −
∂L
∂_t ¼ f_t Lz ¼ −

∂L
∂ _ϕ ¼ −r2 _ϕ ð19Þ

are constants of the motion, with the overdot indicating a
proper time derivative.
Since dr=dϕ ¼ 0 at the radius of closest approach r¼ r0,

we have E2=L2
z¼f0=r20 from (18), where f0 ¼ fðr0Þ.

Hence

dϕ
dr

¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rr0Þ2f0 − f

q : ð20Þ

A useful schematic diagram of the LG effect is exhibited
in Fig. 1. Dd and Dds demonstrate the distance of the
lens (L) from the observer (O) and the source (S),
respectively. By assuming Dd;Dds ≫ r0, we can obtain
the deflection angle [38]

α̂ðr0Þ ¼ 2

Z
∞

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rr0Þ2f0 − f

q − π: ð21Þ

Furthermore, since dr=dt ¼ 0 at r ¼ r0 from (17) we
can write

dt
dr

¼ 1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0r Þ2 f

f0

q : ð22Þ

The time delay is the difference between the time for the
photons to travel the physical path from the source to the
observer and the time it takes to reach the observer when
there is no black hole in between them (i.e., in flat space-
time). Using (22) the time delay of an image is

τðr0Þ ¼
�Z

rs

r0

drþ
Z

ro

r0

dr

�
1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0r Þ2 f

f0

q −Ds sec β;

ð23Þ
where Ds ¼ Dd þDds is the distance from observer to the

source, rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

ds þD2
s tan2β

q
, and ro ¼ Dd, with β the

angular position of the source.

The image angular position, θ, obeys [6]

tan β ¼ tan θ −D½tan θ þ tanðα̂ − θÞ�; ð24Þ

where D ¼ Dds=Ds. The impact parameter and the image
magnification are given by [39]

J ¼ r0ffiffiffiffiffi
f0

p ¼ Dd sin θ; ð25Þ

and

μ ¼
�
sin β
sin θ

dβ
dθ

�
−1

ð26Þ

respectively, where θ is the deflection angle.
We are interested in the rate of change of the deflection

angle α̂ in (21) with respect to r0. This is somewhat subtle
to compute, but a series of manipulations [19] eventually
yields

dα̂ðr0Þ
dr0

¼ −2
Z

∞

r0

drffiffiffiffi
F

p ∂F̃
∂r ; ð27Þ

with

F̃ ¼ 1

r
∂F
∂r0

∂r
∂F ; ð28Þ

where F ¼ ð rr0Þ2f0 − fðrÞ. In the following sections we
will use these results to investigate GL effects for black
holes in GR and EQG.

FIG. 1. The lens diagram: When a light ray passes a black hole
it is deflected by an angle α̂, with rays passing closer to the black
hole having a larger deflection angle. If α̂ > 2π, the correspond-
ing light ray winds around the black hole at least once, before
reaching the observer—these rays make the relativistic images. In
this figure S, I,O, and L are the source, image, observer, and lens
(which is a black hole in our study), respectively. β is the angular
position of the source with respect to the line of sight to the black
hole and θ is the angular position of the image. Dd and Dds
demonstrate the distance from lens to observer and from lens to
the source, respectively.
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IV. LENSING BY SUPERMASSIVE BLACK HOLES

Now we have the necessary tools to investigate lensing
effects due to the supermassive black hole (SMBH) SgrA*
at the center of the Milky Way, along with other SMBHs
from thirteen other galaxies. Our main aim is to compare
the lensing prediction of GR with those of EQG.
Before beginning we pause to comment on the identi-

fication of the mass parameter. Although the definitions of
Ds andDd are theory-independent [8], and the Komar mass
of EQG (and ECG) agrees with that of Einstein gravity,
identification of the mass can be subtle. For SgrA* this is
done by making using of Keplerian orbital parameters for
nearby objects to infer the mass. In Einstein gravity, the
inferred mass parameter is in agreement with the Komar
mass, but in general this is not true for other theories of
gravity. Likewise, the conversion of redshifts to infer
coordinate values for Ds and Dd can be theory dependent.
We shall take the parameterM of the black holes in EQG to
be the inferred observational mass in Einstein gravity, since
the Komar masses agree, and see what deviations in lensing
parameters can be expected as a result.
To proceed, we numerically solve Eqs. (21), (24), (26),

and (23), to respectively find their deflection angles,
angular positions of their images, their magnifications,
and their time delays. Although lensing due to Sgr A* in
GR has been extensively investigated numerically [6–8,19],
we recalculate the GR results with greater precision for the
mass of Sgr A* M ¼ 5.94 × 109 m, which is at a distance
D ¼ 2.43 × 1020 m from Earth [40].
We have previously shown [21] that EQG passes all the

Solar System tests to date if the coupling constant of EQG
not to be larger than K ¼ 8.98 × 1038M6

⊙. We shall assume
the largest possible value of K to show that EQG lensing
effects can differ significantly from the GR predictions.
Furthermore, we compare EQG lensing effects with those
of ECG for the largest possible values of their respective
coupling constants.

Using (21) and (24) we compute the bending angle α̂ and
angular image position θ for primary and secondary images,
which are the respective images on the same and opposite
sides of the source, taking D ¼ Dds=Dd ¼ 0.5; the means
the lens-source distance is the same as the lens-observer
distance, appropriate for Sgr A*. We compile the results
in Table I for both GR and EQG, with the coupling
constant K=M6

Sgr A� ≈ 2.21 × 10−1. We that in general the
EQG results for the deflection angle and image angular
positions (θp or jθsj) are smaller than their corresponding
values in GR.
We have previously shown [21] that the shadow of Sgr A*

is enlarged in EQG by an amount less than 10 nanoarc-
seconds relative to GR for K=M6

Sgr A� ≈ 2.21 × 10−1. This
occurs because the size of the shadowof SgrA* is of order of
10−5 arcseconds whether or not its gravitational field is
governed byGR or EQG, and is far lower than the resolution
of today’s observational facilities such as Event Horizon
Telescope [41,42].
However the source positions and the angular positions

of primary/secondary images in GR or EQG are of the order
of arcseconds, and so the difference between these angular
positions (with the same value of K) could be on the order
of milliarcseconds. This is comparable to the ECG results
[19] and so differences between GR and EQG are poten-
tially distinguishable with near-future observations.
However the differences between ECG and EQG are not
easily distinguishable using SgrA*, as we shall see when
we compare ECG and EQG in Fig. 4.
In Table II we present our result for the magnification μ

of the primary and secondary images of Table I, computed
using (26) and (27) and the time delay τ of the primary
images from (23). Since the difference td ¼ τs − τp
between the time delay of the secondary and the primary
images (the differential time delay) is of more observational
importance, we have shown it instead of explicit results for
the secondary images.

TABLE I. Image positions and deflection angles of primary and secondary images due to lensing by Sgr A* with D ¼ 0.5: GR and
EQG predictions for angular positions θ and bending angles α̂ are given for different values of angular source position β. (a) p and s refer
to primary and secondary images, respectively. (b) All angles are in arcseconds. (c) We have used MSgr A� ¼ 5.94 × 109 m,
Dd ¼ 2.43 × 1020 m, and K=M6

Sgr A� ≈ 2.21 × 10−1.

General relativity Einstein Quartic Gravity

β θp;GR α̂p;GR θs;GR α̂s;GR θp;EQG α̂p;EQG θs;EQG α̂s;EQG

0 1.44324 2.88648 −1.44324 2.88648 1.44291 2.88620 −1.44291 2.88568
10−3 1.44374 2.88548 −1.44274 2.88748 1.44341 2.88241 −1.44241 2.88782
10−2 1.44825 2.87650 −1.43825 2.89650 1.44792 2.87608 −1.43792 2.89523
10−1 1.49411 2.78821 −1.39411 2.98821 1.49376 2.78467 −1.39379 2.99321
1 2.02740 2.05479 −1.02740 4.05480 2.02691 2.05382 −1.02719 4.06073
2 2.75583 1.51166 −0.755838 5.51167 2.75521 1.51105 −0.75570 5.51005
3 3.58157 1.16314 −0.581575 7.16322 3.58087 1.16225 −0.581473 7.16069
4 4.46636 0.932720 −0.466372 8.93274 4.46571 0.92783 −0.46627 8.93275
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Suppose that the source is pulsating. Every phase in its
periodwould then appear in the secondary image, tdminutes
after it appears in the primary image. Comparing the results
of GR and EQG in Table II, it is obvious that for awide range
of β the differential time delay td is lower andEQGdescribes
the strong gravitational field near the black hole. EQG, in
addition, decrease the magnifications μp and jμsj by a small
amount for larger β.
Of course observationally it is the images that are

detected and not the source itself. Although finding the
distance Dds to the source from its redshift is possible
under certain circumstances [3], the angular position β is
not directly observable. We can, however, adapt a
scheme developed for ECG to find β from primary
and secondary image positions, time delays and their
differential time delays to EQG. In Fig. 2(a) we plot θp
and jθsj, the respective primary and secondary angular
image positions in GR and EQG for D ¼ 0.5. Each of
these lines crosses both the plot of GR and EQG. We do
not know if the theory governing the strong gravitational

field is GR or EQG (assuming that one or the other is
the empirically correct theory). However the correct
theory must (for a given set of parameters) have the
same value of β at both intersection points, allowing for
its determination.
In certain situations the distance to the source (and hence

the value of D) may not be known. For example GR with
D ¼ 0.499995 yields almost the same lines for the image
positions as EQG with D ¼ 0.5 [the solid blue curves in
Fig. 2(a)]. In other words, although β can be distinguished
via the intersection points of the θp and jθsj curves with
observation, this is insufficient to determine D and dis-
tinguish between GR and EQG. In this case a measurement
of the differential time delay could be used to break this
degeneracy: the time t̄d;GR it takes an image to reach an
observer in GR is in general larger than that in EQG.
Provided the images have sufficient temporal variability
to measure the time tobs it takes the image to reach an
observer, if the difference t̄d;GR − tobs yields a value of β
consistent with the aforementioned image observations, the

FIG. 2. Finding the source position: (a): Image positions as a function of the angular source position β in GR (dotted, gray curve) and
EQG (solid, blue curve) with D ¼ 0.5. Those lines with positive slope correspond to the primary image position θp and those with
negative slope to the secondary image position jθsj. (b): The time delay in EQG with D ¼ 0.5 (blue points) and in GR with D ¼
0.499995 (black points) as a function of the angular source position. It is easy to find a certain behavior for different values of β in EQG
(as in GR) and the imaginary lines that pass through these points with positive slope correspond to the primary time delay τp and those
with negative slope to the secondary time delay τs. (c): Difference between the differential time delay in GR with D ¼ 0.499995, t̄d;GR,
and that in EQG with D ¼ 0.5, td;ECG as a function of β. We have used Sgr A* as the lens with MSgr A� ¼ 5.94 × 109 m and
Dd ¼ 2.43 × 1020 m, and have taken K=M6

Sgr A� ≈ 2.21 × 10−1.

TABLE II. Magnifications and time delays of primary and secondary images due to lensing by Sgr A* with D ¼ 0.5: GR and EQG
predictions for magnifications μ, time delays τ, and differential time delays td ¼ τs − τp are given for different values of angular source
position β. (a) As in Table I. (b) β is in arcseconds and time delays are in minutes. (c) As in Table I.

General relativity Einstein Quartic Gravity

β μp;GR τp;GR μs;GR td;GR μp;EQG τp;EQG μs;EQG td;EQG

0 × 16.588180 × 0 × 16.588781 × 0
10−3 722.117 16.587267 −721.117 0.001830 721.788 16.586162 −720.789 0.003536
10−2 72.6630 16.579043 −71.6630 0.018298 72.6299 16.579647 −71.6303 0.018292
10−1 7.72915 16.498254 −6.72916 0.183013 7.72566 16.496903 −6.72607 0.184939
1 1.34553 15.813792 −0.345536 1.865731 1.34500 15.814721 −0.345374 1.865202
2 1.08134 15.254987 −0.0813405 3.934199 1.08099 15.256347 −0.0813025 3.933148
3 1.02708 14.835066 −0.0270804 6.358812 1.02682 14.836917 −0.0270675 6.356546
4 1.01102 14.505298 −0.0110231 9.237035 1.01085 14.500207 −0.0110166 9.242156
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value ofD could be inferred. We have shown two example
in the Fig. 2(b) and Fig. 2(c). In Fig. 2(b), we have
plotted the primary and secondary time delay in EQG with
D ¼ 0.5 (blue points) and in GR with D ¼ 0.499995
(black points). As we can see it is easy to find a certain
behavior for different value of β in EQG like GR. By
considering these values of β we have illustrated in
Fig. 2(c) that the differential time delay td in GR with
D ¼ 0.499995 is larger than that in EQG with D ¼ 0.5.
In conjunction with an observation of the primary
and secondary images, a time delay measurement can
provide enough information to obtain β and D and
distinguish the governing theory of the gravitational field
of the black hole.
GR and EQG results for magnifications, and the time

delays of first and second order relativistic images are
presented in Tables III and IV, respectively. First (Second)
order relativistic images are produced after the light winds,

once (twice) around the black hole before reaching the
observer [6]. Here noticeable differences with the corre-
sponding results in ECG [19] are now apparent, with values
of ðτ2p − τ1pÞ differing by as much as 30% and of μ2p by
close to a factor of 2. The angular position of relativistic
images θ1p, jθ1sj, θ2p, and jθ2sj are almost independent of
angular source positions. In EQG their values are about 13
and 4 nanoarcseconds less than their corresponding values
in GR for first and second order relativistic images
respectively, an effect too tiny to be observed with today’s
telescopes, especially since these relativistic images are
highly demagnified. However once technology develops
that renders them observable, (differential) time delays of
relativistic images could be used to test both EQG and
ECG, because of their increasing deviation from GR for
large β, as can be seen from Tables III and IV.
In Table V we present results for primary and secondary

images in EQG when the source is closer to Sgr A*.

TABLE III. Magnifications and time delays of first order relativistic images due to lensing by Sgr A* with D ¼ 0.5: GR and EQG
predictions for magnifications μ and time delays τ are given for different values of angular source position β. (a) 1p and 1s refer to first
order relativistic images on the same side as primary and secondary images, respectively. (b) As in Table II. (c) As in Table I. (d) Angular
positions of first order relativistic images in GR and EQG are, respectively, θ1p;GR ≈ −θ1s;GR ≈ 26.2691μas and θ1p;EQG ≈ −θ1s;EQG ≈
26.2560μas and are highly insensitive to the angular source position β.

General relativity Einstein Quartic Gravity

β μ1p;GR τ1p;GR μ1s;GR τ1s;GR μ1p;EQG τ1p;EQG μ1s;EQG τ1s;EQG

0 × 42.673253 × 42.673253 × 42.972656 × 42.972656
10−6 8.42 × 10−12 42.673253 −8.42 × 10−12 42.673253 6.33 × 10−12 42.972656 −6.33 × 10−12 42.972656
10−5 8.42 × 10−13 42.673253 −8.42 × 10−13 42.673253 6.33 × 10−13 42.972656 −6.33 × 10−13 42.972656
10−4 8.42 × 10−14 42.673253 −8.42 × 10−14 42.673253 6.33 × 10−14 42.972656 −6.33 × 10−14 42.972656
10−3 8.42 × 10−15 42.673255 −8.42 × 10−15 42.673255 6.33 × 10−15 42.972659 −6.33 × 10−15 42.972659
10−2 8.42 × 10−16 42.673280 −8.42 × 10−16 42.673281 6.33 × 10−16 42.972684 −6.33 × 10−16 42.972684
10−1 8.42 × 10−17 42.676417 −8.42 × 10−17 42.676420 6.33 × 10−17 42.975822 −6.33 × 10−17 42.975822
1 8.42 × 10−18 42.990190 −8.42 × 10−18 42.990223 6.33 × 10−18 43.289610 −6.33 × 10−18 42.289610

TABLE IV. Magnifications and time delays of second order relativistic images due to lensing by Sgr A* with D ¼ 0.5: GR and EQG
predictions for magnifications μ, time delays τ, and differential time delays τ2p − τ1p are given for different values of angular source
position β. (a) 2p and 2s refer to second order relativistic images on the same side as primary and secondary images, respectively. (b) As
in Table II. (c) As in Table I. (d) Angular positions of second order relativistic images in GR and EQG are, respectively, θ2p;GR ≈
−θ2s;GR ≈ 26.2362μas and θ2p;EQG ≈ −θ2s;EQG ≈ 26.2313μas and are highly insensitive to the angular source position β. (e) μ2s ¼ −μ2p
to a very good approximation. (f) Explicit values of τ1p are given in Table III.

General relativity Einstein Quartic Gravity

β μ2p;GR τ2p;GR τ2s;GR ðτ2p − τ1pÞGR μ2p;EQG τ2p;EQG τ2s;EQG ðτ2p − τ1pÞEQG
0 × 53.452468 53.452468 10.779215 × 50.146865 50.146865 7.174209
10−6 1.56 × 10−14 53.452468 53.452468 10.779215 4.33 × 10−14 50.146865 50.146865 7.174209
10−5 1.56 × 10−15 53.452468 53.452468 10.779215 4.33 × 10−15 50.146865 50.146865 7.174209
10−4 1.56 × 10−16 53.452468 53.452468 10.779215 4.33 × 10−16 50.146865 50.146865 7.174209
10−3 1.56 × 10−17 53.452471 53.452471 10.779215 4.33 × 10−17 50.146867 50.146867 7.174209
10−2 1.56 × 10−18 53.452496 53.452496 10.779215 4.33 × 10−18 50.146892 50.146892 7.174208
10−1 1.56 × 10−19 53.455632 53.455635 10.779215 4.33 × 10−19 50.150031 50.150031 7.174208
1 1.56 × 10−20 53.769405 53.769438 10.779215 4.33 × 10−20 50.463818 50.463818 7.174208
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In particular, we have taken D ¼ 0.05. Comparing these
results those in Table I (in which D ¼ 0.5), shows that
when the source-lens distance is smaller, primary and
secondary images get closer to the line of sight to the lens
(θp and jθsj get smaller). Furthermore, a comparison of
Tables V and II shows that the magnification μp and jμsj
and the time delay of the primary image are smaller in the
case of D ¼ 0.05 compared to D ¼ 0.5. However the
differential time delay td ¼ τs − τp is larger in the former
case. Similar results hold when the governing theory of
gravity is GR [8].
In Fig. 3 we illustrate some relevant comparisons

between GR, ECG and EQG. We see that the difference
between these three theories in the angular positions of
primary images is negligible for D ¼ 0.005, but become
distinguishable by parts in 10−4–10−3 for D ¼ 0.5.
Differences in the time delays for both ECG and EQG
compared to GR become apparent by parts in ∼10−3 for
large enough β, but the distinction between ECG and EQG
are at least an order of magnitude smaller.

In Fig. 4 we directly compare the results of EQG and
ECG for large values of their respective coupling constants.
We find that the difference between the results of EQG and
ECG for the angular position of primary images is larger for
the source further away from lens and is quite small for
β ≈ 1. The deviation of the differential time delay td in
EQG from its corresponding ECG is larger for the source
further away from lens and increases by increasing β.
Overall the distinctions are very small, not larger than
∼10−4, making it a formidable challenge to distinguish the
two theories from each other. using Sgr A*.
We close this section by considering SMBHs in other

galaxies, whose masses and distances differ considerably
from that of Sgr A*. We collect in Table VI some updated
data of 14 galaxies [40,43], and use this in Table VII to
calculate the time delays and angular positions of primary
images in GR and EQG, as well as between secondary and
primary images. Figure 5 illustrates how the difference in the
angular position of the primary image betweenGRandEQG
changes with the mass of the black hole. As previously

TABLE V. Primary and secondary images due to lensing by Sgr A* in EQG with D ¼ 0.05: Angular positions θ, bending angles α̂,
magnifications μ, time delays τ, and the differential time delay td ¼ τs − τp are given for different values of angular source position β.
(a) As in Table I. (b) All angles are in arcseconds and time delays are in minutes. (c) As in Table I.

β θp α̂p μp τp θs α̂s μs td

0 0.45635 9.12842 × 16.164730 −0.45635 9.12842 × 0
10−3 0.45685 9.11744 228.650 16.161839 −0.45585 9.13897 −227.650 0.005786
10−2 0.46138 9.02670 23.3190 16.135598 −0.45138 9.22620 −22.3191 0.057753
10−1 0.50908 8.18338 2.82231 15.890705 −0.40908 10.1821 −1.82244 0.579745
1 1.17691 3.53939 1.02306 14.353080 −0.17697 23.5392 −0.02313 6.792761
2 2.09916 1.98512 1.00220 13.521525 −0.09923 41.9845 −0.00224 17.96517
3 3.06782 1.35540 1.00046 13.002012 −0.06791 61.3628 −0.00049 34.84999
4 4.05133 1.02451 1.00014 12.626937 −0.05143 81.0278 −0.00016 57.78525

FIG. 3. Deviation of primary image angular position and differential time delay in EQG and ECG from GR for Sgr A*. The solid black
(blue dotted) lines correspond to D ¼ 0.5 and the red (green dotted) lines to D ¼ 0.05 in EQG (ECG). Left: deviation plotted against
angular source position β. It is obvious that for a fixed lens-observer distance, the deviation of EQG (ECG) for angular positions of
primary images relative to that of GR is larger for sources further away from the lens. Right: differential time delay td ¼ τs − τp plotted
against angular source position β. We see that td deviates from its corresponding value in GR if EQG (ECG) governs the strong
gravitational field around the black hole. The deviation increases with increasing angular source position β. Note that for small D the
distinction between EQG and ECG is very tiny.
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mentioned for Sgr A*, differential time delays in EQG are
quite sensitive to the angular source position β and we
cannot compare them for a special case β ¼ 1. The results in

Table VII and Fig. 5 for EQG are quite close to the results for
ECG [19], making it quite difficult to use other galaxies to
probe empirical differences between EQG and ECG.

FIG. 4. Deviation of primary image angular position and differential time delay in EQG from ECG for Sgr A*: The red line is for the
case D ¼ 0.5 and the black dotted line is for D ¼ 0.05. Left: the deviation of EQG results for angular positions of primary images from
that of ECG is larger for the sources further away from lens and is quite small for β ≈ 1. Right: the deviation of EQG results for the
differential time delay td ¼ τs − τp from that of ECG is larger for the sources further away from lens and increases by increasing β.

TABLE VI. Masses and distances of SMBHs: Masses (M) and distances (Dd) of SMBHs at the center of 14 galaxies. The data for Sgr
A* at the center of Milky Way Galaxy has been taken from [40]. The data of other black holes are from [43].

Galaxy M (m) Dd (m) Dd=M Galaxy M (m) Dd (m) Dd=M

Milky Way 5.94 × 109 2.43 × 1020 4.09 × 1010 M31 2.11 × 1011 2.39 × 1022 1.13 × 1011

M87 9.08 × 1012 5.15 × 1023 5.67 × 1010 NGC 1023 6.10 × 1010 3.34 × 1023 5.48 × 1012

NGC 1194 1.05 × 1011 1.79 × 1024 1.70 × 1013 NGC 1316 2.50 × 1011 6.47 × 1023 2.59 × 1012

NGC 1332 2.17 × 1012 6.99 × 1023 3.22 × 1011 NGC 1407 6.87 × 1012 8.95 × 1023 1.30 × 1011

NGC 3607 2.02 × 1011 6.99 × 1023 3.46 × 1012 NGC 3608 6.87 × 1011 7.02 × 1023 1.02 × 1012

NGC 4261 7.81 × 1011 9.99 × 1023 1.28 × 1012 NGC 4374 1.37 × 1012 5.71 × 1023 4.17 × 1011

NGC 4382 1.92 × 1010 5.52 × 1023 2.88 × 1013 NGC 4459 1.03 × 1011 4.94 × 1023 4.80 × 1012

TABLE VII. Image positions and time delays due to lensing by SMBHs: GR and EQG predictions for angular positions θ and the time
delays τ of primary images as well as the differential time delays td ¼ τs − τp are given for different SMBHs. We have also presented the
difference between GR and EQG predictions θp and td. (a) As in Table I. (b) All angles are in arcseconds and time delays are inminutes.
(c) We have taken D ¼ 0.5, β ¼ 1 arcsecond, and K ≈ 9.32 × 1057.

General relativity Einstein Quartic Gravity

Galaxy θp;GR τp;GR td;GR θp;EQG τp;EQG td;EQG θp;GR − θp;EQG td;GR − td;EQG

Milky Way 2.02740 15.813781 1.865927 2.05382 15.814721 1.865202 0.00048 0.000529
M31 1.50121 572.58323 114.0235 1.50082 572.54559 114.0786 0.00039 −0.055106
M87 1.82348 24351.162 3386.221 1.82312 24348.702 3389.338 0.00035 −3.117026
NGC 1023 1.01532 168.51053 506.3728 1.01477 167.96251 506.9039 0.00055 −0.531172
NGC 1194 1.00495 288.99871 2485.346 1.00442 291.49859 2482.817 0.00053 2.528745
NGC 1316 1.03184 689.09579 1091.665 1.03134 688.38118 1092.422 0.00050 −0.756943
NGC 1332 1.21708 5949.7675 2142.847 1.21665 5949.6420 2143.185 0.00043 −0.337623
NGC 1407 1.45027 18653.830 4008.966 1.44985 18655.717 4006.356 0.00042 2.610108
NGC 3607 1.02405 558.79217 1126.096 1.02354 559.78355 1125.099 0.00052 0.996905
NGC 3608 1.07727 1892.5635 1461.592 1.07678 1893.6109 1460.623 0.00049 0.968664
NGC 4261 1.06265 2154.3003 1960.302 1.06212 2152.8429 1961.835 0.00054 −1.532530
NGC 4374 1.17344 3750.3521 1586.191 1.17299 3748.7532 1587.936 0.00045 −1.744682
NGC 4382 1.00295 53.070221 750.1529 1.00239 52.941942 750.2743 0.00056 −0.121390
NGC 4459 1.01740 283.95236 761.0761 1.01685 283.82393 761.2151 0.00055 −0.139078
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V. CONCLUDING REMARKS

We have investigated GR and EQG predictions for GL
effects by some SMBHs in our galaxy and thirteen other
galaxies. By considering Sgr A* as the lens and EQG
coupling constant as K ¼ 8.98 × 1038M4

⊙, for which EQG
passes all Solar System tests to date [21], we calculated the
angular positions of primary and secondary images as
deviating from those of GR by amounts of order of
milliarcseconds. As well, using numerical methods we
have generally shown that the EQG results for the differ-
ential time delay, associated with primary and secondary
images, could be some tenths of seconds shorter than the
results of GR for a wider range of β (please see Fig. 2).
It is important to note that for the primary/secondary

images to be produced, the light from the source should
pass the black hole at a closest distance of order 105rþ,
where rþ is the radius of the event horizon. We have
illustrated even at this large distance from the black hole
that EQG effects may be observable. One does not have to
observe gravitational effects in the vicinity of an horizon to
test EQG.
There are several short period stars (the so-called S-stars)

orbiting around Sgr A* whose semimajor axes are less than
105rþ [44]. Nowadays the observation of these S-stars
are possible with good precision [45]. We propose, as a
direction of future study, to investigate the orbit of S-stars in
EQG and to compare it with observational results now
available [45,46].
As for GR [6,8] and ECG [19], in EQG relativistic

images are produced after the light winds around the black
hole. For these images to be produced the light must pass
the black hole very closely. Consider the first order
relativistic image. The closest approach of the light is
∼1.55rþ, which is very close to the radius of the photon

sphere, rps ¼ 1.5rþ, where the shadow is produced. The
light must get closer and closer to the photon sphere to
produce higher and higher order relativistic images.
We have shown in our previous paper [21] that the effects

of EQG on the angular radius of the shadow of Sgr A* is
less than 10 nanoarcseconds. Here we see that the same
thing is also true for the angular positions of relativistic
images. In this case the differential time delay between
relativistic images could be used to test EQG, if (since
they are highly demagnified) these images could ever be
observed.
We also considered GR and EQG predictions for

lensing effects due to SMBHs in other galaxies. We find
that results of GR and EQG for the differential time delay
between primary and secondary images could differ by an
amount of more than one minute for distant SMBHs. The
deviation between GR and EQG predictions for image
angular positions mostly depends on the mass of black
hole and reminds us of what we found in [21]. Very
massive EQG black holes are like ordinary Schwarzschild
black holes. However intermediate mass EQG black holes
deviate significantly. This point should be discussed
elsewhere.
Although our results provide some cautious optimism

for distinguishing EQG from GR by observation, Tables I
and II indicate that using Sgr A* to distinguish EQG from
corresponding predictions in ECG [19] will be very
challenging. In Figs. 3 and 4 we compared deviation of
the primary image angular position and differential time
delay in EQG from ECG for Sgr A*. The deviation of EQG
results for angular positions of primary images relative to
that in ECG is larger for sources that are further away from
the lens, but quite small for β ≈ 1. Furthermore, the
deviation of EQG results for the differential time delay td ¼
τs − τp relative to those in ECG is larger for the sources
further away from lens and increase with increasing β. The
results for the relativistic images in Tables III and IV show
that EQG results are small but they have noticeable
differences with ECG results [19]. The situation is not
much better for black holes in other galaxies; Table VII
indicates that EQG predictions are quite similar to those in
ECG [19] for the largest possible values of their respective
coupling constants. In fact for other galaxies like Sgr A*,
EQG and ECG results are quite similar for the special
choice D ¼ 0.5 and β ≈ 1 (see Fig. 4). While we might
hope to distinguish (or place bounds on) nonlinear curva-
ture effects of GQTGs using gravitational lensing, it will be
very challenging to distinguish between the two simplest
GQTGs. One possibility is to incorporate rotation. Slowly-
rotating solutions have been obtained numerically in ECG
[20], allowing for a computation of the photon sphere and
the innermost stable circular orbit. It is reasonable to expect
that there will be distinct features that not only distinguish
the ECG predictions from EQG, but also distinguish the
different EQG theories from each other.

FIG. 5. Deviation of primary image angular position in EQG
from GR for different SMBHs: The ratio ðθp;GR − θp;EQGÞ=M̄
increases as M̄ decreases. Here M̄ ¼ M=MSgr A�, where M is the
mass of the SMBH from Table VI. We have taken D ¼ 0.5. The
dots refer to the numerical results of Table VII for the 14 SMBHs,
and the solid curve is the interpolation between the points.
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Finally, we note that there is good observational evidence
that many black holes are spinning, some quite close
to extremal. Although slowly rotating [20] and aspects
of (near-) extremal [47] black hole solutions have been
computed for ECG, the corresponding solutions for
EQG have yet to be worked out. Our results will certainly
change in these cases, and likely substantively so for

near-extremal solutions. Work on these problems is in
progress.
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