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In this paper, we obtain an effective metric describing a regular and rotating magnetic black hole (BH)
solution with a Yang-Mills electromagnetic source in Einstein-Yang-Mills (EYM) theory using the
Newman-Janis (NJ) algorithm via the noncomplexification radial coordinate procedure. We then study the
BH shadow and the quasinormal modes (QNMs) for massless scalar and electromagnetic fields and the
quasiperiodic oscillations (QPOs). To this end, we also study the embedding diagram for the rotating EYM
BH. The energy conditions, shadow curvature radius, topology, and the dynamical evolution of scalar and
electromagnetic perturbations using the time domain integration method are investigated. We show that the
shadow radius decreases by increasing the magnetic charge, while the real part of QNMs of scalar and
electromagnetic fields increases by increasing the magnetic charge. This result is consistent with the inverse
relation between the shadow radius and the real part of QNMs. In addition, we have studied observational
constraints on the EYM parameter λ via frequency analysis of QPOs and the EHT data of shadow cast by
the M87 central black hole. We also find that the decaying rate of the EYM BH is slower than that of the
neutral and ends up with a tail. We argue that the rotating EYM black hole can be distinguished from the
Kerr-Newman black hole with a magnetic charge based on the difference between the angular diameters of
their shadows.
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I. INTRODUCTION

It is generally believed that most of the giant elliptical
and spiral galaxies contain supermassive black holes
(SMBHs) at their galactic centers. For instance, the masses
of SMBHs at the centers of Milky Way spiral galaxy and
M87 elliptical galaxy are 4 million and 6 billion solar
masses, respectively. Besides having huge masses, these
SMBHs also possess spins (or angular momenta).
Depending on the spacetime geometry, a black hole
(BH) can capture light received from nearby stars or

accretion disks into bound orbits. A large collection of
light orbits constitutes a “photon sphere” around the BH. If
the orbit of light is unstable, then photons (quanta of
electromagnetic field) can either fall into the BH or escape
to infinity (or a distant observer at a finite distance). The
Event Horizon Telescope (EHT) Collaboration has detected
the first shadow images of the SMBH at the center of the
M87 galaxy [1,2]. With this image, it is observed that the
diameter of the center BH shadow was approximately
52 μ-arc sec with a deviation of less than 10% from
circularity, which leads to a measurement of the central
mass of 6.5 billion solar mass. Importantly, these precise
observations could provide a potential window to explore,
distinguish, or constrain physically viable BH solutions
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that exhibit small deviations from the Kerr metric. The
distortion in the size and magnification of the shadow
images provides information about the BH properties
(such as its mass and spin) and the nearby geometry
(the Schwarzschild, Kerr, or modified Kerr spacetime).
Moreover, the shadow image is a manifestation of strong
gravitational lensings, which can be used to distinguish
various forms of BH spacetimes and naked singularities.
Some of such studies on BH shadows in various gravita-
tional theories were given in Refs. [3–9].
In the literature, numerous static and spherically sym-

metric BH solutions have been derived in the modified
gravity theories (MGTs). However, the task of deriving the
exact rotating black hole solutions analytically by solving
the coupled field equations in any MGT has remained
daunting due to the complexity of the nonlinear partial
differential equations of the underlying theory. For in-
stance, under reasonable assumptions of stationary, axial
symmetry, and asymptotic flatness, the governing equa-
tions in f(R) gravity are highly nonlinear having the fourth-
order derivatives, while in the general Horndeski theories,
the field equations are second order. Still, one is able to
generate the metrics of stationary and axis-symmetric BHs
using the Newman-Janis algorithm (NJA) [10] and its
modifications by starting with any seed static and spheri-
cally symmetric spacetime [11]. Among the modifications
to NJA, there is the noncomplexification procedure of the
radial coordinate [11]. This method has been extensively
used in the literature for obtaining rotating BH solutions
[12–36]. From the astrophysical and astronomical perspec-
tives, almost all known candidates of BHs are rotating. The
signature of rotation of a BH would be determined by
the distortion of its shadow images or deviation from the
spherical symmetry. The solution obtained by the NJA
method is acceptable only if the resulting solution is free
from geometrical pathologies and satisfies the energy
conditions, causality, and regularity everywhere except at
some spacetime singularities, while allowing the existence
of a spatial hypersurface where a timelike Killing vector
becomes null.
A rigorous proof about the existence of an infinite

number of BH solutions to the Einstein-Yang-Mills
(EYM) equations with the gauge group SUð2Þ for any
event horizon was provided in Ref. [37]. In the literature,
slowly rotating non-Abelian BHs, numerical rotating BHs
in the minimally coupled EYM theory, as well as nonstatic
spherically symmetric EYM BHs were previously derived
[38–41], in addition to the static, spherically symmetric
constant curvature BHs [42]. Recently, new BH solutions
have been also derived by adding Lorentz group symmetry
in the minimally coupled EYM theory [43] and loop
quantum corrections [44]. In this paper, we focus on the
nonminimally coupled EYM theory where the curvature
couples with the SU(2) gauge fields nontrivially [45,46].
Our aim is to test the nonminimally coupled EYM theory

via constructing rotating BHs and then systematically
investigate the consistency of the theory with the current
and forthcoming observations, including the observations
of M87 BH shadow. Furthermore, we would like to relate
the shadow size with the quasinormal modes (QNMs) of
the BHs. Here, gravitational waves will be treated as
massless particles propagating along null geodesics and
slowly leaking to infinity.
Among numerous astrophysical events, the quasiperi-

odic oscillations (QPOs) are very common phenomena in
the x-ray power density spectra of stellar-mass BHs. The
frequency of QPOs can be related to the matter orbiting
in the vicinity of the innermost stable circular orbit
(ISCO) of the BH. The appearance of two peaks at
300 and 450 Hz in the x-ray power density spectra of
Galactic microquasars, representing possible occurrence
of a lower QPO and of an upper QPO in a ratio of 3=2,
has stimulated a lot of theoretical works to explain the
value of the 3=2 ratio. Some theoretical models, includ-
ing the parametric resonance, forced resonance, and
Keplerian resonance, have been proposed. Therefore,
the study of QPOs not only helps us understand the
physical processes in BH mechanics but also provides a
powerful approach to explore the nature of the BH
spacetime in the strong field regime.
The structure of our paper is laid out as follows. In

Sec. II, we review the nonminimally coupled EYM theory
and the static BH solution. Henceforth, we apply the NJA
modified by the noncomplexification procedure of the
radial coordinate to generate the rotating counterpart of
the static solution. In Secs. III and IV, we study the
embedding diagram and energy conditions, respectively.
In Secs. V and VI, we study the geometrical and astro-
nomical features of the BH shadows and constraints on the
free parameters. In Sec. VII, we investigate the curvature
radius and its relation with the topology of the shadow.
Section VIII is devoted to the investigation of QNMs of the
static BH and their relationship with the radius of the
shadow, as well as the dynamical evolution of scalar and
electromagnetic perturbations. Section IX is devoted to
QPOs and their resonances. First, we derive the generic
expressions for the radial and vertical QPOs and then apply
them to the rotating solution. In particular, we show how to
obtain good and complete curve fits to the data of three
microquasars. Finally, in Sec. X, we discuss our main
results and provide some concluding remarks. There are
also two Appendixes, in which we provide the exact
expressions of the Einstein tensor and of some physical
quantities pertaining to Sec. IX, respectively.

II. ROTATING REGULAR EINSTEIN-
YANG-MILLS BH

Let us start by writing down the action of the non-
minimally coupled EYM theory in four-dimensional space-
times given by [45,46]
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S ¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

2
FðaÞ
μν FμνðaÞ þ 1

2
RαβμνFðaÞ

αβ F
ðaÞ
μν

�
;

ð1Þ

in which g is the determinant of the metric tensor and R is
the Ricci scalar. Furthermore, the greek indices run from
0 to 3, while the latin indices run from 1 to 3. On the other

hand, the Yang-Mills (YM) tensor FðaÞ
μν is connected to the

YM potential AðaÞ
μ by the following relation:

FðaÞ
μν ¼ ∇μA

ðaÞ
ν −∇νA

ðaÞ
μ þ fðaÞðbÞðcÞA

ðbÞ
μ AðcÞ

ν : ð2Þ

In the last equation, ∇μ represents the covariant deriva-

tive, and fðaÞðbÞðcÞ denote the real structure constants of the

3-parameters YM gauge group SUð2Þ. The tensor Rαβμν is
given by [46]

Rαβμν ¼ ξ1
2
ðgαμgβν − gανgβμÞ

þ ξ2
2
ðRαμgβν − Rανgβμ þ Rβνgαμ − RβμgανÞ

þ ξ3Rαβμν; ð3Þ

in which Rαβ and Rαβμν are the Ricci and Riemann tensors,
respectively. In addition, ξi (i ¼ 1, 2, 3) are the non-
minimally coupled parameters between the YM field and
the gravitational field. With the assumptions that the gauge
field is characterized by the Wu-Yang Ansatz and ξ1 ¼ −ξ,
ξ2 ¼ 4ξ, ξ3 ¼ −6ξ along with ξ > 0, a regular, static, and
spherically symmetric BH was found [45–47],

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ hðrÞðdθ2 þ sin2 θdϕ2Þ; ð4Þ

with fðrÞ ¼ gðrÞ, hðrÞ ¼ r2 and

gðrÞ ¼ 1þ
�

r4

r4 þ 2λ

��
−
2GM
c2r

þ GQ2

4πϵ0c4r2

�
: ð5Þ

Note that λ ¼ ξQ2, while M is the BH mass and Q is the
magnetic charge. When λ ¼ 0 and Q ¼ 0, the above metric
reduces to the Schwarzschild BH. Furthermore, the total
effective energy-momentum tensor consists of the pure
Yang-Mills field and the effect of the coupling between the
gravity and the Yang-Mills field [45,46]. From the Einstein
field equation, the energy density and the radial and
tangential pressures are derived as follows:

ρ ¼ −pr ¼
½Q2ðr4 − 6λÞ þ 16Mrλ�

ðr4 þ 2λÞ2 ;

pθ ¼ pϕ ¼ Q2ðr8 − 24λr4 þ 12λ2Þ − 8Mλrð6λ − 5r4Þ
ðr4 þ 2λÞ3 :

ð6Þ
Now, we apply the modified NJ algorithm recently

proposed in Ref. [11] to the static metric (4). The essence
of the procedure is to drop the complexification of the r
coordinate normally done in the NJ algorithm [10], as there
does not exist a unique way to carry out it [11]. Dropping
the complexification of r implies dropping the complex-
ification of the metric functions fðrÞ, gðrÞ, and hðrÞ.
Taking this advantage, Azreg-Aïnou replaced them by
F≡ Fðr; a; θÞ, G≡ Gðr; a; θÞ, and H ≡Hðr; a; θÞ,
respectively,

fðrÞ → Fðr; a; θÞ; gðrÞ → Gðr; a; θÞ;
hðrÞ → Hðr; a; θÞ: ð7Þ

This combined algorithm should be called the NJAA
algorithm or just NJAAA. Then, the remaining steps, as
described in detail in Ref. [11], leads to the explicit
expressions for F=H and GH,

F
H

¼ ghþ a2cos2θ
½kðrÞ þ a2cos2θ�2 ; GH ¼ ghþ a2cos2θ; ð8Þ

where kðrÞ≡ ffiffiffiffiffiffiffiffi
g=f

p
h, for which the rotating metric takes

the form

ds2 ¼ −
ðgðrÞhðrÞ þ a2cos2θÞH

ðkðrÞ þ a2cos2θÞ2 dt2 þ Hdr2

gðrÞhðrÞ þ a2

− 2asin2θ

�
kðrÞ − gðrÞhðrÞ
ðkðrÞ þ a2cos2θÞ2

�
HdtdϕþHdθ2

þHsin2θ

�
a2sin2θ

�
2kðrÞ − gðrÞhðrÞ þ a2cos2θ

ðkðrÞ þ a2cos2θÞ2
�

þ 1

�
dϕ2: ð9Þ

Now, since fðrÞ ¼ gðrÞ, and hðrÞ ¼ r2, one finds kðrÞ ¼
hðrÞ ¼ r2. Furthermore, the function Hðr; θ; aÞ is still
arbitrary and can be chosen so that the cross-term Grθ
of the Einstein tensor vanishes, i.e., Grθ ¼ 0, which yields
the differential equation

ðhðrÞ þ a2y2Þ2ð3H;rH;y2 − 2HH;ry2Þ ¼ 3a2h;rH2; ð10Þ

where y≡ cos θ. It can be shown that the solution of the
above equation takes the form [11]

H ¼ Σ≡ r2 þ a2 cos2 θ: ð11Þ
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Thus, summarizing all the above, the metric of the
rotating BH finally reads

ds2 ¼ −c2
�
1−

2ϒðrÞr
Σ

�
dt2 − 2acsin2θ

2ϒðrÞr
Σ

dtdϕ

þ Σ
Δ
dr2 þΣdθ2 þ ½ðr2 þ a2Þ2 − a2Δsin2θ�sin2θ

Σ
dϕ2;

ð12Þ

where

ϒðrÞ ¼ rð1 − gðrÞÞ
2

; ð13Þ

ΔðrÞ ¼ gðrÞhðrÞ þ a2

¼ r2 −
r6

ðr4 þ 2λÞ
�
2GM
c2r

−
GQ2

4πϵ0c4r2

�
þ a2: ð14Þ

The above metric is an effective metric describing a
regular and rotating magnetic BH solution with a Yang-
Mills electromagnetic source in the nonminimal Einstein-
Yang-Mills theory. Metric (12) reduces to the Kerr-
Newman BH with a magnetic charge instead of the electric
charge if λ ¼ 0. Thus, by continuity, it is certainly an exact
solution to the field equations (Eq. (7) of Ref. [45]) at least
for small λ. As we shall see in the subsequent sections, it is
also free from geometrical pathologies and satisfies the
energy conditions outside the outer horizon. In addition, it
is free of spacetime singularity, too, as its curvature and
Kretschmann scalar invariants are all regular for λ > 0,

R ¼ 8λr2½Q2ð5r4 − 6λÞ þMð−6r5 þ 20λrÞ�
ðr2 þ a2 cos2 θÞðr4 þ 2λÞ3 ; ð15Þ

RαβμνRαβμν ¼
Pðr; cos2 θ;M;Q2; a2; λÞ
ðr2 þ a2 cos2 θÞ6ðr4 þ 2λÞ6 ; ð16Þ

where P is a polynomial of its arguments and finite, M ¼
GM=c2 and Q2 ¼ GQ2=ð4πϵ0c4Þ.

A. Effective energy-momentum tensor

In the NJAAA, the rotating solution is sourced by
an anisotropic fluid the effective energy-momentum
tensor Tμν

eff, which is diagonal in the orthonormal basis
ðet; er; eθ; eϕÞ defined by [12,13]

eμt ¼
ðhþ a2; 0; 0; aÞffiffiffiffiffiffiffi

ΣΔ
p ; eμr ¼

ffiffiffiffi
Δ

p ð0; 1; 0; 0Þffiffiffi
Σ

p ;

eμθ ¼
ð0; 0; 1; 0Þffiffiffi

Σ
p ; eμϕ ¼ ðasin2θ; 0; 0; 1Þffiffiffi

Σ
p

sin θ
: ð17Þ

Being given by the expression Tμν
eff ¼ ρeμt eνt þ pre

μ
reνr þ

pθe
μ
θe

ν
θ þ pϕe

μ
ϕe

ν
ϕ, where ρ is the energy density and

(pr; pθ; pϕ) are the components of the pressure, it can
be shown that the effective energy-momentum tensor
has the following components (examples of detailed
calculations can be found in Refs. [12,13,22,23]):

ρ¼ −pr ¼
r4½Q2ðr4 − 6λÞ þ 16Mrλ�
ðr2 þ a2 cos2 θÞ2ðr4 þ 2λÞ2 ;

pθ ¼ pϕ ¼
r2

ðr2 þ a2 cos2 θÞ2ðr4 þ 2λÞ3 f8Mrλ½r2ð5r4 − 6λÞ

þ ð3r4 − 10λÞa2 cos2 θ� þQ2½r2ðr8 − 24λr4 þ 12λ2Þ
− 4λð5r4 − 6λÞa2 cos2 θ�g: ð18Þ

We can therefore say that rotating effective metric (12) is a
solution to the field equation derived from the action given
by Eq. (1) if all matter terms are replaced by the effective
energy-momentum as defined in Eqs. (17) and (18). To
have more elucidating expressions, we seek their Taylor
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FIG. 1. Right panel: Variation of Δ as a function of r. For Q ¼ 0.3, there is a critical value at a ¼ 0.817 such that the horizon
disappears. Left panel: Variation of gtt as a function of r, with λ ¼ 0.1. We choose a ¼ 0.3 (black curve), a ¼ 0.6 (red curve), and
a ¼ 0.817 (blue curve), in both plots.
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expansions about λ ¼ 0 in order to compare them with their
counterparts of the Kerr-Newman black hole,

ρ¼ −pr ¼
Q2

ðr2 þ a2 cos2 θÞ2 −
2ð5Q2 − 8MrÞ

r4ðr2 þ a2 cos2 θÞ2 λþ � � � ;

pθ ¼ pϕ ¼
Q2

ðr2 þ a2 cos2 θÞ2

þ 1

r6ðr2 þ a2 cos2 θÞ2 ½8Mrð5r2 þ 3a2 cos2 θÞ

− 10Q2ð3r2 þ 2a2 cos2 θÞ�λþ � � � ; ð19Þ

where the first term in each expression corresponds to the
Kerr-Newman component of the energy-momentum tensor.
We see clearly that the corrections added to the Kerr-
Newman counterparts can be neglected, recalling that most
observers are at large spatial distances from the sources.
These corrections, proportional to λ, behave as the inverse
of r7 in the limit of large r, while the leading Kerr-Newman
terms behave as the inverse of r4.
We have discussed some relevant observable quantities,

and there remain some other observable quantities, mainly
the usual electromagnetic fields and their Yang-Mills
extensions. In the literature, there are Ansätze [39] for

FIG. 2. Surface horizon (blue color) and ergoregion (red color) of the BH for different values of a. ForQ ¼ 0.3 and a ¼ 0.817, we find
that the horizon disappears. On the other hand, the magnetic charge has strong effects on the ergoregion surface.
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the general expressions of electromagnetic and Yang-Mills
fields, but no exact analytical solutions were found; see,
for example, Refs. [40,48,49] and references therein. The
determination of the electromagnetic and Yang-Mills fields
of the rotating black hole is more involved than the
determination of the metric itself. This necessitates the
resolution of coupled nonlinear differential equations and
to the best of our knowledge only numerical solutions are
available in the literature (see Refs. [40,48,49] and refer-
ences therein). However, for our current purpose, such
solutions are not needed.

B. Shape of the ergoregion

After obtaining the rotating BH solution (12), now let us
turn to investigate its shape of the ergoregion. Usually, one
plots the shape of the ergoregion in the xz-plane. The
corresponding horizons of our BH can be found by solving
the following equation Δ ¼ 0:

Δ ¼ gðrÞhðrÞ þ a2 ¼ 0: ð20Þ
In the meantime, the so-called static limit or ergosurface,
inner and outer, is obtained via gtt ¼ 0, i.e.,

FIG. 3. Surface horizon (blue color) and ergoregion (red color) of the BH for different values of λ and fixed a and Q. For small values
of λ, the black hole has two horizons, but if we increase λ, an extremal black hole is obtained, and the two horizons coincide. When
λ ¼ 0.6225, we find that the horizon disappears.
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r2gðrÞ þ a2 cos2 θ ¼ 0: ð21Þ

From Fig. 1, we observe that in general for a given Q and
λ one gets two horizons if a < ac. However, when a ¼ ac
(the blue line), the two horizons coincide, which means that
we have an extremal BH with degenerate horizons. It is
interesting to note that going beyond this critical value,
a > ac, one can see that event horizons no longer exist and
the solution represents a compact object without horizons
and singularities at the center. Moreover, by varying the
angular momentum parameter a while having a constant
value of magnetic charge, say,Q ¼ 0.3, and a constant value
of the parameter λ, say, λ ¼ 0.1, one can see the effect of the
magnetic charge on the surface horizon and ergoregion given
in Fig. 2. For a given domain of parameters, we find that at
certain value of the angular momentum a ¼ 0.817 the
horizon disappears. In Fig. 3, we depict the effect of the
magnetic charge on the black hole horizons and ergoregions
by varying the parameter λ, while having constant values of
a andQ. It is shown that there is a domain of parameters and
a critical value of λc such that the two horizons coincide, and
for λ > λc, the horizons disappear.

III. EMBEDDING DIAGRAM

In this section, we investigate the geometry of the BH
spacetime, by embedding it into a higher-dimensional
Euclidean space. To this purpose, let us consider the
equatorial plane θ ¼ π=2 at a fixed moment t ¼
Constant, for which the metric can be written as

ds2 ¼ dr2

1 − bðrÞ
r

þR2dϕ2; ð22Þ

where

bðrÞ ¼ r5

ðr4 þ 2λÞ
�
2M
r

−
Q2

r2

�
−
a2

r
; ð23Þ

RðrÞ ¼
�
r2 þ a2 þ a2r4

ðr4 þ 2λÞ
�
2M
r

−
Q2

r2

��
1=2

: ð24Þ

Let us embed this reduced BH metric into three-dimensional
Euclidean space in the cylindrical coordinates,

ds2 ¼ dz2 þ dR2 þR2dϕ2

¼
��

dR
dr

�
2

þ
�
dz
dr

�
2
�
dr2 þR2dϕ2: ð25Þ

From Eqs. (22) and (25), we find that

dz
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
r − bðrÞ −

�
dR
dr

�
2

s
; ð26Þ

where bðrÞ is given by Eq. (23). Note that the integration of
the last expression cannot be accomplished analytically.
Invoking numerical techniques allows us to illustrate the
embedding diagrams given in Fig. 4. It is seen that by
varying the parameter λ the black hole geometry is signifi-
cantly changed.

IV. ENERGY CONDITIONS

In this section, we are going to explore the energy
conditions for the rotating EYM BH. For this purpose,
we use the Einstein field equationsGμν ¼ 8πTμν along with
the effective energy-momentum tensor represented by a
properly chosen tetrad of vectors given by Tμν ¼ eμaeνbT

ab,
where Tab ¼ ðρ; pr; pθ; pϕÞ. In terms of the orthogonal
basis, the nonvanishing components of the energy momen-
tum tensor are given as follows [12]:

ρ ¼ 1

8π
eμt eνt Gμν; pr ¼

1

8π
eμreνrGμν;

pθ ¼
1

8π
eμθe

ν
θGμν; pϕ ¼ 1

8π
eμϕe

ν
ϕGμν: ð27Þ

The Einstein tensor Gμν is given in Appendix A. Using the
orthogonal bases given by Eq. (16), the corresponding
physical quantities defined in Eq. (27) now read

ρ ¼ −pr ¼
2ϒ0ðrÞr2
8πΣ2

;

pθ ¼ pϕ ¼ pr −
ϒ00ðrÞrþ 2ϒ0ðrÞ

8πΣ
: ð28Þ

In Fig. 5, by varying the parameter λ, we plot out the
quantities ρ and ρþ pr þ 2p, where p ¼ pθ ¼ pϕ, for a

FIG. 4. The BH spacetime embedded in a three-dimensional Euclidean space. Left panel: we choose a ¼ 0.3 and λ ¼ 0.1. Right panel:
we choose a ¼ 0.3 and λ ¼ 0.5. In both plots, we have used M ¼ 1 along with Q ¼ 0.3.
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given values of ðQ; a;MÞ, from which we find that the
strong energy condition (SEC) is not satisfied. In other
words, the matter supporting this configuration is exotic,
although we note that the cosmological constant does not
satisfy the SEC either.

V. SHADOW OF THE ROTATING BHs

In order to find the contour of a BH shadow, we need to
separate the null geodesic equations in the general rotating
spacetime (12), by using the Hamilton-Jacobi equation
given by

∂S
∂σ ¼ −

1

2
gμν

∂S
∂xμ

∂S
∂xν ; ð29Þ

where σ is the affine parameter and S is the Jacobi action.
In order to find a separable solution, we express the action
in terms of the known constants of the motion as follows,

S ¼ 1

2
μ2σ − Etþ Jϕþ SrðrÞ þ SθðθÞ; ð30Þ

where μ is the mass of the test particle, E ¼ −pt is the
conserved energy, and J ¼ pϕ is the conserved angular
momentum (with respect to the symmetry axis). For a
photon, we have μ ¼ 0. From these equations, it is

straightforward to obtain the following equations of motion
(see, for instance, Ref. [11]),

Σ
dt
dσ

¼ r2 þ a2

Δ
½Eðr2 þ a2Þ − aJ� − aðaEsin2θ − JÞ;

Σ
dϕ
dσ

¼ a
Δ
½Eðr2 þ a2Þ − aJ� −

�
aE −

J
sin2θ

�
;

Σ
dr
dσ

¼ �
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
;

Σ
dθ
dσ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð31Þ

where

RðrÞ ¼ ½XðrÞE − aJ�2 − ΔðrÞ½Kþ ðJ − aEÞ2�; ð32Þ

ΘðθÞ ¼ Kþ a2E2 cos2 θ − J2 cot2 θ ð33Þ

with XðrÞ ¼ ðr2 þ a2Þ. The function ΔðrÞ is defined by
Eq. (14), while K is the Carter separation constant. If we
define the two quantities ξ ¼ J=E and η ¼ K=E2 and make
use the fact the unstable circular photon orbits in the
general rotating spacetime must satisfy RðrÞðrphÞ ¼ 0,
RðrÞ0ðrphÞ ¼ 0, and RðrÞ00 ≥ 0, we obtain (see, for exam-
ple, Ref. [36])

FIG. 5. Top left panel: plot of ρwith λ ¼ 0.1 and a ¼ 0.3. Top right panel: plot of ρþ 2pr þ 2pwith λ ¼ 0.1 and a ¼ 0.3. Bottom left
panel: plot of ρ with λ ¼ 0.5 and a ¼ 0.3. Bottom right panel: plot of ρþ 2pr þ 2p with λ ¼ 0.5 and a ¼ 0.3. Note that we have used
x ¼ cos θ and set M ¼ 1 along with Q ¼ 0.3 in all the plots.
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½XðrphÞ − aξ�2 − ΔðrphÞ½ηþ ðξ − aÞ2� ¼ 0; ð34Þ

2X0ðrphÞ½XðrphÞ − aξ� − Δ0ðrphÞ½ηþ ðξ − aÞ2� ¼ 0; ð35Þ

where r ¼ rph is the radius of the unstable photon orbit.
Furthermore, if we eliminate η from the last two equations
and then solve for ξ, we find that [36]

ξ ¼ XphΔ0
ph − 2ΔphX0

ph

aΔ0
ph

; ð36Þ

η ¼ 4a2X02
phΔph − ½ðXph − a2ÞΔ0

ph − 2X0
phΔph�2

a2Δ02
ph

; ð37Þ

where we note that the subscript “ph” indicates that the
quantities are evaluated at r ¼ rph. Equations (36) and (37)

give the general expressions for the critical impact param-
eters ξ and η of the unstable photon orbits, which describe
the contour of the shadow.
The unstable photon orbits form the boundary of the

shadow. The apparent shape of the shadow is obtained by
using the celestial coordinates α and β, which lie in the
celestial plane perpendicular to the line joining the observer
and the center of the spacetime geometry. The coordinates
α and β are defined by

α ¼ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

����
ðr0;θ0Þ

�
; ð38Þ

β ¼ lim
r0→∞

�
r20
dθ
dr

����
ðr0;θ0Þ

�
; ð39Þ

where ðr0; θ0Þ are the position coordinates of the observer.
After taking the limit, we obtain
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FIG. 6. Variation in the shape of the shadow of the rotating BH described by the metric (12) for different values of a and Q.
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α ¼ −
ξ

sin θ0
; ð40Þ

β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2 cos2 θ0 − ξ2 cot2 θ0

q
: ð41Þ

The shadow is constructed by using the unstable photon
orbit radius rph as a parameter and then plotting out α and β
using Eqs. (36), (37), (40), and (41). In Fig. 6, we show the
effect of the magnetic charge by varying Q and a given
values of ða;M; λÞ. It is observed that the black hole
shadow radius decreases with the increase of Q. On the
other hand, in Fig. 7, we show the effect of the magnetic
charge by varying λ and a given values of ða;M;QÞ. It is
observed that the black hole shadow radius monotonically
decreases with the increase of λ, although the effect is very
small compared to Fig. 6. Thus, for any Q > 0 and λ > 0,

we see that the shadow radius is smaller compared to the
Kerr-Newman black hole with a magnetic charge. As we
see from Fig. 7, the effect of magnetic charge on the
shadow radius is very small when we increase λ and, as a
result, the EYM black hole is hard to distinguish from the
Kerr-Newman black hole based on their shadows. The
small effect of λ can be understood from the fact that if we
consider a Taylor expansion of gðrÞ around λ we obtain
(working in natural units)

gðrÞ ¼ 1 −
2M
r

þQ2

r2
þ 2ð2Mr −Q2Þλ

r6
þ � � � ; ð42Þ

thus, the leading correction term behaves as the inverse of
r6. Despite the fact that the effect of λ is small, we are going
to elaborate more on the possibility of distinguishing a
rotating Kerr-Newman black hole with magnetic charge
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FIG. 7. Variation in the shape of the shadow of the rotating BH described by the metric (12) for different values of a and λ.
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from an EYM black hole based on the physical observable
such as the shadow radius Rs and the angular diameter
θs ¼ 2RsM=D, where M is the black hole mass and D is
the distance between the black hole and the observer. Our
aim is to compute the shadow radius; however, in general,
the shape of the shadow depends on the observer’s viewing
angle θ0. In the present work, we are going to use an
expression for the typical shadow radius of rotating black
holes obtained by Jusufi [50],

R̄s ¼
ffiffiffi
2

p

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ0

g0ðrÞjrþ
0

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−0

g0ðrÞjr−
0

s !
; ð43Þ

provided the black hole shadow is viewed from the
equatorial plane. In addition, the radius of circular null
geodesics r�0 for the prograde/retrograde orbit must be
chosen such that both are outside of the horizon and can be
obtained by solving the equation [50]

r20 −
2r0

g0ðrÞjr0
gðr0Þ ∓ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0

g0ðrÞjr0

s
¼ 0: ð44Þ

In particular, we are going to use the M87 black hole with
M ¼ 6.5 × 109 M⊙Þ and D ¼ 16.8 Mpc. The angular dia-
meter can be further expressed as θs ¼ 2 × 9.87098×
10−6RsðM=M⊙Þð1 kpc=DÞ μ-arc sec. In Table I, we show
the numerical values obtained for the typical shadow
radius of a rotating EYM black hole by varying the
parameter λ. From these numerical results, we can see
that, as λ increases, the shadow radius and the correspond-
ing angular diameter decrease, while the numerical values
for the angular diameter are in the range 42� 3 μ-arc sec
reported in Refs. [1,2]. In other words, as λ increases, it is
easier to distinguish the EYM black hole from the Kerr-
Newman black hole since the difference between their
angular diameters given in terms of Δθs increases.

Now, we would like to study the observables of the
shadow, which is useful for us to fit the observed data and
determine the values of the black hole parameters.
Let us first introduce several characteristic points, the

right point (αr, 0), left point (αl, 0), top point (αt, βt), and
bottom point (αb, βb) of the shape. According to the
symmetry of the shadow, one easily gets αt ¼ αb and
βt ¼ −βb. Following Ref. [51], we can construct the size
and distortion of the shadow. The size of the shadow is
described by the reference circle passing the top, bottom,
and right points of the shadow. The reference circle cuts the
α axis at (α̃l, 0).
The radius of the reference circle can be calculated with

these characteristic points,

Rs ¼
ðαt − αrÞ2 þ β2t

2ðαr − αtÞ
: ð45Þ

In the following, we will focus on two distortions δs and ks,
which can be defined as

δs ¼
αl − α̃l
Rs

; ð46Þ

ks ¼
βt − βb
αr − αl

: ð47Þ

For the nonrotating black hole, we can get δs ¼ 0 and
ks ¼ 1, which means the shadow shape is a standard circle.
However, when the black hole spin is nonzero, both these
distortions deviate from these values.
In order to show how these two distortions vary with λ,

we plot them in Fig. 8 for Q ¼ 0.4 and M ¼ 1. From the
figures, we can find that for low spin the influence of λ on
distortions δs and ks is very tiny. δs and ks almost keep
0 and 1, respectively. These indicates the shadow shapes are
very close to standard circle. For θ0 ¼ π

2
, both δs and ks

increase with λ and approach to their maximal values for
the extremal black holes. For example, when a ¼ 0.8, the
distortion δs takes 14%, and ks takes 1.12, indicating the
shadows have a big deformation from a standard circle. For
θ0 ¼ π

6
, we find that the distortion ks still increases with λ

for different black hole spin. However, δs decreases, which
is the result of the decrease in the shadow size. On the other
sides, comparing with these figures, we can easily obtain
the result that both the distortions get smaller with the
decrease if θ0. So, decreasing with θ0, the shadows get less
deformation.
In summary, if the observer is located near the equatorial

plane, both the observables δs and ks of the shadows
increase with λ. If the observer is far off the equatorial
plane, δs decreases, while ks increases with λ. This provides
us a possible way to test the magnetic black hole in EYM
theory by making use of the shadows.

TABLE I. Shadow radius of EYM black hole for different
values of λ when viewed from the equatorial plane. In all these
cases, we have set M ¼ 1, a ¼ 0.2, and Q ¼ 0.2. Note that we
have defined Δθs ¼ θKNs − θEYMs . For the Kerr-Newman black
hole in terms of the above parameters, we have the typical shadow
radius R̄KN

s ¼ 5.149127296 and an angular diameter θKNs ¼
39.33036448 μ-arc sec, which corresponds to the case of λ ¼ 0.

λ ðM4Þ R̄EYM
s (M) θEYMs (μ-arc sec) Δθs (μ-arc sec)

0.1 5.134496817 39.21861310 0.11175138
0.2 5.119287867 39.10244321 0.22792127
0.3 5.103426195 38.98128766 0.34907682
0.4 5.086818521 38.85443395 0.47593053
0.5 5.069344363 38.72096183 0.60940265
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VI. OBSERVATIONAL CONSTRAINTS

We can apply the numerical results of shadow size to
the black hole of M87. The first M87 EHT results published
the image of shadow of black hole with a ring diameter
of 42� 3 μ-arc sec [1,2]. Adopting this measurement
value and distance D ¼ 16.8� 0.8 Mpc, we performed

the Monte Carlo simulations for the parameters space
ðM;Q; λÞ. The constraints on the parameter λ and mass
of M87 are shown in Fig. 9. In 95% confidence level, the
parameter λ is constrained as λ ¼ 0.53þ0.93

−0.53 , where we
have applied the prior λ > 0. The mass of M87 is estimated
as M ¼ ð7.52þ1.85

−1.56Þ × 109 M⊙, which covers the range of
value derived by EHT M ¼ ð6.5� 0.7Þ × 109 M⊙ in the
Schwarzschild black hole. From above results, we found
that there is a large parameter range to fit the EHT shadow
size, so it is necessary to compare the above constraints
with those obtained from other astrophysical observations.

VII. CURVATURE RADIUS AND TOPOLOGY
OF SHADOW

It is believed that the curvature radius has an important
application in testing the BH shadow. Here, we aim to study
the curvature radius and then discuss its topology following
Refs. [52,53].
Since the curvature is parametrized by the length

parameter, we first show the perimeter of the shadow.
For a given shadow, its perimeter can be calculated with the
following formula,

FIG. 8. Observables δs and ks for Q ¼ 0.4 and M ¼ 1. The spin is set as a ¼ 0.1, 0.3, 0.5, and 0.8 from bottom to top. In the top left
and top right plots, we fixed θ ¼ π=2, whereas in the bottom left and bottom right figures, we used θ ¼ π=6.

FIG. 9. Marginalized constrains for the parameter λ and
estimated M87 black hole massMð×109 M⊙Þ usingM87 shadow
size in 68% and 95% confidence levels.

KIMET JUSUFI et al. PHYS. REV. D 103, 024013 (2021)

024013-12



ls ¼ 2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rαÞ2 þ ð∂rβÞ2

q
dr; ð48Þ

where α and β are the celestial coordinates describing the
shadow [52], as mentioned above. The factor 2 comes from
the Z2 symmetry of the shadow. For a ¼ 0.5,Q ¼ 0.4, and
M ¼ 1, the perimeter ls slightly decreases as λ increases
(from 31.4936 to 30.9322 as λ varies from 0.01 to its
maximum value 0.3752, corresponding to an extremal BH).
Since α and β are parametrized by r, we can adopt these

forms to calculate the local curvature of the shadow R and l
in terms of r as done in Refs. [52,53]. Finally, we plot R
versus l in Fig. 10. In this plot, the first point on the
perimeter of the shadow has the largest curvature value R,
corresponding, by convention, to l ¼ 0 (where l is the
shadow segment length), and the last point corresponds to
l ¼ ls=2, allowing us to drop the Z2 symmetry in the plot.
We find that the curvature R first decreases with the length
parameter l and then increases. This result is consistent
with that of the Kerr BH shadows [52]. Along each curve,
there is one maximum and one minimum. In particular, the
maximum increases, while the minimum decreases with
increasing the parameter λ.
When the shapes of the shadow are obtained from

astronomical observations, we can use the curvature radius
to fit the results and then obtain the values of the BH
parameters. In Ref. [53], we discuss several different ways
to determine the BH spin and the inclination angle of the
observer for a Kerr BH. These provide possible applica-
tions on testing the nature of a BH through the shadow.
As we know, topology plays an important role in physics.

In our investigation, topology can be used to describe
differences between BHs and horizonless solutions [52].
To reveal the particular topological properties of the shadow,
we introduce the topological covariant quantity [52],

δ ¼ 1

2π

�Z
dl
R
þ
X
i

θi

�
: ð49Þ

Since in the current case the light ring is always unstable, the
second term vanishes. Taking a ¼ 0.5,Q ¼ 0.4, andM ¼ 1
as an example, we numerically calculate δ in terms of λ. The
result is displayed in Fig. 11. From this figure,we see that, for
small λ, δ assumes the value 1. While for λ > 0.3752, δ
decreases, indicating a topological change corresponding
to the transition from rotating BH to a rotating horizonless
solution. Note that for a ¼ 0.5, Q ¼ 0.4, M ¼ 1, and
λ < 0.3752, the rotating solution is a BH with more than
one horizon; for λ ¼ 0.3752, it is an extremal BH; and
for λ > 0.3752, it is a horizonless solution. This indicates a
possible topological phase transition from a BH to a
horizonless solution, a kind of gravitational vacuum con-
densate stars or gravastars without both an event horizon and
a singularity at the center [54]. Gravastars are compact
objects and may arise due to the Bose-Einstein condensation
in gravitational systems resulting with an interior structure
filled with vacuum energy and with an exterior effective
Schwarzschild geometry if a ¼ 0. So, the variation of λ
indicates a change of the rotating solution from a BH to a
compact object. Therefore, we conclude that the deviation
from1of δ is a topological phase transition. The behavior of δ
can act as a topological quantity to reflect the topological
information of the spacetime structure.

VIII. CONNECTION BETWEEN THE SHADOW
RADIUS AND QNMs

It is well known that QNMs in the eikonal regime are
related to the angular velocity of the last circular null geo-
desic, while the imaginary part was related to the Lyapunov
exponent, Λ, which determines the instability time scale of
the orbit [55]. Then, the relation between QNMs and black
hole lensing has been established by analyzing the photon
sphere and light ring in a static spacetime or stationary
spacetime, respectively [56–59]. However, it is convenient to
express this connection in terms of the shadow radius and the
real part of QNMs. Such a connection was obtained recently
in Ref. [60] (see also Refs. [61,62]),
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FIG. 10. Curvature radius as a function of the length parameter
for a ¼ 0.5, Q ¼ 0.4, and M ¼ 1. The parameter λ ¼ 0.2, 0.3,
and 0.9999 × λmax with λmax ¼ 0.3752.
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FIG. 11. Topological quantity δ as a function of λ for a ¼ 0.5,
Q ¼ 0.4, and M ¼ 1. For small λ, δ assumes the value 1, while
for λ > 0.3752, δ decreases with λ.
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ωℜ ¼ lim
l≫1

l
RS

: ð50Þ

This result was proved to be valid for the static spherical
spacetime and accurate in the eikonal limit l ≫ 1. Very
recently, the correspondence between the shadow radius and
the real part of QNMs frequencies was improved to the
subleading regime to half of its value [63]

ωℜ ¼ lim
l≫1

R−1
S

�
lþ 1

2

�
: ð51Þ

Of course, in the large angular momentum regime, i.e.,
l ≫ 1, we recover Eq. (50). Thus, we can write

ωQNM ¼ lim
l≫1

R−1
S

�
lþ 1

2

�
− i

�
nþ 1

2

�
jΛj: ð52Þ

It is interesting to note that the above correspondence
sometimes works well even for small values of l. It
provides an alternative way to compute the real part of the
QNMs by means of the shadow radius. In Tables II and
III, we present the numerical calculations for the real part
of QNMs obtained by means of the shadow radius. In the
following, we are going to study the QNMs of scalar and
electromagnetic fields in the spacetime of static EYM BH
using the Wentzel-Kramers-Brillouin (WKB) method.

A. QNMs of a scalar field

Before we consider the problem of QNMs, let us
point out that in this section we are going to simplify
the problem by setting the rotation of the black hole to zero,
i.e., a ¼ 0. For the metric (4), we introduce the tortoise
coordinate,

dr⋆ ¼ dr
fðrÞ ; ð53Þ

in order to study perturbations of a massless scalar field,
described by the equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂μΦÞ ¼ 0: ð54Þ

Separation of variables of the function Φ in terms of the
spherical harmonics yields

Φðt; r; θ;ϕÞ ¼ 1

r
e−iωtYlðr; θÞΨðrÞ; ð55Þ

with l ¼ 0; 1; 2;… being the multipole numbers. Then, one
can show that the perturbations are governed by a
Schrödinger wavelike equation,

d2Ψ
dr2⋆

þ ðω2 − VSðrÞÞΨ ¼ 0; ð56Þ

where the function Ψ satisfies the following boundary
conditions,

Ψðr⋆Þ ¼ C� exp ð�iωr⋆Þ; r → �∞; ð57Þ

where ω can be written in terms of the real and imaginary
parts, i.e., ω ¼ ωℜ − iωℑ, where the imaginary part is
proportional to the decay rate of a given mode. The
effective potential VSðrÞ of the perturbations for the scalar
field is given by

VSðrÞ ¼
�
1þ

�
r4

r4 þ 2λ

��
−
2M
r

þQ2

r2

��

×

�
lðlþ 1Þ

r2
þ 2Mr5 − 2Q2r4 − 12Mλrþ 4Q2λ

ðr2 þ 2λÞ2
�
:

ð58Þ

To solve Eqs. (56) and (58) with the boundary
conditions (57), we use the WKB approximation to
compute the quasinormal frequencies. The WKB method
is widely used for numerical computations of QNMs and
is based on the analogy with the problem of wave
scattering near the peak of a potential barrier in quantum
mechanics, where ω plays a role of energy [64,65]. In
this work, we are going to use the sixth-order WKB

TABLE II. Numerical values for the shadow radius and the real
part of QNMs obtained via Eq. (51). Here, we use a constant
λ ¼ 0.1 and change Q.

l ¼ 1, n ¼ 0 l ¼ 2, n ¼ 0 l ¼ 3, n ¼ 0

Q ωℜ ωℜ ωℜ RS

0.1 0.2898919233 0.4831532055 0.6764144877 5.174342157
0.2 0.2913902646 0.4856504410 0.6799106174 5.147735467
0.3 0.2939658648 0.4899431080 0.6859203512 5.102633263
0.4 0.29774983241 0.4962497208 0.6947496090 5.037786211
0.5 0.3029582758 0.5049304598 0.7069026436 4.951176844

TABLE III. Numerical values for the shadow radius and the real
part of QNMs obtained via Eq. (51). Here, we use a constant
Q ¼ 0.3 and change λ.

l ¼ 1, n ¼ 0 l ¼ 2, n ¼ 0 l ¼ 3, n ¼ 0

λ ωℜ ωℜ ωℜ RS

0.0 0.2931522710 0.4885871182 0.6840219656 5.116794746
0.1 0.2939658648 0.4899431080 0.6859203512 5.102633264
0.2 0.2948115346 0.4913525578 0.6878935808 5.087996308
0.3 0.2956924989 0.4928208315 0.6899491641 5.072837511
0.4 0.2966125526 0.4943542542 0.6920959560 5.057102227
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approximation for calculating QNMs developed by
Konoplya [66].
In Tables IV and V, we present the results for the scalar

perturbations by varying the magnetic charge Q and the
parameter λ, respectively. Note that we have not presented
the calculations of QNMs for the fundamental mode l ¼
n ¼ 0 in Tables IV and V. This is simply related to the fact
that the WKB method is applicable only when l > n and
does not give a satisfactory precision for this fundamen-
tal mode.

B. QNMs of an electromagnetic field

In this section, we precede to study the effect of the
magnetic charge on the propagation of the electromagnetic
field. To do so, we recall the wave equations for a test
electromagnetic field,

1ffiffiffiffiffiffi−gp ∂ν½
ffiffiffiffiffiffi
−g

p
gαμgσνðAσ;α − Aα;σÞ� ¼ 0: ð59Þ

The 4-potential Aμ can be expanded in terms of the four-
dimensional vector spherical harmonics as

Aμðt; r; θ;ϕÞ ¼
X
l;m

0
BBB@
2
6664

0

0
aðt;rÞ
sinðθÞ ∂ϕYlmðθ;ϕÞ

−aðt; rÞ sinðθÞ∂θYlmðθ;ϕÞ

3
7775

þ

2
6664

fðt; rÞYlmðθ;ϕÞ
hðt; rÞYlmðθ;ϕÞ
kðt; rÞ∂θYlmðθ;ϕÞ
kðt; rÞ∂φYlmðθ;ϕÞ

3
7775
1
CCCA; ð60Þ

in which Ylmðθ;ϕÞ denotes the spherical harmonics.
Without going into details, we find the following sec-
ond-order differential equation for the radial part,

d2Ψðr�Þ
dr2�

þ ½ω2 − VEðr�Þ�Ψðr�Þ ¼ 0; ð61Þ

with the effective potential

VEðrÞ ¼
�
1þ

�
r4

r4 þ 2λ

��
−
2M
r

þQ2

r2

��
lðlþ 1Þ

r2
: ð62Þ

In Tables VI and VII, we show the results for the elec-
tromagnetic perturbations by varying the magnetic charge

TABLE IV. The real and imaginary parts of the quasinormal
frequencies of the scalar field with different values of Q. In all
these cases, we have set λ ¼ 0.1.

Spin 0 l ¼ 1, n ¼ 0 l ¼ 2, n ¼ 0 l ¼ 2, n ¼ 1

Q ωðWKBÞ ωðWKBÞ ωðWKBÞ
0.1 0.2942-0.0968 i 0.4857-0.0958 i 0.4662-0.2924 i
0.2 0.2958-0.0969 i 0.4882-0.0959 i 0.4689-0.2927 i
0.3 0.2984-0.0971 i 0.4925-0.0961 i 0.4734-0.2932 i
0.4 0.3023-0.0972 i 0.4989-0.0963 i 0.4801-0.2937 i
0.5 0.3076-0.0974 i 0.5076-0.0965 i 0.4892-0.2941 i
0.6 0.3148-0.0974 i 0.5193-0.0966 i 0.5015-0.2940 i
0.7 0.3242-0.0969 i 0.5350-0.0963 i 0.5177-0.2927 i
0.8 0.3369-0.0954 i 0.5562-0.0950 i 0.5392-0.2883 i

TABLE V. The real and imaginary parts of the quasinormal
frequencies of the scalar field with different values of λ. In all
these cases, we have set Q ¼ 0.3.

Spin 0 l ¼ 1, n ¼ 0 l ¼ 2, n ¼ 0 l ¼ 2, n ¼ 1

λ ωðWKBÞ ωðWKBÞ ωðWKBÞ
0.0 0.2975-0.0982 i 0.4912-0.0972 i 0.4717-0.2969 i
0.1 0.2984-0.0971 i 0.4925-0.0961 i 0.4734-0.2932 i
0.2 0.2993-0.0958 i 0.4939-0.0949 i 0.4749-0.2892 i
0.3 0.3001-0.0944 i 0.4953-0.0936 i 0.4762-0.2849 i
0.4 0.3008-0.0929 i 0.4967-0.0922 i 0.4771-0.2802 i
0.5 0.3013-0.0913 i 0.4980-0.0906 i 0.4776-0.2753 i
0.6 0.3016-0.0896 i 0.4994-0.0890 i 0.4774-0.2702 i
0.7 0.3018-0.0880 i 0.5006-0.0872 i 0.4767-0.2652 i

TABLE VI. The real and imaginary parts of the quasinormal
frequencies of the electromagnetic field with different values of
Q. In all these cases, we have set λ ¼ 0.1.

Spin 1 l ¼ 1, n ¼ 0 l ¼ 2, n ¼ 0 l ¼ 2, n ¼ 1

Q ωðWKBÞ ωðWKBÞ ωðWKBÞ
0.1 0.2501-0.0917 i 0.4598-0.0940 i 0.4392-0.2875 i
0.2 0.2515-0.0918 i 0.4623-0.0942 i 0.4418-0.2878 i
0.3 0.2541-0.0920 i 0.4665-0.0943 i 0.4464-0.2883 i
0.4 0.2579-0.0923 i 0.4728-0.0946 i 0.4530-0.2888 i
0.5 0.2631-0.0926 i 0.4815-0.0948 i 0.4621-0.2893 i
0.6 0.2702-0.0928 i 0.4931-0.0949 i 0.4744-0.2893 i
0.7 0.2798-0.0925 i 0.5088-0.0947 i 0.4907-0.2880 i
0.8 0.2928-0.0911 i 0.5301-0.0934 i 0.5126-0.2835 i

TABLE VII. The real and imaginary parts of the quasinormal
frequencies of the electromagnetic field with different values of λ.
In all these cases, we have set Q ¼ 0.3.

Spin 1 l ¼ 1, n ¼ 0 l ¼ 2, n ¼ 0 l ¼ 2, n ¼ 1

λ ωðWKBÞ ωðWKBÞ ωðWKBÞ
0.0 0.2526-0.0932 i 0.4650-0.0955 i 0.4443-0.2921 i
0.1 0.2541-0.0920 i 0.4665-0.0944 i 0.4464-0.2883 i
0.2 0.2556-0.0908 i 0.4681-0.0931 i 0.4482-0.2841 i
0.3 0.2570-0.0894 i 0.4697-0.0918 i 0.4499-0.2796 i
0.4 0.2583-0.0878 i 0.4713-0.0903 i 0.4512-0.2747 i
0.5 0.2594-0.0861 i 0.4729-0.0886 i 0.4521-0.2694 i
0.6 0.2602-0.0842 i 0.4745-0.0869 i 0.4522-0.2639 i
0.7 0.2606-0.0823 i 0.4760-0.0849 i 0.4516-0.2583 i
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Q and the parameter λ, respectively. From Fig. 12, we see
that the effective potentials for both fields are indeed
affected by the magnetic charge Q. From Fig. 13, we
see that by increasing the magnetic charge Q, while
having a constant λ, the real part of QNMs describing
scalar and electromagnetic fields increases. A similar result
is obtained when we increase the parameter λ while having
a fixed value ofQ; namely, the real part of QNMs increases
monotonically, as can be seen in Fig. 14, although in this
case, the effect of the magnetic charge on the real part of
QNMs is smaller compared to the first case. From
Tables IV–VII, it can also be seen that, in general, the
absolute values of the imaginary part of QNMs decrease
with the increase of the magnetic charge Q and λ,
respectively. This means that the field perturbations
in the spacetime of EYM black hole having Q > 0 or
λ > 0 oscillate more rapidly compared to the vacuum
Schwarzschild BH; however, in terms of damping, the
field perturbations decay more slowly compared to the
Schwarzschild BH. In addition to that, we see that for
the scalar field perturbations the values of the real part of
QNMs in absolute values are higher than those for the
electromagnetic field perturbations (see Tables IV–VII).

Thus, the scalar field perturbations will oscillate more
rapidly compared to the electromagnetic field perturba-
tions, in the same time the scalar field ones damp more
rapidly than electromagnetic field ones. Once we compute
the real part of QNMs and find that ωℜ increases with Q
with a constant λ, we can make use of the inverse relation
between ωℜ and the shadow radius RS,

RSðQÞ ¼ lim
l≫1

lþ 1
2

ωℜðQÞ
����
λ¼const

; ð63Þ

which decreases with increasing Q as can be seen from
Fig. 15 (left panel). This fact is verified in Fig. 6, where we
have shown that the shadow radius decreases by increasing
Q. Similarly, having the real part of QNMs with a varying λ
and a constant Q, we can use

RSðλÞ ¼ lim
l≫1

lþ 1
2

ωℜðλÞ
����
Q¼const

ð64Þ

and show that the shadow radius monotonically decreases
with increasing λ, as can be seen from Fig. 14 (right panel).

FIG. 12. Left panel: the effective potential of the scalar field for different values of l. Right panel: the effective potential of the
electromagnetic field for different values of l.

FIG. 13. Left panel: the real part of QNMs for the scalar field vs the magnetic charge Q. In both plots, we have set λ ¼ 0.1. Right
panel: the real part of QNMs for the electromagnetic field vs the magnetic charge Q. In both plots, we have set λ ¼ 0.1.

KIMET JUSUFI et al. PHYS. REV. D 103, 024013 (2021)

024013-16



This is consistent with Fig. 7, where we have shown that the
shadow radius decreases by increasing λ. Finally, we can
compare the numerical results for the real part of QNMs
obtained from the shadow radius presented in Tables II and
III with the ones obtained via the WKB method presented
in Tables IV–VII. We observe that, even for the funda-
mental modes with small l, the accuracy between two
methods works well for the case of the scalar field
perturbations. Increasing l, the accuracy between the two
methods increases.

C. Time domain integration method

Let us now explore the dynamical evolution of the scalar
and electromagnetic perturbations using the time domain
integration method. Toward this goal, first we simplify our
computations by employing the following relation:

2M ¼ fðrh; λ; QÞ ¼ rh þ
Q2

rh
þ 2λ

r3h
: ð65Þ

This means that we fix the mass of the BH and analyze
when the line y ¼ 2M meets the curve y ¼ fðrh; λ; Q) at
the point of minimum. We call this mass the critical mass,

M ¼ Mc, and the horizon is denoted by r ¼ rH. In other
words, the Cauchy and event horizons coincide. With that
information in mind, we can rewrite Eq. (5) as follows [45]:

gðrÞ ¼ ðr − rhÞ2
r4 þ 2λ

�
r2 þ 2λ

r2h

�
2r
rh

þ 1

��
: ð66Þ

Introducing the tortoise coordinate r⋆ ¼ R dr=gðrÞ, we
find that it is possible to write the wave equations (56) and
(61) as follows,

∂2Φ
∂r2⋆ −

∂2Φ
∂t2 ¼ VS=EðrÞΦ; ð67Þ

where VS=EðrÞ represents the effective potential for the
scalar and electromagnetic field, respectively. One can
determine the oscillation shape of the QNMs, by utilizing
the finite difference method to study the dynamical
evolution of the field perturbations in the time domain
and examine the stability of the EYMBH. To do so, we first
rewrite the wave equation in terms of the variables u and v,

FIG. 14. Left panel: the real part of QNMs for the scalar field vs the parameter λ and constant magnetic charge Q ¼ 0.3. Right panel:
the real part of QNMs for the electromagnetic field vs the parameter λ and constant magnetic charge Q ¼ 0.3.

FIG. 15. Left panel: the plot of the shadow radius as a function of the magnetic chargeQ obtained directly from the real part of QNMs
given by Eq. (58). We have set λ ¼ 0.1. Right panel: the plot of the shadow radius as a function of the parameterQ obtained from the real
part of QNMs given by Eq. (59). We have set Q ¼ 0.3.
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∂2Φ
∂u∂vþ

1

4
VðrÞΦ ¼ 0; ð68Þ

where u ¼ t − r⋆ and v ¼ tþ r⋆, respectively. To solve
this two-dimensional wave equation, we use a numerical
method known as the finite difference method based on the
following equation [67],

Φðuþ δu; vþ δvÞ ¼ Φðu; vþ δvÞ þΦðuþ δu; vÞ

−Φðu; vÞ − δuδvΘ
Φðuþ δu; vÞ þΦðu; vþ δuÞ

8

þOðϵ4Þ; ð69Þ

where

Θ ¼ V

�
2v − 2uþ δv − δu

4

�
: ð70Þ

Next, we suppose the initial perturbation as a Gaussian
pulse, centered on vc given by

Φðu ¼ u0; vÞ ¼ e−
ðv−vcÞ2

2σ2 : ð71Þ

With this initial condition, from Eqs. (69) and (70), we find
numerically the functionΦ and plot it out in Figs. 16 and 17
for different values of l. From these figures, we can see that
the decaying rates of the scalar and electromagnetic
perturbations in the EYM BH spacetime are slower than
that of the Schwarzschild BH and end up in a tail. This
conclusion is also supported by our numerical results
obtained above by the WKB approximations.

IX. QUASIPERIODIC OSCILLATIONS (QPOs)

For the numerical calculations to be carried out in this
section, we need the numerical values of some physical
constants including the solar mass M⊙ ¼ 1.9888 × 1030,
the gravitational constant G ¼ 6.673 × 10−11, and the
speed of light in vacuum c ¼ 299792458, all given in
Systeme International units. These same constants will be

FIG. 16. The time domain profile for the scalar perturbations. Left panel: the red curve is the time domain profile for the EYMBH, and
the blue curve is that for the Schwarzschild BH with l ¼ 0. Right panel: the red curve is the time domain profile for the EYM BH, and
the blue curve is that for the Schwarzschild BH with l ¼ 1. We have set λ ¼ 0.1 and rh ¼ 1 in both plots.

FIG. 17. The time domain profile for the electromagnetic perturbations. Left panel: the red curve is the time domain profile for the
EYM BH, and the blue curve is that for the Schwarzschild BH with l ¼ 1. Right panel: the red curve is the time domain profile for the
EYM BH, and the blue curve is that for the Schwarzschild BH with l ¼ 2. We have set λ ¼ 0.1 and rh ¼ 1 in both plots.
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written explicitly in some subsequent formulas of this
section.
In the power spectra of Fig. 3 of Ref. [68], we clearly see

two peaks at 300 and 450 Hz, representing, respectively, the
possible occurrence of the lower νL ¼ 300 Hz QPO and of
the upper νU ¼ 450 Hz QPO from the Galactic micro-
quasar GRO J1655-40. Similar peaks have been obtained
for the microquasars XTE J1550-564 and GRS 1915þ 105
obeying the remarkable relation, νU=νL ¼ 3=2 [69]. Some
of the physical quantities of these three microquasars and
their uncertainties are as follows [68,70],

GRO J1655-40∶
M
M⊙

¼ 6.30� 0.27;
a
rg

¼ 0.70� 0.05

νU ¼ 450� 3 Hz; νL ¼ 300� 5 Hz;

ð72Þ

XTEJ1550-564∶
M
M⊙

¼ 9.1� 0.6;
a
rg

¼ 0.405� 0.115

νU ¼ 276� 3 Hz; νL ¼ 184� 5 Hz;

ð73Þ

GRS 1915þ 105∶
M
M⊙

¼ 14.0� 4.4;
a
rg

¼ 0.99� 0.01

νU ¼ 168� 3 Hz; νL ¼ 113� 5 Hz;

ð74Þ

where rg ≡GM=c2.
These twin values of the QPOs are most certainly due to

the phenomenon of resonance which occurs in the vicinity
of the ISCO, where the accreting particles perform radial
and vertical oscillations around almost circular orbits.
These two oscillations couple generally nonlinearly to
yield resonances in the power spectra [71,72].
So, in the first part of this section, we will be concerned

with stable circular orbits in the symmetry plane and their
perturbations, since these orbits are mostly borrowed by in-
falling matter in accretion processes.
From now on, we consider stable circular orbits in

the θ ¼ π=2 plane. First of all, we need to set up the
equations governing an unperturbed circular motion. Once
this is done, we will derive the equations that describe
a perturbed circular motion around a stable unperturbed
circular motion. In a third step, we will separate out the set
of equations governing the perturbed circular motion.
The unperturbed circular motion is a geodesic motion

obeying the equation

duμ

dτ
þ Γμ

αβu
αuβ ¼ 0; ð75Þ

where uμ ¼ dxμ=dτ ¼ _xμ is the 4-velocity. Here, the
connection Γμ

αβ is related to the unperturbed metric (12).

For a circular motion in the equatorial plane (θ ¼ π=2),
uμ ¼ ðut; 0; 0; uϕÞ ¼ utð1; 0; 0;ωÞ, where ω ¼ dϕ=dt is
the angular velocity of the test particle. The only equation
describing such a motion is the r component of (75) and the
normalization condition gμνuμuν ¼ −c2, which take,
respectively, the following forms,

∂rgttðutÞ2 þ 2∂rgtϕutuϕ þ ∂rgϕϕðuϕÞ2 ¼ 0; ð76Þ

gttðutÞ2 þ 2gtϕutuϕ þ gϕϕðuϕÞ2 ¼ −c2; ð77Þ

where the metric and its derivatives are evaluated at
θ ¼ π=2. From them, we obtain

ω ¼
−∂rgtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtϕÞ2 − ∂rgtt∂rgϕϕ

q
∂rgϕϕ

;

ut ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ 2∂rgtϕωþ gϕϕω2Þ

q ;

uϕ ¼ ωut; ð78Þ

where the upper sign corresponds to prograde circular
orbits and the lower sign corresponds to retrograde orbits.
If the motion is perturbed, the actual position is now

denoted by Xμ ¼ xμ þ ημ and the 4-velocity by Uμ ¼ uμ þ
_ημ (where _≡ d=dτ) with uμ being the unperturbed values
given in (78). First, substituting it to

dUμ

dτ
þ Γμ

αβðXσÞUαUβ ¼ 0; ð79Þ

where Γμ
αβðXσÞ is the perturbed connection, and then

keeping only linear terms in ημ and its derivatives [and
also considering (75)], we finally arrive at [73,74]

η̈μ þ 2Γμ
αβu

α _ηβ þ ∂νΓ
μ
αβu

αuβην ¼ 0; ð80Þ

where the background connection Γμ
αβ and its derivatives

are all evaluated at θ ¼ π=2. As shown in Ref. [74],
Eqs. (80) decouple and take the form of oscillating radial
(in the θ ¼ π=2 plane) and vertical (perpendicular to the
θ ¼ π=2 plane) motions obeying the following harmonic
equations:

η̈r þ Ω2
rη

r ¼ 0; η̈θ þ Ω2
θη

θ ¼ 0: ð81Þ

The locally measured frequencies (Ωr,Ωθ) are related to the
spatially remote observer’s frequencies (νr, νθ) by

νr ¼
1

2π

1

ut
Ωr; νθ ¼

1

2π

1

ut
Ωθ; ð82Þ

where ut is given in (78) and furthermore the frequencies
are defined as [74]
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Ω2
θ ≡ ð∂θΓθ

ijÞuiuj; ði; j ¼ t;ϕÞ; ð83Þ

Ω2
r ≡ ð∂rΓr

ij − 4Γr
ikΓk

rjÞuiuj; ði; j; k ¼ t;ϕÞ: ð84Þ

In these expressions, the summations extend over (t;ϕ). It
is understood that all the functions appearing in (78), (82),
and (83) are evaluated at θ ¼ π=2.
In terms of

x≡ r
rg
; a0 ≡ a

rg
; λ0 ≡ λ

r4g
; rg ≡GM

c2
; ð85Þ

the expressions of (νr, νθ) measured in hertz take the form

νr ¼
c3

2πGM

ffiffiffiffi
N

p
ffiffiffiffiffiffi
Nr

Dr

s
; νθ ¼

c3

2πGM

ffiffiffiffi
N

p
ffiffiffiffiffiffi
Nθ

Dθ

s
; ð86Þ

where (N;Nr;Dr; Nθ; Dθ) are given in Appendix B.
As we mentioned earlier, the twin values of the QPOs

observed in the microquasars are most certainly due to the
phenomenon of resonance resulting from the coupling
of the vertical and radial oscillatory motions [71,72].

The most common models for resonances are parametric
resonance, forced resonance, and Keplerian resonance. It is
the general belief that the resonance observed in the three
microquasars (72), (73), and (74) is of the nature of the
parametric resonance and is given by

νU ¼ νθ; νL ¼ νr; ð87Þ

with

νθ
νr

¼ n
2
; n ∈ Nþ: ð88Þ

In numerous applications of the parametric resonance, one
usually considers the case n ¼ 1 [75–78]. In such a case, νr
is the natural frequency of the system and νθ is the
parametric excitation (Tθ ¼ 2Tr, the corresponding peri-
ods), that is, the vertical oscillations supply energy to the
radial oscillations causing resonance [78]. However, since
νθ > νr in the vicinity of ISCO, where accretion occurs and
QPO resonance effects take place, the lower possible value
of n is 3, and in this case νr becomes the parametric
excitation that supplies energy to the vertical oscillations.
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FIG. 18. Fitting the uncharged particle oscillation upper and lower frequencies to the observed frequencies (in hertz) for the
microquasars GRO J1655-40, XTE J1550-564, and GRS 1915þ 105 at the 3=2 resonance radius. In these plots, each microquasar is
treated as a rotating EYM BH given by Eq. (12) withQ ¼ 0. The black curves represent νU ¼ νθ, the blue curves represent νL ¼ νr with
νU=νL ¼ 3=2, and the green curves represent the mass limits as given in (72), (73), and (74). Upper left panel: the microquasar GRO
J1655-40 treated as a Kerr BH withM=M⊙ ¼ 6.3 and a=rg ¼ 0.70 (rg ≡ GM=c2). We see that the black (blue) curve does not cross the
upper (lower) mass error band. This panel has been added for comparison. Upper right panel: the microquasar GRO J1655-40 treated as
a rotating EYM BH with M=M⊙ ¼ 6.3, a=rg ¼ 0.70, and λ=r4g ¼ 2.14. We see that the black (blue) curve crosses the upper (lower)
mass error band. Lower left panel: the microquasar XTE J1550-564 treated as a rotating EYM BH withM=M⊙ ¼ 9.1, a=rg ¼ 0.51, and
λ=r4g ¼ 4.30. The black (blue) curve crosses the upper (lower) mass error band. Lower right panel: the microquasar GRS 1915þ 105

treated as a rotating EYM BH with M=M⊙ ¼ 9.7, a=rg ¼ 0.99, and λ=r4g ¼ 0.005. The black (blue) curve crosses the upper (lower)
mass error band.
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Thus, the observed ratio νU=νL ¼ 3=2 is theoretically
justified by making the assumptions (87) and (88) with
n ¼ 3. Numerically, we have to show that the plot of νθ (νr)
versus M=M⊙ crosses the upper (lower) mass band error,
given in (72), (73), and (74), as a0 assumes values in its
defined band error and λ0 > 0 runs within some interval to
be defined later as the interval of its constrained values.
Curves that fit the upper and lower oscillation fre-

quencies of the uncharged test particles to the observed
frequencies (in hertz) of the microquasars GRO J1655-40,
XTE J1550-564, and GRS 1915þ 105 at the 3=2 reso-
nance radius are presented in Fig. 18. In these plots, each
microquasar is treated as a rotating EYM BH (12) with
Q ¼ 0. The black curves represent νU ¼ νθ versusM=M⊙,
the blue curves represent νL ¼ νr versus M=M⊙ with
νU=νL ¼ 3=2, and the green curves represent the mass
limits as given in (72), (73), and (74). For comparison, we
start with the upper left panel where the microquasar GRO
J1655-40 is treated as a Kerr BH (λ0 ¼ 0) with M=M⊙ ¼
6.3 and a=rg ¼ 0.70. We see that the black (blue) curve
does not cross the upper (lower) mass error band. In the
other remaining three panels, where each microquasar is
treated as a rotating EYM BH (12), we see how the black
(blue) curve crosses the upper (lower) mass error band for
each of the microquasars. The curve fittings allow us to fix
the following limits for λ0:

0 < λ0 ≲ 4.3: ð89Þ

It is worth noting that the ratio νU=νL ¼ 3=2 may
sometimes admit two x roots. In our plot, we have chosen
the root that is closer to xISCO where the events of accretion
and QPOs occur.
For completeness and comparison, two other plots (not

shown in this paper) similar to those in the upper left panel
of Fig. 18 have been sketched for the microquasars XTE
J1550-564 and GRS 1915þ 105 treating them as the Kerr
BH (λ0 ¼ 0). For the microquasar XTE J1550-564, the
plots show no intersections of the curves (νU, νL) with
the mass error bands, and for the microquasar GRS
1915þ 105, intersections exist, but these are certainly
due to the large mass band error for this microquasar (74).
Other curves that fit the data of the three microquasars

(72), (73), and (74) have been given either via the
immersion of a Schwarzschild BH into a test magnetic
field [79] or via the consideration of generalized theories of
gravity [80].

X. CONCLUSION

In this paper, we have obtained a rotating regular
magnetic BH solution of the EYM theory, by applying
the NJAAA to a spherical symmetric solution. We have
then investigated the ergosurface and the BH shadow. We
have found that the magnetic chargeQ causes deformations

to both the size and shape of the BH shadow. For a given
value of the angular momentum a and the inclination angle
θ0, the presence of the magnetic charge Q shrinks the
shadow and enhances its deformation with respect to the
shadow of the Kerr spacetime. In other words, the shadow
radius decreases due to the presence of the magnetic charge
Q. Among other things, we have constructed the embed-
ding diagram for the rotating EYM BH and examined the
energy conditions. In particular, it has been found that
the strong energy condition in general is not satisfied. The
particular topological property of the shadow has been
revealed upon studying the behavior of the topological
quantity δ as a function of λ. At some critical value λc, we
have found that there is a possible topological phase
transition. In this transition, the rotating EYM BH first
becomes extremal and then turns to a horizonless compact
object without spacetime singularities at the center.
In addition, we have studied the connection between the

real part of QNMs in the eikonal limit and the shadow
radius. First, using the WKB approximation to the sixth
order, we have shown that the quasinormal frequencies in
the spacetime of the EYM BH deviate from those of the
Schwarzschild BH; that is, ωℜ increases with increasingQ.
We have shown that the same result is obtained if we fix the
magnetic charge Q and increase the parameter λ, although
the effect is very small. This suggests that the shadow
radius RS decreases due to the inverse relation given by
Eqs. (58) and (59), respectively. We have verified this
result by means of the geodesic approach with the shadow
images given in Figs. 6 and 7. Despite the fact the effect
of λ is small, we have used the M87 black hole parameters
and shown that the rotating EYM black hole can be
distinguished from the Kerr-Newman black hole with a
magnetic charge. The difference between the angular
diameters of their shadows is given by the interval Δθs ∈
ð0.11–0.61Þ μ-arc sec with λ ∈ ð0.1–0.5Þ. In addition,
we studied observational constraints on the EYM para-
meter λ via frequency analysis of QPOs and the EHT data
of shadow cast by the M87 central black hole. It is
interesting to note that EHT data offer tighter constraints
on the parameter λ as compared to QPO’s associated with
microquasars.
We have also examined the dynamical evolution of the

scalar and electromagnetic perturbations using the time
domain integration. We have shown that the decaying
rates of the scalar and electromagnetic perturbations in
the rotating EYM BH are slower than that of the
Schwarzschild BH and end up in a tail.
Finally, we have considered the QPOs and their reso-

nances generated by a test particle undergoing a circular
motion in the symmetric plane of the rotating EYM BH.
We have employed the usually put-forward assumptions:
νU ¼ νθ, νL ¼ νr with νU=νL ¼ 3=2. With these assump-
tions, we have explored in details the effects of the para-
meter λ0 on the frequencies of QPOs. For the uncharged
rotating EYM BHs, we have shown that the value of λ0 lies
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in an interval bounded below by 0 and above by 4.3. This
has allowed us to obtain good and complete curve fittings
for the three microquasars GRO J1655-40, XTE J1550-
564, and GRS 1915þ 105, all treated as rotating neutral
EYM BHs.
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APPENDIX A: EINSTEIN FIELD EQUATIONS

The nonvanishing components of the Einstein tensor are
given by [11]

Gtt ¼
2ϒ0ða4 cos4 θ − a4 cos2 θ þ a2r2 þ r4 − 2ϒr3Þ

Σ3
−
a2r sin2 θϒ00

Σ3
;

Grr ¼ −
2ϒ0r2

ΔΣ
;

Gθθ ¼ −
ϒ00a2r2 cos2 θ þ 2ϒ0a2 cos2 θ þϒ00r3

Σ
;

Gtϕ ¼ a sin2 θ
Σ3

½rða2 þ r2ÞΣϒ00 þ 2ϒ0ðða2 þ r2Þa2 cos2 θ − a2r2 − r3ðr − 2ϒÞÞ�;

Gϕϕ ¼ −
sin2 θ
Σ3

½rða2 þ r2Þ2Σϒ00 þ 2a2ϒ0ðcos2 θða4 þ 3a2r2 þ 2r4 − 2ϒr3Þ − a2r2 − r4 þ 2ϒr3Þ�: ðA1Þ

APPENDIX B: QPOs’ EXPRESSIONS

In terms of x, a0, and λ0, the quantities N, Nr, Dr, Nθ, and Dθ appearing in (86) are given by

N ¼ 1

½ðx4 þ 2λ0Þ2 − a20ðx5 − 6xλ0Þ�2
�
2x3=2a30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ðx8 − 4x4λ0 − 12λ20Þ

þ 2x7=2a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ð3x8 þ 4x4λ0 − 4λ20Þ þ ðx4 þ 2λ0Þ2ð−3x7 þ x8 þ 2x3λ0 þ 4x4λ0 þ 4λ20Þ

þ a20ð−3x12 − 3x13 þ 20x8λ0 þ 6x9λ0 − 12x4λ20 þ 60x5λ20 þ 72xλ30Þ
�
; ðB1Þ

Nr ¼ ðx5 þ 2xλ0Þ2ð−6x7 þ x8 − 12x3λ0 þ 36x4λ0 − 60λ20Þ þ a40ð−3x13 þ 70x9λ0 − 324x5λ20 þ 72xλ30Þ

þ 2x5=2a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ð6x11 þ 3x12 þ 24x7λ0 − 46x8λ0 þ 24x3λ20 − 92x4λ20 þ 24λ30Þ

þ a20ð−6x14 − 15x15 − 3x16 þ 24x10λ0 þ 190x11λ0 þ 40x12λ0 þ 72x6λ20 − 468x7λ20 þ 184x8λ20 − 792x3λ30

þ 160x4λ30 − 48λ40Þ þ 2a30

�
4x23=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
þ 3x25=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
− 48x15=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
λ0

− 46x17=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
λ0 þ 144x7=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
λ20 − 92x9=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
λ20 þ 24λ30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x5 − 6xλ0

q �
; ðB2Þ

Dr ¼ xðx4 þ 2λ0Þ
�
2x3=2a30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ðx8 − 4x4λ0 − 12λ20Þ þ 2x7=2a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ð3x8 þ 4x4λ0 − 4λ20Þ

þ ðx4 þ 2λ0Þ2ð−3x7 þ x8 þ 2x3λ0 þ 4x4λ0 þ 4λ20Þ þ a20ð−3x12 − 3x13 þ 20x8λ0 þ 6x9λ0 − 12x4λ20

þ 60x5λ20 þ 72xλ30Þ
�
; ðB3Þ
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Nθ ¼ ðx4 − 6λ0Þðx5 þ 2xλ0Þ2 − 2x5=2a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ð3x8 þ 4x4λ0 − 4λ20Þ þ a40ð3x9 − 20x5λ0 þ 12xλ20Þ

þ a20ð9x11 þ 3x12 − 44x7λ0 þ 10x8λ0 − 60x3λ20 þ 4x4λ20 − 8λ30Þ þ a30

�
−4x15=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q

− 6x17=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
þ 24x7=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
λ0 − 8x9=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
λ0 þ 8λ20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x5 − 6xλ0

q �
; ðB4Þ

Dθ ¼ x

�
2x3=2a30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ðx8 − 4x4λ0 − 12λ20Þ þ 2x7=2a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 6λ0

q
ð3x8 þ 4x4λ0 − 4λ20Þ ðB5Þ

þ ðx4 þ 2λ0Þ2ð−3x7 þ x8 þ 2x3λ0 þ 4x4λ0 þ 4λ20Þ þ a20ð−3x12 − 3x13 þ 20x8λ0 þ 6x9λ0 − 12x4λ20

þ 60x5λ20 þ 72xλ30Þ
�
: ðB6Þ
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