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I. INTRODUCTION

Standing waves play a fundamental role in many
branches of physics, but the nonlinearity of Einstein
equations hinders their studies in gravitation (Bondi [1]).
The lack of a strict definition makes it difficult to go beyond
an intuitive notion as to what gravitational standing waves
are. Stephani tackled this problem in the paper [2] where he
presented an example of an exact standing-wave spacetime.
An alternative definition was proposed in the paper [3]. The
intuitive notion of a standing wave implies that there is an
alternating energy flow through nodes which averages to
zero in time. Unfortunately, the energy of gravitational
waves cannot be easily localized and the covariant averag-
ing procedure is not known which makes a covariant
definition of standing gravitational waves problematic. It
has been suggested in the paper [3] to evade this problem
by taking the high frequency limit which captures the
dominant contribution to the average energy flow.
According to the definition presented in the paper [3], this
limit should correspond to an effective spacetime with the
Ricci tensor of the Serge type ½ð11Þ1; 1�.
The aim of this paper is to clarify the behavior of test

particles in a standing-wave spacetime. The standing-wave
optical/acoustic traps, linear standing-wave particle accel-
erators, are commonly used in science and industry; thus, a
relevant question is how gravitational standing waves
influence trajectories of freely falling bodies.
The example of an exact standing-wave spacetime,

which was studied in the papers [2,3] (see also [4]), has
a double interpretation. In the original form, it belongs to
the Einstein-Rosen class and possesses cylindrical sym-
metry. This solution and its high frequency limit have been
also studied in details in the paper [5]. A simple trans-
formation reveals that it may be reinterpreted as a particular
case of the three-torus Gowdy model [5].

A naive notion of concentration of the gravitational
energy implies that the energy of standing gravitational
waves is accumulated at antinodes because at antinodes the
metric functions oscillate the most. This suggests that the
geodesic equation should have stationary solutions at
antinodes. One may show that this is not true for cylindrical
standing waves (the Einstein-Rosen waves) discussed by
Stephani [2]. The exact solution studied there may be
interpreted as a “nonlinear” superposition of incoming
gravitational waves and their reflections from the symmetry
axis. The amplitude of the waves decreases in radial
direction. The highest concentration of the gravitational
energy (as measured by Thorne’s C-energy [6])1 is at the
symmetry center and the system effectively resembles a
gravitational geon [8–10]. However, this analogy is not
strict. The gravitational energy is not confined to a finite
region of space because of cylindrical symmetry. The test
particles are kicked out from antinodes because the mini-
mum of the gravitational “potential” is “on average” at the
center. For a hypothetical external observer who studies the
trajectories of freely falling bodies, the whole system looks
like an infinite massive strut extended along the symmetry
axis.2 Therefore, this system is not similar to a standard
setting in which electromagnetic or acoustic standing
waves are investigated.
The Gowdy type interpretation of the standing-wave

spacetime [5] is more promising here. The amplitude of
gravitational waves does not change in spatial direction, but
decreases in time as the universe expands. The geodesic
equation has stationary solutions at antinodes as it is shown
in this paper. The motion of freely falling bodies may be
studied relative to stationary observers at antinodes. We

*sebastian.szybka@uj.edu.pl

1See also the paper [7] where an alternative definition of the
gravitational energy in cylindrical symmetry was given.

2In contrast to the Brill-Hartle solution [8], the high frequency
limit of this solution is not globally regular [5].
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conduct such studies with the help of the geodesic deviation
equation.

II. GOWDY STANDING WAVES

The vacuum solution studied by Stephani [2] under a
suitable transformation corresponds to a particular case of
polarized Gowdy cosmologies with a three-torus topology
[5]. The metric has the following form3:

ĝ ¼ efð−dt2 þ dz2Þ þ tðepdx2 þ e−pdy2Þ; ð1Þ
where 0 ≤ z < 2π, t > 0 (t is a cosmic time function),
0 ≤ x; y < 2π, f ¼ fðt; zÞ, and p ¼ pðt; zÞ. The coordi-
nates are ordered as xα ¼ ðt; z; x; yÞ. The particular solution
we are interested in belongs to the class studied in the paper
[11] and is given by

p ¼ − ln tþ 2β
ffiffiffi
λ
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t
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�
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�
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�
;
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− 2β
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�
sin

�
z
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�
; ð2Þ

where Ji are the Bessel functions of the first kind and ith
order. Periodicity of fðt; 0Þ ¼ fðt; 2πÞ, pðt; 0Þ ¼ pðt; 2πÞ
implies λ ¼ 1=n with n ∈ Z. The constant β is arbitrary
(β ¼ 0 corresponds to the Minkowski spacetime) and it
controls the amplitude of the waves. Without loss of
generality, we assume β > 0. There is a curvature singu-
larity at t ¼ 0. (In polarized Gowdy models with all
possible essential topologies T3, S2 × S1, S3, the strong
cosmic censorship hypothesis holds [12].) After the big
bang, the model expands anisotropically.

III. STATIONARY OBSERVERS
AT ANTINODES

The geodesic equation (A1) and the first integrals are
presented in Appendix A. In order to study trajectories of
test massive particles along the direction ∂z, we investigate
the geodesic equation under simplifying assumption
x ¼ x0, y ¼ y0, where x0, y0 are constants. It takes a form

̈tþ 1

2
ðf;t_t2 þ 2f;z_t_zþ f;t _z2Þ ¼ 0;

̈zþ 1

2
ðf;z _z2 þ 2f;t_t_zþ f;z_t2Þ ¼ 0;

where overdots denote differentiation in a proper time τ.
The first integral which follows from normalization of the
four-velocity is

_t2 − _z2 ¼ e−f:

We show below that there exists a stationary solution _z ¼ 0
(z ¼ z0, where z0 is a constant which belongs to a particular
set). The equations for _z ¼ 0 reduce to

0 ¼ ̈tþ 1

2
f;t_t2; ð3Þ

0 ¼ f;z;

_t ¼ e−
1
2
f; ð4Þ

where (4) is the first integral of (3). The single nontrivial
condition is f;z ¼ 0 which corresponds to antinodes. Using
(2), we have f;z ¼ ð…Þ cos ðz=λÞ, thus z ¼ λπð1=2þ kÞ,
where k ∈ Z, implies f;z ¼ 0. Therefore, the curve γk,

xμ ¼ ½tðτÞ; λπð1=2þ kÞ; x0; y0�; ð5Þ
with k ∈ Z and tðτÞ determined by (4) is a future-directed
timelike geodesic and a stationary solution to the geodesic
equation. Although odd and even k lead to different values
of the metric functions (2) without loss of generality, we
assume that k ¼ 0, unless explicitly indicated otherwise
(the term sinðzλÞ in these metric functions is multiplied by a
function J0 which is asymptotically periodic in t).
Behavior of massive particles around such stationary

worldlines may be studied with the help of the geodesic
deviation equation.

IV. GEODESIC DEVIATION EQUATION

In order to avoid “coordinate effects,” it is convenient to
study geodesic deviation equation in nonholonomic basis.
Let ðM; gÞ denote our spacetime with the metric given in
the coordinate basis by (1). We introduce an orthonormal
tetrad feα̂ðpÞg ⊂ TpM,

e0̂ ¼ e−f=2∂t;

e1̂ ¼ e−f=2∂z;

e2̂ ¼ e−p=2=
ffiffi
t

p ∂x;

e3̂ ¼ ep=2=
ffiffi
t

p ∂y: ð6Þ
Its dual basis is denoted by fθα̂ðpÞg ⊂ T�

pM. The ortho-
normal tetrad feα̂g is a freely falling frame of stationary
observers at antinodes [along the geodesic γk given by (5)].
This fact is demonstrated with the help of the Cartan’s first
structure equation in Appendix B.
The geodesic deviation equation takes a particularly

simple form in a freely falling frame. Let ξ be a deviation
vector, then along γk,

3In fact, t should be substituted by t=tS in the metric (1) and in
the term ln t in p [Eq. (2)], where tS is a dimensional constant.
Without loss of generality, we have assumed that tS ¼ 1 in some
not specified units (possibly meters). According to some termi-
nology, the metric (1) belongs to the generalized Einstein-Rosen
class.
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d2ξα̂

dτ2
¼ −Rα̂

0̂β̂0̂
ξβ̂; ð7Þ

where τ is a proper time of the observer.
In Appendix C, we use the Cartan’s second structure

equation to find curvature two forms. Next, we determine
the components of the Riemann tensor (C2). It turns out
that components Rα̂

0̂β̂0̂ vanish for α̂ ≠ β̂ so the equations

decouple and only R1̂
0̂1̂0̂, R

2̂
0̂2̂0̂, R

3̂
0̂3̂0̂ have to be taken into

consideration. Substituting these components into the
geodesic deviation equation (7), we obtain along γk in
terms of the coordinate t,4
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�
t
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�
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�
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where dt=dτ ¼ e−f=2 follows from the normalization of e0̂
and where

f;t ¼ 2
β

λ
J1

�
t
λ

�� ffiffiffi
λ

p
þ tβJ1

�
t
λ

��
:

We have assumed without loss of generality e0̂ · ξ ¼ 0;
hence, ξ0̂ ¼ 0. In order to simplify the components 2̂, 3̂, we
used one of Einstein equations G0̂0̂ ¼ 0 together with the
fact that for our solutions (2) we have f;zjγk ¼ 0 ⇒
p;zjγk ¼ 0. Equation (8) constitutes a decoupled system
of autonomous second order linear ordinary differential
equations with variable coefficients. Since the equation
decouples, the motion of test particles in transverse and
longitudinal directions can be studied separately.
The tidal forces in a proper time are directly related to

the components of the Riemann tensor as may be seen in
Eq. (7). In the freely falling frame feα̂g, the components
−R1̂

0̂1̂0̂, −R2̂
0̂2̂0̂, −R3̂

0̂3̂0̂ may be thought of as representing
the gradient of the gravitational force in the instantaneous
three-space of the stationary observers at antinodes. The
positive values of components R1̂

0̂1̂0̂, R
2̂
0̂2̂0̂, R

3̂
0̂3̂0̂ imply

that test particles are attracted toward the observer in
respective directions, and the negative values imply
repulsion.

Equation (8) is quite complicated and we were unable to
find exact solutions. The geodesic deviation equation for ξ1̂

at antinode may be written as

d2ξ1̂

dt2
¼ −

β

λt
J1

�
t
λ

�� ffiffiffi
λ

p
þ tβJ1

�
t
λ

���
ξ1̂ − t

dξ1̂

dt

�
:

It may be integrated once; thus, one may present the
solution in the integral form

ξ1̂ ¼ ât
Z

dt
λ2t2

e
β2

2λt
2½J1ðtλÞ2−J0ðtλÞJ2ðtλÞ�−β

ffiffi
λ

p
J0ðtλÞ;

where â is a constant. The second constant appears as a
result of integration. Nevertheless, integral form of solution
was not very helpful in our analysis.
Before turning to a numerical analysis, it is worth to

obtain deeper understanding of the dynamics in the model.
This may be achieved with the help of a null tetrad and the
Newman-Penrose formalism [13].

A. Asymptotics and the Petrov type

The standing gravitational waves studied in this paper
may be thought of as a nontrivial superposition of two
waves moving in the opposite spatial directions. In
Appendix D, we introduced the Newman-Penrose tetrad
with two null vectors kμ, lμ aligned along direction of
propagation of our waves. Next, we decomposed the Weyl
scalar into the complex components ψ0;…;ψ4. The sym-
metries of the line element (1) result in ψ1 ¼ ψ3 ¼ 0. The
physical interpretation of ψ ’s [14–16] implies that ψ1, ψ3

represent longitudinal effects of waves in kμ and lμ

directions, respectively. Similarly, ψ0, ψ4 represent the
transverse effects of waves propagating in kμ, lμ directions.
The component ψ2 is a Coulomb-like contribution to the
geodesic deviation [17]. Thus, in the context of the solution
studied, the longitudinal forces acting on test particles
in the geodesic deviation equation (7) follow from the
Coulomb part of the Weyl tensor ψ2 not from the
longitudinal effects of the waves ψ1 ¼ ψ3 ¼ 0. The trans-
verse forces are induced mainly by ψ0 and ψ4, but the
Coulomb component ψ2 also contributes to them.
The fact that ψ1 ¼ ψ3 ¼ 0 allows us to apply technique

outlined in the paper [18] to determine the Petrov type.
Namely, we keep lμ fixed and carry out null rotation which
takes kμ into a principal null vector. In the new tetrad,
ψ 0
0 ¼ 0. On the other hand, the transformation rules of ψ0

are known, so

ψ 0 ¼ 0 ¼ ψ0 þ 4Eψ1 þ 6E2ψ2 þ 4E3ψ3 þ E4ψ4; ð9Þ

where E is a complex parameter specifying the null
rotation. The multiplicity of the roots of Eq. (9) encodes
coincidences of principal null vectors which define the
Petrov type. For ψ1 ¼ ψ3 ¼ 0, the problem simplifies

4The equations have a simpler form in terms of coordinate time
t than in terms of the proper time of the observer τ.
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considerably: only four distinct or two double roots are
possible which correspond to the Petrov types I and D,
respectively. We define Δ ¼ 4ð9ψ2

2 − ψ0ψ4Þ. The analysis
conducted with the help of the computer algebra system
reveals that in general Δ ≠ 0 with Δ possibly vanishing on
some hypersurfaces. Therefore, the studied spacetime is in
general of the Petrov type I and it is not algebraically
special.5

The geodesic deviation equation (7) could be written in
terms of ψ ’s. Using Eq. (D2) from Appendix D, we
find R1̂

0̂1̂0̂ ¼ 2Ψ2, R2̂
0̂2̂0̂ ¼ −Ψ2 þ 1

2
ðΨ0 þ Ψ4Þ, R3̂

0̂3̂0̂ ¼
−Ψ2 − 1

2
ðΨ0 þΨ4Þ. At antinodes, Ψ4 ¼ Ψ0 and these

equations reduce there to

R1̂
0̂1̂0̂ ¼ 2Ψ2;

R2̂
0̂2̂0̂ ¼ −Ψ2 þΨ0;

R3̂
0̂3̂0̂ ¼ −Ψ2 −Ψ0: ð10Þ

The Coulomb contribution Ψ2 squashes a sphere of test
particles into an ellipsoid deformed along e1̂ direction. The
transverse contribution Ψ0 deforms a ring of test particles
(in a plane stretched by vectors e2̂, e3̂) into an ellipse.
The full formulas for Ψ’s are too long to be usefully

presented here, but it is instructive to study their asymptotic
behavior.
In general, Ψ’s are almost periodic functions with

alternating signs. For late times t ≫ λ, we have

Ψ0 ¼ Oð1= ffiffi
t

p Þ; Ψ4 ¼ Oð1= ffiffi
t

p Þ; Ψ2 ¼ Oð1=tÞ:

This asymptotics corresponds to the falloff condition of the
Riemann tensor which is expected in the cosmological
analogue [19] of the cylindrical version of the famous
peeling theorem [20].6 However, it should be noted that the
standing waves in the cylindrical Einstein-Rosen model and
in the Gowdy form do not satisfy the outgoing wave
condition (nor an appropriate cosmological version of this
condition). The standing waves contain the same amount of
incoming and outgoing radiation, so different peeling
properties of the Weyl tensor are expected. Precisely, for
late times, Ψ0 and Ψ4 dominate the Weyl tensor and the
solution looks like a superposition of two equal waves
moving in opposite directions with the nonlinear artifact of
such superposition, Ψ2, becoming negligible.
Using formulas (D3) from Appendix D, for late times

t ≫ λ at antinodes z ¼ λπð1=2þ kÞ, where k ∈ Z,

Ψ0 ¼ Ψ4 ≃ σ
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Ψ2 ≃
ae−a

2t

4

1

t

�
−
2σffiffi
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; ð11Þ

where a ¼
ffiffi
2
π

q
β is a new auxiliary constant and σ ¼ 1 if k

is even, σ ¼ −1 if k is odd. The components Ψ0, Ψ4, Ψ2

oscillate around 0, but for Ψ2, we have

Ψ2 ≳ −
a

2
ffiffiffi
2

p
t3=2

e−a
2t

and (for m ∈ Z)

max
πλðm−1Þ<t<πλm

Ψ2 ≳ a2

2t
e−a

2t:

The average value of Ψ2 is above the zero. All this together
with Eqs. (10) and (7) imply that attraction to antinodes
dominates along e1̂. We will see in the next section that this
fact remains true in quite early times. The freely falling
particles are, on average, attracted to antinodes. This obser-
vation constitutes the main result of our work. We also note
that the repelling contribution ofΨ2 at antinodes along e2̂, e3̂
is overshadowed by dominant contribution of Ψ0 ¼ Ψ4.
The number of waves on the three-torus is given by

n ¼ 1=λ. We observe in Eqs. (11) and (D3) that for late
times the magnitude of the Coulomb component Ψ2 does
not depend on a number of waves, but the magnitude of the
transverse effect Ψ0;4 does.
For completeness, we provide asymptotics of ψ ’s at

antinodes for the early times t ≪ λ,

Ψ0 ¼ Ψ4 ¼ 3σ
e2σβ

ffiffi
λ

p
β

4λ3=2
þOðt2Þ;

Ψ2 ¼ σ
e2σβ

ffiffi
λ

p
β

4λ3=2
þOðt2Þ:

In terms of the components of the Riemann tensor, we
obtain

2R1̂
0̂1̂0̂ þOðt2Þ ¼ 2R2̂

0̂2̂0̂ þOðt2Þ ¼ −R3̂
0̂3̂0̂ þOðt2Þ:

The behavior of the model is “asymptotically velocity term
dominated” near the initial singularity.
Our analysis of the asymptotic behavior of the compo-

nents of the Riemann tensor R1̂
0̂1̂0̂, R

2̂
0̂2̂0̂, R

3̂
0̂3̂0̂ for late

5Excluding the trivial flat solution for β ¼ 0 and the Kasner
solution which belongs to the class represented by the line
element (1), but requires generalization of the metric functions
(2).

6We note that Eqs. (10), (11), and (18) in the paper [19] are
inconsistent.
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times and near the initial singularity may be verified with
plots obtained with full formulas evaluated for a particular
choice of parameters. Figures 1 and 2 confirm our general
considerations.

B. Numerical analysis

In this subsection, we present the numerical solutions to
the geodesic deviation equation (8).
The linear gravitational waves are transverse; therefore,

it is instructive to start our analysis with a ring of massive
particles at one of the antinodes z ¼ λðπ

2
þ kÞ, where k ∈ Z.

Without loss of generality, we choose k ¼ 0 which is
equivalent in our formulas to all even values of k. The odd
values of k result in a slightly different equations, but for

not too early times the behavior of metric functions is
qualitatively similar. Analysis at odd antinodes may be
thought of as a time-shifted analysis at even antinodes.
Since the model is expanding, then the amplitude of

waves is decreasing in time. The initial conditions are
crucial for the shape of the Tissot diagram—the interaction
with the first wave determines the further evolution of the
system. In Fig. 3, we see two rings (solid and dashed) of
particles initially at rest which evolve through a deformed
“corrugated tubes” into ellipses (solid and dashed). These
particles move on geodesics. They are initially (at some
t ¼ t0) at rest relative to the stationary (central) observer at
an antinode dξα̂=dτjt0 ¼ dξα̂=dtjt0 ¼ 0. (This condition
does not correspond to being stationary in our coordinate
frame, so in general the test particles do not move along any
γk.) The standing gravitational waves do not have a
compact support, so it is not clear how to define the
velocity memory effect in such spacetimes.7 However, what
we observe may be interpreted as some kind of the velocity

12 14 16 18 20
t

– 0.002

0.002

0.004

0.006

FIG. 2. The components of the Riemann tensor. A different
range with all remaining details as in Fig. 1. After initial phase,
the transverse components of the force oscillate about zero with
no clear preference for a sign (Fig. 1). In contrast to that, the
attraction toward the antinodes dominates in the longitudinal
direction as the spacetime expands.

FIG. 3. The Tissot diagram. Two rings (solid and dashed) of test
particles were initially at rest relative to the central observer in his
freely falling frame. Since the solid ring corresponds to a different
phase of the standing gravitational wave than of the dashed ring,
then their evolution looks differently. The interaction with the
first wave is decisive. The test particles will move along presented
profiles through a caustic point (line) only slightly perturbed by
subsequent waves. The long-range effect of the first wave on the
bundle of test particles trajectories resembles the velocity
memory effect. The parameters: λ ¼ 1=10, β ¼ 1=5, the radius
at t0 ¼ 1.173 of the solid ring is r ¼ 0.1. The dashed ring of test
particles is released at t00 ¼ t0 þ 0.31. The rings are evolved for
Δτ ¼ 5.

1 2 3 4 5
t

– 6

– 4

– 2

2

4

FIG. 1. The components of the Riemann tensor: R1̂
0̂1̂0̂ (solid

line), R2̂
0̂2̂0̂ (dashed line), R

3̂
0̂3̂0̂ (dashed gray line) at the antinode

which determine [via Eq. (7)] the force acting on test particles
along directions ∂z, ∂x, ∂y, respectively. The positive values
imply attraction, negative repulsion. (The parameters: λ ¼ 1=10,
β ¼ 1=5.)

7The memory effect for plane gravitational waves is described
in the paper [21].
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memory: the trajectories of tests particles encode informa-
tion about a phase of a standing gravitational wave at the
initial time at which these particles have been released with
zero initial velocity. This is clearly seen in Fig. 3—the long-
range trajectories of particles in solid and dashed rings
differ.
The redefinition of the orientation of the time function

does not alter our equations (only dt=dτ changes sign), but
changes interpretation of the initial conditions: one may
study the motion of test particles in the expanding universe
with decreasing amplitude of standing waves or investigate
the behavior of test particles in a contracting spacetime with
emerging standing waves. The movement of test bodies in
the contracting model is qualitatively similar to the behav-
ior of free bodies in the expanding model (see Fig. 4). The
growing (in proper time of the observer at antinode)
amplitude of gravitational waves leads to larger corrugation
of “tubes” at the end of evolution (as compared to the
expanding model). In both Figs. 3 and 4, the shift in the
initial conditions alters a long-range behavior of trajectories
(our analog of the velocity memory effect) and reveals the
“plus” polarization of gravitational waves.
In order to study the motion of particles along e1̂

direction (which corresponds in the coordinate frame to
direction of ∂z), we consider test particles with the single
nonzero component of the deviation vector ξ1̂. Similarly, as
in case of the studies of the transverse effect described
above, we consider test particles which are initially at rest
relative to the stationary observer at an antinode k ¼ 0. The
numerical analysis reveals that although some particles (it
depends on the choice of t0 and initial phase of the standing

wave) may be initially repelled from the antinode, after
some time the attraction dominates and particles move
toward the antinode. This behavior is consistent with our
analysis from the previous subsection and Figs. 1 and 2.
Since the amplitude of the force decreases in the expanding
model with 1=t, then after initial interaction the particles
move almost freely, pass the antinode, and fly away. This
behavior, which may be interpreted as a memory effect of
the first interaction with the wave, is presented in Fig. 5,
where trajectories of several particles starting at different t0
were plotted.
The behavior of freely falling bodies in the longitudinal

direction changes if the collapsing model is examined. The
typical trajectory of the initially stationary particle (at
t ¼ t0) is presented in Fig. 6. The choice of t0 does not
matter much this time. The particle is slowly attracted
toward the antinode, but near the final crunch it starts to
move more rapidly.

FIG. 4. The Tissot diagram for a contracting model (t is a
decreasing function of the proper time τ). The parameters: t0 ¼
6.51 (the solid ring), t00 ¼ t0 − 0.31 (the dashed ring). Remaining
details as in Fig. 3.

20 40 60 80 100
t

– 0.10

– 0.05

0.00

0.05

0.10

0.15

0.20

1

FIG. 5. Trajectories of initially stationary test particles
near antinode (the expanding model). Parameters: λ ¼ 1=10,
β ¼ 1=5, t0 varies uniformly from 0.38 to 1.02, ξ1̂ðt0Þ ¼ 0.1,
dξ1̂=dτðt0Þ ¼ 0.

1 2 3 4 5
t

0.090

0.092

0.094

0.096

0.098

0.100

1

FIG. 6. Trajectories of a typical initially stationary test particle
near antinode in the contracting model. The initial time t0 ¼ 5.
All remaining details as in Fig. 5.
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V. GEODESICS

The main result of our work has been presented in the
previous sections where the geodesic deviation equation
was investigated in the orthonormal freely falling frame of
the stationary observer at an antinode (and also with the
help of the Newman-Penrose null tetrad). In this section, in
order to complete the research, we investigate the geodesic
equation in a coordinate frame. Although strict interpreta-
tion of the results presented here is obscured by the
coordinate dependence, they nicely fit to the global picture.
We explore the structure of timelike geodesics to under-
stand better behavior of freely falling bodies in the stand-
ing-wave spacetime.
The geodesic equation is presented in Appendix A. In

Sec. III, we proved that stationary observers at antinodes
move along timelike geodesics given by the formula (5).
In this section, we solve numerically the geodesic
equation (A1). We consider 31 test particles that were
stationary in the coordinate frame at some initial moment
t0. The initial conditions are

xαðτ ¼ 0Þ ¼ ðt0; zm; x0; y0Þ;
u ¼ e−fðt0;ziÞ=2∂t; ð12Þ

where x0, y0 are some constants that without loss of
generality may be set to zero and where initial value of
zero component u0 of the particles’ four-velocity u follows
from the normalization condition u · u ¼ −1. The values zm
are uniformly spaced over several spatial periods of the
metric functions, namely, zm ¼ 2π=λ m

10
. The results are

presented in Figs. 7 and 8. The remaining parameters λ, β,
and t0 are given in the captions of these figures. Our choice
of initial conditions (12) together with the first integrals
(A2) implies that the test particles do not move along ∂x,∂y; thus, it remains to analyze their movement along the
longitudinal direction ∂z.
The geodesic equation is studied in the expanding

(Fig. 7) and contracting (Fig. 8) model. The straight lines

correspond to the test particles that were placed exactly at
antinodes. The shape of trajectories is consistent with the
analysis of the geodesic deviation equation. The antinodes
attract test particles. This property is better visible in the
expanding model because the amplitude of the gravitational
waves is large at the initial time t0. In the contracting
model, the amplitude of the gravitational waves at the initial
moment is small, so the attraction to antinodes is weaker.
We point out that “being at rest” in the coordinate frame ∂μ

in general does not correspond to being at rest in our
orthonormal frame feμ̂g; hence, our initial conditions (12)
for the geodesic equation are not the same as initial
conditions for the deviation vector in the geodesic deviation
equation. Nevertheless, the changes of the deviation vector
in the expanding model (Fig. 5) nicely correspond to what
we observe for geodesics (Fig. 7). The similar analogy is
valid in the contracting model (Figs. 6 and 8).
We see in Figs. 7 and 8 that there are two types of

antinodes. They correspond to odd and even values of k
parameter which defines stationary geodesics γk given by
Eq. (5). The difference between these two types is not
essential and their role may be reversed by a different choice
of t0.
In the expanding model, the presented geodesics cross

the antinodes and pass hypothetical observers that were
considered in our studies of the geodesic deviation. It is
instructive to calculate the relative Lorentz factors and
relative velocities.
The four-velocity of the stationary observer at the

antinode in our coordinate basis is given by

uobs ¼ e−f=2∂t:

The Lorentz factor of test particles as observed by sta-
tionary observers at antinodes is given by

γ ¼ u · uobs;

where u is a four-velocity of test particles. The numerical
analysis reveals that for particles presented in Fig. 7 the

0 10 20 30 40

0.0

0.5

1.0

1.5

z

FIG. 7. Geodesics. Parameters: λ ¼ 1=10, β ¼ 1=5. The initial
time tðτ ¼ 0Þ ¼ 0.1. The final time tðτ ¼ 40Þ ≃ 32.4.

0 2 4 6 8 10

0.0

0.5

1.0

1.5

t

z

FIG. 8. Geodesics in contracting model. Parameters: λ ¼ 1=10,
β ¼ 1=5. The initial time tðτ ¼ 0Þ ¼ 10.
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velocities are nonrelativistic. They range from 0.0014c
to 0.0066c.

VI. SUMMARY

In this paper, we studied the behavior of freely falling
bodies in a standing-wave spacetime. Using a particular
example of such spacetime—the polarized three-torus
Gowdy model—we showed that there exist stationary time-
like geodesics at antinodes. We investigated the geodesic
deviation equation at antinodes and proved that test particles
are on average attracted to antinodes along the direction of
the propagation of waves. This nicely confirms an intuitive
notion of concentration of gravitational energy at places at
which the geometry fluctuates at most. This phenomenon
may be understood in terms of the components of the Weyl
tensor in the Newman-Penrose tetrad which was adapted to
the symmetries of the standing-wave spacetime.
Although our research is based on a particular exact

solution, we think that the properties of standing waves
discovered here are general. The Szekeres theorem [17]
implies that there do not exist vacuum solutions to Einstein
equations with Ψ0 ≠ 0, Ψ4 ≠ 0, and Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0.
Two transverse gravitational waves cannot be trivially
superposed. Therefore, the standing gravitational waves
always induce additional effects which were represented in
this work by the Coulomb component Ψ2 and by attraction
to antinodes. It is tempting to put forward a hypothesis that
the Weyl tensor of any standing-wave spacetime contains
nonzero, periodic, or almost periodic components Ψ0, Ψ2,
Ψ4 such that at antinodes in an appropriate Newman-
Penrose tetrad Ψ0 ¼ Ψ4. Of course, our hypothesis needs
further investigation.
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APPENDIX A: GEODESIC EQUATION

The geodesic equation in coordinates xα ¼ ðt; z; x; yÞ for
the metric (1) has a form

̈tþ 1

2
ff;t_t2 þ 2f;z_t_zþ f;t _z2

þ e−f½ep _x2ð1þ p;ttÞ þ e−p _y2ð1 − p;ttÞ�g ¼ 0;

ẍþ _xð_t=tþ p;t_tþ p;z _zÞ ¼ 0;

ÿþ _yð_t=t − p;t_t − p;z _zÞ ¼ 0;

̈zþ 1

2
½f;z _z2 þ 2f;t_t_zþ f;z_t2

þ tp;ze−fð−ep _x2 þ e−p _y2Þ� ¼ 0; ðA1Þ

where a dot denotes differentiation in the proper time
τ or the affine parameter for timelike or null geo-
desics, respectively. The normalization of the four-
velocity/wave vector gives rise to the first integral of
the form

−ϵ ¼ efð−_t2 þ _z2Þ þ tðep _x2 þ e−p _y2Þ;

where the constant ϵ is equal to 1 or 0 for timelike or
null geodesics, respectively. The Killing fields ∂x, ∂y

give two more quantities cx, cy that are conserved along
geodesics

_xept ¼ cx;

_ye−pt ¼ cy: ðA2Þ

APPENDIX B: FREELY FALLING FRAME
AT ANTINODES

We will show below that the orthonormal frame feα̂g
given by (6) corresponds to a freely falling frame of
stationary observers at antinodes which move along the
geodesics γk with the tangent vector u ¼ e0̂ and
z ¼ λπð1=2þ kÞ, where k ∈ Z. We have to show that
along γk,

∇e0̂
eα̂ ¼ 0; ∇e0̂

θα̂ ¼ 0:

We have ∇e0̂
eα̂ ¼ ωβ̂

α̂ðe0̂Þeβ̂, where ωβ̂
α̂ are connection

one forms. These one forms may be read out from the
Cartan’s first structure equation

dθα̂ þ ωα̂
β̂ ∧ θβ̂ ¼ 0: ðB1Þ

We have

dθ0̂ ¼ −
1

2
e
f
2f;zdt ∧ dz ¼ −

1

2
e−

f
2f;zθ0̂ ∧ θ1̂;

dθ1̂ ¼ 1

2
e
f
2f;tdt ∧ dz ¼ 1

2
e−

f
2f;tθ0̂ ∧ θ1̂;

dθ2̂ ¼ 1

2
e
p
2

ffiffi
t

p ��
1

t
þ p;t

�
dt ∧ dxþ p;zdz ∧ dx

�

¼ 1

2
e−

f
2

��
1

t
þ p;t

�
θ0̂ ∧ θ2̂ þ p;zθ

1̂ ∧ θ2̂
�
;

dθ3̂ ¼ 1

2
e−

p
2

ffiffi
t

p ��
1

t
− p;t

�
dt ∧ dy − p;zdz ∧ dy

�

¼ 1

2
e−

f
2

��
1

t
− p;t

�
θ0̂ ∧ θ3̂ − p;zθ

1̂ ∧ θ3̂
�
:

Comparing these equations with (B1), we find nonzero
connection one forms
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ω0̂
1̂ ¼

1

2
e−

f
2½f;zθ0̂ þ f;tθ1̂�;

ω0̂
2̂ ¼

1

2
e−

f
2ð1=tþ p;tÞθ2̂;

ω0̂
3̂ ¼

1

2
e−

f
2ð1=t − p;tÞθ3̂;

ω1̂
2̂ ¼ −

1

2
e−

f
2p;zθ

2̂;

ω1̂
3̂ ¼

1

2
e−

f
2p;zθ

3̂: ðB2Þ

Since f;zjγk ¼ 0, then ∇e0̂
eα̂ ¼ 0. This (together with the

cobasis duality relation and the Lebniz rule for the covariant
derivative) implies ∇e0̂

θα̂ ¼ 0. To sum up, our nonholo-
nomic basis feα̂g is a freely falling frame of the observers
moving along geodesics γk (observers at antinodes).

APPENDIX C: DERIVATION OF THE GEODESIC
DEVIATION EQUATION

In the freely falling frame, not all components of the
Riemann tensor are needed to derive the geodesic deviation
equation. We consider the freely falling frame feα̂g given
by (6) and its dual basis denoted as fθα̂g.
The Cartan’s second structure equation gives the curva-

ture two forms Ωα̂
β̂,

Ωα̂
β̂ ¼ dωα̂

β̂ þ ωα̂
σ̂ ∧ ωσ̂

β̂: ðC1Þ

Since Ωα̂
β̂ ¼ 1

2
Rα̂

β̂σ̂δ̂θ
σ̂ ∧ θδ̂, then not all curvature two

forms are needed. Using the connection one forms (B2),
we find

Ω0̂
1̂ ¼

1

2
e−fðf;tt − f;zzÞθ0̂ ∧ θ1̂;

Ω0̂
2̂ ¼

1

4
e−f

�
ðp;t þ

1

t
Þ2 − f;t

�
p;t þ

1

t

�
þ 2

�
p;tt −

1

t2

�
− f;zp;z

�
θ0̂ ∧ θ2̂

þ 1

4
e−f

��
p;t þ

1

t

�
ðp;z − f;zÞ − f;tp;z þ 2p;tz

�
θ1̂ ∧ θ2̂;

Ω0̂
3̂ ¼

1

4
e−f

��
p;t −

1

t

�
2

þ f;t

�
p;t −

1

t

�
− 2

�
p;tt þ

1

t2

�
þ f;zp;z

�
θ0̂ ∧ θ3̂

þ 1

4
e−f

��
p;t −

1

t

�
ðp;z þ f;zÞ þ f;tp;z − 2p;tz

�
θ1̂ ∧ θ3̂:

One may read out the necessary components of the Riemann tensor

R1̂
0̂1̂0̂ ¼

1

2
e−fðf;zz − f;ttÞ;

R2̂
0̂2̂0̂ ¼ −

1

4
e−f

��
p;t þ

1

t

�
2

− f;t

�
p;t þ

1

t

�
þ 2

�
p;tt −

1

t2

�
− f;zp;z

�
;

R3̂
0̂3̂0̂ ¼ −

1

4
e−f

��
p;t −

1

t

�
2

þ f;t

�
p;t −

1

t

�
− 2

�
p;tt þ

1

t2

�
þ f;zp;z

�
: ðC2Þ

The metric functions take form (σ ¼ 1 for k ∈ 2Z and σ ¼ −1 for k ∈ 2Zþ 1)

pjγk ¼ − ln tþ 2σβ
ffiffiffi
λ

p
J0

�
t
λ

�
;

fjγk ¼
β2

λ
t2
�
J20

�
t
λ

�
þ J21

�
t
λ

�
− 2

λ

t
J0

�
t
λ

�
J1

�
t
λ

��
− 2σβ

ffiffiffi
λ

p
J0

�
t
λ

�
;

f;tjγk ¼
2β

λ
J1

�
t
λ

��
σ

ffiffiffi
λ

p
þ tβJ1

�
t
λ

��
:
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APPENDIX D: COMPONENT OF THE WEYL
TENSOR IN THE NEWMAN-PENROSE TETRAD

It is convenient for the analysis of gravitational waves to
decompose the Weyl tensor into the Newman-Penrose
tetrad components. Following Stephani et al. [16], we
adapt the original notation of Newman and Penrose [13]
to the signature þ2. We introduce a complex null tetrad
wμ̆ ¼ fk; l; m; m̄g using the orthonormal tetrad feα̂g as
follows:

k ¼ 1ffiffiffi
2

p ðe0̂ þ e1̂Þ l ¼ 1ffiffiffi
2

p ðe0̂ − e1̂Þ;

m ¼ 1ffiffiffi
2

p ðe2̂ − ie3̂Þ m̄ ¼ 1ffiffiffi
2

p ðe2̂ þ ie3̂Þ; ðD1Þ

where two real vectors k, l and two complex conjugate
vectors m, m̄ are null. These vectors’ inner products vanish
except

k · l ¼ −1; m · m̄ ¼ 1:

The components of the metric with respect to this null
complex tetrad are gᾰβ̆ ¼ −2kðᾰlβ̆Þ þ 2mðᾰm̄β̆Þ. The Weyl
tensor has ten independent components which are deter-
mined by the five complex coefficients Ψ0, Ψ1, Ψ2, Ψ3, Ψ4.
The choice of a null tetrad (D1) is not unique and may be

changed by Lorentz transformations of the frame. Since we
want to adapt theNewman-Penrose null tetrad to the problem
at hand, then we assume an additional condition. The
standing wave may be seen as a nontrivial superposition
of gravitational waves moving in opposite spatial directions
along e1̂ (which is one of the spatial vectors of our
orthonormal freely falling frame). Therefore, we assume
that e1̂ · k ¼ −e1̂ · l. This condition does not define the tetrad
uniquely, but is sufficient for the purpose of this study.
For the vacuum spacetimes, Cκ̂λ̂μ̂ν̂ ¼ Rκ̂λ̂μ̂ν̂. We find for

the spacetime studied in this paper,

Ψ0 ≔ Cκ̂λ̂μ̂ν̂k
κ̂mλ̂kμ̂mν̂ ¼ C0̆2̆0̆2̆

¼ 1

4
ðC0̂2̂0̂2̂ − C0̂3̂0̂3̂ þ C1̂2̂1̂2̂ − C1̂3̂1̂3̂Þ þ

1

2
ðC0̂2̂1̂2̂ − C0̂3̂1̂3̂Þ

Ψ1 ≔ Cκ̂λ̂μ̂ν̂k
κ̂lλ̂kμ̂mν̂ ¼ C0̆1̆0̆2̆ ¼ 0;

Ψ2 ≔ Cκ̂λ̂μ̂ν̂k
κ̂mλ̂m̄μ̂lν̂ ¼ C0̆2̆3̆1̆ ¼

1

4
ð−C0̂2̂0̂2̂ − C0̂3̂0̂3̂ þ C1̂2̂1̂2̂ þ C1̂3̂1̂3̂Þ

Ψ3 ≔ Cκ̂λ̂μ̂ν̂l
κ̂kλ̂lμ̂m̄ν̂ ¼ C1̆0̆1̆3̆ ¼ 0;

Ψ4 ≔ Cκ̂λ̂μ̂ν̂l
κ̂m̄λ̂lμ̂m̄ν̂ ¼ C1̆3̆1̆3̆

¼ 1

4
ðC0̂2̂0̂2̂ − C0̂3̂0̂3̂ þ C1̂2̂1̂2̂ − C1̂3̂1̂3̂Þ −

1

2
ðC0̂2̂1̂2̂ − C0̂3̂1̂3̂Þ:

We have C0̂3̂1̂3̂ ¼ −C0̂2̂1̂2̂, C1̂3̂1̂3̂ ¼ −C0̂2̂0̂2̂, C1̂2̂1̂2̂ ¼ −C0̂3̂0̂3̂, and the Weyl tensor is traceless; hence,

Ψ0 ¼
1

2
ðC0̂2̂0̂2̂ − C0̂3̂0̂3̂Þ þ C0̂2̂1̂2̂ ¼

1

2
ðR2̂

0̂2̂0̂ − R3̂
0̂3̂0̂Þ þ C0̂2̂1̂2̂;

Ψ4 ¼
1

2
ðC0̂2̂0̂2̂ − C0̂3̂0̂3̂Þ − C0̂2̂1̂2̂ ¼

1

2
ðR2̂

0̂2̂0̂ − R3̂
0̂3̂0̂Þ − C0̂2̂1̂2̂;

Ψ2 ¼ −
1

2
ðC0̂2̂0̂2̂ þ C0̂3̂0̂3̂Þ ¼

1

2
C0̂1̂0̂1̂ ¼

1

2
R1̂

0̂1̂0̂; ðD2Þ

where components of the Riemann tensor are given by Eq. (C2) and where C0̂2̂1̂2̂ ¼ Oð1= ffiffi
t

p Þ in general, but C0̂2̂1̂2̂ ¼ 0 at
antinodes. Therefore, at antinodes, Ψ0 ¼ Ψ4 holds. For late times t ≫ λ, we obtain

Ψ0;4≃ ∓ ae−a
2t

4

1ffiffi
t

p
�
∓ 2

t
cos

�
π

4
þ t
λ

�
sin

�
z
λ

�
� 3affiffi

t
p

�
1þ sin

�
2
t� z
λ

��

þ 4

λ
cos

�
π

4
þ t� z

λ

�
þ a2

�
cos

�
π

4
þ 3

t� z
λ

�
− 3 sin

�
π

4
þ t� z

λ

���
;

Ψ2 ≃ −
ae−a

2t

4

1

t

�
2ffiffi
t

p cos

�
π

4
þ t
λ

�
sin

�
z
λ

�
þ a

�
cos

�
2z
λ

�
þ sin

�
2t
λ

���
; ðD3Þ

where a ¼
ffiffi
2
π

q
β and the top and bottom signs correspond to Ψ0, Ψ4, respectively.
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