
 

Hybrid post-Newtonian effective-one-body scheme for spin-precessing
compact-binary waveforms up to merger

Sarp Akcay,1,2 Rossella Gamba ,2 and Sebastiano Bernuzzi 2

1University College Dublin, Dublin D14, Ireland
2Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

(Received 17 May 2020; accepted 17 December 2020; published 8 January 2021)

We introduce TEOBResumSP: an efficient yet accurate hybrid scheme for generating gravitational
waveforms from spin-precessing compact binaries. The precessing waveforms are generated via the
established technique of Euler rotating aligned-spin (nonprecessing) waveforms from a precessing frame to
an inertial frame. We employ the effective-one-body approximant TEOBResumS to generate the aligned-
spin waveforms. We obtain the Euler angles by solving the post-Newtonian precession equations expanded
to ðnext-toÞ4 leading (second post-Newtonian) order. Current version of TEOBResumSP produces
precessing waveforms through the inspiral phase up to the onset of the merger. We compare
TEOBResumSP to current state-of-the-art precessing approximants NRSur7dq4, SEOBNRv4PHM,
and IMRPhenomPv3HM in terms of frequency-domain matches of the l ¼ 2 gravitational-wave strain
for 200 cases of precessing compact binary inspirals with orbital inclinations up to 90 degrees, mass ratios
up to four, and the effective precession parameter χp up to 0.75. We further provide an extended
comparison with SEOBNRv4PHM involving 1030 more inspirals with χp ranging up to one and mass ratios
up to 10. We find that 91% of the TEOBResumSP-NRSur7dq4 matches, 85% of the TEOBResumSP-
SEOBNRv4PHM matches, and 77% of the TEOBResumSP-IMRPhenomPv3HM matches are greater than
0.965. Most of the significant disagreements occur for large mass ratios and χp ≳ 0.6. We identify the
mismatch of the non-precessing (2,1) mode as one of the leading causes of disagreements. We also
introduce a new parameter, χ⊥;max, to measure the strength of precession and hint that the strain mismatch
between the above waveform approximants shows an exponential dependence on χ⊥;max though this
requires further study. Our results indicate that TEOBResumSP is on its way to becoming a robust
precessing approximant to be employed in the parameter estimation of generic-spin compact binaries.
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I. INTRODUCTION

Gravitational-wave events have become routine in obser-
vational astronomy: the Advanced LIGO [1]-Virgo [2]
interferometers detected at least ten binary black hole
coalescences and one binary neutron star merger during
the first and second observing runs [3–13]. The third
observing run began on 1 April 2019 and delivered by its
[premature] end a year later the second binary neutron star
merger [14], two binary black hole mergers with significant
mass asymmetry [15,16], the second possibly involving the
mostmassive neutron star discovered yet, another black hole
merger leading to the formation of an intermediate mass
black hole [17], and additionally more than four dozen
triggers with false alarm rates of less than one per year [18].
A significant fraction of these triggers turned out to be
genuinegravitational-wave events caused by the inspiral and
merger of stellar mass compact objects [19].
The properties of the compact objects such as masses and

spins can be obtained via parameter estimation studies that
are conducted on a sufficiently “cleaned” version of the

relevant segment of the detector data. This requires a large
set of “realistic” theoretical gravitational waveform tem-
plates which can be cross-correlated with the data. For
stellar-mass compact binary systems, there are four main
approaches to generating the theoretical gravitational
waves (GWs) resulting from compact binary inspirals:
post-Newtonian theory [20], numerical relativity [21,22],
effective-one-body theory [23,24], and phenomenological
template construction [25,26]. More recently, there has also
been an emergence of surrogate methods which we dis-
cuss below.
Post-Newtonian (PN) theory employs a large-separation

(weak-field) expansion to the Einstein field equations.
Current PN technology for the evolution of quasicircular
inspirals is at the 3.5PN level with partial higher-order PN
information available [27,28]. As PN information is fully
analytical, the resulting waveforms can be evaluated very
quickly. Consequently, the LIGO-Virgo Collaboration
(LVC) has at its disposal a plethora of PN-based Taylor
waveform approximants summarized in Ref. [29]. As PN
theory is valid in the weak-field, adiabatic regime, these
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approximants are appropriate for modeling only the inspiral
phase and extracting the chirp mass [14,30], with possibly
PhenSpinTaylorRD [31] as an exception, which is a
hybrid model that matches spinning PN inspiral waveforms
and fits to NR ringdown waveforms.
Binary black hole (BBH) systems are more massive, thus

transit through the LIGO-Virgo detection bandwidth much
more quickly than binary neutron stars (BNSs), e.g.,
GW150914 lasted less than 20 milliseconds [3] whereas
GW170817 lasted nearly a minute [4]. As such, we can
detect only the last few dozen cycles of their GWs before
merger. Such GWs are generated in the very-strong-gravity
regime where PN approximation is not reliable. This is the
domain of numerical relativity (NR). Since the break-
throughs of 2005 [32–34], it has become routine to evolve
strongly gravitating spacetimes of compact binary mergers
on large computing clusters. There are now several NR
catalogs containing thousands of simulations of compact
binary inspirals [35–43]. Of these, the most comprehensive
is the 2019 SXS catalog which contains 2018 simulations
of precessing systems with the dimensionless Kerr spin
parameter up to 0.998 [36].
As the number of NR simulations increased, it became

possible to build hybrid (phenomenological) waveform
models by matching PN inspiral waveforms and fits to NR
waveforms. The initial model, PhenomA [25,26], combined
theTaylorT1PNwaveformmodel with a two-dimensional
fit to a set of nonprecessing NR simulations. The model was
steadily improved through versions B [44], C [45], and D
[46,47]. Specific models were then developed for binary
neutron stars (PhenomD_NRTidal [48,49]), higher modes
(PhenomHM [50]), and spin precession (PhenomP [51,52]).
Subsequently, the nonprecessing models have gone through
several upgrades [53–55], just as the precessing ones have
[56–60] with IMRPhenomPv3HM [58] being employed in
the analysis of themost recentGWevents.Note that the recent
IMRPhenomX family match a mix of EOB, PN waveforms
with NR [53,54,59]. Phenom models generate frequency-
domain waveforms with the corresponding time-domain
waveforms obtained by inverse fast Fourier transforms, only
exception being IMRPhenomTP [60] which is a direct time-
domain construction. Since GWdata analysis is performed in
the frequency-domain and as Phenom waveforms are fast to
generate, the Phenom family has become one of the most
commonly used set of waveform approximants in the
parameter estimation of GW events as well as in other areas
of GW science where fast, reliable waveforms are required.
The effective-one-body (EOB) approach bridges PN

theory and NR. It maps the two-body PN motion to a
geodesic motion in an effective spacetime via a deformation
performed in terms of the symmetric mass ratio [23,24]. In
its core, EOB contains an effective Hamiltonian for aligned-
spin systems,which resums the PN series in a suitableway to
better capture the effects of the strong-field regime [61]. The
inspiral is driven by a specially factorized/resummed

radiation-reaction force [62]. The resulting multipolar
gravitational waveforms are also written in a factorized
form [63,64]. The analytical EOB model is further supple-
mentedwith input from nonprecessingNR simulations, thus
extending the EOB evolution through the merger and, if it
exists, ringdown stages. These so-called EOBNR models
[65–67] have been incorporated into several waveform
approximants [49,68–71] that are used for parameter esti-
mation studies of LIGO-Virgo GW events. The main
advantages of employing EOB-based waveform approxim-
ants for parameter estimation are that they (i) push the
validity of the model beyond the PN weak-field regime
(ii) can be extended to the full parameter space, and (iii) are
much faster to evolve thanNR simulations. EOBmodels can
also accuratelymodel binary neutron star coalescences from
low frequencies and up tomerger [30,72–81], thus offering a
viable alternative to PhenomTidal models [46,47,49,82], or
to PN-based tidal models (e.g., TaylorF2 with tides up to
7.5PN order [30,83,84]) In short, EOB can provide NR-PN-
faithful waveforms for parameter estimation studies of both
long and short inspiral-merger-ringdown signals, and for
extracting information about tides.
Although it has thus far been very difficult to distinguish

the effects of precession on the gravitational waves from
the few dozen sources hitherto detected, there are at least
four GW events for which it has been inferred that the
premerger binary components have nonzero spin. These are
GW151226 [5], where at least one black hole has dimen-
sionless spin> 0.28 [85], GW170729 [9,86], where at least
one black hole has dimensionless spin > 0.27 [85],
GW190412 where either the primary [15] or the secondary
[87] has positive dimensionless spin depending on the
priors used, and GW190521 with both black holes having
dimensionless spins > 0.5 [17,88]. There are two addi-
tional events, GW170121 and GW170403, that seem to
have at least one antialigned spinning component [11].1

In binaries containing spinning black holes and/or
millisecond pulsars, the spin-orbit and the spin-spin inter-
actions contribute significantly to the phase and modulate
distinguishably the amplitude of the emitted GWs. For
example, there are more than 20 precession cycles con-
tributing to the phasing of the GWs for a BNS with total
mass of 3 M⊙ inspiralling from 30 Hz [89]. Therefore,
given that the required relative phase errors of the theo-
retical waveform templates must be ≲5 × 10−4 to avoid
waveform systematics with Advanced LIGO-Virgo design
sensitivity [90], the templates must incorporate the effects
of precession. Neglecting precession for high-mass ratio
binaries can cause event rate losses of ∼15% and as high as
25%–60% for the worst cases [91,92]. For the third
generation detectors such as the Einstein Telescope and

1These events were discovered by groups outside of the LIGO-
Virgo Collaboration who additionally reported several more GW
events [11–13].
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Cosmic Explorer, these errors will need to be ≲10−6 which
will be a tremendous challenge as the EOB, PN, and
Phenom template families will need to be improved by
three orders of magnitude while NR errors will need to be
reduced by at least an order of magnitude [90].
There has been a dedicated and an ever-increasing effort to

produce accurate gravitational waveforms from precessing
compact binary systems. Initial developments were made in
post-Newtonian theory [93,94] after the pioneering work of
Mathisson, Papapetrou, and Dixon (MPD) on the motion of
spinning test particles in curved spacetimes [95–97]. There are
now several waveform approximants available for precessing
spin analysis (and implemented in the LIGO Algorithm
Library (LAL) [98]), which are: (i) SpinTaylorT class
of approximants which employ 1.5PN analytical expressions
of Ref. [99] for thewaveform harmonic modes as functions of
the spherical angles of the Newtonian orbital angular momen-
tum vector. (ii) IMRPhenomP class of approximants which
transform nonprecessing Phenom waveforms into precessing
ones using Euler rotations for which the angles are obtained
from the PN spin precession equations [51,52,57–60]. In
particular, Ref. [51] showed that “the essential phenomenol-
ogy of the seven-dimensional parameter space of binary
configurations” can be modeled using just three parameters.
(iii) SEOBNR class of approximants [69,100,101] which
evolve the EOB dynamics and precession equations as a
coupled system to determine the Euler angles for the rotation
of the nonprecessing waveform modes. (iv) NRSur class
which are surrogate waveform models in which the surrogate
is trained using large sets of precessingNRwaveforms that are
Euler-rotated to a certain noninertial co-orbital frame.With the
exceptionof theNRSur family, the above-listed approximants
solve the same precession equations, albeit truncated at
different PN orders or suitably incorporated into a particular
EOB Hamiltonian. The solutions to the precession equations
are then translated into the spherical angles of the Newtonian
orbital angular momentum. The precessing waveforms are
constructed either via the analytical 1.5PN expressions of
Ref. [99] (only for theSpinTaylorT family) or by using the
so-called twistmethod ofRef. [102]which iswhat concerns us
in this article so we provide some details next.
The seeds of the twist method were sown in Ref. [89],2

where it was identified that the waveform phase can be
decomposed into a nonmodulating main carrier phase and a
modulation term due to precession. Reference [104] used this
decomposition to construct waveform templates with the
unmodulated carrier phase given by nonspinning frequency
domain fits to the full 2PN phase. It was later shown
in Refs. [102,105] that the correct unmodulated carrier
phase is given by the nonprecessing, but spinning phase.
Reference [104] also introduced a special noninertial frame,
called the precessing frame, in which the orbital phase agreed

with the PN orbital phase of a nonspinning system. In other
words, the modulations in the gravitational waveform phase
due to precession factored out. Subsequently, Ref. [106]
obtained rigorous expressions for the transformation of
waveform multipoles under rotations, which were then
employed by Ref. [107] in order to generate precessing
post-Newtonian waveforms to compare with their numerical
results.
A crucial step toward obtaining full (inspiral-merger-

ringdown) precessing waveforms was taken by Ref. [102]
which employed a time-dependent frame rotation of the
harmonic modes of the Weyl scalarΨ4 into the “quadrupole-
aligned” (QA) frame defined by the direction toward which
the amplitudes of the ð2;�2Þ modes are maximized, which
turned out to coincide with the instantaneous direction of the
total orbital angular momentum vector. Reference [105] used
this frame rotation on the l ¼ 2 modes of the gravitational
waveformanddemonstrated that themodel is better than 99%
accurate. Reference [108] introduced a frame similar to the
QA frame by equating the radiation axis with the eigenvector
of the rotationgroupgeneratorswhichhad the largest absolute
eigenvalue. Subsequently, Ref. [109] demonstrated that the
special frames of Refs. [102,105] and Ref. [108] are the same
if one includes only the ð2;�2Þ modes in the m-mode sum.
Additionally, Ref. [109] rigorously showed the necessity for a
third Euler angle γ in order to obtain a unique precessing
frame which they dubbed the minimal-rotation frame.
The size of the parameter space for generic precessing

binaries presents another formidable challenge for param-
eter estimation as the number of intrinsic parameters
increases from three (mass ratio and two spin magnitudes)
for configurations where the spins are (anti)parallel to the
orbital angular momentum, which we refer to as either
nonprecessing or aligned-spin configurations, to seven for
binary black holes, and even more in the case of binary
neutron stars to additionally parametrize their tidal inter-
actions. As brute-force coverage of such a large space is
computationally expensive, approaches aimed at reducing
the computational burden without compromising waveform
accuracy have emerged. Of particular importance is
Ref. [105] which used an effective parametrization reducing
the number of parameters to two in the QA frame by
introducing an effective spin parameter3 χeff . The precessing
waveform is then obtained by twisting the QA waveform
with three Euler angles as already described. Reference [52]
took this approach further by packaging the four in-plane
(perpendicular to the Newtonian angular momentum) com-
ponents of the binary’s spin vectors into a single effective
precession parameter, χp, thereby reducing the dimension-
ality of the parameter space to four. On a parallel front,
methods based on reduced-basis/order modeling were
developed for generating fast, nonprecessing waveforms

2Though, the frame rotation mentioned in Appendix B of
Ref. [103] could possibly be taken as a hint of the twist method.

3To our knowledge, a similar parameter was first introduced in
Ref. [103], but not for the same purpose.
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[49,66,68,68,70,81,110–116]. And finally, NR-“trained”
precessing waveform surrogates [117–120] have emerged
as the number of precessing NR simulations increased [37].
Other approaches are also being developed such as “the two-
harmonic approximation” [121].
In summary, there now exist several diverse precessing

waveform approximants of which the most prominent ones
are NRSur7dq4 [119], IMRPhenomPv3HM [58] (previ-
ously PhenomPv2), and SEOBNRv4PHM [101] (previously
SEOBNRv3). These three approximants (along with the
more recent IMRPhenomXPHM [59]) have quickly become
the preferred waveform models for parameter estimation by
the LVC. However, they do not agree perfectly, which can
lead to biases as was illustrated, e.g., by Ref. [122] via
an SEOBNRv3-IMRPhenomPv2 comparison, highlighting
what one should always keep in mind: waveform approx-
imants are approximate as the name implies so they
can disagree, therefore it is beneficial to have several
approximants.
This paper is the first of a series that develops

TEOBResumSP, a generic-spin approximant based on
the Euler rotation of aligned-spin waveforms generated
by TEOBResumS [71]. TEOBResumS is a state-of-the-art
aligned-spin EOBNR model with enhanced spin-orbit,
spin-spin, and tidal interactions [79,123] that is very fast
[124] and robustly produces inspiral-merger-ringdown
waveforms for five additional modes beside the dominant
(2,2) mode [125,126]. TEOBResumS is very different in its
design from SEOBNRv4PHM, in particular in the spin
sector [127], thus provides the only fully independent
waveform model from the approximants currently in use
for GW analysis (e.g., PhenomPv3 uses fits of SEOBNR
waveforms [101]). Our goal in this initial implementation
of TEOBResumSP is to introduce minimal modifications
to the existing TEOBResumS infrastructure. Therefore, we
opt for an approach whereby we produce aligned, constant
spin waveforms using TEOBResumS then generate inspi-
ral-merger precessing waveforms by twisting the non-
precessing waveforms as is done in the IMRPhenomP,
SEOBNR, and NRSur families. We delegate the attachment
of the ringdown portion of the precessing waveforms to the
next version of TEOBResumSP.
This article is organized as follows. We start by intro-

ducing the PN precession equations in Sec. II. In Sec. III,
we present details for the waveform twist operation. In
Sec. IV, we compare TEOBResumSP waveforms with
the following waveform approximants: NRSur7dq4,
IMRPhenomPv3HM, and SEOBNRv4PHM. We summarize
our results in Sec. V. We work in geometrized units setting
G ¼ c ¼ 1 from which one can recover the SI units via
GM⊙=c3 ≈ 4.925491 × 10−6 sec, where M⊙ denotes a
solar mass. We use bold font to denote Euclidean three-
vectors with an overhat representing three-vectors of unit
length. Overdots denote derivatives with respect to time.

II. AN OVERVIEW OF PRECESSING COMPACT
BINARY SYSTEMS

Let us consider a compact binary system in a quasi-
spherical inspiral with the subscript 1 labelling the primary
and 2 labelling the secondary component. Accordingly, the
individual masses are denoted bym1 andm2 withm1 ≥ m2.
The total mass is defined as M ¼ m1 þm2. Let us also
introduce the mass ratio q≡m2=m1 ≤ 1, the reduced
mass μ≡Mq=ð1þ qÞ2, and the symmetric mass ratio η≡
q=ð1þ qÞ2. Note that in this article, we often set M ¼ 1,
e.g., Eqs. (1a)–(1c), but sometimes restore solar-mass units
(M⊙) for M, cf. Eqs. (11), (14). We additionally endow the
binary components with spins S1, S2, respectively, where
Si ≡m2

i χ i with jχ ij ≤ 1 for i ¼ 1, 2.

A. Spin-orbit precession equations

The Newtonian orbital angular momentum for the binary
is given by LN ¼ μr × v, where r, v are the relative
separation and velocity vectors of the binary in the usual
center-of-mass frame. Note that LN is different from its
non-Newtonian counterpart L ¼ r × p, where p is the
relative momentum. This distinction, due to μv ≠ p, is a
consequence of the fully general relativistic MPD equations
for the motion of a spinning test mass in curved spacetime.
From PN theory, one obtains L ¼ LN þ ΔL1PN þ � � � with
correction terms, ΔLnPN, known up to 3.5PN (see,
e.g., Eq. (4.7) of Ref. [128]). Note that, by definition,
the Newtonian LN remains perpendicular to the orbital
plane.
Let ω be the orbital frequency. Then, via Kepler’s third

law: r≡ jrj ¼ ω−2=3. Accordingly, LN ≡ jLNj ¼ μr2ω ¼
m1m2=ω1=3 ¼ η=v, where we have introduced v≡ jvj ¼
ω1=3, i.e., the relative speed between the binary’s compo-
nents in the usual center-of-mass frame. Clearly, v < 1 and
furthermore, v ≪ 1 for most of the inspiral (recall, v ¼ v=c
in restored units). Note that each power of v corresponds to
a half PN order. In this work, we use v to track the orders
in the precession equations. Consequently, we reserve
expressions such as next-to-leading order (NLO) to ver-
bally track each power of v beyond a given leading-order
(LO) expression.
One can start with the general MPD equations of motion

and obtain the PN expansions for the time evolution of S1,
S2. The details of this derivation can be found in, e.g.,
Secs. II, III of Ref. [129], and Sec. II of Ref. [130]. Up to
NLO, i.e., 0.5PN, the orbital angular momentum and spin
precession equations are given by [89,131]

_SNLO
1 ¼ v5η

�
2þ 3

2
q

�
ðL̂N × S1Þ

þ v6

2
fS2 − 3½ðqS1 þ S2Þ · L̂N�L̂Ng × S1; ð1aÞ
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_SNLO
2 ¼ v5η

�
2þ 3

2q

�
ðL̂N × S2Þ

þ v6

2
fS1 − 3½ðS1 þ q−1S2Þ · L̂N�L̂Ng × S2; ð1bÞ

˙̂L
NLO
N ¼ −

v
η
ð _SNLO

1 þ _SNLO
2 Þ: ð1cÞ

Note that, as is usual in the literature, we present the
orbit-averaged evolution equations. As such, our solutions
to these equations do not capture the nutation of LN, but
this is of no consequence for parameter estimation purposes
at the sensitivity of the advanced GW detectors [132]. For
nonaveraged versions, cf. Appendix A of Ref. [129].
The particular form of Eq. (1c) above is the result of total

angular momentum conservation: _J ¼ 0, where J ¼ Lþ S
with S≡ S1 þ S2. The forms of Eqs. (1a)–(1c) have the
added benefit that the evolution of the Newtonian orbital
angular momentum can be written as a classical mechanical
precession equation:

˙̂L
NLO
N ¼ ΩNLO × L̂N; ð2Þ

where ΩNLO can be extracted straightforwardly from
Eqs. (1a)–(1c).
The effect of radiation reaction is implicit in v ¼ vðtÞ in

Eqs. (1a)–(1c). For nonspinning systems, _v ¼ _vðvÞ is fully
known as a PN series starting from ∼v9 and going up to

3.5PN order ∼v16. For systems with spin, spin-orbit terms
enter first at 1.5PN and spin-spin terms at 2PN. Here, we
employ the TaylorT4 resummed form of _vðvÞ [29,104]
as adopted in the SpinTaylorT4 approximant. The
series coefficients for _vðvÞ can be found, e.g., in
Appendix A of Ref. [133].
For precessing binaries, there are three time scales of

relevance: radiation-reaction timescale TRR, precession
time scale Tpr, and orbital time scale Torb. Integrating
_v ∼ v9 yields TRR ∼ v−8. From v ¼ ω1=3, we obtain
Torb ∼ v−3. Finally, the precession equation (1) gives
Tpr ∼ jS1j=j _S1j ∼ v−5. Since v ≪ 1 mostly, we have the
following separation of timescales:

Torb ≪ Tpr ≪ TRR: ð3Þ

Thanks to this separation of scales, we expect our hybrid
approach, which combines EOB dynamics with PN pre-
cession, to work well as we show in Sec. IV.
Recall that Eqs. (1a)–(1c) are 0.5-PN (NLO) accurate.

Though this is the usual order in the literature, we employ
versions of the precession ODEs that have been pushed to
the limit of the current analytical PN knowledge, which we
denote as N4LO (2PN) here. As far we can tell these have
never appeared in a journal article, but exist in written form
in several approximants such asSpinTaylorT4. Defining
δm ¼ m1 −m2 in natural units [e.g., m1 ¼ 1=ð1þ qÞ], the
N4LO spin-orbit precession ODEs read

_SN4LO
1 ¼ _SNNLO

1 þ v9
�
27

32
þ 3η

16
−
105η2

32
−
η3

48
þ δm

�
−
27

32
þ 39η

8
−
5η2

32

��
ðL̂N × S1Þ; ð4aÞ

_SN4LO
2 ¼ _SNNLO

2 þ v9
�
27

32
þ 3η

16
−
105η2

32
−
η3

48
− δm

�
−
27

32
þ 39η

8
−
5η2

32

��
ðL̂N × S2Þ; ð4bÞ

˙̂L
N4LO
N ¼ L−1

2PN

�
v
η
ð− _SN4LO

1 − _SN4LO
2 Þ − v3ðcS1 _SNNLO

1 þ cS2 _S
NNLO
2 Þ

− v3
�
cS1L

��
−v
η
ð _SNLO

1 þ _SNLO
2 ÞðL̂N · S1Þ

�
þ L̂N

�
−
v
η
_SNLO
2 · S1 þ L̂N · _SNNLO

1

��
þ ð1 ↔ 2Þ

��
; ð4cÞ

where

_SNNLO
1 ¼ _SNLO

1 þ v7
�
9

16
þ 5η

4
−
η2

24
þ δm

�
−

9

16
þ 5η

8

��
ðL̂N × S1Þ; ð5aÞ

L2PN ¼ 1þ v2
�
3

2
þ η

6

�
þ v4

�
27

8
−
19η

8
þ η2

24

�
; ð5bÞ

cS1 ¼ −
1

4

�
3þ 1

m1

�
; ð6aÞ

cS1L ¼ −
1

12

�
1þ 27

m1

�
: ð6bÞ
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_SNNLO
2 , cS2, cS2L can be obtained via the ð1 ↔ 2Þ

exchange.
Note that from NNLO on, one no longer has a standard

precession equation for ˙̂LN of the form of Eq. (2). In fact,

as can be seen from Eq. (4c), ˙̂LN has components
both perpendicular and parallel to L̂N. Therefore, we
define [134]

˙̂L
N4LO
N;⊥ ≡ ˙̂L

N4LO
N − ðL̂N · ˙̂L

N4LO
N ÞL̂N; ð7Þ

which then satisfies

˙̂L
N4LO
N;⊥ ¼ ΩN4LO

L × L̂N4LO
N : ð8Þ

We use the solutions of Eq. (7),4 to compute L̂NðtÞ, but we
have also used directly the solutions to Eq. (4c) and found
relative differences in the components of L̂N of ≲10−4. We
present the derivational details of these N4LO expressions
in Appendix A.
There are indications that the PN precession equations

converge with increasing PN order despite missing higher-
order information [135]. Indeed, we have found it slightly
more beneficial to work with the N4LO precession equa-
tions rather than the NLO versions. We illustrate this is in
Appendix B, where we show that the N4LO-Euler-angle
twisted TEOBResumSP agrees better with both
NRSur7dq4 and SEOBNRv4PHM than its NLO counter-
part. This agreement is demonstrated specifically in terms
of waveform strain mismatches which we introduce in
Sec. IV. The NLO-N4LO disagreement is more severe for
systems with more mass asymmetry, i.e., smaller values of
q, which we show in terms of Euler angles in Fig. 13 in
Appendix A. As the figure exhibits, there is considerable
Euler-angle dephasing between NLO, NNLO, and N4LO
solutions for small q, but no such dephasing between
N3LO and N4LO, which we somewhat expect since their
difference is at 2PN. We discuss the various ODE orders
further in Appendix A We should add that instantaneous
corrections to the orbit-averaged expressions start entering
at N3LO [129] which we do not take into account here.
As already mentioned, it is useful to package the six spin

degrees of freedom into a space of lower dimensions. This
is usually done by considering the projections of S1, S2

parallel and orthogonal to L̂NðtÞ, resulting in two com-
monly employed scalar quantities. The parallel scalar is
[136–138]

χeff ¼ M−2½ð1þ qÞS1 · L̂N þ ð1þ q−1ÞS2 · L̂N� ð9Þ

which is a conserved quantity of the orbit-averaged
precession equations over the precession timescale

[138]. The orthogonal parameter is χp of Ref. [52]
defined as5

χp ≡ m−2
1

ð2þ 3q=2Þmax

��
2þ 3q

2

�
jS1;⊥j;

�
2þ 3

2q

�
jS2;⊥j

�
;

ð10Þ

where S1;⊥, S2;⊥ denote the components of S1ðtÞ, S2ðtÞ
perpendicular to L̂N, respectively. Both χeff and χp are
commonly used in the LVC analysis of GW events [9].
We now introduce a new orthogonal parameter

χ⊥;max ≡M−2max jS1;⊥ þ S2;⊥j; ð11Þ

where we take the maximum value of the norm over the
entire time evolution. χ⊥;max seems to encode the strength
of precession as we show in Secs. IV B–IV D. Note that
χ⊥;max is bounded above by ð1þ q2Þ=ð1þ qÞ2 which
yields 0.5 for q ¼ 1 and 1 in the test-mass limit.

B. Reference frames

When considering precessing systems, there are two
special frames of reference which have their respective z-
axes aligned with L0 ≡LNðt0Þ and LNðtÞ, where t0 is
some arbitrary time at the initial configuration of each
binary. It is common in the waveform community to set
t ¼ 0 to coincide with the peak of the nonprecessing (2,2)
mode, which then gives us t0 < 0. In what follows, we
assume a constant shift in t such that the initial time is given
by t0 ¼ 0 with the peak time positive as in done in
TEOBResumS waveforms. Therefore, we write L0 ¼
LNð0Þ and similarly for all other relevant quantities. We
refer to the LNð0Þ and LNðtÞ frames as the L0 frame, and
the coprecessing frame, respectively. Clearly, the L0 frame
is inertial whereas the co-precessing frame is not. One can
additionally introduce a second inertial frame, J0, where
one aligns the z-axis with Ĵ (Newtonian, 1PN or 2PN)
either at the initial time or at the peak of the orbital
frequency. For reasons that we explain in Sec. II C, we
choose J0 ≡ J2PNð0Þ obtained from the N4LO solutions for
LN, S1, and S2. Note that our J0 is different than the one
introduced in Ref. [89], which is given by ĴN − ϵĴN × L̂N,
where ϵ ≪ 1 and the ODEs are truncated at NLO with
the spin-spin term additionally turned off so that
ðd=dtÞjS1 þ S2j ¼ 0 [89].
The L0 frame is our preferred frame here as it is the

most straightforward frame for solving the precession
ODEs (1a)–(1c) even though the precession-induced ampli-
tude modulations are more pronounced in this frame.

4These expressions match their spinOrd ¼ 7 counterparts as
given in the SpinTaylorT4 approximant.

5Note that the factor in front of maxf…gmay differ depending
on the convention that assigns either m1 or m2 as the primary
binary component.
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Accordingly, we label the azimuthal and the polar angles of
LNðtÞ with respect to L0 by α and β as shown in Fig. 1.
Naturally, we must pick an x-axis in the L0 frame, with

respect to which wemeasure αðtÞ. Here, as in Ref. [104], we
impose the condition that S1ð0Þ is in the x-z plane as shown
in Fig. 1, which yields x̂ ¼ S0

1;⊥=jS0
1;⊥j, where S0

1;⊥ ≡
S1ð0Þ − ðS1ð0Þ · L̂0ÞL̂0 and L̂0 ≡L0=jL0j. We can there-
fore fully specify S1ð0Þ via the parameters fq; χ1; θ1gwhere
θ1 ¼ cos−1ðS1ð0Þ · L̂0=S1Þ, S1 ≡ jS1j ¼ χ1ð1þ qÞ−2 with
m1 ¼ M=ð1þ qÞ setting M ¼ 1 and assuming q ≤ 1.
Similarly, S2ð0Þ is specified by fq; χ2; θ2;ϕ2g where
θ2 ¼ cos−1ðS2ð0Þ · L̂0=S2Þ, S2 ≡ jS2j ¼ χ2q2ð1 þ qÞ−2
and ϕ2 is the azimuthal angle with respect to x̂ defined
above. With our axes defined, it is straightforward to obtain

α ¼ tan−1
�
LN · ŷ
LN · x̂

�
; ð12aÞ

β ¼ cos−1 ðL̂N · L̂0Þ: ð12bÞ

The third angle, as introduced by Ref. [109], is given by
the solution to _γ ¼ _α cos β, where we chose to keep the
right-hand side positive to have γðtÞmonotonically increas-
ing like αðtÞ.
Note that, for the purposes of data analysis and parameter

estimation, we must restore M to its physical units which
we denote byMtotðM⊙Þ. This is because the detection band
of the GW interferometers is roughly between 20 and
2000 Hz and the heavier binary systems merge at lower
frequencies. Therefore, we parametrize our precessing

binary inspirals using the following finalized set consisting
of eight parameters

ff0ðHzÞ;MtotðM⊙Þ; q; χ1; χ2; θ1; θ2;ϕ2g; ð13Þ

where f0 is the initial (2,2)-mode GW frequency marking
the starting point of each inspiral.

C. Effects of precession

Spin-orbit precession occurs when the spins are not (anti)
parallel to the orbital angular momentum. The main effect
is a slow precession of LN about an axis that is roughly
aligned with Jð0Þ, but the true fixed axis depends on the
order at which the precession ODEs are truncated, and the
use of the appropriate solutions to those ODEs. For
example, in Ref. [89], this axis is given by J0 ≡ ĴN −
ϵĴN × L̂N obtained from the NLO solutions while neglect-
ing the spin-spin coupling. This J0 then indeed remains
fixed. However, we neither truncate the ODEs at NLO, nor
neglect the spin-spin coupling, therefore we choose not to
use this choice for J0. As we solve the N4LO (2PN)
equations here, which are obtained by imposing _J ¼ L̇þ
_S1 þ _S2 ¼ 0 with L up to 3.5PN decaying under radiation
reaction (see Appendix A), we have at best an approximate
conservation of J2PN. Therefore, we set J0 ¼ J2PNð0Þ.
The decrease of LN under radiation reaction results in a

precession cone whose opening angle increases in time as
illustrated in Ref. [89]. Thus, the projection of L̂N
orthogonal to J0 shows circularly outspiraling tracks as
in Fig. 2. Furthermore, ĴN also precesses around, in fact,
outspirals around J0, which we also exhibit in Fig. 2. This
spiralling behavior persists for PN-correctedL and J, albeit
with smaller precession cone opening angles for J, as we
show for Ĵ2PN in the figure. For three-dimensional versions
of these, see Apostolatos et al. [89] which still remains the
most illustrative resource for understanding the qualitative
behavior of precessing systems. Reference [89] also pro-
vides a useful expression for the number of precession
cycles when the masses are small and initial separation is
large, i.e., jLNj ≫ jS1 þ S2j,

Nα ≡ α

2π
≈ 11

�
1þ 3m1

4m2

�
10 M⊙

Mtot

10 Hz
f

; ð14Þ

where, recall Mtot is M in solar masses.
The precession of LN induces amplitude modulations in

the waveform and modifies the phase. The modulations
depend strongly on the orientation of the orbit with respect
to an observer’s line of sight. This is illustrated in Fig. 3,
where the gray curve is the precessing (2,2) mode as seen
by an observer lined up with J0 who receives less
modulated GWs because LNðtÞ tracks a circularly inspir-
alling path as depicted in Fig. 2 whereas the L0-frame
observer sees emissions over an elliptically inspiralling

FIG. 1. The inertial L0 and J0 frames whose z-axes are parallel
to LNð0Þ and J2PNð0Þ, respectively. We choose the x-axis of the
L0 frame such that the initial spin of the primary component,
S1ð0Þ lays in the x-z plane. In this frame, we denote the spherical
angles of LN ≡LNðtÞ (red arrow) by α and β. In the J0 frame, it
is easier to discern the precession ofLN as it approximately traces
out a cone per precession cycle (only approximately because jLNj
decreases due to radiation reaction, see Sec. II C). We show such
a cone in the right-hand panel along with its projection onto the
plane perpendicular to J0. We also show JNð0Þ as the dashed
arrow, which is slightly different than our J0 which we explain in
Sec. II C. The blue arrow with the polar angles ðι;φ0Þ represents
the line of sight to the detector.
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track, hence resulting in larger amplitude variations. This
means that the reference frame in which the incoming GWs
are received (e.g., detector frame) plays a significant role in
GW detection as using nonprecessing waveform template

banks to match-filter the signal can lead to a significant
fraction of precessing signals being missed or dismissed as
glitches [105].
Thus far, we have talked about simple precession dubbed

so because both L and S precess around J. However, when
Lþ S ≈ 0, a phenomenon known as transitional precession
occurs in which J “tumbles” until radiation reaction decays
L enough to take the system away from the Lþ S ≈ 0
configuration [89]. Since transitional precession requires
careful fine-tuning of the parameters, it is expected to be a
rare phenomenon [89,104] so we do not consider it here.

III. TWISTING NONPRECESSING WAVEFORMS

Having conceptually introduced the twist operation, we
next provide mathematical details. Our discussion here is
mostly based on Refs. [69,105,109]. Let us recall that αðtÞ
and βðtÞ are the azimuthal and polar angles of LNðtÞ with
respect to L0 ¼ LNð0Þ and the third angle γðtÞ is obtained
from _γ ¼ _α cos β. The set fαðtÞ; βðtÞ; γðtÞg is all we need
when transforming between the LNðtÞ and L0 frames.
Specifically, when going from our inertial L0 frame to the
LNðtÞ-frame, we “forward”-Euler rotate using Rðα; β; γÞ≡
RzðγÞRyðβÞRzðαÞ where RjðζkÞ represent rotations by the
angles ζk with respect to the j axis.6 In the following, we
omit displaying the explicit time dependence of these
angles and various other time-dependent quantities, e.g.,
LNðtÞ, which we restore when necessary.
Under the forward Euler rotation above, the gravita-

tional-wave modes transform as follows

hlm ¼
Xl

m0¼−l

hlm0DðlÞ
m0;mðα; β; γÞ; ð15Þ

where DðlÞ
m0;m are Wigner’s D matrices which can be related

to spin-weighted spherical harmonics via [139]

sYlmðθ;ϕÞ ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
DðlÞ

−m;sðϕ; θ; 0Þ: ð16Þ

Note that different versions of this equation exist in the
literature due to conventions of Wigner D matrices. Here,
we employ the definition introduced in Ref. [140]

DðlÞ
m0;mðα; β; γÞ ¼ e−im

0αe−imγdlm0;mðβÞ; ð17Þ

where dlm0;mðβÞ ∈ R are the “little” D matrices given by

FIG. 2. Tracks of the x, y components of the Newtonian orbital
(L̂NðtÞ, red) and total angular [unit] momenta (ĴNðtÞ, black) in
the plane orthogonal to J0 ¼ J2PNð0Þ for a binary with
Mtot ¼ 30 M⊙, q ¼ 1, χ1 ¼ χ2 ¼ 0.7, θ1 ¼ θ2 ¼ 90°, and ϕ2 ¼
135° starting from the GW frequency of 20 Hz. We additionally
show the components of the 2PN-corrected orbital angular
momentum, L̂2PN (dashed blue), and the corresponding total
angular momentum, Ĵ2PN (gray). The dots mark the starting
positions for each vector. As described in the text, the various
angular momenta spiral outward around the fixed axis J0, but
Ĵ2PN outspirals much less than ĴN consistent with our use of
solutions to the 2PN spin precession equations.

FIG. 3. Precessing (2, 2) modes as viewed by observers whose
line of sight is parallel to L0 (red) and to J0 (gray) for a binary
system with Mtot ¼ 30 M⊙, q ¼ 1=5, χ1 ¼ χ2 ¼ 0.7, θ1 ¼ θ2 ¼
ϕ2 ¼ 135° starting from 20 Hz. As discussed in the text, the
L0-frame observers see much more pronounced amplitude
modulations than their J0-frame counterparts.

6In this article, we use the z-y0-z00 convention for Euler
rotations as is standard in the relevant literature [69,102,109].
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dlm0;mðβÞ ¼
Xkf
ki

ð−1Þk−mþm0

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþmÞ!ðl −mÞ!ðlþm0Þ!ðl −m0Þ!p
k!ðlþm − kÞ!ðl − k −m0Þ!ðk −mþm0Þ!

×

�
cos

β

2

�
2l−2kþm−m0�

sin
β

2

�
2k−mþm0

; ð18Þ

where ki ¼ minð0; m −m0Þ and kf ¼ maxðlþm;l −m0Þ.
As explained in Sec. I, the key idea is to “unwrap” or

twist aligned-spin waveforms generated in the LN frame
using Euler rotations. In order to transform from LN to L0

frame, we “backward” Euler-rotate via the inverse rotation
matrices: R−1 ¼ Rð−γ;−β;−αÞ. Therefore, to twist we
invert Eq. (15) [102,105]

hTlm ¼
Xl

m0¼−l

hNPlm0D
ðlÞ�
m0;mð−γ;−β;−αÞ; ð19Þ

where we introduced the superscripts T and NP to denote
the twisted and the nonprecessing waveforms, respectively.

Using the standard identity DðlÞ�
m0;m ¼ ð−1Þm0−mDðlÞ

−m0;−m
which translates to ð−1Þm0−mdl−m0;−mð−βÞ ¼ dlm0;mð−βÞ in
Eq. (17), we obtain [51,57,102,105]

hTlmðtÞ ¼ e−imαðtÞ Xl

m0¼−l

eim
0γðtÞdlm0;mð−βðtÞÞhNPlm0 ðtÞ; ð20Þ

where we restored the time dependences.
Note that the literature is replete with slightly different

versions of Eq. (20) depending on: (i) Euler rotation
conventions, (ii) Wigner D and spherical harmonic con-
ventions, and (iii) the sign of the right-hand-side for the _γ
equation. Our definitions and conventions agree with
Ref. [69] (modulo the sign of γ) and our practical
expression (20) agrees with Ref. [57] which interestingly
disagrees with its updated version in Ref. [58], but then
agrees with a recent version used in IMRPhenomXPHM
[59]. We tested the performance of the alternate expression
of Ref. [58] against ours in terms the l ¼ 2 detector strain
mismatches of TEOBResumSP with SEOBNRv4PHM and
NRSur7dq4. We found that the expression for the twist
given by Eq. (20) performed better in the sense that it
produced smaller mismatches. We delegate the details of
this comparison to Appendix B.
In principle, one can also twist the nonprecessing

waveforms using the angles of PN-corrected LðtÞ with
respect to Lð0Þ. Reference [132] showed that the resulting
differences in the twisted waveforms as compared with
precessing NR waveforms are marginal, therefore we use
only LNðtÞ with respect to LNð0Þ for TEOBResumSP.

We now have all the individual ingredients necessary to
generate the precessing TEOBResumSP waveforms. The
procedure for this operation is as follows:

1. Specify the initial parameters listed in Eq. (13).
2. Generate aligned-spin (nonprecessing) l ¼ 2 wave-

form modes using TEOBResumS via the set of
parameters ff0;Mtot; q; χ1; χ2g.

3. Solve the orbit-averaged spin precession ODEs
(4a)–(4c) using SpinTaylorT4 resummed radia-
tion reaction for _v.

4. Retrieve the spherical angles fαðtÞ; βðtÞg from the
components of LNðtÞ in the LNð0Þ frame and
subsequently obtain γðtÞ by solving _γ ¼ _α cos β.

5. Construct the precessing l ¼ 2 TEOBResumSP
modes via the twist formula (20).

Let us conclude this section with three remarks: (i) We
can generate twisted waveforms in the JNð0Þ frame as well
as the LNð0Þ frame, but this is slower because the
solutions to the ODEs, which are solved in the LNð0Þ
frame, must be Euler-rotated to the JNð0Þ frame at each
time step. Therefore, for convenience we compare in the
LNð0Þ frame, but in principle we can straightforwardly
rotate to the JNð0Þ frame. (ii) It is possible to extend the
above scheme by coupling the precession ODEs to
TEOBResumS dynamics, i.e., by setting χi ¼ L̂NðtÞ·
SiðtÞ=m2

i (i ¼ 1, 2) at each time step of the aligned-spin
EOB dynamics, where L̂NðtÞ, SiðtÞ are obtained from
the N4LO precession dynamics. This is similar to what is
done in the precessing SEOBNRv3,v4 approxi-
mants, where aligned-spin modes with time-varying χi
are twisted [69,101,132]. (iii) For this initial version of
TEOBResumSP, we truncate our precessing waveforms
before the transition to ringdown. Attaching the ringdown
portion to the inspiral-plunge-merger (IM) part of the
precessing waveforms is quite a subtle procedure, espe-
cially in the time domain. For example, in SEOBNRv3P
[69], the ringdown waveforms are computed in the
JðtmatchÞ frame, where tmatch approximates the merger
time. Then, the ringdown waveform is attached to the
precessing IM portions obtained by twisting the copre-
cessing modes to the JðtmatchÞ frame [69]. In the upgraded
version, SEOBNRv4PHM [101], the ringdown is attached
in the coprecessing frame, which is less complicated to
implement and less prone to numerical instabilities, thus is
more appealing to us as a ringdown implementation. There
is also the question of how far one can push the PN ODEs.
The time domain IMRPhenomTP [60] approximant pro-
vides a prescription for extending αðtÞ, βðtÞ into the
ringdown regime (see Ref. [141] for details of this
prescription) and also uses the same implementation for
αðtÞ as SEOBNRv4PHM. However, Ref. [60] remarks that
this is a “simple implementation” that will be improved. In
short, the ringdown attachment requires extreme care and
detailed testing, that is why we leave it for the next version
of TEOBResumSP.
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IV. ASSESSING THE TWIST: COMPARISONS
WITH NRSUR7DQ4, IMRPHENOMPV3HM,

AND SEOBNRV4PHM

To assess the faithfulness of TEOBResumSP (henceforth
TEOB), we compared the twisted TEOBResumS waveforms
against precessing waveforms generated by the following
three approximants: NRSur7dq4, IMRPhenomPv3HM,
and SEOBNRv4PHM (henceforth, NRSur, Pv3HM,
SEOB). We first considered a set of 200 precessing binaries
consisting of “middle weight”, i.e., 35 ≤ Mtot ≤ 37.5 M⊙
BBHs, for a three-way comparison of TEOB with NRSur,
Pv3HM, and SEOB. We then used the additional 1030 more
inspirals for an extended comparison with SEOB, which
comprised of 100 cases with BNS-like masses, a dozen cases
with masses appropriate for black hole neutron star systems,
approximately another 100 cases where one or both masses
are in the lower mass gap, i.e., ≲5 M⊙ [142–144], and the
remaining cases involving typical stellar-mass BBHs. The
nonprecessing-binary parameters ff0;Mtot; qg correspond-
ing to these 1230 cases are shown in Fig. 4, where we
additionally show fχeff;0; χ⊥;max; χpg which project the
remaining five spin degrees of freedom, S1ð0Þ, S2ð0Þ, to
just two (recall we set S1yð0Þ ¼ 0).
To assess TEOB, we first computed frequency-domain

matches between TEOB-generated detector strains and
those generated by fNRSur;SEOB;Pv3HMg for the 200
inspirals, then extended the match computation to the
expanded TEOB-SEOB comparison set. The match (or
faithfulness) between two waveforms is computed by
maximizing the following expression over initial time
and phase shifts, t0, ϕ0

7

M≡max
t0;ϕ0

hhkjhTiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhkjhkihhTjhTi

p ; ð21Þ

where

hhkjhTi≡ 4ℜ
Z

ff

fk

h̃kðfÞh̃T�ðfÞ
SnðfÞ

df ð22Þ

is the inner product between the Fourier transforms of the
GW strain, h̃k, h̃T, weighted by the one-sided power
spectral density (PSD) SnðfÞ of the detector noise with
T denoting TEOB and k ¼ NRSur, Pv3HM, SEOB. For the
PSD, we use Advanced LIGO’s “zero-detuned high-power”
design sensitivity of Ref. [145]. We set fi ¼ 1.05f0, where
recall f0 is the initial nonprecessing (2, 2) mode frequency.
As for ff, since the current version of TEOB does not
include ringdown, we opted for a suitable cutoff that is near
the peak of the twisted (2, 2) mode, but slightly less:
ff ¼ 0.95f22peak, to err on the side of caution. There are
many subtleties and complications in selecting the proper
peak when nonprecessing modes first get “mixed up” in the
twist formula, after which the resulting precessing modes
further get mixed up in the mode sum (26) for the GW
strain. As Ref. [69] discusses in their Appendix D, there
may be cases in which several local peaks may be found, or
none at all.
In the time domain, the GW strain in a detector reads

hðtÞ ¼ Fþðθs;ϕs;ψ sÞhþðt; ιs;φ0Þ
þ F×ðθs;ϕs;ψ sÞh×ðt; ιs;φ0Þ; ð23Þ

where Fþ;× are the detector antenna pattern functions
given by

Fþðθ;ϕ;ψÞ ¼
1þ cos2θ

2
cos2ϕcos2ψ − cosθ sin2ϕsin2ψ ;

ð24Þ
F×ðθ;ϕ;ψÞ ¼

1þ cos2θ
2

cos2ϕsin2ψ þ cosθ sin2ϕcos2ψ :

ð25Þ

FIG. 4. Our coverage of the eight-dimensional parameter space of precessing compact binary inspirals used in assessing the
faithfulness of TEOBResumSP. The parameters ff0; q;Mtotg span the space of nonspinning binaries, which is complemented by the set
fχeff;0; χpg or fχeff;0; χ⊥;maxg that projects the five spin degrees of freedom in S1ð0Þ, S2ð0Þ [by design S1yð0Þ ¼ 0] to only two via
Eqs. (9), (10), and (11). For our assessment, we considered 200 precessing binaries for the comparisons with NRSur7dq4 (blue
triangles), IMRPhenomPv3HM (black squares), and 1230 binaries for comparisons with SEOBNRv4PHM (red dots). Note that some
parameters are duplicate within the ff0; q;Mtotg subset, hence there are fewer points in the middle and right panels than the rough total
of 1230.

7One can also maximize over tc, ϕc: time and phase shift at
coalescence.
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In Eq. (23), θs, ϕs are the sky-position angles, and ψ s is the
polarization angle of the GWs in the detector frame. hþ;×

are the standard GW polarizations which come from the
following mode sum

hþ − ih× ¼ 1

DL

X∞
l¼2

Xl
m¼−l

hlmðtÞ−2Ylmðιs;φ0Þ; ð26Þ

where DL is the distance to the source, which we set to
100 Mpc, −2Y

lm are the (spin ¼ −2)-weighted spherical
harmonics, ιs is the orbital inclination, and φ0 is the
azimuthal angle between the x-axis of the LNð0Þ frame
and the projection of the detector line-of-sight vector onto
the plane perpendicular to LNð0Þ (see Fig. 1). Formally,
hðtÞ is obtained from a sum over all l, m modes, but here,
we suffice with the l ¼ 2 mode. We will incorporate the
available l > 2 modes, which recently got upgraded [126],
in the next version of TEOBResumSP. Note that EOBNR
approximants do not model m ¼ 0 modes, so we set the
(2,0) mode equal to zero.
It has become standard in waveform comparisons to use

M ¼ 0.965 as a benchmark. This cutoff translates to the
loss of roughly 10% of events due to waveform systematics
[146,147]. We also employ this threshold and its mismatch
counterpart 1 −M ¼ 0.035 which we plot either as a
horizontal or vertical dashed orange line in many of our
subsequent figures.

A. Summary of the main comparisons

For our main comparison, we considered a set of 200
precessing compact binary inspirals plotted as the blue-
black dots in the parameter space figure 4. For each inspiral
we compared TEOB to fNRSur; SEOB; Pv3HMg by com-
puting the detector strain matches using Eq. (21). As
NRSur has been shown to be better than 99% faithful
to NR simulations for >95% of the cases in its extrapo-
lation space [119], it has become the current gold standard.
Therefore, we picked the parameters for our 200 cases to be
well within NRSur’s domain of interpolation, i.e., 1=4 ≤
q ≤ 1 and χ1, χ2 ≤ 0.8 [119]. In order to maximize the
number of orbital cycles, hence the number of precession
cycles, we set f0 ∈ ½35; 40� Hz and Mtot ∈ ½35; 40� M⊙.
Making these values any smaller tended to hit the low
frequency bound of NRSur, and setting them higher would
miss the one, or at best two, precession cycles that we
expect. We further set χ1 ¼ χ2 ¼ 0.75 since higher spins
tend to lead to more pronounced precession, thus posing a
tougher challenge for the precessing approximants.
For the hðtÞ computation in Eq. (23), we used a grid

of ιs ¼ f0; π=6; π=3; π=2g and ψ s ¼ f0; π=8; π=4; 3π=8g
with random values assigned for φ0 ∈ ½0; 2πÞ at each value
of fιs;ψ sg. For the sky angles fθs;ϕsg, we employed a grid
with spacing π=4. At each point in the four-angle grid, we
generated hðtÞ using TEOB, NRSur, SEOB, and Pv3HM.

This resulted in a total of 4× 200× 4× 4× 4× 8∼ 4× 105

strains from which we computed the matches between
TEOB and fNRSur; SEOB; Pv3HMg via Eq. (21) using the
Python library PyCBC [148].
For the ∼105 TEOB-NRSur matches, we found that

91% were greater than 0.965 and less than 3% of the
sample yielded M < 0.9 the majority of which happened
with inclinations of ι ¼ π=3 and π=2. Similarly, 85% of the
TEOB-SEOB matches and 77% of the TEOB-Pv3HM
matches were greater than 0.965. These percentages
remained within �1% when we switched from an evenly
spaced fθs;ϕsg grid to a random one as well as when we
repeated the entire computation with new random values
for φ0. To summarize our main results, we introduce the
three-angle averaged match, M̄ as follows. Given a set of
binary parameters, we fix ιs, φ0 then compute the match
Mijk between a given pair of approximants at each of the
4 × 4 × 8 ¼ 128 points in the fψ si; θsj;ϕskg grid. M̄ is
then just the straightforward discrete mean of Mijk. Note
that since by definition 0 ≤ M ≤ 1 and our main threshold
is M ¼ 0.965, the averaging tends to produce lower
percentages of M̄ > 0.965 cases. Therefore, we present
percentages over our entire match set, but use M̄ in our
figures.
In Fig. 5 we present the distributions of the three-angle

averaged mismatch, 1 − M̄, between TEOB and the val-
idation approximants NRSur, SEOB, and Pv3HM for
ιs ¼ f0; π=6; π=3; π=2g. As can be seen in the figure,
the majority of the mismatches lays to the left of 0.035
represented by the vertical dashed orange line. The vertical
dashed fblue; red; grayg lines respectively represent the
95th percentile TEOB-fNRSur; SEOB; Pv3HMg mis-
matches. Clearly, for ι ≤ π=6, TEOB matches NRSur
and SEOB better than 0.965 for more than 95% of the
cases. For the TEOB-Pv3HMmatches, this is roughly 86%.
The shift of the peak of 1 − M̄ from 10−3 to 10−2 as ιs
increases is also evident in the figure for the TEOB-NRSur
(blue) and TEOB-SEOB (red) histograms, whereas for the
TEOB-Pv3HM distribution (gray) this shift is much less
pronounced with the peak of the distribution also remaining
much narrower for all inclinations.
The deterioration of TEOB’s agreement with the other

approximants for increasing ιs is expected since the
precessing ð2;�1Þ; ð2; 0Þ modes contribute more to the
GW strain as ιs increases. The disagreements in these
modes stem from disagreements in the nonprecessing
ð2;�1Þ, (2, 0) modes. For example, we found that while
all, but one, nonprecessing (2, 2) modes of TEOBResumS
matched their nonprecessing NRSur counterparts to
better than 0.99, only 60% of the nonprecessing (2, 1)
modes achieved matches greater than 0.965.8 We further

8We employed the gwsurrogate package [149,150] to
generate the (non)precessing l ¼ 2 modes of NRSur.
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confirmed that most of the worst strain mismatches do
indeed come from cases where the nonprecessing (2, 1)
mode matches between TEOB and the validation approx-
imants are less than 0.9. This is consistent with the findings
of Ref. [151], where the effects of mismodeling the
nonprecessing (2, 1) and higher modes were systematically
investigated. As expected, we also found out that the worst
matching cases between TEOB and the validation approx-
imants have 0.65≲ χp ≤ 0.75 and q≲ 1=3 with the
majority having q ¼ 1=4.
Overall, for the set of precessing compact binary

inspirals considered in this section with 0.3≲ χp ≤ 0.75,
SEOB showed the best agreement with NRSur with only
6.9% of the ∼105 matches below 0.965. This percentage
was 14% for NRSur-Pv3HM and 18% for SEOB-Pv3HM
matches. For the inclination of ιs ¼ π=2, Pv3HM matched
NRSur best with 91% of the cases yielding M > 0.95,
whereas TEOB and SEOB had 88.6% and 86.6% of these
cases yieldM > 0.95, respectively. These differences once
again highlight the importance of having several different
waveform approximants. We present additional details of
TEOB’s performance against fNRSur;Pv3HM;SEOBg in
the next subsections.

B. Comparisons with NRSur7dq4 waveforms

For the ∼105 TEOB-NRSur matches that we computed,
we found that 74.1, 91.1, 93.8% yielded M > 0.99;
0.965; 0.95, respectively. Within the four ιs ¼ 0; π=6;
π=3, π=2 subsets, 97.6, 95.5, 86.7, 84.7% yielded
M > 0.965. Similarly, 97.0% of the q < 1=4 matches
gave M > 0.965 in contrast to 78.1% of the q ¼ 1=4
cases. Of the q ¼ 1=4 cases, about 94% and 86% of the
ιs ¼ 0, π=6 subsets yieldedM > 0.965 as opposed to only
about 2=3 of the ιs ¼ π=3, π=2 subsets givingM > 0.965.
The increase of mismatch with decreasing mass ratio and

increasing orbital inclination is a direct outcome of the
increasing mismatch between the precessing ð2;�1Þ, ð2; 0Þ
modes of TEOB and NRSur. This disagreement, in turn,

stems mostly from the less-than-ideal agreement between
the nonprecessing ð2;�1Þ modes TEOB and NRSur
mentioned in Sec. IVA. Additionally, TEOB sets hNP20 ¼0

which NRSur does not, but the mismatch due to this
assignment is subdominant as the amplitude of hNP20 is
orders of magnitude smaller than the amplitude of hNP21 . As a
test, we replaced hNP;TEOB21 with hNP;NRsur21 for a few cases
and observed that the resulting TEOB-NRSur match
improved, verifying our above hypothesis that the non-
precessing (2� 1) modes are mostly responsible for the
high-inclination, low-q mismatches.
We also explored how the TEOB-NRSurmatch behaves

across the precessing binary parameter space. In Fig. 6, we
show two-dimensional scatter plots of the match against
χeff;0, χp, χ⊥;max, and 1=q for ιs ¼ π=3. As can be deduced
from the middle panel of the figure, the match worsens for
larger values of χp, χ⊥;max, i.e., stronger precession,
indicated by the “warmer” colors (red, orange). Also
evident in the right panel is the aforementioned degradation
of the match for the q ¼ 1=4 cases. Interestingly, the match
also worsens for more negative values χeff;0 hinted both in
the left and right panels. This again relates back to the
mismatch in the nonprecessing ð2;�1Þ modes. These
trends persist for ιs ¼ π=6, π=2, albeit less pronounced
for the former.
As an interesting side note, we compared in Fig. 7 how

1 − M̄ changes when plotted against χp versus against
χ⊥;max for ιs ¼ π=6. The [semilog] plots hint that 1 − M̄
shows a vague exponential dependence on χ⊥;max, but not
on χp. This trend persists for other inclinations, albeit with
more outliers for larger values of ιs. The trend also shows in
the mismatches of TEOBwith Pv3HM as we illustrate in the
next subsection. The trend even persists for NRSur-
Pv3HM and NRSur-SEOB mismatches, albeit less clearly,
but again more strongly for small ιs as in TEOB-NRSur
mismatches. This suggests that χ⊥;max might somehow
expose a systematic error in the way that the approximants
generate their precessing waveforms. A more detailed study

FIG. 5. The distribution the three-angle (ψs; θs;ϕs) averaged mismatch, 1 − M̄, between TEOBResumSP and NRSur7dq4 (blue),
SEOBNRv4PHM (red), and Pv3HM (grey) for the 200 precessing inspirals of Sec. IVA for orbital inclinations of ιs ¼ 0; π=6; π=3, π=2.
The vertical orange dashed line marks the mismatch corresponding to 0.035. The dashed blue, red, and black vertical lines mark the 95th
percentile of each set.
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is required to firmly establish this (or refute it).
Nonetheless, based on these findings and given that the
values for χ⊥;max seem less degenerate than χp (at least for
the 200 cases here), we believe that χ⊥;max may be useful in
future parameter estimation studies. In the least, it seems to
encode the strength of precession.

C. Comparisons with IMRPhenomPv3HM waveforms

Of the ∼105 TEOB-Pv3HM matches, 77.6% are greater
than 0.965 and 86.4% greater than 0.95. The percentage of
matches greater than 0.965 in the four ιs ¼ 0, π=6, π=3, π=2
subsets are 91.4, 87.2, 71.1, 60.7, respectively. As with the
NRSur comparisons, the q ¼ 1=4 subset has fewer M >
0.965 cases, 45% of the set, than the q < 1=4 subset,
87.6%. Within the q ¼ 1=4 subset, 65% and 57% of the
ιs ¼ 0, π=6 subsets have M > 0.965 as opposed to only

36%, 22% for the ιs ¼ π=3, π=2 subsets (these last two
percentages are greater than 50% when considering
M ¼ 0.95).
The way TEOB compares with Pv3HM is roughly

consistent with the way it compares with NRSur, albeit
with lower percentages of M > 0.965 cases overall and
within the chosen subsets. This consistency is evident when
comparing Fig. 8 with Fig. 6, i.e, the two-dimensional
scatter plots of M̄ for ιs ¼ π=3. In both figures, many of the
red dots are located at the same positions in the
fχeff;0; χ⊥;max; χp; 1=qg space, with some orange dots of
Fig. 6 also having become red. In fact, the major difference
between the two figures is the “reddening” of the dots,
consistent with Fig. 5 where the position of the peak of the
distribution of TEOB-NRSur mismatches is roughly an
order of magnitude smaller than the peak of the distribution
of TEOB-Pv3HM mismatches, hence the domination of
Fig. 6 by the purple dots, and of Fig. 8 by the blue dots. We
should reemphasize that it is not just TEOB that produces
increasing mismatches for small q and large χp, ιs. In fact,
Pv3HM exhibits a similar degradation in its matches with
NRSur, as does SEOB (but less so). When compared with
each other, all approximants show increasing disagree-
ments in this challenging region requiring excellent match
of all precessing modes, not just the (2, 2) mode.
In Fig. 9 we plot the three-angle averaged mismatch

between TEOB-Pv3HM against χ⊥;max and χp for ιs ¼ π=6.
As in Fig. 7, a vague exponential relation between 1 − M̄
and χ⊥;max can be discerned. Analogous to the TEOB-
NRSur comparisons, this relation persists for other values
of ιs. As we already discussed the implications of this
relation in the previous section, we move on to comparisons
of TEOB with SEOB.

D. Extensive comparisons with
SEOBNRv4PHM waveforms

SEOBNRv4PHM is the latest precessing approximant
within the SEOBNR family. As the upgrade to SEOBNRv3
[69,132], it incorporates precession in higher modes up to

FIG. 6. Two-dimensional scatter plots of the three-angle averaged match, M̄, between TEOBResumSP and NRSur7dq4 for the 200
precessing compact binary inspirals as “seen” at an orbital inclination of ιs ¼ π=3. For this figure, we opted for 1=q to better relate to
values more familiar in the NR community. The cooler colors (purple, blue) represent cases with M̄ ≥ 0.965 while the warmer colors
(orange, red) represent M̄ ≤ 0.9. See Sec. IV B for details as to why the match degrades in certain regions. The distribution of the colors
is roughly the same for ιs ¼ π=6, π=2, albeit with very few “hot” dots for the former and about the same number for the latter.

FIG. 7. Three-angle averaged mismatch, 1 − M̄ between
TEOBResumSP and NRSur7dq4 vs χ⊥;max (left panel, blue
dots) and χp (right panel, teal dots) for ιs ¼ π=6. The horizontal
dashed black, orange, and gray lines represent mismatches of
0.01, 0.035, and 0.1, respectively. The mismatch seems to depend
more strongly on χ⊥;max than χp, which suggests that χ⊥;max may
somehow expose a systematic error in TEOBResumSP resulting
from twisting constant-spin nonprecessing waveforms as op-
posed to time-varying ones.
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l ¼ 5 [101]. The precession in SEOBNRv4PHM (also in v3)
is coupled to the aligned-spin EOB dynamics so that the
resulting aligned-spin waveforms in the coprecessing frame
are obtained from time-dependent χ1, χ2. Most recent
comparisons using approximately 1500 precessing SXS
simulations have yielded SEOBNRv4PHM-NR matches of
>0.97 for>94% of the cases with the higher modes included
[101]. Note that these currently consist of only the ð3;�3Þ,
ð4;�4Þ, ð5;�5Þ modes lacking the important and more
challenging ð3;�2Þ and ð4;�3Þ modes [101]. Moreover,
SEOBNRv4PHM is not yet calibrated to NR waveforms in
the precessing sector, but only to the aligned-spin wave-
forms. Nonetheless, along with IMRPhenomXPHM [59],
SEOBNRv4PHM is currently one of the most NR-faithful,
nonsurrogate precessing approximants.
Since SEOBNRv4PHM does not suffer from the current

parameter limitations of NRSur7dq4, we used a larger
set of 1230 precessing inspirals with the parameters
spanning greater ranges. In particular, for the key param-
eters, we have: 0 ≤ χp ≤ 0.993, f0 ≥ 20 Hz, 0.1 ≤ q ≤ 1,

and 3 M⊙ ≤ Mtot ≤ 70 M⊙ (see Fig. 4). We realize that
comparing cases with χp in excess of 0.9 is rather
ambitious, especially since SEOB has been tested against
NR only up to this limit [101]. Nonetheless, Ref. [101] also
presented an SEOB-Pv3HM comparison up to χp ≲ 0.99 so
we proceed in the same spirit.
Within this expanded set, 200 cases have already been

partly discussed in Secs. IVA, where we reported the
TEOB-SEOBmatches and their distribution in Fig. 5. Here,
we add to this an expanded set of 1030 cases for which we
once again computed the fψ s; θs;ϕsg-averaged matches,
M̄, between TEOB and SEOB for inclinations of ιs ¼ 0,
π=6, π=3. As we discuss below, we leave the ιs ¼ π=2
comparison to future work. As before, we used a 4 × 4 × 8
grid for fψ s; θs;ϕsg while assigning random values
to φ0. This amounted to 128 × 1030 ≈ 1.3 × 105 matches
computed for each inclination. We set DL ¼ 100 Mpc as
before.
For the full set of 1230 cases, 90% of the ιs ¼ 0, π=6

matches are above 0.965 with this percentage dropping to
75% for ιs ¼ π=3. We checked that these percentages
remained unchanged (to less than 0.5%) when using
randomly assigned values for θs, ϕs instead of a grid with
spacing of π=4. Part of the reason for the increased
disagreement with respect to the TEOB-NRSur compari-
son is the fact that now roughly 7.5% of the 1230 non-
precessing TEOBResumS-SEOB (2,2)-mode matches are
less than 0.965, whereas there was a single nonprecessing
TEOBResumS-NRSur (2,2) mode match less than 0.99
out of 200 cases. Some of this (2,2)-mode disagreement is
due to the increased range of q down to 0.1, for which we
find that there are indeed increased occurrences of non-
precessing (2,2) mode matches less than 0.965 for q≲ 0.2.
Moreover, 42% of the nonprecessing (2,1) mode matches
are also less than 0.965. This latter disagreement manifests
a more prominent mismatch in the precessing ð2;�1Þ,
(2, 0) modes which matter more for cases with strong
precession and larger inclination. Therefore, given that
nearly 60, 25% of the 1230 cases have χp ≥ 0.5, 0.7 with a
mean of 0.55, the degradation we observe in M̄ when
going from ιs ¼ 0, π=6 to ιs ¼ π=3 is not surprising. A
similar disagreement has been shown between SEOB and

FIG. 8. Same as Fig. 6, but now for matches between TEOBResumSP and IMRPhenomPv3HM once again for ιs ¼ π=3. Note that
many of the red dots here are the same as those of Fig. 6. This similarity persists for all values of ιs.

FIG. 9. The three-angle averaged mismatch, 1 − M̄ between
TEOBResumSP and IMRPhenomPv3HM plotted against χ⊥;max

and χp for ιs ¼ π=6. As in Fig. 7, the mismatch increases with
increasing χ⊥;max (black dots, left panel), but seems to depend less
strongly on χp (gray dots, right panel). The horizontal dashed
black, orange, and gray lines represent 1 − M̄ ¼ 0.01, 0.035,
0.1, respectively.
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Pv3HM for χp ≳ 0.7 at ιs ¼ π=3 [101], but a similar ιs ¼
π=2 comparison was not reported there. For our set, we find
that M̄ degrades even more severely when going from ιs ¼
π=3 to π=2 with only half the matches greater than 0.85.
Again the culprit mostly seems to be the precessing (2,0)
mode for which the TEOB-SEOBmatches are mostly in the
range of 0.6 to 0.8. As this requires further investigation,
we limit our comparisons here to ιs ≤ π=3.
In Fig. 10, we show the distribution of the TEOB-SEOB

three-angle-averaged mismatches, 1 − M̄, for the three
inclinations. As can be seen in the figure, for ιs ¼ 0 and
π=6, the mismatches have a tall, narrow distribution
centered at roughly 2 × 10−3, which becomes broader
and shifts to roughly 2 × 10−2 for ιs ¼ π=3.
We also checked whether or not the lnð1 − M̄Þ vs χ⊥;max

trend of Figs. 7 and 9 persisted for the entire set of 1230
TEOB-SEOB matches, which we show in Fig. 11 for
ιs ¼ π=6, where we also plot lnð1 − M̄Þ vs χp as before.
It is clear from the new figure that the vague trend we had
previously discerned has more or less disappeared as the set
size increased by roughly an order ofmagnitude aswell as the
range of q, f0,Mtot. This is not unexpected since more cases
with greater range of parameters may increase the potential
causes of disagreement between waveform approximants,
thus burying the rough trend of Figs. 7 and 9. Indeed, the
alternate version of Fig. 11 made using only the 200 cases of
Secs. IVA-IVC looks very similar to Figs. 7 and 9. The
proper way to check for this trend is to compare precessing
waveforms for only the cases for which the nonprecessing
modes show excellent agreement (e.g., matches> 0.99) then
slowly increase θ1, θ2 while keeping all other parameters
unchanged, thus only increasing χ⊥;max and χp. The resulting
plots of lnð1 − M̄Þ vs χ⊥;max and χp would be much more
conclusive as towhether or not the trendwith respect to χ⊥;max

exists. We leave this for future work.

Sincewegreatly expanded the ranges of a fewparameters,
we investigated how this may affect the TEOB-SEOB
matches by plotting them against χp, q, χeff;0, and the
inspiral timeT insp, in Fig. 12 for ιs ¼ π=3. As in Figs. 6, 8we
observe increasing mismatches for larger values of χp (and
χ⊥;max) and more negative values of χeff;0. Additionally, the
matches worsen for q ≲ 0.25. This is not unexpected as it is
known that the mismatch between the nonprecessing
TEOBResumS and SEOBNRv3 increases as q decreases

FIG. 10. The distribution the three-angle (ψs, θs, ϕs) averaged mismatch, 1 − M̄, between TEOBResumSP and SEOBNRv4PHM for
the additional 1030 precessing inspirals for orbital inclinations of ιs ¼ 0, π=6, π=3. The vertical orange dashed line marks the mismatch
corresponding to 0.035. The vertical dashed red line marks the 95th percentile. The parameters for the 1030 cases are represented by the
red dots in Fig. 4 that do not overlap with the blue, black markers.

FIG. 11. The three-angle averaged mismatch, 1 − M̄ between
TEOBResumSP and SEOBNRv4PHM plotted against χ⊥;max (red)
and χp (pink) for ιs ¼ π=6. Though the trend seen in Figs. 7 and 9
with respect to χ⊥;max seems to have gotten mostly “buried”, its
plot still looks like less of a random scatter than the correspond-
ing χp plot. The horizontal dashed black, orange, and gray lines
represent M̄ ¼ 0.99, 0.965, 0.9, respectively.
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[71], but a similar investigation between TEOBResumS and
SEOBNRv4 has not yet been conducted. However, we have
already mentioned that we have observed some q≲ 0.2
cases with the TEOBResumS-SEOB nonprecessing (2,2)
mode matches less than 0.965.
The inspiral time seems to have no affect on the matches,

up to the longest inspirals considered here, i.e., 25 seconds.
The corresponding plots for ιs ¼ 0, π=6 contain the
same regions of degrading matches, albeit with very
few orange and red dots. Combining Figs. 6, 8, and 12,
we can conclude that the most challenging “corner” of the
parameter space for TEOBResumSP to match other pre-
cessing approximants is the three-dimensional q≲ 0.25,
χeff;0 ≲ −0.5, χp ≳ 0.6 region. The small-q, large-χp corner
also seems to be a region of increased mismatch between
SEOB and Pv3HM as shown in Fig. 14 of Ref. [101] and
also between Pv3HM and NR as hinted by Ref. [58] though
there were only three NR simulations for the comparison.
Increasing mismatches for larger χp values and q ≤ 1=5
have also been observed between IMRPhenomXPHM and
NR simulations [59].

V. CONCLUSIONS

In this article, we introduced TEOBResumSP: the
precessing upgrade to TEOBResumS. Currently,
TEOBResumSP generates precessing l ¼ 2, m ∈ ½−2; 2�
modes by Euler-rotating nonprecessing (aligned, constant
spin) TEOBResumS modes from the instantaneous, non-
inertialLNðtÞ frame to the inertialLNð0Þ frame. This frame
rotation, given by Eq. (20), is performed with Wigner’s D
matrices. As it is, TEOBResumSP generates precessing
modes only up to merger taken to be the peak of the twisted
(2,2) mode.
We assessed the faithfulness of TEOBResumSP by com-

puting the polarization-declination-right-ascension averaged
l ¼ 2 detector strain matches between TEOBResumSP and
fNRSur7dq4;IMRPhenomPv3HM;SEOBNRv4PHMg for
200 binaries at orbital inclinations of ιs ¼ 0, π=6, π=3, and
π=2. We further compared TEOBResumSP against
SEOBNRv4PHM for an additional set of 1030 binaries.
We also introduced a new parameter, χ⊥;max, in Eq. (11),

which encodes the strength of precession. We showed in

FIG. 12. Similar to Figs. 6 and 8, but now for matches at an inclination of ιs ¼ π=3 between TEOBResumSP and SEOBNRv4PHM for
the entire set of 1230 cases. We have also added the inspiral time, T insp (note the log scale) to the plots. As written in Sec. IV D, the
matches degrade for low values of q, more negative values of χeff;0, and increasing values of χp (or χ⊥;max). The corresponding figures
for ιs ¼ 0, π=6 are similar, albeit with fewer red and orange dots, and more purple dots.
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Secs. IV B–IV D how the waveform mismatch vaguely
follows a trend roughly proportional to eχ⊥;max . Additionally,
at least for the precessing binaries used in this article, the
values of χ⊥;max are less degenerate than χp, which we think
would be a desirable property.
In summary:
(i) TEOBResumSP matched NRSur7dq4 to better

than 0.99 for 74% and better than 0.965 for 91%
of the 200 cases with χp ranging up to 0.75. Even for
ιs ¼ π=2, 85% of the matches were greater than
0.965.

(ii) For the same cases, 85% of the TEOBResumSP-
SEOBNRv4PHM and 77% of the TEOBResumSP-
IMRPhenomPv3HM matches exceeded 0.965 with
higher percentages for low-inclination matches, and
lower ones for high inclinations.

(iii) For the additional set consisting of 1030 binaries,
89% of the ιs ¼ 0, π=6, TEOBResumSP-
SEOBNRv4PHM matches were greater than 0.965,
which dropped to 73% for ιs ¼ π=3.

(iv) Perhaps not surprisingly, the agreement between
TEOBResumSP and fNRSur7dq4;
IMRPhenomPv3HM;SEOBNRv4PHMg worsens
for cases with stronger precession indicated by
larger values of χp (and χ⊥;max). Additionally, there
is increasing disagreement for binaries with large
negative spins and small mass ratios. In particular,
the three-dimensional region of the parameter space
bounded roughly by χp ≳ 0.5, χeff;0 ≲ −0.3, q ≲
0.25 has the densest population of matches less
than 0.85.

The major cause of the disagreement is the mismatch of
the nonprecessing modes. Any case for which the non-
precessing (2,2) mode, hNP22 , matches less than 0.965 will
yield strain matches of ≲0.965 as hNP22 contributes the most
to the precessing (twisted) (2,2) mode which in turn is the
dominant mode in the strain for most inclinations. While
there is only one nonprecessing (2,2) mode match of less
than 0.99 between TEOBResumSP and NRSur7dq4 for
the set of 200 binaries, 7% of the 1230 TEOBResumSP-
SEOBNRv4PHM nonprecessing (2,2) mode matches are
less than 0.965. These percentages increase to roughly 40%
and 42% for the matches of hNP21 for the same sets above. As
hNP21 ’s contribution to the strain increases with respect to that
of the hNP22 ’s with increasing inclination, the mismatches of
hNP21 affect the high-inclination cases more as confirmed by
our findings.
One possible explanation for the increase in

TEOBResumSP-NRSur7dq4 and TEOBResumSP-
SEOBNRv4PHM mismatches with increasing χp is the fact
TEOBResumSP twists constant-spin, nonprecessing wave-
forms, i.e., S1ðtÞ ¼ χ1m2

1, S2ðtÞ ¼ χ2m2
2, whereas both

NRSur7dq4 and SEOBNRv4PHM twist so-called copre-
cessing waveforms with time-varying S1ðtÞ, S2ðtÞ obtained

either from fitting to NR data or from the SEOB dynamics.
Moreover, like TEOBResumSP, IMRPhenomPv3HM also
twists constant-spin waveforms and Ref. [58] reports that
the worst match against SXS NR simulations happens
for a “strongly precessing system” with χp ¼ 0.78 [59]
and q ¼ 1=6. Similarly, Ref. [59] states that the worst
IMRPhenomXPHM matches with respect to SXS simula-
tions also occur for “strongly precessing systems” and
q ≤ 1=5. There is also Fig. 14 of Ref. [101], where
significant SEOBNRv4PHM-IMRPhenomPv3HM dis-
agreement is observed for q ≲ 0.1, χp ≳ 0.6. Be that as
it may, without a systematic study, our “constant-spin-
twist” hypothesis can not be tested, but we hope to do this
after upgrading TEOBResumSP as we detail next.
Our most immediate task for the next version of

TEOBResumSP is to add ringdown to the twisted modes.
One way to do this is as in Ref. [69]: by Euler-rotating the
inspiralling modes to the Jpeak frame to attach the ringdown
portion of the modes, where Jpeak is extracted from the
solutions to the precession ODEs at a certain peak. The
stitched inspiral-merger-ringdown GW modes are then
rotated to the desired inertial frame. It seems, however,
that these steps might be redundant as SEOBNRv4PHM
successfully stitches the inspiral-merger-ringdown portions
in the coprecessing frame [101]. See the end of Sec. III for a
more detailed discussion.
The next task, after the incorporation of merger-

ringdown, is to add higher (l ≥ 3) modes to
TEOBResumSP. As Ref. [126] states, the nonprecessing
TEOBResumS ð3;�3Þ, ð3;�2Þ, ð4;�4Þ, and ð5;�5Þ
modes show excellent agreement with NR results, so they
can be twisted then added to the strain. Thus, in principle,
TEOBResumSP can extend up to l ¼ 5, albeit in an
incomplete manner, but SEOBNRv4PHM also only has
these modes [no ð3;�2Þ] and has shown improved agree-
ment as compared to its (l ¼ 2)-only version [101].
Another planned improvement is to couple the preces-

sion equations to the TEOBResumS dynamics. This will
enable us to generate aligned-spin waveforms with time-
varying χ1 ¼ S1ðtÞ ·LNðtÞ=m2

1, χ2 ¼ S2ðtÞ ·LNðtÞ=m2
2.

This upgrade might improve TEOBResumSP’s agreement
with NRSur7dq4 and SEOBNRv4PHM for the strongly
precessing cases. Finally, we will test whether or not
replacing the SpinTaylorT4 expression for _v with
one obtained from the aligned-spin TEOBResumS dynam-
ics may further improve TEOBResumSP’s performance.
As it stands, the current version of TEOBResumSP

yields values greater than 0.965 for 91%, 86%,9 77% of the
matches with NRSur7dq4, SEOBNRv4PHM, and
IMRPhenomPv3HM respectively. The significantly dis-
agreeing cases either have very strong precession, small
mass ratios or rather negative spins. A nice feature of

9For the entire set of 1230 cases and the inclinations consid-
ered here.
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TEOBResumSP is that it is fast thanks to the postadiabatic
method implemented in TEOBResumS which “rushes” the
inspiral [124]. We expect that, with the above additions,
TEOBResumSP will become another useful precessing
approximant for the analysis of future GW events.
TEOBResumSP will be added to the TEOBResumS
git repository https://bitbucket.org/eob_ihes/teobresums/
wiki/Home.
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APPENDIX A: DERIVATION OF THE
POST-NEWTONIAN SPIN PRECESSION

EQUATIONS UP TO N4LO

This section builds upon the work of Ref. [134]. Recall

that the ˙̂LN equation is obtained by imposing total angular
momentum conservation, _J ¼ 0 which leads to

L̇ ¼ − _S1 − _S2: ðA1Þ

L is provided up to 3.5PN in, e.g., Eq. (4.7) of Ref. [128]
which we rewrite in the following compact form

L ¼ η

v

�
L̂N

�
1þ v2

�
3

2
þ η

6

�

þv4
�
27

8
−
19η

8
þ η2

24

�
þOðv6Þ

�

þ v3ΔLS
1.5PN þ v5ΔLS

2.5PN þ v7ΔLS
3.5PN

1

2
þOðv8Þ

�
;

ðA2Þ

where we defined the terms ΔLS
nPN with n ¼ 1.5, 2.5, 3.5

with their explicit v scalings factored out. From Ref. [128],
we can extract

ΔLS
1.5PN¼l

�
−
35

6
Sl−

5

2
δmΣl

�

−λð3SλþδmΣλÞþn

�
1

2
Snþ

1

2
δmΣn

�
; ðA3Þ

where l ¼ L̂N, n ¼ r=jrj is the relative separation unit
vector, and λ ¼ l × n. Moreover, Sl;λ;n ≡ fl; λ; ng · S,
Σl;λ;n ≡ fl; λ; ng · Σ, where S ¼ S1 þ S2, Σ ¼ S2=m2−
S1=m1. Defining S1l ≡ lðl · S1Þ and similarly for S1λ,
S1n as well as the 1 → 2 counterparts, Eq. (A3) becomes

ΔLS
1.5PN ¼ −

5

6m1

ð3M þm1ÞS1l þ
ðM −m1Þ

2m1

S1n

−
ðM þm1Þ

m1

S1λ þ ð1 → 2Þ; ðA4Þ

where we restored M ¼ m1 þm2 for clarity in this
section. We can now orbit-average this expression using
hn̂in̂ji¼hλ̂iλ̂ji¼ 1

2
ðδij− l̂il̂jÞ which yields hS1ni¼hS1λi¼

1
2
ðS1−S1lÞ. Substituting these orbit-average terms into
Eq. (A4) we arrive at

ΔLS
1.5PN ¼ −

M þ 3m1

4m1

S1 −
ð27M þm1Þ

12m1

L̂NðL̂N · S1Þ

þ ð1 → 2Þ: ðA5Þ
Similarly, with some more determination, one can obtain

ΔLS
2.5PN ¼

�
7M − 31m1

16m1

þ η
22M þ 9m1

48m1

�
S1

þ
�
−
49M þ 39m1

16m1

þ η

�
59M
24m1

−
13

144

��

× L̂NðL̂N · S1Þ þ ð1 → 2Þ: ðA6Þ
Equation (A3) inside Eq. (A2) together with Eqs. (4a), (4b)
give us all the pieces that we need to go to N4LO [Eq. (A6)
enters at N5LO so we drop it.] For clarity, let us once again
consider NNLO first. At this order, Eq. (A2) becomes

L ¼ L̂N
η

v
L1PN þ ηv2ðcS1S1 þ cS2S2Þ

þ ηv2L̂NðcS1LL̂N · S1 þ cS2LL̂N · S2Þ; ðA7Þ
where L1PN ≡ 1þ v2ð3

2
þ 1

6
ηÞ and the constants cS1, cS1L,

etc., are given in Eqs. (6a), (6b). Differentiating Eq. (A7)
with respect to time, we obtain

˙̂L
NNLO
N ¼ v

η

1

L1PN
½− _SNNLO

1 − _SNNLO
2

−ηv2ðcS1 _SLO
1 þ cS2 _S

LO
2 Þ�; ðA8Þ

where, e.g., _SNNLO
1 implies that only terms that scale as v≤7

should be retained. Several simplifications occurred in
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reaching Eq. (A8). First, the second _S1, _S2 terms contribute
only at the LO. This is because of the factor of v2 in front,
which means that at our required order, i.e., NNLO, the
terms multiplying v2 can be at most ∝ v5 which is LO for
_S1, _S2 as can be seen from Eqs. (1a), (1b). Second, all the
cS1L, cS2L terms have dropped from Eq. (A8) because

(i) v2 ˙̂LN ∝ v8, i.e., is N3LO and (ii) at NNLO only v2L̂N ·
_SLO
1 scales as v7, but is actually zero because L̂N ⊥ _SLO

1 as
is clear from Eqs. (1a), (1b).
Pushing now to N4LO, Eq. (A1) becomes

L̇ ¼ ˙̂LN
η

v
L2PN þ ηv2 ˙ΔLS

1.5PN ¼ − _SN4LO
1 − _SN4LO

2 ; ðA9Þ

where L2PN is given in Eq. (5b). Note that we omit the
radiation reaction terms starting at NNLO via η_v=v2 ∝ v7

in L̇ because they drop out from ˙̂LN;⊥ given in Eq. (7) since
these terms are all parallel to L̂N. The effects of radiation
reaction are incorporated via v ¼ vðtÞ in the precession
ODEs after the standard change of variables d=dt →
_vðvÞd=dv in Eqs. (1a)–(5a).
Explicitly writing out Eq. (A9) at N4LO then rearranging

gives us Eq. (4c), where we used the property that _Si ⊥ Si
up to NLO. In terms of powers of v, each term in Eq. (4c)
goes up to v9, i.e., N4LO as defined.
We can now obtainLN, therefore, the angles α and β at any

order of our choosing varying fromNLO toN4LO, whichwe
show in Fig. 13 as functions of the (2,2)-modeGW frequency
for three different precessing compact binary inspirals.As can
be seen in the figure, the angles from different orders remain
very close to each other in general until the binaries enter their

respective strong-gravity regimes. The angle dephasing
between different orders happens earlier and is most promi-
nent for themost asymmetric system in the figure, i.e., a black
hole neutron star binarywithM ¼ 20 M⊙ and q ≈ 0.11. The
differences between the N3LO and N4LO angles are much
smaller, expectedly so since the differences of these two
orders scales as v9.
A thorough survey of the effects of the truncation order

of the precession ODEs, the instantaneous terms (entering
at N3LO), and the neglected terms would be beneficial to
the entire gravitational-wave community. Reference [135]
has already done somework in this regard, but a systematic,
large-scale analysis quantified in terms of consequences to
parameter estimation remains to be undertaken at this point.

APPENDIX B: RESULTS OF USING NLO
ANGLES AND A DIFFERENT TWIST FORMULA

In this section, we briefly show results from two addi-
tional test we conducted: (1) Using Euler angles in the
twist formula (20) that are obtained from the precession
ODEs truncated at NLO as given in Eqs. (1a)–(1c).
(2) Using N4LO Euler angles in an alternate twist formula.
Specifically, we have chosen to test the expression provided
by Eq. (A2) of Ref. [58]

hTlmðtÞ ¼ eimα
Xl

m0¼−l

e−im
0γdlm0;mð−βÞhNPlm0 : ðB1Þ

This version differs from our twist formula (20) in the signs
of the α and γ exponents. For convenience, we redisplay our
expression

FIG. 13. The spherical angles ofLNðtÞ in theL0 frame described in Sec. II B for three separate cases: binary neutron star (left panels),
black hole neutron star (middle panels), and binary black hole (right panels) inspirals. α is the azimuthal angle and β is the polar angle
(see Fig. 1). In each panel, we show the angle obtained from solving the precession ODEs truncated at four different orders: NLO,
NNLO, N3LO, and N4LO. From left to right, the binaries respectively have M ¼ 3; 20; 35 M⊙, q ≈ 0.85, 0.11, 0.35, and χp ≈ 0.78,
0.22, 0.74. f represents the (2,2)-mode gravitational wave frequency.
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hTlmðtÞ ¼ e−imα
Xl

m0¼−l

eim
0γdlm0;mð−βÞhNPlm0 : ðB2Þ

For both tests, we used a subset of precessing compact
binary inspirals that is a combination of 50 cases from our
NRSur7dq4 set and 60 cases from our SEOBNRv4PHM
set. Using Eq. (B1) at N4LO and Eq. (B2) at NLO we
generated two new sets of twisted l ¼ 2 TEOBResumS
modes with which we then computed the l ¼ 2 detector

strain matches as before. We show how these two alternate
twists perform against ours, dubbed Eq. (B2) [N4LO], in
Fig. 14, where it is evident that our twist produces
consistently the smallest mismatches (red circles). The
alternate twist formula of Eq. (B1) is clearly the worst
choice producing M > 0.965 for only about two thirds of
the set (black inverted triangles). The reason why Eq. (B1)
[N4LO] still somehow manages to mostly yield M >
0.965 is due to both the fact that γ remains close to α
because β, starting from zero, is small for most binaries,
and that the twisted ð2;�2Þ modes differ by a small
amount. Therefore, in binaries for which βðtÞ ≪ 1 and
the precessing ð2;�2Þ modes dominate the mode-sum in
the strain formula (23), Eqs. (B1) and (B2) are nearly equal
under the m → −m exchange, thus produce twisted wave-
form strains that are very close to each other.
Returning to Fig. 14, we see that the NLO version of our

twist performs somewhat well in the sense that roughly
three quarters of the cases yielded M > 0.965 (blue
triangles). The details of the differences in the plotted
NLO, N4LO mismatches lay with the differences in the
Euler angles used in the respective twists. We have already
shown in Fig. 13 how these Euler angles vary as the ODE
truncation order goes from NLO to N4LO. For most cases,
the difference in the angles become significant only in the
last few orbital cycles, corresponding to the small
differences between the NLO and N4LO mismatches of
Fig. 14. But for cases with small q, the differences in the
Euler angles becomes more significant as can be seen in the
middle panels of Fig. 13. It is possible that the speed-up
gained in using NLO-truncated precession ODEs, instead
of N4LO, is significant enough to justify their use in
parameter estimation. As we have not yet carried out
detailed speed tests of our code, we can not verify or
refute this hypothesis, but will do so with the next version
of TEOBResumSP.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al. (VIRGO Collaboration), Classical
Quantum Gravity 32, 024001 (2015).

[3] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Phys. Rev. Lett. 116, 061102 (2016).

[4] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[5] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Phys. Rev. Lett. 116, 241103 (2016).

[6] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Astrophys. J. 851, L35 (2017).

[7] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Phys. Rev. Lett. 119, 141101 (2017).

[8] B. P. Abbott et al. (VIRGO, LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 118, 221101 (2017).

[9] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 9, 031040 (2019).

[10] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 100, 023011 (2019).

[11] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 101, 083030 (2020).

[12] A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White,
D. A. Brown, and B. Krishnan, Astrophys. J. 872, 195
(2019).

[13] A. H. Nitz, T. Dent, G. S. Davies, S. Kumar, C. D. Capano,
I. Harry, S. Mozzon, L. Nuttall, A. Lundgren, and M.
Tápai, Astrophys. J. 891, 123 (2020).

FIG. 14. Performance of two alternate TEOBResumS
twists against our standard twist measured in terms of l ¼ 2
detector strain mismatches with NRSur7dq4 (50 cases) and
SEOBNRv4PHM (60 cases) ordered by increasing mismatch. Red
circles represent mismatches obtained using our standard ex-
pression, dubbed Eq. (B2) [N4LO]: twisting via Eq. (B2) with
angles obtained from the precession ODEs truncated at N4LO.
Similarly, the blue triangles represent mismatches obtained with
the same twist formula, but with angles coming from the NLO-
truncated ODEs, hence dubbed Eq. (B2) [NLO]. Finally, the
inverted black triangles represent mismatches resulting from using
the alternate twist formula (B1) at N4LO.As before, the horizontal
dashed black, orange, and gray lines markM ¼ 0.99, 0.965, 0.9.
It is clear from the figure that our standard expression produces the
best matches. We left the horizontal axis unlabelled since we
reordered the total of 110 cases in terms of increasing 1 −M.

AKCAY, GAMBA, and BERNUZZI PHYS. REV. D 103, 024014 (2021)

024014-20

https://doi.org/10.1088/0264-9381/32/11/074001
https://doi.org/10.1088/0264-9381/32/11/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevD.100.023011
https://doi.org/10.1103/PhysRevD.101.083030
https://doi.org/10.3847/1538-4357/ab0108
https://doi.org/10.3847/1538-4357/ab0108
https://doi.org/10.3847/1538-4357/ab733f


[14] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 892, L3 (2020).

[15] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 102, 043015 (2020).

[16] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 896, L44 (2020).

[17] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 125, 101102 (2020).

[18] GraceDB—Gravitational-Wave Candidate Event Data-
base, https://gracedb.ligo.org/superevents/public/O3/.

[19] R. Abbott et al., arXiv:2010.14527.
[20] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[21] E. Gourgoulhon, 3+1 Formalism and Bases of Numerical

Relativity, Lecture Notes in Physics (Springer, Berlin,
2012).

[22] J. Centrella, J. G. Baker, B. J. Kelly, and J. R. van Meter,
Rev. Mod. Phys. 82, 3069 (2010).

[23] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006
(1999).

[24] A. Buonanno and T. Damour, Phys. Rev. D 62, 064015
(2000).

[25] P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan
et al., Classical Quantum Gravity 24, S689 (2007).

[26] P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan
et al., Phys. Rev. D 77, 104017 (2008).

[27] L. Bernard, L. Blanchet, G. Faye, and T. Marchand, Phys.
Rev. D 97, 044037 (2018).

[28] F. Messina, R. Dudi, A. Nagar, and S. Bernuzzi, Phys. Rev.
D 99, 124051 (2019).

[29] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and B.
Sathyaprakash, Phys. Rev. D 80, 084043 (2009).

[30] T. Damour, A. Nagar, and L. Villain, Phys. Rev. D 85,
123007 (2012).

[31] R. Sturani, S. Fischetti, L. Cadonati, G. Guidi, J. Healy,
D. Shoemaker, and A. Viceré, J. Phys. Conf. Ser. 243,
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F. Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113,
151101 (2014).

[52] P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D 91,
024043 (2015).

[53] G. Pratten, S. Husa, C. Garcia-Quiros, M. Colleoni, A.
Ramos-Buades, H. Estelles, and R. Jaume, Phys. Rev. D
102, 064001 (2020).

[54] C. García-Quirós, M. Colleoni, S. Husa, H. Estellés,
G. Pratten, A. Ramos-Buades, M. Mateu-Lucena, and
R. Jaume, Phys. Rev. D 102, 064002 (2020).

[55] C. García-Quirós, S. Husa, M. Mateu-Lucena, and A.
Borchers, arXiv:2001.10897.

[56] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish,
Phys. Rev. D 95, 104004 (2017).

[57] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
Phys. Rev. D 100, 024059 (2019).

[58] S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam,
Phys. Rev. D 101, 024056 (2020).

[59] G. Pratten et al., arXiv:2004.06503 [Phys. Rev. D (to be
published)].

[60] H. Estellés, A. Ramos-Buades, S. Husa, and C. García-
Quirós, M. Colleoni, L. Haegel, and R. Jaume, arXiv:
2004.08302 [Phys. Rev. D (to be published)].

[61] T. Damour and A. Nagar, Phys. Rev. D 79, 081503 (2009).
[62] T. Damour and A. Nagar, Phys. Rev. D 90, 044018

(2014).
[63] T. Damour, B. R. Iyer, and A. Nagar, Phys. Rev. D 79,

064004 (2009).
[64] Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi,

Phys. Rev. D 83, 064003 (2011).
[65] T. Damour and A. Nagar, Phys. Rev. D 90, 024054 (2014).
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