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We study linear scalar perturbations of black holes in two-dimensional (2D) gravity models with a
particular emphasis on Jackiw-Teitelboim (JT) gravity. We obtain an exact expression of the quasinormal
mode frequencies for single horizon black holes in JT gravity and then verify it numerically using the
Horowitz-Hubeny method. For a 2D Reissner-Nordström like solution, we find that the massless scalar
wave equation reduces to the confluent Heun equation using which we calculate the Hawking spectra.
Finally, we consider the dimensionally reduced Bañados-Teitelboim-Zanelli (BTZ) black hole and obtain
the exterior and interior quasinormal modes. The dynamics of a scalar field near the Cauchy horizon
mimics the behavior of the same for the usual BTZ black hole, indicating a possible violation of the strong
cosmic censorship conjecture in the near extreme limit. However, quantum effects seem to rescue strong
cosmic censorship.
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I. INTRODUCTION

The general theory of relativity (GR) is a remarkably
successful theory that describes the most fundamental
interaction of this Universe, namely, gravitation. The
classical theory however breaks down at certain regimes
like singularities inside black holes, the singularity at the
beginning of the Universe and so on. It is believed that a
quantum theory of gravity will resolve these problems.
Although there are promising candidates of quantum
gravity but all of them suffer from some limitations. The
quantum or semiclassical properties of black holes (BH)
also pose a number of puzzles. The information loss
problem [1] related to Hawking radiation [2] is one which
has baffled physicists for a long time. Finding a resolutions
to these problems in D ¼ 4 dimensions by merging
quantum mechanics with GR has met with modest success.
Many of these questions can, however, be addressed with
much more control in lower dimensional models of gravity,
such as two-dimensional (2D) gravity. Since the 2D
Einstein-Hilbert action is just the Gauss-Bonnet topological
term, further structure is introduced to invoke the dynamics
in these models. One of the most obvious way to do so
in a 2D model is by introducing the dilaton field which
naturally arises in various compactifications from higher
dimensions [3]. Arguably the most prominent of such

models is the one due to Jackiw and Teitelboim (JT)
[4,5]. In recent times, it has played an important role in
conjectured duality with the low energy sector of Sachdev-
Ye-Kitaev (SYK) model [6–8] in the context of
anti–de Sitter/conformal field theory (AdS=CFT) corre-
spondence [9]. This model and other 2D dilaton models
have been thoroughly investigated in different contexts
over the last thirty years [10–14] including the much
studied string inspired model suggested in [15].
Recently, in the context of resolution of information puzzle,
there has been a rejuvenated interest in studying black holes
in JT like models [16,17]. JT like models have also been
studied in the context of the AdS2 geometry obtained in
near horizon limit of extremal black holes [18–21].
On the other hand isolated black holes are just theoretical

artifacts, and black holes are always found in a perturbed
state just after their formation. A perturbed black hole
responds to the perturbations by emitting gravitational
waves, the evolution of which in the intermediate stage,
is governed by damped oscillatory signals known as
quasinormal modes (QNMs). The QNMs are usually
studied by introducing a probe scalar field in the back-
ground of a black hole and then investigating its evolution.
QNMs and scalar perturbations provide a lot of useful
information related to black holes like their stability,
gravitational wave spectrum, Hawking radiation, interac-
tion of the black holes with their astrophysical environment
and so on (see [22–24] for comprehensive reviews).
QNMs are also important from the perspective of
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AdS=CFT correspondence, as QNMs of a AdSDþ1 black
hole are equal to the poles of the retarded Green’s function
in the D dimensional boundary CFT at strong coupling
limit [25].
The purpose of the present work is twofold. First, to

study the QNMs or scalar perturbations of black holes in JT
gravity and examine some of the properties mentioned
above. Secondly, to see the classical and quantum back-
reaction of the probe scalar field on the inner horizon of
black holes in JT gravity. A study of the internal structure
should also shed light on the status of strong cosmic
censorship in 2D black holes which in turn will reveal any
possible pathology in these models.
In this paper we first study scalar perturbations of a

single horizon black hole in pure JT gravity and obtain an
analytic expression of its QNMs. We then verify this result
numerically using the method proposed by Horowitz and
Hubeny [25]. In the next section, we study scalar pertur-
bation of a two-dimensional (2D) version of the Reissner-
Nordström (RN) black hole and compute the Hawking
radiation spectrum using the Damour-Ruffini method
[26,27]. In the following section, we study a black hole
obtained by the dimensional reduction of the Bañados-
Teitelboim-Zanelli (BTZ) black hole [28]. We first deter-
mine both the interior and exterior quasinormal modes and
study its internal structure near the right Cauchy horizon.
The internal structure of this black hole shows similar
features that were obtained for the BTZ black hole in
[29,30]. For a similar discussion using a model without
the dilaton field, see [31]. We finally study the nature of the
singularity at the left Cauchy horizon and calculate the
behavior of the quantum stress energy tensor near the right
Cauchy horizon. We then conclude with a discussion of the
results and a possible outlook.

II. JACKIW-TEITELBOIM GRAVITY AND
QUASINORMAL MODES

A. The model

We begin by introducing the most general (1þ 1)-
dimensional action that depends on the metric ḡμν and a
scalar dilaton ϕ̄ðrÞ, and is compatible with diffeomorphism
invariance and contains no more than double derivative of
the field [14],

S ¼ 1

2G

Z
dx2

ffiffiffiffiffiffi
−ḡ

p �
Dðϕ̄RðḡÞ þ 1

2
ð∇ϕ̄Þ2 þ Vϕ̄ðϕ̄Þ

L2

�
;

ð2:1Þ

where Dðϕ̄Þ and Vϕ̄ðϕ̄Þ are model-dependent functions of
the dilaton, G is a dimensionless gravitational coupling
and L is another fundamental parameter (a length scale) of
the two-dimensional theory which will be interpreted as the
AdS2 radius.

Demanding that both Dðϕ̄Þ and its derivatives are non-
vanishing, we can reparametrize the fields in the following
way so that the kinetic term gets eliminated from the
action [32–34]:

Ω2ðϕ̄Þ≡ exp

�
1

2

Z
dϕ̄

ðdD=dϕ̄Þ
�
; gμν ≡ Ω2ðϕ̄Þḡμν;

ϕ≡Dðϕ̄Þ; VðϕÞ≡ Vϕ̄=Ω2: ð2:2aÞ

Then, the reparametrized action for a generic two-
dimensional model is given by

S ¼ 1

2G

Z
d2x

ffiffiffiffiffiffi
−g

p �
ϕRþ VðϕÞ

L2

�
: ð2:3Þ

If we now set

VðϕÞ ¼ 2ϕ; ð2:4Þ

we get the action for Jackiw-Teitelboim (JT) gravity [4,5]
from the above action, namely,

S ¼ 1

2G

Z
d2x

ffiffiffiffiffiffi
−g

p
ϕ

�
Rþ 2

L2

�
: ð2:5Þ

Starting from the Einstein-Hilbert action in (2þ 1) dimen-
sions with a negative cosmological constant [28], we can
also obtain the above action by performing a dimensional
reduction [35].
Now, with a gauge choice ϕ ¼ r=L, we can obtain

a Schwarzschild-like solution from the action (2.5)
[33,35,36], viz.,

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2; ϕ ¼ r

L
; ð2:6Þ

where

fðrÞ ¼ r2=L2 − 2GLM; ð2:7Þ

M being the mass of the black hole. This black hole
solution clearly has a horizon at

rh ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2GLMÞ

p
: ð2:8Þ

We can also define the tortoise coordinate r� using the
relation dr� ¼ dr=fðrÞ and introduce the coordinate
v ¼ tþ r� and write (2.6) in Eddington-Finkelstein coor-
dinates as

ds2 ¼ −fðrÞdv2 þ 2dvdr: ð2:9Þ

In the next subsection we will study scalar perturbations
and the resultant wave equation in the 2D spacetime that we
have just described.
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B. The scalar wave equation

Here we shall take the perturbing field to be a massless
scalar fieldΦðx; tÞ. But before studying such perturbations,
we have to ensure that its equation of motion captures the
dynamics of a matter perturbation in the two-dimensional
black hole background described by (2.6). To this end, we
generalize the usual Klein-Gordon equation and include an
arbitrary coupling, hðϕÞ, between the dilaton and the matter
perturbation and therefore, use the following generalized
Klein-Gordon equation [14]:

1ffiffiffiffiffiffi−gp
hðϕÞ ∂μð

ffiffiffiffiffiffi
−g

p
hðϕÞgμν∂νψÞ ¼ 0: ð2:10Þ

The choice of the coupling hðϕÞ ¼ hðrÞ is inspired by the
fact that the metric (2.6) can be obtained from the dimen-
sional reduction of a BTZ black hole (as we have already
noted). It must have the part of the higher dimensional
metric-determinant that is lost through dimensional reduc-
tion. In our case, this choice simply translates to hðϕÞ ¼
ϕ ¼ r=L [14,37]. It is crucial to take this kind of coupling
into account since this coupling determines the form of the
potential (as shown below) which plays the key role in the
scattering problem. If we do not consider such a coupling
then the spacetime will not be able to support massless
modes [38].
We now consider the following ansatz:

Φðr; tÞ ¼ RðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−iωt; ð2:11Þ

and write down wave equation (2.10) using (2.6) in a
Schrdödinger equation-like form,

∂2
r�RðrÞ þ ½ω2 − VðrÞ�RðrÞ ¼ 0; ð2:12Þ

where we have used the tortoise coordinate r� and the
potential is given by

VðrÞ ¼ 1

2

f
h

�
fh00 þ f0h0 −

1

2

f
h
ðh0Þ2

�
: ð2:13Þ

This is analogous to the Regge-Wheeler equation. Here
prime denotes a differentiation with respect to r. Using
(2.7) and setting L ¼ 1, such that hðrÞ ¼ r in the above
equation, we get

VðrÞ ¼ −GM −
G2M2

r2
þ 3r2

4
;

¼ −
r2h
2
−

r4h
4r2

þ 3r2

4
; ð2:14Þ

where rh ¼
ffiffiffiffiffiffiffiffiffiffiffi
2GM

p
for L ¼ 1, and it is implicit that r is a

function of r�. We also note that setting L ¼ 1 is equivalent

to the simultaneous rescalings, r → r̃ ¼ r=L and ω → w̃ ¼
ωL. Through this rescaling, we measure the frequency
and other quantities in terms of the AdS2 radius [39].
We note that we may also use an ansatz of the form,

Φðr; tÞ ¼ R̄ðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−iωv; hðrÞ ¼ r; ð2:15Þ

and write (2.10), using (2.9), as

fðrÞ∂2
rR̄ðrÞ þ ½f0ðrÞ − 2iω�∂rR̄ðrÞ − V̄ R̄ðrÞ ¼ 0; ð2:16Þ

where

V̄ ¼
�
f0

2r
−

f
4r2

�
: ð2:17Þ

We note RðrÞ ¼ e−iωr�R̄ðrÞ. This form of the Klein-Gordon
equation will be useful for studying the quasinormal mode
frequencies (QNMs) numerically later whereas (2.12) will
be used to find out exact expressions of QNMs in the next
subsection.

C. Quasinormal modes for scalar perturbations

Quasinormal modes are those mode solutions which
are purely ingoing near the horizon of the black hole and
vanish at infinity in AdS spacetimes [22–24,39]. This
choice of boundary condition is motivated by the fact that
the potential diverges at infinity. In this section we first
compute the exact quasinormal mode frequencies and then
verify the result numerically.

1. Exact calculation

Before proceeding, we note that we can use the defi-
nition of the tortoise coordinate to obtain an implicit form
of rðr�Þ, viz., r ¼ −rh cothðrhr�Þ for L ¼ 1 (therefore
r� → −∞ corresponds to r ¼ rh, and r� ¼ 0 corresponds
to r → ∞). Using this, we can rewrite (2.14) as1

VðrÞ ¼ 3r2h
4sinh2ðrhr�Þ

þ r2h
4cosh2ðrhr�Þ

: ð2:18Þ

So, our wave equation (2.12) reduces to

∂2RðrÞ
∂r2� þ

�
ω2 −

3r2h
4sinh2ðrhr�Þ

−
r2h

4cosh2ðrhr�Þ
�
RðrÞ ¼ 0:

ð2:19Þ

1We note that this form of the potential is quite general and
arises in a variety of contexts, for example, in pure de Sitter
spacetimes [40]. For a discussion on using the analytical
continuation approach to compute QNMs, see [41].
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We can now do yet another change of variable, such that
it maps the horizon to x ¼ 0 and the infinity to x ¼ 1,
namely,

x ¼ 1

cosh2ðrhr�Þ
; ð2:20Þ

where x ∈ ½0; 1�, and rewrite the above equation as

4xð1 − xÞ d
2R
dx2

þ ð4 − 6xÞ dR
dx

−
r2h

4xð1 − xÞ
�
4ω2ð1 − xÞ

r2h
− 3x − xð1 − xÞ

�
¼ 0:

ð2:21Þ

We now define

RðxÞ ¼ ðx − 1Þ3=4x−iω=2rhFðxÞ; ð2:22Þ

then (2.21) assumes the standard hypergeometric form
[39,42],

xð1 − xÞ d
2FðxÞ
dx2

þ ðc − ð1þ aþ bÞxÞ dFðxÞ
dz

− abFðxÞ ¼ 0; ð2:23Þ

with

a ¼ 1 − i
ω

2rh
; b ¼ 1 − i

ω

2rh
and c ¼ 1 − i

ω

rh
:

ð2:24Þ

The solutions to (2.23) are given by the standard hyper-
geometric function of the second kind (denoted by 2F1).
Moreover, the hypergeometric equation has three singular
points at x ¼ 0, x ¼ 1 and x ¼ ∞ and two independent
solutions in the neighbourhood of each singular point.
Since we are trying to calculate the quasinormal modes, we
will impose the boundary condition on the solutions in the
range [0, 1] such that they are purely ingoing near x ¼ 0
and vanish at x ¼ 1. The solution which is purely ingoing
at the x ¼ 0 is FðxÞ ¼ 2F1ða; b; c; xÞ [43]. We now make
use of the following two relations [44]:

2F1ða; b; c; xÞ ¼ ð1 − xÞc−a−b2F1ðc − a; c − b; c; xÞ;
ð2:25aÞ

2F1ðc − a; b − a; c; 1Þ ¼ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ : ð2:25bÞ

Applying the boundary condition FðxÞ ¼ 0 at x ¼ 1 is
therefore equivalent to imposing the restriction [39],

a ¼ −n or b ¼ −n; ð2:26Þ

for n ¼ 0; 1; 2;…. This gives us the quasinormal
frequencies,

ω ¼ −2irhðnþ 1Þ: ð2:27Þ

We note that the QNMs are purely imaginary. We verify
this result numerically in the next subsection.

2. Numerical calculation

We now use the method due to Horowitz and Hubeny
[25] to numerically compute the quasinormal mode
frequencies. We start with (2.16) and switch to a new
variable,

y ¼ 1=r; h ¼ 1=rh; ð2:28Þ

and rewrite (2.16) as

sðyÞ d
2R̄ðyÞ
dy2

þ tðyÞ
y − h

dR̄ðyÞ
dy

þ uðyÞ
ðy − hÞ2 R̄ðyÞ ¼ 0; ð2:29Þ

where the coefficient functions are

sðyÞ ¼ −y2 þ y4=h2

y − h
¼ y2

h
þ y3

h2
; ð2:30aÞ

tðyÞ ¼ 2y3

h2
− 2iωx2; ð2:30bÞ

uðyÞ ¼ ðy − hÞV̄ðyÞ; ð2:30cÞ

V̄ðyÞ ¼
�
3

4
−

y2

4h2

�
: ð2:30dÞ

Now, (2.29) has two regular singular points at y ¼ 0 and
y ¼ h. So we can use the power series method and look for
a solution of the form,

R̄ðyÞ ¼
X∞
n¼0

anðy − hÞnþα: ð2:31Þ

Imposing the boundary condition that we have only purely
ingoing modes at the horizon amounts to setting α ¼ 0
[25,39]. So we look for solutions of the form,

R̄ðyÞ ¼
X∞
n¼0

anðy − hÞn: ð2:32Þ

We finally impose the boundary condition that the modes
must vanish at infinity (z ¼ 0), and this amounts to

BHATTACHARJEE, SARKAR, and BHATTACHARYYA PHYS. REV. D 103, 024008 (2021)

024008-4



X∞
n¼0

anðy − hÞn ¼ 0: ð2:33Þ

We can now solve this polynomial equation numerically
to determine the roots ω. The coefficients an themselves
are determined through the recursion relations obtained
by substituting (2.32) in (2.29) (please see [25,39,45,46]
for details). Since we cannot determine the full sum in the
expression (2.33), we evaluate a partial sum from 0 to
(say) N and find the root ω. We then include the next
N þ 1 term and determine the roots. If the method is
reliable then the roots converge. We have used a modified
version of the code made publicly available by Cardoso
and his collaborators [45,46], and we have calculated the
roots up to three decimal digit precision and report them
here in Table I. We see that the numerical results
completely agree with (2.27).
In general, for black holes in 2D Einstein-dilaton

systems the quasinormal frequencies usually contain both
real and imaginary parts, and the real part could possibly
be related to the quantized area spectrum of the black
hole entropy via the Hod conjecture [14,47]. However, in
this Jackiw-Teitelboim model, we do not get any real part
of the QNMs, and hence Hod’s conjecture is not appli-
cable here. Moreover, the QNMs that we have obtained
are related to the relaxation or thermalization time of the
dual CFT living at the one-dimensional boundary, and
they should coincide with the poles of the two-point
retarded Greens function. In the next section we consider
a multihorizon black hole and attempt to study its
scalar modes.

III. THE 2D REISSNER-NORDSTRÖM
BLACK HOLE

Consider the following two-dimensional action obtained
from the dimensional reduction of the 3þ 1-dimensional
Einstein-Maxwell action followed by a suitable reparamet-
rization [13,20,34]:

S ¼ 1

2

Z
d2x

ffiffiffiffiffiffi
−g

p ðϕRþ VðϕÞÞ; ð3:1Þ

where

VðϕÞ ¼ 1

L2

�
1ffiffiffiffiffiffi
2ϕ

p −
Q2

ð2ϕÞ3=2
�
: ð3:2Þ

Here L is the AdS radius, and ϕ is a scalar dilaton field. The
general solution with a nonconstant dilaton is

ds2 ¼ −fðxÞdt2 þ 1

fðxÞ dx
2; ð3:3Þ

where

fðxÞ ¼
ffiffiffiffiffi
2x
L

r
− 2LM þQ2

ffiffiffiffiffi
L
2x

r
: ð3:4Þ

This corresponds to a reparametrization of the standard
Reissner-Nordström (RN) solution with the gauge choice
ϕðxÞ ¼ x=L [13]. Here M denotes the mass of the black
hole. This black hole has two horizons located at

ffiffiffi
x

p
� ¼

ffiffiffiffi
L

p ðLM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2M2 −Q2

p
Þffiffiffi

2
p : ð3:5Þ

We note that we can rewrite fðxÞ in terms of the inner and
outer horizons as

fðxÞ ¼
ffiffiffiffiffi
L
2x

r
ð ffiffiffi

x
p

−
ffiffiffi
x

p
þÞð

ffiffiffi
x

p
−

ffiffiffi
x

p
−Þ; ð3:6Þ

and the surface gravity at the outer horizon κþ is given by

κþ ¼
ffiffiffiffi
L

p � ffiffiffi
x

p
þ −

ffiffiffi
x

p
−

4
ffiffiffi
2

p
xþ

�
ð3:7Þ

A. Scalar field perturbations

We now derive the equation of motion of a massless
scalar field, Φðx; tÞ, in the black hole background. In order
to take into account the coupling of the dilaton with the
matter perturbation, we use the generalized form of the
Klein-Gordon equation,

1ffiffiffiffiffiffi−gp
hðϕÞ ∂μðgμνhðϕÞ∂νΦðx; tÞÞ ¼ 0: ð3:8Þ

We consider a linear coupling, such that, hðϕÞ ¼
ϕðxÞ ¼ x=L. Using the ansatz,

Φðx; tÞ ¼ e−iωtRðxÞ; ð3:9Þ

we can write the Klein-Gordon equation as

TABLE I. Numerical (ωN) and theoretical values (ωth) of the
lowest quasinormal mode frequencies (n ¼ 0) for some select
black hole sizes (rh). We see that the frequencies are purely
imaginary and negative in both cases and match up to three
decimal places.

Numerical Theoretical
rh ωN ¼ ωr þ iωi ωth ¼ ωr þ iωi

1 −2.000i −2i
5 −10.000i −10i
10 −20.000i −20i
50 −100.000i −100i
100 −200.000i −200i
500 −1000.000i −1000i
1000 −2000.000i −2000i
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1

x
∂xðxfðxÞ∂xRðxÞÞ þ

ω2

fðxÞRðxÞ ¼ 0: ð3:10Þ

We now introduce a new variable z which maps the outer
horizon to z ¼ 0 and the inner horizon to z ¼ 1,

z ¼
ffiffiffi
x

p
−

ffiffiffi
x

p
þffiffiffi

x
p

− −
ffiffiffi
x

p
þ
: ð3:11Þ

This transformation enable us to write the Klein-Gordon
equation as

d2R
dz2

þ
�
1

z
þ 1

z − 1

�
dR
dz

þ
�
−α̃20 þ

α̃1
z
þ α̃2
z − 1

−
α̃23
z2

−
α̃24

ðz − 1Þ2
�

¼ 0; ð3:12Þ

where

α̃20 ¼ −
8ð ffiffiffi

x
p

− −
ffiffiffi
x

p
þÞ2ω2

L
; ð3:13aÞ

α̃1 ¼
16ð2 ffiffiffi

x
p

−x
3=2
þ − x2þÞω2

Lð ffiffiffi
x

p
− −

ffiffiffi
x

p
þÞ2

; ð3:13bÞ

α̃2 ¼
16ðx2− − 2

ffiffiffi
x

p
þx3=2− Þω2

Lð ffiffiffi
x

p
− −

ffiffiffi
x

p
þÞ2

; ð3:13cÞ

α̃23 ¼ −
8x2þω2

Lð ffiffiffi
x

p
− −

ffiffiffi
x

p
þÞ2

; ð3:13dÞ

α̃24 ¼ −
8x2−ω2

Lð ffiffiffi
x

p
þ −

ffiffiffi
x

p
þÞ2

: ð3:13eÞ

We can now choose the parameters α̃0, α̃3 and α̃4 in the
following way:

α̃0 ¼ i
2
ffiffiffi
2

p ð ffiffiffi
x

p
þ −

ffiffiffi
x

p
−Þωffiffiffiffi

L
p ;

α̃3 ¼ i
2
ffiffiffi
2

p
xþω

ð ffiffiffi
x

p
þ −

ffiffiffi
x

p
−Þ

ffiffiffiffi
L

p ;

α̃3 ¼ i
2
ffiffiffi
2

p
x−ω

ð ffiffiffi
x

p
þ −

ffiffiffi
x

p
−Þ

ffiffiffiffi
L

p ; ð3:14Þ

and implement a transformation of following type:

RðzÞ ¼ eα̃0zα̃3ðz − 1Þα̃4HðzÞ; ð3:15Þ

which changes (3.12) to the confluent Heun equation [48],

d2HðzÞ
dz2

þ
�
αþ 1þ β

z
þ 1þ γ

z − 1

�
dHðzÞ
dz

þ
�
μ

z
þ ν

z − 1

�
HðzÞ ¼ 0; ð3:16Þ

where the standard Heun parameters α, β, γ are related to
α̃0, α̃3 and α̃4 as

α ¼ 2α̃0; β ¼ 2α̃3 and γ ¼ 2α̃4; ð3:17Þ

and the parameters μ and ν are related to the standard Heun
parameters η and δ through the relations [48],

μ ¼ α̃0 þ α̃1 − α̃3 − α̃4 þ 2α̃0α̃3 − 2α̃3α̃4;

¼ 1

2
ðα − β − γ þ αβ − βγÞ − η; ð3:18Þ

ν ¼ α̃0 þ α̃2 þ α̃3 þ α̃4 þ 2α̃0α̃4 þ 2α̃3α̃4;

¼ 1

2
ðαþ β þ γ þ αγ þ βγÞ þ δþ η: ð3:19Þ

Hence we can deduce that

η ¼ −α̃1 and δ ¼ α̃1 þ α̃2: ð3:20Þ

The confluent Heun equation has a unique particular
solution which is regular around the regular singular
point z ¼ 0 (the outer horizon). This solution is known
as the standard confluent Heun function HCðα; β; γ;
δ; η; zÞ [48,49].

B. Hawking radiation

Using the standard confluent Heun function, HCðα; β; γ;
δ; η; zÞ, the general solution to the radial equation (3.10)
in the region outside the black hole (0 < z < ∞) can be
written as [49]

RðzÞ ¼ e
1
2
αzz

1
2
βðz − 1Þ12γðc1HCðα; β; γ; δ; η; zÞ

þ c2z−βHCðα;−β; γ; δ; η; zÞÞ; ð3:21Þ

where c1 and c2 are constants, and we have used (3.13),
(3.15) and (3.17). Moreover, HCðα; β; γ; δ; η; zÞ can be
written as a convergent power series about z ¼ 0, viz.,

HCðα; β; γ; δ; η; zÞ ¼
X∞
n¼0

anzn; jxj < 1: ð3:22Þ

The coefficients can be determined using the three-term
recurrence relation given in [49], and for the present
purpose, we note that a0 ¼ 1. We can then immediately
write down the behavior of the radial function RðzÞ near the
outer horizon (x → xþ) [50] up to the leading order as
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RðxÞ ∼ c1ð
ffiffiffi
x

p
−

ffiffiffi
x

p
þÞβ=2 þ c2ð

ffiffiffi
x

p
−

ffiffiffi
x

p
þÞ−β=2; ð3:23Þ

where we have used (3.11) and have absorbed all the
constants into c1 and c2. Therefore, the solution to the
Klein-Gordon equation (3.8) can be written as

Φðx; tÞ ∼ e−iωtð ffiffiffi
x

p
−

ffiffiffi
x

p
þÞiω=2κþ

þ e−iωtð ffiffiffi
x

p
−

ffiffiffi
x

p
þÞ−iω=2κþ ; ð3:24Þ

where we have used β ¼ iω=κþ [cf. (3.7), (3.14), (3.17)].
Now, we can approximate fðxÞ near xþ as fðxÞ≈
2κþð

ffiffiffi
x

p
−

ffiffiffi
x

p
þÞ, and we can define the usual tortoise

coordinate dx=dx� to write

ð ffiffiffi
x

p
−

ffiffiffi
x

p
þÞ ∼ e2κþx� ; ð3:25Þ

near the outer horizon. Then introducing the usual null
coordinate v ¼ tþ x� we can identify the ingoing and
outgoing modes as

Φin ¼ e−iωtð ffiffiffi
x

p
−

ffiffiffi
x

p
þÞ−iω=2κþ ¼ e−iωv; ð3:26aÞ

Φoutðx > xþÞ ¼ ð ffiffiffi
x

p
−

ffiffiffi
x

p
þÞβ=2 ¼ e−iωvð ffiffiffi

x
p

−
ffiffiffi
x

p
þÞiω=κþ :
ð3:26bÞ

Next, we use the Damour-Ruffini [26,27,50,51] method
to obtain the Hawking radiation spectra. We see that the
mode (3.26b) is not analytical in the outer horizon at
x ¼ xþ, We can therefore perform an analytical continu-
ation by a rotating through −π in the lower half complex x
plane. So we get ð ffiffiffi

x
p

−
ffiffiffi
x

p
þÞ → j ffiffiffixp

−
ffiffiffi
x

p
þje−iπ ¼

ð ffiffiffi
x

p
þ −

ffiffiffi
x

p Þe−iπ . Therefore, the outgoing mode at the
outer horizon surface becomes

Φoutðx < xþÞ ¼ e−iωvð ffiffiffi
x

p
þ −

ffiffiffi
x

p Þiω=κþeπω=κþ : ð3:27Þ

Thus (3.26b) and (3.27) describe the outgoing mode
outside and inside the outer horizon, and we can use this
to find out the relative scattering probability of the scalar
field at the outer horizon,

Γþ ¼
����Φoutðx > xþÞ
Φoutðx < xþÞ

����2 ¼ e−2π
ω
κþ : ð3:28Þ

We can now calculate the Hawking radiation spectrum
which is given by

jNωj2 ¼
1

e2πω=κþ − 1
¼ 1

eℏω=kBTþ − 1
; ð3:29Þ

where kBTþ ¼ ℏκþ=2π, Tþ being the Hawking
temperature.
At this juncture, we would have ideally preferred to

investigate the internal structure of this black hole solution.

However, we face an impasse: to study the internal
structure, we have to construct solutions to the confluent
Heun equation which satisfy the specified boundary con-
ditions at two of the singular points simultaneously, but the
so-called connection problem has not yet been solved for
the Heun class of differential equations. So we turn our
attention to a black hole spacetime which is much more
amenable to such calculations.

IV. THE DIMENSIONALLY REDUCED BTZ
BLACK HOLE

Starting from Einstein gravity in three dimensions with a
negative cosmological constant, one can perform a dimen-
sional reduction to a model similar to Jackiw-Teitelboim
gravity in two dimensions [13,35]. The action for the two-
dimensional theory is given by

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
ϕ

�
R − 2Λ −

J
2ϕ4

�
; ð4:1Þ

where Λ ¼ −1=L2, L being the AdS radius, J is a constant
and corresponds to a charge in the two-dimensional theory,
and ϕ is the dilaton field. This theory has a black hole
solution given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2; ϕ ¼ r
L
; ð4:2Þ

where

fðrÞ ¼ −Λr2 −M þ J2

4r2
¼ ðr2 − r2þÞðr2 − r2−Þ

L2r2
: ð4:3Þ

Here rþ and r− are the outer and inner horizons and are
given by

r� ¼ ML2

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
J

ML

�
2

s !
: ð4:4Þ

Since this black hole clearly corresponds the t, r section
of a BTZ black, they have an identical causal structure
as shown in Fig. 1. We also note that we can define the
ingoing and outgoing Eddington-Finkelstein coordinates, v
and u respectively, along with a tortoise coordinate r� for
this spacetime in the usual way.

A. Scalar field perturbations at CH+
R

To study scalar field perturbations in the spacetime
described by (4.2) we again use the generalized form of the
Klein-Gordon equation, that is, one with the coupling hðϕÞ,

1ffiffiffiffiffiffi−gp
hðϕÞ ∂μðgμν

ffiffiffiffiffiffi
−g

p
hðϕÞ∂νΦðr; tÞÞ − μ2Φðr; tÞ ¼ 0:

ð4:5Þ
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Previous attempts [38] at studying scalar perturbations of this
spacetime revealed that the resultant radial equation was too
complicated for exact calculations. Using the generalized
Klein-Gordon equation however makes exact calculations
possible. Followingargumentswehave already discussed,we
set hðϕÞ ¼ ϕ and implement the gauge ϕ ¼ r=L to simplify
the above equation using the ansatz,

Φðr; tÞ ¼ e−iωtRðrÞ; ð4:6aÞ

≡e−iωtz−i
ω

2κ−ð1 − zÞ−i ω
2κþFðzÞ; ð4:6bÞ

where we have used a new radial coordinate following [29],

z ¼ r2 − r2−
r2þ − r2−

: ð4:7Þ

We find that FðzÞ satisfies the hypergeometric equation,

zð1− zÞ∂2
zFðzÞ þ ½c− ðaþ bþ 1Þz�∂zFðzÞ− abFðzÞ ¼ 0;

ð4:8Þ

where

a ¼ 1

2

�
Δ − i

ω

κ−
− i

ω

κþ

�
;

b ¼ 1

2

�
2 − Δ − i

ω

κ−
− i

ω

κþ

�
; c ¼ 1 − i

ω

κ−
;

μ2L2 ¼ ΔðΔ − 2Þ: ð4:9Þ

Here Δ is a parameter that encodes the mass μ of the scalar
field and the boundary conditions that it satisfies [52]. We
also recall that (4.8) has three singular points, namely
z ¼ 0; 1;∞. We can write down a set of two linearly
independent solutions around each singular point, and each
set forms a basis. The following discussion closely mirrors
that of [29] given that the spacetime under consideration
is merely the t, r section of a rotating BTZ black hole.
We therefore summarize their analysis while adapting it to
our setting.
So, inside the black hole (r− < r < rþ; 0 < z < 1), we

can write down a basis for RðzÞ using (4.6b) and the two
linearly independent solutions to (4.8) [42] as

Rout;− ¼ z−
1
2
ð1−cÞð1 − zÞ12ðaþb−cÞ

2F1ða; b; c; zÞ; ð4:10aÞ

Rin;− ¼ z
1
2
ð1−cÞð1 − zÞ12ðaþb−cÞ

× 2F1ða − cþ 1; b − cþ 1; 2 − c; zÞ; ð4:10bÞ

and at the Cauchy horizon (z ¼ 0), these two linearly
independent solutions behave as

Rout;−jz∼0 ¼ z−i
ω

2κ−R̂out;−ðω; zÞ; ð4:11aÞ

Rin;−jz∼0 ¼ zþi ω
2κ−R̂in;−ðω; zÞ; ð4:11bÞ

where R̂out;−ðω; zÞ and R̂in;−ðω; zÞ are analytic at z ¼ 0

and are equal to unity since 2F1ðα; β; γ; 0Þ ¼ 1. Moreover,
for z ≠ 0, 2F1ðα; β; γ; 0Þ ¼ 1 has simple poles at γ ¼ −N
(where N ¼ 0; 1; 2;…); it is analytic otherwise. Therefore
we can deduce that Rin;− has simple poles when ω is a
positive integer multiple of ik−, and Rout;− has simple poles
when ω is a negative integer multiple of ik−. These two
linearly independent basis solutions give rise to two sets of
modes through (4.6a) which are labeled as Φout;−ð∝ Rout;−Þ
and Φin;−ð∝ Rin;−Þ and are called the outgoing and ingoing
modes, respectively. Noting that the outgoing Eddington-
Finkelstein coordinates ðu; rÞ are regular across the right
Cauchy horizon (CHþ

R ), we can write the modes near
CHþ

R , as

Φout;− ¼ eiωðu−u0Þð1þOðzÞÞ; ð4:12aÞ

Φin;− ¼ eiωðu−u0Þzþi ωκ−ð1þOðzÞÞ: ð4:12bÞ

Similarly, since the ingoing Eddington-Finkelstein coor-
dinates ðv; rÞ are regular across the left Cauchy horizon
(CHþ

L ), we can write the modes near CHþ
L as

Φout;− ¼ eiωðv−v0Þzþi ωκ−ð1þOðzÞÞ; ð4:13aÞ

Φin;− ¼ eiωðv−v0Þð1þOðzÞÞ: ð4:13bÞ

FIG. 1. Penrose diagram of a dimensionally reduced BTZ black
hole: the blue region denotes the interior of the black hole, and the
red region denotes the exterior. The future event horizon (Hþ

R ),
the past event horizon (H−

R), the right and left future Cauchy
horizons (CHþ

R and CHþ
L , respectively) have been indicated in the

diagram. Hþ
L is the future even horizon of the other asymptoti-

cally AdS region.
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Here, u0 and v0 are real constants that depend on the black
hole parameters. More importantly, we can see from (4.12)
and (4.13) that Φout;− is smooth across CHþ

R but not across
CHþ

L , whereas Φin;− is smooth across CHþ
L but not across

CHþ
L . Likewise, we can consider solutions Rout;þ and Rin;þ

near the event horizon z ¼ 1 which can be written in a
similar fashion near r ¼ rþðz ¼ 1Þ, viz.,

Rout;þjz∼1 ¼ ð1 − zÞþi ω
2κþR̂out;þðω; zÞ; ð4:14aÞ

Rin;þjz∼1 ¼ ð1 − zÞ−i ω
2κþR̂in;þðω; zÞ; ð4:14bÞ

where R̂out;þðω; zÞ and R̂in;þðω; zÞ are analytic at z ¼ 1, and
we also note (arguing as before) that Rin;þ has simple poles
when ω is negative integer multiple of ikþ and Rout;þ has
simple poles when ω is positive integer multiple of ikþ.
These two linearly independent solutions give rise two sets
of modes,Φout;þð∝ Rout;þÞ andΦin;þð∝ Rin;þÞ. We can also
show that Rin;þ is smooth acrossHþ

R . Similarly, we have the
linearly independent solutions Rvev;∞ and Rin;∞ which near
IR behaves as

Rvev;∞jz∼∞ ¼ z−Δ=2ð1þOð1=zÞÞ; ð4:15aÞ

Rin;∞jz∼∞ ¼ z−ð2−ΔÞ=2ð1þOð1=zÞÞ; ð4:15bÞ

and give rise to the modesΦvev;∞ andΦsource;∞ respectively.
Using the linear transformation relations for hypergeomet-
ric functions [42], we can express the event horizon basis in
terms of the Cauchy horizon basis,

Rout;þ ¼ AðωÞRout;− þ BðωÞRin;−; ð4:16aÞ

Rin;þ ¼ ÃðωÞRin;− þ B̃ðωÞRout;−; ð4:16bÞ

and we can also write Rin;þ in terms of the IR basis, and
Rvev;∞ in terms of the event horizon basis,

Rin;þ ¼ 1

T ðωÞRsource;∞ þRðωÞ
T ðωÞRvev;∞; ð4:17aÞ

Rvev;∞ ¼ 1

T̃ ðωÞRout;þ þ R̃ðωÞ
T̃ ðωÞRin;þ: ð4:17bÞ

In (4.16),A and B represent the transmission and reflection
coefficients for scattering of waves propagating out from
Hþ

L , and Ã and B̃ represent the transmission and reflection
coefficients for scattering of waves propagating in from
Hþ

R ; in (4.17a), T and R represent the transmission and
reflection coefficients for scattering of waves incident from
IR; in (4.17b) T̃ and R̃ represent the transmission and
reflection coefficients for scattering of waves propagating

out of H−
R [53]. The explicit expressions of these coef-

ficients are given below,

AðωÞ ¼ Γð1 − cÞΓð1 − a − bþ cÞ
Γð1 − aÞΓð1 − bÞ ;

BðωÞ ¼ Γðc − 1ÞΓð−a − bþ cþ 1Þ
Γðc − aÞΓðc − bÞ ; ð4:18aÞ

ÃðωÞ ¼ Γðc − 1ÞΓðaþ b − cþ 1Þ
ΓðaÞΓðbÞ ;

B̃ðωÞ ¼ Γð1 − cÞΓðaþ b − cþ 1Þ
Γða − cþ 1ÞΓðb − cþ 1Þ ; ð4:18bÞ

T ðωÞ ¼ ΓðaÞΓða − cþ 1Þ
Γða − bÞΓðaþ b − cþ 1Þ ;

RðωÞ ¼ ΓðaÞΓðb − aÞΓða − cþ 1Þ
ΓðbÞΓða − bÞΓðb − cþ 1Þ ; ð4:18cÞ

T̃ ðωÞ ¼ ΓðaÞΓða − cþ 1Þ
Γða − bþ 1ÞΓðaþ b − cÞ ;

R̃ðωÞ ¼ ΓðaÞΓða − cþ 1ÞΓð−a − bþ cÞ
Γð1 − bÞΓðc − bÞΓðaþ b − cÞ : ð4:18dÞ

1. Exterior quasinormal modes

The linear mode solutions which satisfy the “no-source”
boundary condition at IR and are smooth at the event
horizon Hþ

R are known as the exterior quasinormal modes
[29]. In literature, the frequencies of these modes are
referred just as quasinormal modes (QNMs) [22–24].
The no-source boundary condition actually translates to

a vanishing boundary condition at IR. This means that the
radial function is strictly proportional to Rvev;∞ at IR and as
we can see from (4.15a), Rvev;∞ → 0 as r → ∞. Moreover,
smoothness across the event horizon Hþ

R would imply
that the radial function is proportional to Rin;þ [29]. This
gives us the defining condition of a quasinormal mode,
viz. Rin;þ ∝ Rvev;∞. This is equivalent to setting T ðωÞ ¼ ∞
or T̃ ðωÞ ¼ ∞ in (4.17a) and (4.17b), respectively. From
the properties of the gamma functions, this translates to
setting a ¼ −n or a − cþ 1 ¼ −n for n ¼ 0; 1; 2;… in
(4.18c) or (4.18d). Using (4.9), these gives us two sets of
QNMs which we called the left and right quasinormal
modes, denoted ωL and ωR, where

ωL ¼ −i
rþ − r−

L2
ðΔþ 2nÞ; ð4:19aÞ

ωR ¼ −i
rþ þ r−

L2
ðΔþ 2nÞ; ð4:19bÞ

for n ¼ 0; 1; 2;…. We note that the quasinormal mode
frequencies are purely imaginary.
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2. Interior quasinormal modes

The interior quasinormal modes are the zeros of the
scattering amplitudes (reflection and transmission coeffi-
cients) inside the black hole. Let us consider (4.16) where
we have written the event horizon solutions in the Cauchy
horizon basis: (4.16b) describes an ingoing wave, propor-
tional to Φin;þ, coming in through the event horizon Hþ

R
and propagating to the Cauchy Horizon CHþ

L;R. This is
called “in-scattering.” Similarly (4.16a) describes “out-
scattering,” that is, a wave proportional to Φout;þ coming
out from Hþ

L and propagating to the Cauchy horizon
CHþ

L;R. We can now naturally define the interior QNMs

as follows: i) in-out interior QNMs [ÃðωÞ ¼ 0] and in-in
interior QNMs [B̃ðωÞ ¼ 0], and ii) out-in interior QNMs
[AðωÞ ¼ 0] and out-out interior QNMs [AðωÞ ¼ 0] [29].
The first pair is associated with (4.16b) and the second

pair with (4.16a). We shall focus here on the first pair of
QNMs. The in-out interior QNMs describes modes that
enter from the event horizon Hþ

R and are completely
reflected towards the right Cauchy horizon (CHþ

R ). Since
this indicates ÃðωÞ ¼ 0, we can set a ¼ −n or b ¼ −n for
n ¼ 0; 1; 2;… and determine the spectrum of the in-out
interior QNMs, viz.,

ωin-out;1 ¼ −i
rþ − r−

L2
ðΔþ 2nÞ; ð4:20aÞ

ωin-out;2 ¼ −i
rþ − r−

L2
ð2 − Δþ 2nÞ: ð4:20bÞ

We note that one of the in-out interior quasinormal mode
frequencies is identical to the exterior left quasinormal
mode frequency, that is

ωin-out;1 ¼ ωL: ð4:21Þ

Similarly the in-in interior QNMs describe modes that
come in from Hþ

R and are completely transmitted towards
the left Cauchy horizon (CHþ

L ). We can also show that one
of the in-in QNM frequencies coincide with the exterior
right quasinormal mode frequencies. We note in passing
that the out-in interior QNMs describe modes that come out
fromHþ

L and are completely reflected inwards to CHþ
L , and

the out-out interior QNMs describe modes that come out
fromHþ

L and are completely transmitted outwards to CHþ
R .

3. Inner horizon instability and strong cosmic censorship

To study the stability of the inner horizon, we may set up
an initial value problem in the following manner [29]: we
define smooth outgoing wave packets on Hþ

L and H−
R and

turn on a source at IR with profiles ZðωÞ, XðωÞ and ˜XðωÞ
respectively. These initial boundary conditions uniquely
determine a solution Φ inside and outside the black hole.
Inside the black hole we can then write Φ as

ΦðxÞ ¼ ΦoutðxÞ þΦinðxÞ; ð4:22Þ

where

ΦoutðxÞ≡
Z

dωðZðωÞAðωÞ þ ðX̃ðωÞT ðωÞ

þ XðωÞR̃ðωÞÞB̃ðωÞÞΦout;−ðωÞ; ð4:23aÞ

ΦinðxÞ≡
Z

dωðZðωÞBðωÞ þ ðX̃ðωÞT ðωÞ

þ XðωÞR̃ðωÞÞðωÞÃðωÞÞΦin;−ðωÞ: ð4:23bÞ

We note that Φout is smooth at CHþ
R and Φin is smooth at

CHþ
L . Due care needs to be taken when splitting Φ into

these two parts as argued in [29]. We refer the reader to
Dias et al. [29] for more technical details.
Now, we look closely at the behavior of Φ at CHþ

R : any
nonsmooth behavior ofΦmust come fromΦin sinceΦout is
smooth at CHþ

R . Using (4.12) we can write Φin as

Φin ¼
Z
C0

dωGðωÞe−iωðu−u0Þ exp
�
i
ω

κ−
log z

�
ð1þOðzÞÞ;

ð4:24Þ

where C0 is a contour that is indented in such a way that it
passes just below ω ¼ 0 in the complex ω plane, and

G ¼ ZðωÞBðωÞ þ ðX̃ðωÞT ðωÞ þ XðωÞR̃ðωÞÞ ˜AðωÞ:
ð4:25Þ

We also note that the pole at ω ¼ 0 arises from the
manner in which one chooses the basis to construct the
solution, and hence the contour of integration can be
made to pass just below it [29]. The right Cauchy horizon
is located at z ¼ 0 where log z → −∞. The contour of
integration to determine Φin is deformed to a line of
constant ImðωÞ in the lower half of the complex ω plane.
The contribution from the poles that are crossed with the
deformed contour plays crucial role in the behavior of Φin
since the smoothness of GðωÞ ultimately determines the
regularity of Φin near CHþ

R.
We begin by studying the expressions of ÃðωÞ, BðωÞ,

T ðωÞ and R̃ðωÞ: putting (4.9) in (4.18) we get

ÃðωÞ ¼ iκ−
ω

Γð1 − i ω
κ−
ÞΓð1 − i ω

κþ
Þ

ΓðΔ
2
þ i L

2
ωL

r−−rþ
ÞΓð1 − Δ

2
þ i L

2
ωL

r−−rþ
Þ ; ð4:26aÞ

B̃ðωÞ ¼ iκ−
ω

Γð1 − i ω
κ−
ÞΓð1þ i ω

κþ
Þ

ΓðΔ
2
þ i L

2
ωL

r−þrþ
ÞΓð1 − Δ

2
þ i L

2
ωL

r−þrþ
Þ ; ð4:26bÞ
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T ðωÞ ¼
ΓðΔ

2
− i L

2
ωL

rþ−r−
ÞΓðΔ

2
− i L

2
ωL

rþþr−
Þ

Γð1 − i ω
κþ
ÞΓðΔ − 1Þ ; ð4:26cÞ

R̃ðωÞ ¼
Γð1þ i ω

κþ
ÞΓðΔ

2
− i L

2
ωL

rþ−r−
ÞΓðΔ

2
− i L

2
ωL

rþþr−
Þ

Γð1 − i ω
κþ
ÞΓðΔ

2
þ i L

2
ωL

rþ−r−
ÞΓðΔ

2
þ i L

2
ωL

rþþr−
Þ :

ð4:26dÞ

Consider the expressions for ÃðωÞ and BðωÞ: both of these
scattering coefficients have simple poles at ω ¼ 0. From
the first gamma function in the numerator, they also have
simple poles at ω ¼ −inκ− for n ¼ 1; 2; 3;…. Moreover,
from the second gamma function in each numerator, we can
see that ÃðωÞ has simple poles at ω ¼ −inκþ, and BðωÞ
has simple poles at ω ¼ þinκþ. T ðωÞ has simple poles at
the exterior quasinormal mode frequencies ω ¼ ωL;R (this,
as we have seen, is the definition of exterior QNMs). R̃ðωÞ
also has simple poles at ω ¼ ωL;R and additional simple
poles at ω ¼ þinκþ in the upper half plane. We also note
that both T ðωÞ and R̃ðωÞ have zeros at ω ¼ −inκþ which
arise from the first gamma function in their respective
denominators.
With this information, we can determine the analyticity

of GðωÞ. We are interested in the lower half plane because
that is where we deform our contour of integration. Since
ZðωÞ, XðωÞ and X̃ðωÞ actually correspond to Fourier
transforms of compactly supported initial data, they entire
functions of ω. So the singularities in GðωÞ arise from the
singularities in the scattering coefficients that we have just
mentioned, namely, it arises from B, T Ã and RÃ. We
discuss the nature of each of these three objects below:
B has a pole at ω ¼ 0 and we have chosen the contour of

integration to pass below this pole. Hence it does not affect
the freedom to deform the contour of integration into the
lower half plane. The only poles of B in the lower half plane
lie at ω ¼ −inκ−.
T Ã has the following pole structure: Ã has a pole at

ω ¼ 0 which is irrelevant. It also has poles at ω ¼ −inκ�.
However T has a zero at ω ¼ −inkþ. So only the poles
at ω ¼ −inκ− from Ã contribute to the product T Ã.
Now T has poles at ω ¼ ωL;R. But we have seen from
the discussion on interior QNMs, the “in-out” QNM
ωin-out;1 ¼ wL is a zero of Ã. So the pole at ω ¼ ωL gets
canceled but no such cancellation occurs for ω ¼ ωR. So
we see that T Ã has two poles in the lower half plane,
namely, at ω ¼ ωR and ω ¼ inκ− for n ¼ 1; 2; 3;….
By a very similar argument we can show that RÃ has

a pole structure identical to T Ã in the lower half plane.
Therefore, for compactly supported initial data, G is
analytic in the lower half plane except for simple poles
at ω ¼ ωR and ω ¼ −inκ− (see Fig. 2).

Let ϖ be the frequency of the slowest decaying right
quasinormal mode, then we have

ϖ ¼ −i
ðrþ þ r−ÞΔ

L2
⇒ αR ≡ −ImðϖÞ ¼ ðrþ þ r−ÞΔ

L2
;

ð4:27Þ

where we have define the “right spectral gap”, αR. We now
deform the contour of integration C0 into a new contour C
defined as the straight line ImðωÞ ¼ −αR − ϵ, that is, we
push the contour just beyond the pole at ϖm. In doing so,
we pick up a contribution from the pole at ϖ. We also pick
up from the poles at ω ¼ −inκ− which lie between C0 and
C (see Fig. 2). But by applying the residue theorem, we see
that the poles at ω ¼ −inκ− gives a term which goes as zn.
Therefore these poles give a contribution which vanishes
smoothly at z ¼ 0, that is, at the Cauchy horizon (CHþ

R ). So
the nonsmooth part of Φin arises from the poles at ϖ and
from the integration along C. Using the residue theorem,
we can write

−2πizβGϖe−iϖðu−u0Þð1þOðzÞÞ; ð4:28Þ

where Gϖ is the residue of G at ω ¼ ϖ and β ¼ αR=κ−.
From this expression we see that the gradient of the

scalar field will diverge at CHþ
R if β < 1. Thus β < 1

ensures the energy momentum tensor of the scalar field will
diverge at the Cauchy horizon as

TVV ∼ V2ðβ−1Þ; ð4:29Þ

and potentially render it singular. When the black hole is far
from extremality, β < 1, and hence strong cosmic censor-
ship will be respected. For near extremal black holes,

FIG. 2. Schematic diagram of the contours of integration in the
complexω plane and the relevant poles. The pole marked in green
is the slowest decaying right quasinormal mode. The remaining
poles correspond to ω ¼ −inκ−, the ones marked in red con-
tribute (smoothly) to the integral and the black ones do not.
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β > 1; therefore the stress tensor will be bounded at the
right Cauchy horizon, and such a black hole will violate
strong cosmic censorship. This mimics the situation
depicted in [29,30].

B. Shock wave singularity at CH+
L

In this subsection, following [54], we study the singu-
larity structure of CHþ

L . We consider the late time geodesics
falling into the black hole. These geodesics are charac-
terized by the energy E≡ −ut > 0 of the infalling
observer, and they satisfy the radial equation,

dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrÞ

q
: ð4:30Þ

Here τ denotes the proper time and uα denotes the four-
velocity of the infalling observer. Near the inner horizon
r ¼ r−, the above equation can be approximated as

dr
dτ

≈ −E: ð4:31Þ

We now write the metric (4.2) in terms of double null
coordinates u ¼ t − r� and v ¼ tþ r�, that is, ds2 ¼
−fðrÞdudv. We note that u is past directed in the region
r− < r < rþ. Moreover, since r� → ∞ at r ¼ r−, u or v
must diverge there. As we have mentioned, this means that
v is regular at CHþ

L and u diverges to −∞. We also
approximate fðrÞ near r− as fðrÞ ≈ −2κ−ðr − r−Þ, since
κ− ≡ ð1=2Þjdf=drjr¼r− . We can then use the definition of
the tortoise coordinate dr=dr� ¼ fðrÞ to write

r − r− ¼ Me2κ−r� ; ð4:32Þ

where M is taken as convenient prefactor to fix the
integration constant in the definition of r�.
In the previous section, we have mentioned that inside

the black hole, we can decompose the scalar perturbation
into an ingoing mode and an outgoing mode (4.22), and we
can further recast in the following form near r ¼ r−:

Φ ¼ ΦoutðuÞ þΦinðvÞ

¼
Z

dωFðωÞe−iωðu−u0Þ þ
Z

dωGðωÞe−iωðv−v0Þ;

ð4:33Þ

where the exact expressions of FðωÞ and GðωÞ are inferred
from the previous section (also see [55]). The important
thing to note here is Φin is smooth at CHþ

L , whereas Φout

grows monotonically and blows up at CHþ
L . So near the left

Cauchy horizon (CHþ
L ) we can approximate Φ ≈ΦoutðuÞ.

Let us now explore the behavior ofΦ along the worldline
of the infalling observer as a function of proper time τ. We
shall focus on late-time observers, this means that the value

of v ¼ vþ when the observer crosses the event horizon rþ
is very large. We assume that vþ ≫ M. We also assume that
observer crosses CHþ

L at v− such that v increases mono-
tonically along a timelike worldline. Moreover due to the
time translation symmetry of the metric, Δv ¼ v− − vþ ¼
ΔvðEÞ [54].
Now we shall estimate the proper times τ1;2 at the two

events where the worldline intersect the null lines (say)
u ¼ u1;2. From the assumption vþ ≫ M, it follows that
r� ≫ M, and hence r ≈ r− [54]. So we can use (4.31) and
(4.32) to write

τ ≈ −
r − r−
E

¼ −
M
E
e−2κ−r� ; ð4:34Þ

where we have set τ ¼ 0 at the worldline’s intersection with
r−. Using r� ¼ ðv − uÞ=2, we can write for u ¼ u1;2,

τ1;2 ≈ −
M
E
eκ−ðu1;2−v1;2Þ; ð4:35Þ

where v1;2 denote the values of v at the intersection of
the worldline with u1;2. Since v1;2 > vþ, we can readily
calculate the upper bound,

jτ1;2j <
�
M
E
eκ−u1;2

�
e−κ−vþ ; ð4:36Þ

and therefore the time interval Δτ ¼ τ2 − τ1 > 0 is
bounded by

Δτ <
�
M
E
eκ−u1

�
e−κ−vþ : ð4:37Þ

The above equation tells us that, given the monotonically
increasing behavior of ΦðuÞ near CHþ

L , the infalling
observer will see the profile of the scalar field rise to a
very high value within an arbitrarily short proper time
interval that is proportional to expð−κ−vþÞ. For a suffi-
ciently large value of vþ, the scalar perturbation will appear
as a sharp shockwave of finite amplitude. This is a generic
feature of black hole spacetimes [56] and was described
first in [54]. The observer will detect the shock wave
effectively at τ ¼ 0, that is, in the limit vþ → ∞, so it will
be located just at the outgoing section of the inner horizon,
that is, at CHþ

L .

C. Quantum effects at CH+
R

After gaining reasonable insight on the possibility of
violation of strong cosmic censorship for black holes
in JT gravity, a pertinent question would be whether
such a violation is seen if quantum effects are taken into
account. This can however be easily analyzed using the
trace anomaly of 2D quantum stress energy tensor of a
probe massless scalar field as demonstrated in [57,58].

BHATTACHARJEE, SARKAR, and BHATTACHARYYA PHYS. REV. D 103, 024008 (2021)

024008-12



The analysis is quite similar to that of a 2D RN de Sitter
black hole. To see this, we rewrite the solution (4.2) again
in terms of u, v coordinates,

ds2 ¼ −fðrÞdudv: ð4:38Þ
These double null coordinates u, v are related to the
Kruskal like coordinates U, V that can be installed near
CHþ

R via

U ¼ −e−κþu; V ¼ −e−κ−v: ð4:39Þ
Similar coordinates can also be installed outside the event
horizon, by changing the sign in front of V to positive and
−κ− toþκþ [29]. Now for any conformally invariant theory
in two dimensions, the trace anomaly has a universal form
(for a massless scalar field),

Tμ
μ ¼ 1

24π
R; ð4:40Þ

where R is the Ricci scalar of the spacetime. For the metric
(4.39) R ¼ −f00ðrÞ,2 and using the v component of con-
tinuity equation ∇μTμν ¼ 0 we get

∂uTvv ¼ −f∂v½f−1Tuv�: ð4:41Þ
Then upon integrating, we get

TUv ¼
1

192π
½2ff00 − ðf0Þ2�rðU;vÞ

rðU0;vÞ þ TvvðU0; vÞ; ð4:42Þ

where the points ðU0; vÞ and ðU; vÞ are situated on and
inside the event horizon respectively (actually U0 ¼ 0 on
the event horizon), along a null line segment (see Fig. 3).
Next, setting v → ∞, the second term of (4.42) vanishes,
and transforming into regular V coordinate the first term
gives

TVV ∼
κ2þ − κ2−

κ2−

1

V2
: ð4:43Þ

This shows the quantum stress energy tensor diverges as
one approaches (V → 0) the right Cauchy horizon when-
ever κþ ≠ κ−. Clearly, this divergence is stronger than the
classical divergence obtained in (4.29) for β < 1.

V. DISCUSSION

The paper has three distinct results. First, for a pure JT
model, we have determined an exact analytical expression
of scalar QNMs. Further, we have cross-checked this result
numerically using the Horowitz-Hubeny prescription.
Next, we have considered the 2D RN black hole, and
the massless scalar wave equation turned out to be the
confluent Heun equation. Using the exact solution of the

wave equation, we have employed the Damour-Ruffini
method to find the Hawking spectra of the spacetime. We
have also used the delta-condition to find some imaginary
frequencies called resonant frequencies (in the Appendix).
Obtaining the quasinormal frequencies would require
numerical techniques, we wish to report the same in a
future communication. In order to examine the strong
cosmic censorship conjecture, we need the interior QNMs
as well. In absence of those for the 2D RN black hole, we
turned our attention towards the 2D analogue of rotating
BTZ black hole. The dynamics of scalar field turned out to
be quite similar to that of the usual BTZ black hole near
the right Cauchy horizon. In fact the QNMs are just the
same (after setting the azimuthal number m to zero). We
see that due to the coincidence where one of the interior
QNMs matches with one of the exterior QNMs, the strong
cosmic censorship conjecture is violated in the near
extremal limit. The instability of the left Cauchy horizon
is also depicted via the Marolf-Ori shock wave configu-
ration. Finally, the quantum instability of right Cauchy
horizon is shown to be more violent than the classical
instability.
This work offers obvious extensions. The interior QNMs

for 2D RN black hole will shed some light on the interior
structure of such spacetimes. We would like to attempt this
in near future. Investigating other types of perturbations
like vector and Weyl perturbations around these back-
grounds would be useful to decipher whether the stability
structure of these black holes change. It will also be
interesting to see how the use of nonsmooth initial data
changes the scenario. Investigating the backreaction of the
Hawking quanta on background geometry and its influence
on QNMs in lower dimensional models would be an

FIG. 3. The blue arrow denotes the integration path and the red
arrows show the limit v → ∞ as discussed while calculating the
quantum stress energy tensor in two dimensions.

2Prime denotes derivative with respect to r.
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interesting goal [59,60]. It would also beworthwhile to study
scalar perturbations of black holes in deformed JT gravity
[61]. It will be interesting to try and understand the impli-
cations of these results in the context of the duality between
the SYK model and the infrared sector of JT gravity [6–8].
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APPENDIX: RESONANT FREQUENCIES
OF THE 2D RN BLACK HOLE

The standard confluent Heun function, HC, reduces to a
polynomial of degrees N ≥ 0 if the following condition
holds [48]:

δ

α
þ β þ γ

2
þ N þ 1 ¼ 0: ðA1Þ

Using (3.13), (3.17) and (3.20) we can use the “delta-
condition” mentioned just above to get the following
expression for the resonant frequencies ω [51,62]:

ω ¼ iκþð1þ NÞ; N ¼ 0; 1; 2;…: ðA2Þ

In obtaining resonant frequencies, we have to impose
boundary conditions on the solution such that it is finite
at the horizon and well behaved at infinity. This neces-
sitates the solution to have a polynomial form which is
guaranteed by the form of HCðα; β; γ; δ; η; zÞ and the
delta-condition.
Now, before transforming to the confluent Heun equa-

tion, we could have also chosen the parameters with a
minus and obtained modes which are apparently decaying.
It would be tempting to label these as the quasinormal
frequencies. However, that would be premature since
quasinormal frequencies correspond to modes that are
purely ingoing at the event horizon and vanish at infinity.
The delta-condition does not guarantee these boundary
conditions. One needs to rigorously check this assertion
numerically to reach a definite conclusion. In this regard,
the approach used in [63] could be applicable.
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