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In this article we study the innermost stable circular orbit (ISCO) of electrically charged particles in
the electrically charged Reissner-Nordström spacetime, the Kerr-Newman spacetime and the Kerr-Sen
spacetime. We find that the radius of the ISCO increases with an increasing particle-black hole charge
product jqQj in the case of attractive Coulomb interaction qQ < 0. For repulsive Coulomb interaction, the
ISCO radius first decreases to a minimum and then increases again, until it diverges as the charge product
approaches one. If the charge Q of the black hole is very small, the minimum of the ISCO radius lies at
qQ ¼ 0. Repulsive and attractive Coulomb interactions will always increase the ISCO radius in this limit.
Stable bound orbits of charged particles cease to exist in the Reissner-Nordström and Kerr-Newman
spacetime for qQ ≥ 1. In the Kerr-Sen spacetime the limiting case depends on the charge of the black hole
and if dilaton coupling is applied to the test particle. We find qQ ≥ 1þQ2 without dilaton-coupling and
qQ ≥ 1þ 3=2Q2 with dilaton coupling α ¼ 1.

DOI: 10.1103/PhysRevD.103.024016

I. INTRODUCTION

The dynamics of particles in the vicinity of black holes in
relativistic astrophysics exhibits many interesting phenom-
ena. One of the relativistic effects is the existence of an
innermost stable circular orbit (ISCO), which represents the
boundary between test particles orbiting the black hole and
test particles falling into the black hole. It is therefore an
important feature for accretion disk physics, since it marks
the inner edge of the accretion disk in the thin disk model of
Shakura and Sunjaev [1,2]. It is further used in the thick
disc model as a limit for the parameter space that yields to
bound solutions [2,3]. In accretion disk simulations, which
can be compared to EHT observations, these models are
often used as a starting point [4].
In this article we are interested in the ISCO of charged

particles in charged black hole spacetimes. When dealing
with the orbits of charged particles, the charge of the black
hole is not negligible. However, the charge of real black
holes is expected to be very small. The charge of the central
black hole of our galaxy, Sgr A�, was recently estimated
to be at most 3 × 108 C (or 4 × 10−19M) in terms of the
black hole mass) [5]. Such a small charge of a black hole
will probably not influence the curvature around it, but it
will have a significant effect on the ISCO of charged

particles [5,6]. An observation of the ISCO by, e.g., x-ray,
radiation could be used to get information both on the
rotation and the charge of a black hole.
In [7] the circular motion of electrically charged test

particles in the electrically charged Reissner-Nordström
spacetime was analyzed in detail. Furthermore the ISCO is
studied and an equation for the angular momentum for
a charged particle on the ISCO was given. The authors
found that in general the radius of the ISCO increases with
increasing charge jqj of the test particle. In the case of
attractive Coulomb interaction qQ < 0, the Coulomb force
reinforces the gravitational interaction and charged par-
ticles behave similar to neutral test particles. In the case
of repulsive Coulomb interaction qQ > 0 the situation is
more complicated and for a certain parameter region of
particle and black hole charges stable bound orbits do not
exist at all.
The motion of charged test particles in Kerr-Newman

spacetime was studied in a series of papers in [8,9]. Finally,
the analytical solution was presented in terms of Weierstass
elliptic functions by [10]. The ISCO of electrically charged
particles in the electrically charged Kerr-Newman space-
time were studied in [11]. Here the charge Q of the black
hole was estimated to be very small, so that only interaction
terms, that contain the product of particle and black hole
charge qQ, would enter the equations. The minimal ISCO
radius in that case is found for uncharged particles qQ ¼ 0,
identifying the ISCOs in Kerr spacetime as the lower limit
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for ISCO radii of charged particles at a given spin. The
ISCO radius grows with increasing jqQj, however, ISCOs
cease to exist for qQ ¼ 1.
A strong electromagnetic field caused by a black hole

charge evokes electron-positron pair creation. Selective
accretion will consequently reduce the black hole’s charge
until Q≲ 10−5, when the pair creation process will stop
[12]. Selective accretion of surrounding matter (interstellar
medium, etc.) will further reduce the black hole charge until
the electromagnetic interaction is comparable to gravita-
tional effects [5,13]. This would imply Q ∼ 10−21 in the
case of electrons as test particles (qelectron ∼ 1021) [14].
Even though black hole charges strong enough to contrib-
ute to spacetime curvature are unlikely on long timescales,
they might occur for some time period after their creation.
Since the charge of an astrophysical black hole will

probably be very small, one could also imagine a black hole
spacetime immersed in an electromagnetic field which will
not influence the metric. ISCOs of charged particles around
a Schwarzschild black hole in the presence electromagnetic
fields were investigated in [14]. It was observed that an
electric field increases the ISCO radius, while a magnetic
field decreases the ISCO radius. If the electric field is
sufficiently strong and has the same sign as the charge of
the particle, then stable bound orbits cannot exist. Here the
limiting case is qQ ¼ 1 as for charged particles in the
Reissner-Nordström and Kerr-Newman spacetime. This
effect can be canceled with a sufficiently strong magnetic
field so that ISCOs of static particles appear.
The ISCO of charged particles in the spacetime of a

quasi-Kerr compact object immersed in a uniform magnetic
field was considered numerically in [15]. As in the
Schwarzschild case, an increasing magnetic field will
decrease the ISCO radius.
In [16] the authors studied the ISCO of neutral and

charged particles around regular black holes in general
relativity combined with nonlinear electrodynamics.
In this article we will study the ISCO of electrically

charged particles in the electrically charged Reissner-
Nordström spacetime, the Kerr-Newman spacetime and
the Kerr-Sen spacetime. For mathematical curiosity we will
also analyze the region behind the event horizon.
Our study of the Reissner-Nordström spacetime con-

firms the result of [7] and presents new details. In the Kerr-
Newman spacetime we will extend the analysis of the ISCO
in [11] to arbitrary values of the chargeQ of the black hole.
Another interesting charged rotating black hole is the

Kerr-Sen solution [17], which arises from four-dimensional
heterotic string theory. Recently, the Kerr-Sen black hole
was compared to EHT observations of M87� [18]. The
ISCO of charged particles in the Kerr Sen spacetime was
not studied in the literature before. However, in a similar
black hole spacetime in Einstein-Maxwell-Dilaton-Axion
theory, the Kaluza-Klein black hole, the ISCO of charged
particles was calculated in [19]. The ISCO data was then

applied by the authors to estimating the outcomes of black
hole collisions.
We will consider the ISCO of charged particles in the

Kerr-Sen spacetime and compare our results to the
Reissner-Nordström and Kerr-Newman spacetime.

II. THE INNERMOST STABLE CIRCULAR ORBIT

The existence of an innermost stable circular orbit is a
purely relativistic effect. In classical mechanics, circular
orbits of neutral test particles around any central spherical
mass distribution are always stable. And these circular
orbits can be arbitrarily close to the central mass. In
Newtonian physics, gravitational and electrostatic inter-
actions can both be described by a respective potential
determined by Poisson’s equation. Hence, the equations of
motions describing the test particle motion in a gravita-
tional field will not change qualitatively, when adding an
electric charge to the test particle and central mass. Again,
circular orbits are always stable and can be found arbitrarily
close to the central mass, even if test particle and central
mass are charged. For attractive electromagnetic interaction
as well as repulsive interaction (as long as the repulsive
force is smaller than the gravitational force) one can always
find an angular momentum, for which bound orbits are
possible.
In general relativity, however, massive test particle

velocities cannot be equal or exceeding the speed of light.
This is given credit to in the equations of motion for a test
particle around a Schwarzschild black hole. An additional
term 2L2=r3 arises next to the gravitational (1=r) and
centrifugal (L2=r2) term in the effective potential Veff of the
radial equation of motion:

_r2 ¼ E2 − 1 − 2VeffðrÞ ¼ E2 − 1 − 2

�
−
1

r
þ L2

2r2
−
L2

r3

�
:

ð1Þ

The test particle energy and angular momentum are
declared as E and L. Instead of only one minimum, Veff
can now develop either a local maximum and minimum or
no extremum, depending on the choice of the angular
momentum L. The extrema correspond to a stable outer and
unstable inner circular test particle orbit. The innermost
stable circular orbit occurs for a certain parameter L, for
which stable and unstable circular orbit merge.
By using the Hamilton-Jacobi formalism, the electro-

magnetic interaction of a charged test particle and charged
central black hole enters the equations of motion as follows:

E − qAt ¼ E − Vel ¼ −ut; L − qAϕ ¼ uϕ: ð2Þ

Aμ, μ ¼ t, ϕ is the electromagnetic potential of the charged
central black hole acting on the charged test particle.

KRIS SCHROVEN and SASKIA GRUNAU PHYS. REV. D 103, 024016 (2021)

024016-2



In contrary to the gravitational interaction, the electric
one enters the equations analog to the classical case
(E − Vel ¼ 1

2
v2 þ Vgrav, with particle velocity v). Due to

the normalization condition of the velocity in GR, ut is
determined by

−1 ¼ gttu2t þ 2gtϕutuϕ þ gabuaub; ð3Þ

for a, b spacial coordinates, e.g., r, ϕ. It will therefore
appear quadratically in the equations of motions for all
spacial components ua;b. In a general relativistic treatment,
the electromagnetic potential enters the radial equations of
motion not only linearly—like in the classical case—but
also quadratically. The “relativistic” term A2

t does not
distinguish between attractive and repulsive electric forces
acting on the charged test particle.
This is an attempt to understand the growth of the

ISCO radius for both an attractive (qQ < 0) and repulsive
(qQ > 0) electric force on the charged (q) test particle for
increasing values of the particle-black hole charge product
jqQj. We will see this behavior of the ISCO not only for a
Reissner-Nordström and Kerr-Newman but also for a Kerr-
Sen black hole.

III. ISCO IN REISSNER-NORDSTRÖM
SPACETIME

The ISCO of charged particles in the Reissner-
Nordström spacetime was considered before in [7]. We
confirm their results but also present new details.
The Reissner-Nordström metric of an electrically

charged black hole is [20,21]

ds2 ¼ −
Δ
r2
dt2 þ r2

Δ
dr2 þ r2dθ2 þ r2 sin θ2dϕ2; ð4Þ

where Δ ¼ r2 − 2MrþQ2 and the nonvanishing part of
the electromagnetic vector potential is At ¼ Q

r . The two
horizons r� are determined by Δ ¼ 0 and exist if Q2 ≤ M2

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð5Þ

The Hamilton-Jacobi equation for electrically charged
particles is

∂S
∂λ þ

1

2
gμν

� ∂S
∂xμ þ qAμ

�� ∂S
∂xν þ qAν

�
¼ 0; ð6Þ

where q is the charge of the test particle and λ is an affine
parameter along the geodesic. Due to spherical symmetry
we can restrict the motion to the equatorial plane θ ¼ π

2
. The

Hamilton-Jacobi equation can be solved with the following
ansatz for the action

S ¼ 1

2
δλ − Etþ LϕþWðrÞ: ð7Þ

Here δ is equal to 0 for light and equal to 1 for particles. E is
the conserved energy and L is the conserved angular
momentum of the test particle. Then we can derive the
equations of motion from the Hamilton-Jacobi equation

�
dr
dϕ

�
2

¼ r4

L2

��
E−

qQ
r

�
2

−
Δ
r2

�
δþL2

r2

��
¼RðrÞ; ð8Þ

�
dr
dt

�
2

¼ Δ2

r4
−
Δ3

r6

�
δþ L2

r2

��
E −

qQ
r

�
−2
: ð9Þ

We used scaled quantities in the equations of motion

r →
r
M

; ϕ →
ϕ

M
; Q →

Q
M

; L →
L
M

: ð10Þ

Note that R ¼ P
4
i¼0 air

i is a polynomial of order 4 with the
coefficients.

a4 ¼
1

L2
ðE2 − δÞ; ð11Þ

a3 ¼
1

L2
ð−EqQþ δÞ; ð12Þ

a2 ¼
1

L2
ðQ2ðq2 − δÞ − L2Þ; ð13Þ

a1 ¼ 2; ð14Þ

a0 ¼ −Q2: ð15Þ

The zeros of ðdrdϕÞ2 ¼ R are the turning points of the
geodesics. The number of zeros is related to the possible
types of orbits. If R possesses 4 zeros, then there are
many-world bound orbits crossing the horizons and bound
orbits with turning points r1;2 > rþ, compare [22]. Here we
are interested in the latter and especially in the ISCO of
charged particles.
Descartes’s rule of signs states that the number of sign

changes of the coefficients of a polynomial is equal to the
number of positive real roots or less by an even number.
Therefore, 4 positive zeros of R can exist if a4 < 0, a3 > 0,
a2 < 0, a1 > 0, a0 < 0. From a4 < 0 we can deduce that
stable bound orbits with two turning points exist for δ ¼ 1,
but not for δ ¼ 0. Furthermore, we get the following
conditions for bound orbits in the equatorial plane and
therefore also for ISCOs

E2 < 1; ð16Þ

qQ < 1; ð17Þ
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L2 > 1 −Q2: ð18Þ

These conditions apply for bound orbits with r > rþ,
however, in the Reissner-Nordström spacetime bound
orbits of charged particles can also exist behind the inner
horizon r < r− [22].
The radial equation of motion [see Eq. (9)] can be

rewritten for dr
dt ¼ 0 as

0 ¼ Ê2 − 1 − 2

�
−
1

r
þ L̂2

r2
−
�
1 −

Q2

2r

�

×

�
L̂2 þ q̄2 −Q2

1 − Eq̄

�
1

r3

�
; ð19Þ

with L̂2 ¼ L2 − q̄2−Q2

1−Eq̄ and Ê2 − 1 ¼ ðE2−1Þ
1−Eq̄ . The charge

product of test particle and black hole charge is now
declared as qQ ¼ q̄. A qualitative comparison with Eq. (1)
shows, that only the “relativistic” term [originally ∝ 1=r3 in
Eq. (1)] deviates in its structure from the one in the
Schwarzschild equation of motion. The bigger the term
becomes, the more its influence on the course of the
effective potential Veff grows, and the maximum—and
with it the radius, where minimum and maximum are to
merge—moves to bigger radii.
One can easily see, that for very small charges of the

central black hole (Q → 0), but q̄ ≠ 0, the “relativistic”
term is smallest for uncharged test particles (q̄ ¼ 0), since
q̄2

1−Eq̄ is positive for all E, q̄, that can occur for bound orbits
[see Eqs. (16)–(18)]. For Q ≠ 0, the “relativistic” term will
be smaller than in the uncharged case, if q̄2 is sufficiently
small. Hence, the ISCO has to reach its smallest radius
for uncharged particles (q̄ ¼ 0), when the effect of the
black hole charge on the spacetime is negligible (Q ≈ 0).
However, if the black hole charge significantly effects the
spacetime curvature, the ISCO can become smaller than in
the uncharged case for a repulsive electromagnetic force
(Eq̄ > 0), if jq̄j is sufficiently small.
One can define an effective potential by

RðrÞ ¼ r4

L2
ðE − VþÞðE − V−Þ ð20Þ

so that

V� ¼ q̄
r
� 1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðL2 þ δr2Þ

q
;

¼ q̄
r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ −

2δ

r
þ L2

r2
−
2L2

r3
þ δQ2

r2
þ L2Q2

r4

r
: ð21Þ

The ISCO is located at an inflection point of the effective
potential. To calculate the ISCO, three conditions have to
be taken into account

R ¼ 0; ð22Þ

dR
dr

¼ 0; ð23Þ

d2R
dr2

¼ 0: ð24Þ

We solve (24) for L2, then we substitute this into (23) and
solve for q. With these results we can rewrite (22) to obtain
a condition for the ISCO depending on the location r the
energy E and the charge Q

Eð3Q2 − 2rÞf9E2r4 − 4ð5E2 þ 4Þr3 þ 12ðE2 þ 3Þr2
− 24rþ 4Q2g1=2 þ 6E2r3 − 3ð2þ ð3Q2 þ 2ÞE2Þr2
þ 2ð5E2Q2 þ 4Q2 þ 2Þr − 6Q2 ¼ 0: ð25Þ

We can plot this equation for different values of the black
hole charge Q to obtain a curve for the energy and the
location of the ISCO. Figure 1(a) shows rISCO over E for
several values of Q.
Another possibility is to solve (24) for L2, then substitute

this into (23) and solve for E. With these results we can
rewrite (22) to obtain a condition for the ISCO depending
on the location r the charge of the particle q and the charge
of the black hole Q

q̄ð6Q2 þ r2 − 6rÞf64r4 − 240r3 þ 3ð3q̄2 þ 104Þr2
− 4ð4Q2 þ 5q̄2 þ 36Þrþ 24Q2 þ 12q̄2g1=2 − 8r4

þ 3ðq̄2 þ 20Þr3 − 72ðQ2 þ 1Þr2
þ 2ð16Q4 þ ð54 − 7q̄2ÞQ2Þr − 48Q4 þ 12Q2q̄2 ¼ 0:

ð26Þ

The ISCO in RN spacetime will approach infinity, when
the prefactor of the three monomials of RðrÞ with the three
highest degrees in r vanish, meaning a4 ¼ a3 ¼ a2 ¼ 0
[see Eqs. (9)–(13)]. This is the case for

E2 ¼ 1; q̄ ¼ signðEÞ1; L2 ¼ 1 −Q2: ð27Þ

If we restrict the discussion to positive energies, the ISCO
diverges for a charge product q̄ ¼ 1. This corresponds to
the Newtonian case, where the gravitational attraction and
electric repulsion of a charged test particle annihilate each
other. Values of q̄ > 1 correspond to a in total repulsive
force on a test particle in the Newtonian limit and no bound
orbits are possible.
The ISCO further reaches infinity for

E → 0; q̄ → −∞: ð28Þ
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This can be derived from solving Eqs. (25) and (26)
for q̄ and E, respectively, and then calculating the limit
limr→∞ ðq̄; EÞ.
In Fig. 1(b) Eq. (26) is plotted implicitly as rISCO over

the charge product q̄ for several values of a black hole
charge Q.
Here we see that rISCO grows with increasing jq̄j in the

case of attractive Coulomb interaction qQ < 0. For repul-
sive Coulomb interaction, the ISCO radius first decreases to
a minimum and then increases again, until it diverges as the
charge product approaches one. ISCOs cease to exist for
qQ ≥ 1. In case of an attractive interaction rISCO grows
slower in comparison to the repulsive interaction, but
ISCOs exist for all q̄ < 1.
For each black hole charge Q one can locate the charge

product q̄, for which the ISCO reaches its smallest radius.
In the case, that the effects of the black hole charge on the
spacetime curvature are negligible (Q ≈ 0), the smallest
ISCO is reached in case of an uncharged test particle, and
located at r ¼ 6, according to the discussion above. With
increasing Q the radius r of the smallest ISCO decreases.
The value of q̄ for which the minimal ISCO is reached is
given by

q̄ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−5Q2 þ 9

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p �
−9þ 25Q2

vuut
Q: ð29Þ

According to Eq. (29), the minimal ISCO moves to bigger
values of q̄ > 0 for bigger values of Q and reaches q̄ ¼ 1
in case of the extreme Reissner-Nordström black hole
(Q ¼ 1). This is at the same time the biggest value of q̄ for
which ISCO solutions can be found. The corresponding
minimal ISCO lies at

rISCO;min;exRN ¼ 3: ð30Þ

The course of the minimal ISCO, depending on Q is
shown in Fig. 2. It is well fitted by a quarter circle given by

rISCO;min ¼ 3
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p �
¼ 3rþ: ð31Þ

IV. ISCO IN Kerr-Newman SPACETIME

A discussion of the ISCO behavior in Kerr-Newman
spacetime was already grazed before e.g., in [11] for a very
small black hole charge. However, we will give a more
exhaustive discussion in this chapter.

FIG. 2. Minimal ISCO radius depending on the black hole
charge Q (blue). It shows a nearly circular course, which is fitted

by circle rISCO;min ¼ 3ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
Þ (black, dashed).

(a) (b)

FIG. 1. ISCO of electrically charged particles in the Reissner-Nordström spacetime. (a) rISCO over E for several values of Q. (b) rISCO
over qQ for several values of Q.
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The Kerr-Newman metric of a rotating, electrically
charged black hole is [23]

ds2 ¼ ρ2

Δ
dr2 þ ρ2dθ2 þ sin2θ

ρ2
ðΣdϕ − adtÞ2

−
Δ
ρ2

ðasin2θdϕ − dtÞ2; ð32Þ

with the metric functions

ρ2 ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2Mrþ a2 þQ2;

Σ ¼ r2 þ a2; ð33Þ

and the vector potential A ¼ Qr
ρ2
ðdt − a sin2 θdϕÞ. The Kerr-

Newman black hole has two horizons given by Δ ¼ 0

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð34Þ

Therefore horizons exist as long as M2 > a2 þQ2. The
ringlike singularity is given by ρ2 ¼ 0, which is true for
r ¼ 0 and θ ¼ π

2
. In Kerr-Newman spacetime, the ergo-

sphere lies at radii r ≤ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos θ −Q2

p
. Due to

the frame-dragging effect, particles have to move with the
direction the BH spin within the ergosphere.
To derive the equations of motion we use the Hamilton-

Jacobi formalism. The Hamilton-Jacobi equation (6) can be
solved with the ansatz

S ¼ 1

2
δλ − Etþ Lϕþ SrðrÞ þ SθðθÞ: ð35Þ

With the help of the Carter constant K the Hamilton-Jacobi
equation separates and yields the equations of motion

�
dr
dγ

�
2

¼ ðq̄2 − ΔδÞr2 − 2q̄rðΣE − LaÞ

− KΔþ ðΣE − LaÞ2 ¼ RðrÞ; ð36Þ
�
dθ
dγ

�
2

¼ K − δa2cos2θ −
ðL − aEsin2θÞ2

sin2θ
; ð37Þ

�
dϕ
dγ

�
¼ a

Δ
ð−q̄rþ ΣE − LaÞ þ L − aEsin2θ

sin2θ
; ð38Þ

�
dt
dγ

�
¼ Σ

Δ
ð−q̄rþ ΣE − LaÞ þ aðL − aEsin2θÞ: ð39Þ

We used scaled quantities in the equations of motion

r →
r
M

; λ →
λ

M
; a →

a
M

;

Q →
Q
M

; L →
L
M

; K →
K
M2

; ð40Þ

and the Mino time γ with dλ ¼ ρ2dγ. The equations of
motion were solved analytically in [10].
From the r equation one can define an effective

potential by

RðrÞ ¼ fðrÞðE − VþÞðE − V−Þ; ð41Þ

so that

V� ¼ q̄rþ aL
Σ

� 1

Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðK þ δr2Þ

q
: ð42Þ

We will analyze the ISCO in the equatorial plane,
where the Carter constant is K ¼ ðE − aLÞ2 ¼ K2

eq. In
the equatorial plane, the coefficients of the polynomial
R ¼ P

4
i¼0 air

i are

a4 ¼ E2 − δ;

a3 ¼ −2Eq̄þ 2δ;

a2 ¼ ðE2 − δÞa2 þ q̄2 − δQ2 − L2;

a1 ¼ 2q̄aðL − aEÞ þ 2ðL − aEÞ2;
a0 ¼ −Q2ðL − aEÞ2:

As in the previous section, with the help of the rule of
Descartes we can deduce conditions for the existence of
bound orbits in the equatorial plane and therefore for the
existence of ISCOs

E2 < 1; ð43Þ

q̄ < 1; ð44Þ

L2 > 1 −Q2; ð45Þ

a <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
if L >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
or

a > −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
if L < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
: ð46Þ

These conditions apply for bound orbits with r > rþ;
however, in the Kerr-Newman spacetime bound orbits of
charged particles can also exist behind the inner horizon
r < r− or even for negative r [10].
Using the three conditions for ISCOs (22), (23) and (24),

we can calculate an equation of the form fðr; a;Q; qÞ ¼ 0
which describes the ISCOs. The equation is too long to be
displayed here, but we can use it to plot different quantities.
Figure 3 shows the location of the ISCO rISCO over the
charge product q̄ [Fig. 3(a)] and over the black hole spin a
[Fig. 3(b)].
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The overall course of the ISCO branches is similar to the
Reissner-Nordström case. However, outside the horizon,
one finds—analog to Kerr—two ISCO solutions. One for
the direct, the other one for the retrograde orbit. In case of
a not-extreme Kerr-Newman black hole, the ISCO will
approach infinity, when the prefactor of the three mono-
mials of RðrÞ with the three highest degrees in r vanish,
meaning a4 ¼ a3 ¼ a2 ¼ 0 [see Eqs. (36), (43)]. This is the
case for

E2 ¼ 1; q̄ ¼ signðEÞ1; L2 ¼ 1 −Q2: ð47Þ

Again, q̄ ¼ 1 corresponds to the Newtonian case, where the
gravitational attraction and electric repulsion of a charged
test particle annihilate each other. No bound orbits are
possible for q̄ > 1 and ISCOs cease to exist at this point as
well. This can be compared to an in total repulsive force on
a test particle in the Newtonian limit.
Analogously to the Reissner-Nordström case the ISCO

will grow with increasing jq̄j for sufficiently big jq̄j. A
minimal ISCO therefore exists at some value of 0 < q̄ < 1,
which moves to bigger values of q̄ with a growing central
charge Q. The ISCO minimum occurs for the case of
uncharged test particles (q̄ ¼ 0) if the central charge Q has
a negligible effect on the spacetime curvature. An attempt
to understand this behavior was given in Sec. II. This result
is independent of the black hole spin a, and is derived by
verifying that

d
dq̄

rISCO

				
q̄¼0

¼ 0; ð48Þ

using MAPLE.

If the central charge is big enough to significantly effect
spacetime, the ISCO of charged particles is smaller than the
one in the uncharged case, as long as jq̄j is sufficiently
small. High spins of the black hole do not change this
picture, but they strengthen the deviation of the ISCO
minimum from q̄ ¼ 0 for Q ≠ 0.
In Kerr spacetime, the ISCO of the direct orbit

approaches r ¼ 1 for the extreme case (a ¼ 1). In the case
of an extreme Kerr-Newman back hole (a2 þQ2 ¼ 1), the
direct ISCO approaches r ¼ 1 for

q̄� ¼ 1 − 2a2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p < q̄ < 1: ð49Þ

As mentioned before, no bound orbits are possible for
q̄ > 1. For small q̄, the direct ISCO branch shows the same
qualitative shape, as in the nonextreme Kerr-Newman case,
but reaches r ¼ 1 at q̄ ¼ 1−2a2ffiffiffiffiffiffiffiffi

1−a2
p and stays there for bigger

values of q̄. Equation (49) is derived by satisfying the ISCO
equations and d3

dr3 RðrÞ ¼ 0 at r ¼ 1.
Even though it appears, that the ISCO radius reaches

r ¼ 1 in the extreme case, it will in fact not reach the
horizon but actually keeps an infinite distance to it as well
as to the photon or marginally bound orbit [24]. The cause
of this deceptive result is the failure of Boyer-Lindquist
coordinates to properly resolve the region at the horizon, as
the entire section of the spacetime manifold r < rISCO is
projected onto r ¼ 1.
The Kerr-Newman ISCO is plotted over the spin a for

different values ofQ and q̄ in Figs. 3(b) and 4. In Fig. 4 q̄ is
chosen such, that the condition in Eq. (49) is not satisfied.
In contrast to the ISCO branches depicted in Fig. 3(b),
r ¼ 1 is not reached for the extremal black hole in this case.

(a) (b)

FIG. 3. ISCO of electrically charged particles in the Kerr-Newman spacetime. (a) rISCO is depicted over the charged product q̄ for a
black hole spin a ¼ 0.4 and several values of the black hole chargeQ. (b) rISCO is depicted over black hole spin a for a black hole charge
Q ¼ 0.5 and several values of the charge product q̄. The ISCO diverges when the charge product q̄ reaches one. Corotating ISCOs

decrease to smaller radii analog to Kerr and reach r ¼ 1 in the extreme case a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
.
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For hight spins, the ISCO for corotating orbits can lie
within the ergosphere, since rISCO will approach r ¼ 1 for
a → 1 −Q2, if Eq. (49) is satisfied (see Fig. 3).

V. Kerr-Sen

The Kerr-Sen spacetime describes a rotating, charged
black hole in heterotic string theory. The metric is [17,25]

ds2 ¼ ρ2

Δ
dr2 þ ρ2dθ2 þ sin2θ

ρ2
ðΣdϕ − adtÞ2

−
Δ
ρ2

ðasin2θdϕ − dtÞ2; ð50Þ

with the metric functions

ρ2 ¼ r2 þ a2cos2θ þQ2

M
r;

Δ ¼ r2 − 2Mrþ a2 −
Q2

M
r;

Σ ¼ r2 þ a2 þQ2

M
r; ð51Þ

and the vector potential A ¼ Qr
ρ2
ðdt − asin2θdϕÞ. The Kerr-

Sen black hole has two horizons given by Δ ¼ 0

r� ¼ M þ Q2

2M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þQ2 þ Q4

4M2

r
: ð52Þ

The singularity is described by ρ2 ¼ 0 and depends in
contrast to the Kerr-Newman spacetime on the charge. The
singularity can have different shapes depending on the
charge, see [26].
In heterotic string theory a dilaton field Φ is present,

which is in this case given by the relation

e2Φ ¼ r2 þ a2 cos2 θ
ρ2

: ð53Þ

The presence of a dilaton field affects the motion of charged
particles [27–29]; then the Hamiltonian is

H ¼ 1

2
e−αΦgμνðpμ þ qAμÞðpν þ qAνÞ; ð54Þ

where the parameter α is the coupling to the dilaton field.
The mass shell condition changes to

gμνðpμ þ qAμÞðpν þ qAνÞ þ δe2αΦ ¼ 0: ð55Þ

δ describes the mass of the test particle and is 1 for particles
and 0 for light. To solve the Hamilton-Jacobi equation
Hþ ∂S

∂λ ¼ 0 with pμ ¼ ∂S
∂xμ, we use an ansatz for the action

S ¼ 1

2
δeαΦλ − Etþ Lϕþ SrðrÞ þ SθðθÞ: ð56Þ

Then the Hamilton-Jacobi equation separates in two cases:
α ¼ 1 and α ¼ 0.
In the case α ¼ 1 the equations of motion are

�
dr
dγ

�
2

¼ ðq̄2 − ΔδÞr2 − 2q̄rðΣE − LaÞ − KΔ

þ ðΣE − LaÞ2 ¼ RðrÞ; ð57Þ
�
dθ
dγ

�
2

¼ K − δa2 cos2 θ −
ðL − aE sin2 θÞ2

sin2 θ
; ð58Þ

�
dϕ
dγ

�
¼ a

Δ
ð−q̄rþ ΣE − LaÞ þ L − aE sin2 θ

sin2 θ
; ð59Þ

�
dt
dγ

�
¼ Σ

Δ
ð−q̄rþ ΣE − LaÞ þ aðL − aE sin2 θÞ: ð60Þ

We used scaled quantities as in the Kerr-Newman space-
time and the Mino time γ with dλ ¼ eΦρ2dγ.
In the case α ¼ 0, i.e., without dilaton coupling, only the

r equation is different from the case α ¼ 1

�
dr
dγ

�
2

¼ RðrÞ − δΔQ2r ¼ R̃ðrÞ: ð61Þ

FIG. 4. Discussion of the ISCO in Kerr-Newman spacetime for
charged particles for black hole charge Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.42

p
, and

charge product q̄ ¼ 0.4, depending on the black hole spin a. The
black area portrays the region corresponding to overextreme
black holes, where naked singularities occur. The extreme black
hole case occurs at a ¼ 0.4. The corotating ISCOs do not reach
r ¼ 1 in this case, since Eq. (49) is not satisfied.
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Again we used scaled quantities and the Mino time as in the
Kerr-Newman spacetime. For δ ¼ 0 both cases α ¼ 1 and
α ¼ 0 have the same r equation.
As for Kerr-Newman one can define an effective

potential from the r equation. In the case α ¼ 1 the
effective potential is

V� ¼ q̄rþ aL
Σ

� 1

Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðK þ δr2Þ

q
; ð62Þ

and in the case α ¼ 0

V� ¼ q̄rþ aL
Σ

� 1

Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðK þ δr2 þ δrQ2Þ

q
: ð63Þ

We will analyze the ISCO in the equatorial plane, where
the Carter constant is K ¼ ðE − aLÞ2. In the equatorial
plane the coefficients of the polynomial R ¼ P

4
i¼0 air

i are
in the case α ¼ 1

a4 ¼ E2 − δ;

a3 ¼ ð2E2 þ δÞQ2 − 2q̄Eþ 2δ;

a2 ¼ ðE2 − δÞa2 þQ4E2 − 2q̄Q2Eþ q̄2 − L2;

a1 ¼ 2aðq̄ −Q2EÞðL − EaÞ þ ðL − EaÞ2ðQ2 þ 2Þ;
a0 ¼ 0: ð64Þ

In the case α ¼ 0 the coefficients of the polynomial
R̃ðrÞ ¼ P

4
i¼0 ãir

i are

ã4 ¼ E2 − δ;

ã3 ¼ 2E2Q2 − 2Eq̄þ 2δ;

ã2 ¼ ðE2 − δÞa2 þ q̄2 − 2q̄Q2E−L2 þQ4E2

þ ðQ2 þ 2ÞδQ2;

ã1 ¼ 2aðq̄−Q2EÞðL−EaÞ þ ðL−EaÞ2ðQ2 þ 2Þ− a2δQ2;

ã0 ¼ 0: ð65Þ

As in the previous sections, with the help of the rule of
Descartes we can deduce conditions for the existence of
bound orbits and therefore ISCOs from the r equation. In
the case α ¼ 1 we get the conditions

E2 < 1; ð66Þ

q̄ < 1þ 3

2
Q2; ð67Þ

L2 >

�
1þQ2

2

�
2

; ð68Þ

a < 1þQ2

2
if L > 1þQ2

2
or

a > −1 −
Q2

2
if L < −1 −

Q2

2
: ð69Þ

and in the case α ¼ 0 we get

E2 < 1; ð70Þ

q̄ < 1þQ2; ð71Þ

L2 > ð1þQ2Þ2; ð72Þ

a < 1þQ2

2
if L > 1þQ2; or

a > −1 −
Q2

2
if L < −1 −Q2: ð73Þ

These conditions apply for bound orbits with r > rþ,
however, in the Kerr-Sen spacetime bound orbits of
charged particles can also exist behind the inner horizon
r < r− or even for negative r.
Using the three conditions for ISCOs (22), (23) and (24),

we can calculate an equation of the form fðr; a;Q; qÞ ¼ 0
which describes the ISCOs. The equation is too long to be
displayed here, but we can use it to plot different quantities.
Figure 5 shows the ISCO in the Kerr-Sen spacetime. The
case α ¼ 1 is depicted in Figs. 5(a) and 5(b), 5(a) shows
the location of the ISCO rISCO over q̄ and 5(b) shows
rISCO over a. The case α ¼ 0 is depicted in Figs 5(c)
and 5(d), 5(c) shows the location of the ISCO rISCO over q̄
and 5(d) shows rISCO over a. Due to the rotation of the Kerr-
Sen black hole we get two ISCO solutions, the upper
branch describes the counterrotating ISCO, which is further
away from the black hole than the corotating ISCO at the
lower branch. Overall the behavior at both branches is
similar to the Reissner-Nordström black hole. rISCO grows
with increasing jq̄j in the case of attractive Coulomb
interaction qQ < 0. For repulsive Coulomb interaction,
the ISCO radius first decreases to a minimum and then
increases again, until it diverges. ISCOs cease to exist for
q̄ ≥ 1þ 3

2
Q2 in the case α ¼ 1 and for q̄ ≥ 1þQ2 in the

case α ¼ 0. In case of an attractive interaction rISCO grows
slower in comparison to the repulsive interaction, but
ISCOs exist for all q̄ < 1.
Interestingly, for α ¼ 0 the minimal ISCO is found in the

range qQ ∈ ½0; 1þQ2½, however, for α ¼ 1 the minimal
ISCO is at qQ ¼ 0 for all Q.
Note that in the Reissner-Nordström and in the Kerr-

Newman spacetime ISCOs of charged particles cease to
exist for q̄ ≥ 1. In the Kerr-Sen spacetime this upper limit
for ISCOs depends on the charge of the black hole and is
shifted to larger q̄ for growing Q.
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Furthermore, if the charge Q of the black hole increases
the behavior of the ISCO in the Kerr-Sen is different from
the Reissner-Nordström black hole and the Kerr-Newman
black hole. In the Reissner-Nordström or Kerr-Newman
spacetime, the position rISCO of the ISCO is closer to the
black hole for increasing charge Q. In the Kerr-Sen
spacetime however, the position rISCO of the ISCO is
further away from the black hole if the charge Q of the
black hole increases.

VI. OUTERMOST STABLE CIRCULAR ORBITS
FOUND BEYOND THE HORIZON

A complete picture of the ISCO discussion requires us to
cast a glance on the orbits beyond the inner horizon.
Negative radii cannot be reached in Reissner-Nordström
spacetime. The nonrotating, charged black hole possesses a
spacetime singularity at r ¼ 0. All particle trajectories have
to terminate there, and are not allowed to reach negative
radii. It is still worth taking a look, especially with regards

to a comparison with Kerr-Newman spacetime. In the
rotating counterpart of the Reissner-Nordström black hole,
a ring singularity allows a transition from positive to
negative radii.
The radial equation of motion in Kerr-Newman and

Reissner-Nordström spacetime is a polynomial of order 4.
According to Eq. (36) RðrÞ has to be positive between the
horizons. On the other hand it has to be negative at r ¼ 0.
Keeping these properties in mind, four qualitatively

different configurations can be found for RðrÞ (see
Fig. 6). Depending on the sign of ðE2 − 1Þ, circular stable
(local maxima) and unstable orbits (local minima) are
possible for positive radii bigger than the outer horizon,
smaller than the inner horizon, or negative radii. It becomes
clear from the plots in Fig. 6 that a radius rIII satisfying
Eqs. (22)–(24) represents the ISCO for r > rþ, but a—so to
say—outermost stable circular orbit (OSCO) for radii
0 < r < r−. In the case of negative radii, rIII represents,
again, an OSCO, in that sense, that all jrj < jrIIIj are stable,
but all jrj > jrIIIj are unstable. It seems that behind the

(a) (b)

(c) (d)

FIG. 5. ISCO of electrically charged particles in the Kerr-Sen spacetime. (a) rISCO over qQ for α ¼ 1, a ¼ 0.4 and several values ofQ.
(b) rISCO over a for α ¼ 1, Q ¼ 0.5 and several values of qQ. (c) rISCO over qQ for α ¼ 0, a ¼ 0.4 and several values of Q. (d) rISCO
over a for α ¼ 0, Q ¼ 0.5 and several values of qQ.
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horizon one might find a region of stable circular orbits
around r ¼ 0 for certain particle and black hole charges
q and Q.
In the Reissner-Nordström limit bound orbits are found

behind the horizon [22]. In agreement with this, two
branches of OSCOs are found for radii smaller than the
inner horizon. Due to the symmetries in the equations of
motion (36)–(39) (set a ¼ 0 for the Reissner-Nordström
limit), we reduce the discussion to solutions with a
positive time evolution (dt=dγ > 0). OSCOs with a neg-
ative time evolution are found at the same radii, but
(q̄ → −q̄, E → −E).
The OSCO branches and their energies and angular

momenta are plotted in Fig. 7 for different values ofQ. One
branch occurs for negative radii and a positive charge
product q̄, and one for positive radii smaller than the inner
horizon and a negative charge product q̄. The two branches
for r < r− “merge” at r ¼ 0 for jq̄j ¼ q̄ST. This point can
be understood as a germ for the two OSCO solution
branches. It satisfies not only to the conditions for an
ISCO or OSCO, but

dk

drk
RðrÞ ¼ 0; for k ¼ 0; 1; 2; 3; ð74Þ

and is located at

E ¼ 1

q̄
; q̄2 ¼ a2 þQ2≕ q̄2ST; Keq ¼ 0; r ¼ 0; ð75Þ

in the general Kerr-Newman case. The conditions in (74)
determine a germ of a Swallowtail catastrophe for
RðrÞ ¼ R

RðrÞdr.
The swallowtail point q̄ST marks the absolute value jq̄j,

above which stable orbits exist for both positive and negative
radii r < r−. The OSCO solution for negative radii diverges
at q̄ ¼ 1, meaning that stable circular orbits can be found for
all r < 0, if q̄ > 1. On the other hand no stable circular
orbits are found for r < 0 and jq̄j < jq̄jST. According to
Eq. (75) q̄ST moves to jq̄j ¼ 1 for bigger values of Q and
reaches jq̄j ¼ 1 for the extremal case Q ¼ 1. The OSCO
solution for positive radii behind the horizon approaches
rOSCO ¼ 1. This leads to a step function

FIG. 6. Four qualitatively different possible potentials for the radial motion. For a given set of papameters ðE; L; q̄Þ test particle motion
can only take place at radii, where ðdrdλÞ2 ≥ 0. The gray region indicates the region between the inner and outer horizon. The ordinate is
placed at r ¼ 0. The cyan plots portray the qualitative shape of potentials, that belong to an ISCO or OSCO. Its location is marked by a
solid blue circle on the r axis, where the radial motion of the test particle vanishes ðdrdλ ¼ 0Þ. A small deviation in the parameter set
ðE;L; q̄Þ from the ISCO/OSCO solution is then portrayed by the red plots. Local maxima imply stable circular orbits, while local
minima imply unstable ones.
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rOSCO ¼


1 for qQ < −1
0 for qQ ¼ −1

ð76Þ

for the OSCO solutions in the extreme case. The more the
values of Q approaches the extreme case Q ¼ 1, its two

OSCO solution branches approach the step function for
positive radii and the course q̄ ¼ 1 for negative radii (Fig. 7).
In the Kerr-Newman case bound solutions were found

behind the horizon by [10]. Due to the symmetries in the
equations of motion (36)–(39), we will restrict our dis-
cussion to branches of solutions, that show a positive time

(a) (b) (c)

FIG. 7. Solutions for an outermost stable circular orbit (OSCO) in Reissner-Nordström spacetime behind the inner horizon r < r− for
different values of Q: Q ¼ 0.1 (blue, solid),Q ¼ 0.4 (dark violet, short-dashed), Q ¼ 0.7 (violet, dash-dotted line) Q ¼ 0.999 (bright
violet, long-dashed), and Q ¼ 1 (black, thin, dashed). (a) shows the OSCO radius, (b) shows the corresponding energy and (c) the
corresponding squared angular momentum. Negative energies occur for positive OSCOs < r−.

(a) (b)

FIG. 8. OSCO solutions in Kerr-Newman spacetime for two different values ofQ and different spins. (a) OSCO solutions forQ ¼ 0.3

and four different values of the spin: a ¼ 0.3 (red), a ¼ 0.6 (blue), a ¼ 0.9 (yellow) and the extreme black hole case a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
(black). (b) OSCO solutions for Q ¼ 0.8 and three different values of the spin: a ¼ 0.1 (red), a ¼ 0.4 (blue) and the extreme black hole
case a ¼ 0.6 (black). “Counterrotating” OSCOs are plotted as dashed lines and in a darker tone. For negative radii, the OSCO diverges
to −∞ at q̄ ¼ 1. The extreme black hole case is plotted as a dash-dotted line. Like in the Reissner-Nordström case, the corotating OSCO
branch approaches the course of the step function as given Eq. (76) for r > 0 and the course q̄ ¼ 1 for negative radius. The regions in
½r; q̄� for which stable orbits can be found is coloured in the respective color of the corresponding a.
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evolution for radii not too close to the singularity r ¼ 0.
A second set of solutions is found with the same radii,
but (q̄ → −q̄, E → −E, L ¼ −L). In comparison to the
Reissner-Nordström limit a second branch of solution
occurs for both areas: ½0 < r < r−� and ½r < 0� (see
Fig. 8). The set of branches that shows the same qualitative
behavior as in the Reissner-Nordström case corresponds to
corotating orbits. Like in the Reissner-Nordström case, the
two branches “merge” at the location of the Swallowtail
germ given in Eq. (75). Stable corotating orbits can be
found for q̄ > jq̄jST for negative radii and for q̄ < −jq̄jST in
case of positive radii.
In the extreme black hole case (a2 þQ2 ¼ 1), the

corotating OSCO branch for positive radii approaches
the step function (76) like in the nonrotating limit. The
corotating OSCO branch for negative radii approaches the
course q̄ ¼ 1.
The second set of OSCO branches shows the

property Keq ¼ L − aE < 0. So one might associate these
OSCO branches with “counterrotating” orbits. However,
since negative energies are possible behind the horizon,
Keq < 0 might not necessarily correspond to an actual
negative angular momentum of the particle for the whole
branch of solutions.
The “Keq < 0”-OSCO branches show the same qualita-

tive behavior as the corotating OSCOs for negative radii.
They start at smaller charge products q̄ > 0, compared to
their corotating counterparts but also diverge for q̄ ¼ 1. One
branch of “Keq < 0”-OSCOs lies at r ¼ 1 for an extreme
black hole and runs from −∞ to a maximal q̄ ¼ −q̄� [given
in Eq. (49), where the corotating ISCO branch reaches
r ¼ 1], if q̄� > 0 [see Fig. 8(a)]. Otherwise–if q̄� < 0– it
starts at −q̄�, and decreases for smaller q̄, until the OSCO
reaches r ¼ 0 [see Fig. 8(b)]. The “Keq < 0”-OSCO
branches of nonextreme black holes will in general follow
the same course.

VII. CONCLUSION

The existence of an innermost stable circular orbit for
test particle motion around a compact object is a purely
relativistic phenomenon. It is therefore likely, that any
intuitive expectations one might have on its behavior
turn out to be wrong. In this paper we discussed the—at
times counterintuitive—behavior of ISCOs for charged
particles in Reissner-Nordström, Kerr-Newman and Kerr-
Sen spacetime.
A minimal ISCO occurs in the Reissner-Nordström

spacetime and in the Kerr-Newman spacetime for co-
and counterrotating orbits at a particle-black hole charge
product qQ in the range qQ ∈ ½0; 1½. In other words, the
ISCO location is pushed further outwards for both—
attractive and repulsive—electromagnetic interactions
between the black hole and the particle, above a certain
value of jqQj. All ISCO solutions in Reissner-Nordström

and Kerr-Newman spacetime diverge to infinity at qQ ¼ 1
and cease to exist anywhere above qQ > 1. A too strong
repulsive electromagnetic interaction prohibits any stable
circular orbits in this case.
In the Kerr-Sen spacetime one needs to take into account

the dilaton coupling of the test particles. In this article we
concentrated on the cases α ¼ 0 and α ¼ 1, where the
Hamilton-Jacobi equation separates and yields equations of
motion. For α ¼ 0 the minimal ISCO is found in the range
qQ ∈ ½0; 1þQ2½. For α ¼ 1 however, the minimal ISCO
stays at qQ ¼ 0 for all Q. As in Reissner-Nordström and
Kerr-Newman spacetime, the ISCO radius increases both
for attractive and repulsive electromagnetic interaction
above a certain value of jqQj. The ISCO radius diverges
for qQ ¼ 1þQ2 if α ¼ 0 and for qQ ¼ 1þ 3

2
Q2 if α ¼ 1.

After these values ISCOs cease to exist.
The effect of even quite strong electromagnetic fields on

the spacetime curvature is in general very small and can be
neglected in most scenarios. In this case, noncharged
particles have the smallest possible ISCO and the ISCO
will increase both for growing attractive and repulsive
electric forces on the test particle.
For a rising effect of the black hole charge on the

spacetime curvature, the minimal ISCO moves from
qQ ¼ 0 to increasing values of the charge product qQ
(except for particles with α ¼ 1 in the Kerr-Sen spacetime,
where the minimal ISCO stays at qQ ¼ 0). In Reissner-
Nordström spacetime the minimal ISCO moves up to
qQ → 1 for an extremal black hole (Q ¼ 1). Also the
minimal ISCO radius decreases for increasing charge Q of
an Reissner-Nordström or Kerr-Newman black hole. The
closest distance to the black hole is rISCO ¼ 3 for an
extremal Reissner-Nordström black hole. Bearing that in
mind one can conclude, that, if the total mass and spin of a
black hole are known, an ISCO smaller than the one
expected for Kerr or Schwarzschild indicates a charge
strong enough to significantly affect spacetime curvature.
The ISCO in the Kerr-Sen spacetime behaves differently

here. For increasing charge Q the ISCO radius will be
further away from the black hole.
In the uncharged case of an extremal spinning Kerr black

hole (a ¼ 1), the corotating ISCO approaches the horizon
at r ¼ 1. The same behavior is found for an extremal Kerr-
Newman black hole (a2 þQ2 ¼ 1)—but only for a certain
range of particle-black hole charge products. If the effect
of the black hole charge on the spacetime curvature is
negligible (Q ≈ 0, a ≈ 1), the corotating ISCO approaches
the horizon for all qQ < 1. The range of qQ, for which this
behavior can be found, shrinks with rising Q, and finally
vanishes for an extremal charged, nonrotating black hole
(Q → 1, a → 0).
We also studied the region behind the horizon in

Reissner-Nordström and Kerr-Newman spacetime. Here
OSCOs are found instead of ISCOs. They exist for posi-
tive and negative radii and border an area around the
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curvature singularity, in which stable circular orbits are
possible. The existence and size of this region depends on
how much the black hole charge Q affects spacetime
curvature, and on the charge product qQ. However, the
discussion of OSCOs behind the horizon gets complicated
quickly in case of the charged, spinning black hole, which
limits the number of final conclusions that can be drawn
about this region.
For future research it might be interesting to study the

influence of magnetic charge on the radius of the ISCO and
consider magnetically as well as electrically charge par-
ticles in black hole spacetimes with magnetic and electric
charges. Looking towards a comparison with observational

data, a necessary next step should be the discussion of
gravitational redshift and Doppler shift, which will affect
any radiation emitted at the ISCO location.
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