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In this paper we study the motion of photons or massless particles in the C metric with
cosmological constant. The Hamilton-Jacobi equations are known to be completely separable,
giving a Carter-like quantity Q which is a constant of motion. All possible trajectories are classified
according to a two-dimensional parameter space representing the particle’s angular momentum
and energy scaled in units of Q. Exact solutions are given in the C metric coordinates in terms
of Jacobi elliptic functions. Using the exact solutions, we find examples of periodic orbits on the
photon surface.
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I. INTRODUCTION

The study of null geodesics is a useful tool in revealing
the features of strong gravity in various spacetimes. This is
perhaps becoming increasingly so in recent years as direct
imaging and detection of gravitational waves have become
observational realities. On the theoretical side, studying the
orbits of light may provide clues to solutions of wave
equations and massless fields in the background of a certain
spacetime. In this paper, we study the classical motion of
light propagating in the C metric in Einstein gravity with a
cosmological constant.
The Ricci-flat C metric [1,2], in its maximally extended

description, describes two causally disconnected black
holes uniformly accelerating apart. In this paper we will
confine ourselves in a particular Lorentzian patch where
only one accelerating black hole is observed. The cause of
this acceleration is either a cosmic strut providing positive
pressure or cosmic string providing positive tension. A
review of the geometrical properties and global structure
for the Ricci-flat C metric can be found in [3,4]. The
quasinormal modes and stability properties of the C metric
have been studied by Destounis et al. in Refs. [5,6]. The C
metric solution can be straightforwardly generalized to
include a positive or negative cosmological constant. These
describe accelerating black holes in de Sitter (dS) or anti–
de Sitter (AdS) backgrounds, respectively. The structure
and properties the (A)dS C metrics have been studied in
Refs. [7–14].
In the (A)dS C metric, the equations of motion for the

null geodesics are completely integrable. In this paper we
derive them by separating the Hamilton-Jacobi equations.
Previously, the study of geodesics in the C metric was
done by [15], and in [16] for the anti–de Sitter C metric.

The general equations for null and timelike geodesics in the
Ricci-flat case was studied by the author’s earlier paper
[17], as well as by Bini et al. in [18]. In Ref. [19] Alawadi,
Batic, and Nowakowski studied circular photon orbits in
the Ricci-flat C metric, where it was rigorously shown that
such photon rings are unstable. In Ref. [20], Frost and
Perlick studied the equations of motion of null geodesics
and gravitational lensing, also in the Ricci-flat C metric.
Most recently, Zhang and Jiang studied null geodesics and
black-hole shadows in the rotating generalization of the
Ricci-flat C metric [21]. Black hole shadows and photon
spheres have been studied in various other spacetimes,
e.g., in [22].
In this paper, we shall consider a more generalized

setting where a nonzero cosmological constant is present,
and attempt to place a higher emphasis on aspects not yet
covered by these recent papers. We attempt a classification
of possible orbits in terms of a two-dimensional parameter
space related to the photon’s angular momentum and
energy scaled in units of the Carter-type separation constant
Q. The parameter space will be organized based on the
allowed domains of existence of the geodesic. The analysis
and exact solutions derived in the present paper will be
done in the C metric ðx; yÞ coordinates. Additionally, we
also obtain examples of periodic orbits where photons
move along closed trajectories on the photon surface.
The rest of the paper is organized as follows. In Sec. II

we review the essential features of the C metric spacetime
and derive the equations of motion for photon orbits. In
Sec. III we study the parameter space of the orbits and
classify the different possible types in a two-dimensional
parameter space. With the separated Hamilton-Jacobi
equations, we obtain exact solutions in Sec. IV. Using
the analytical solutions, we obtain some examples of
periodic orbits in Sec. V. Conclusions and closing remarks
are given in Sec. VI.*yenkheng.lim@xmu.edu.my
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II. THE C METRIC AND GEODESIC EQUATIONS

We will take our C metric to be in the following form:

ds2¼ 1

A2ðx−yÞ2
�
−FðyÞdt2þ dy2

FðyÞþ
dx2

GðxÞþGðxÞdϕ2

�
;

ð1aÞ

FðyÞ ¼ 1

l2A2
− ð1 − y2Þð1þ 2mAyÞ;

GðxÞ ¼ ð1 − x2Þð1þ 2mAxÞ; ð1bÞ

where m ≥ 0 and A > 0 are respectively the mass and
acceleration parameters of the Cmetric, and l is the (anti–)
de Sitter curvature parameter related to the cosmological
constant Λ by l−2 ¼ − Λ

3
. For this value, the metric (1)

solves the Einstein equation Rμν ¼ Λgμν. Since we define
l2 to have a sign opposite to the cosmological constant, we
henceforth refer to the case l2 > 0 as the anti–de Sitter
(AdS) C metric and l2 < 0 the de Sitter (dS) C metric. The
Ricci-flat C metric is the limit l2 → �∞, for which we
recover precisely the fully factorized form of Hong and Teo
[23]. An alternative form of the (A)dS C metric was
proposed in [24], where F and G are both factorized.
For the studies of its geodesic equations, we find it more
convenient to use the form in (1) where the expressions for
certain parameters appear more compact. Besides these, the
forms of F and G where they are unfactorized was used in,
for instance, Refs. [11,12] in the study of gravitational
radiation, and in Refs. [7,9,10,13] in obtaining the causal
structure of the (A)dS C metrics.
In this form, G remains factorized with its roots easily

readable as x ¼ �1, − 1
2mA, but F is not in factorized form

due to the presence of the term 1=l2A2. Let us denote the
three possible roots of F by fa; b; cg with the ordering
a ≤ b ≤ c whenever they are real. The three roots are real
and distinct if

l2>
54m2A2Ωþ

2A2ð1−4m2A2Þ2 or l2 <
54m2A2Ω−

2A2ð1−4m2A2Þ2 ; ð2Þ

where

Ω� ¼ 1 − 36m2A2 � ð1þ 12m2A2Þ3=2
54m2A2

: ð3Þ

For 0 < mA < 1
2
, we always have Ωþ > 0 and Ω− < 0.

Therefore the domain l2 > 54m2A2Ωþ
2A2ð1−4m2A2Þ2 lies in the AdS

case and l2 < 54m2A2Ω−
2A2ð1−4m2A2Þ2 lies in the dS case. If l2

approaches 54m2A2Ω−
2A2ð1−4m2A2Þ2 from below, a approaches b, and

if l2 approaches 54m2A2Ωþ
2A2ð1−4m2A2Þ2 from above, b approaches c.

Evaluating the derivative of F at y ¼ 0, we find

F0ð0Þ ¼ −2mA, which is negative. The constant term of
F is 1 − 1=l2A2. Therefore we conclude that b ≤ 0 if
l2A2 ≥ 1, and b > 0 if l2A2 < 1. In Ref. [9], it was shown
that the former case corresponds to a single accelerated
black hole in AdS, and the latter describes two accelerating
black holes in AdS.
We are interested in parameter ranges where G ≥ 0 and

F ≥ 0 for nonempty domains

−1 ≤ x ≤ 1; a ≤ y ≤ b; ð4Þ

where the metric will be static and Lorentzian with
signature ð−;þ;þ;þÞ. The coordinate x is interpreted as
a polar-type coordinate where, for convenience of exposi-
tion, we will refer to the roots Gð�1Þ ¼ 0 as the “north”
and “south” poles, respectively. We will sometimes refer to
x ¼ 0 as the “equator.” The coordinate y can be interpreted
as a radial-type coordinate distance from the black hole.
Therefore, observers in the domain (4) will see an accel-
erating black hole with a horizon of spherical topology
located at y ¼ a, as well as an acceleration horizon y ¼ b.
To ensure that such domains exist, we will restrict our
attention to the parameters satisfying

2mA< 1; l2

8<
:
> 54m2A2Ωþ

2A2ð1−4m2A2Þ2 AdS case;

< 54m2A2Ω−
2A2ð1−4m2A2Þ2 dS case:

ð5Þ

The Ricci-flat C metric is recovered if the limit l2 → þ∞
is taken from the AdS side, or if l2 → −∞ is taken from
the dS side. In either limit, a and b become −1 and þ1,
respectively.
The spacetime carries an unavoidable conical singularity

on either of the x ¼ −1 or x ¼ 1 half-axes. For instance we
can choose to remove the singularity at x ¼ 1 by fixing the
periodicity of the azimuthal angle to be

ϕ ¼ ϕþ Δϕ; Δϕ ¼ 2π

1þ 2mA
: ð6Þ

Equivalently one can define a new coordinate via ϕ ¼
φ

1þ2mA such that φ ∈ ½0; 2π� runs through the usual perio-
dicity. With the removal of the x ¼ 1 singularity the C
metric is interpreted as the black hole being pulled “south-
wards” (x ¼ −1) by a cosmic string. However, for the
purposes of this paper, we have no particular reason to
favor the removal of a cosmic strut over the cosmic string,
or vice versa. So when numerical examples are considered,
we shall simply take Δϕ ¼ 2π.
The trajectory of particles in the C metric shall be

described by a parametrized curve qμðτÞ ¼ ðtðτÞ; yðτÞ;
xðτÞ;ϕðτÞÞ where τ is an affine parameter. In this paper
we shall use the terms photons, light, and massless particles
interchangeably to mean particles that follow geodesics
where their tangent vectors are null, gμν _qμ _qν ¼ 0.
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(Overdots denote derivatives with respect to τ.)
The equations of motion can be derived starting from
the Lagrangian L ¼ 1

2
gμν _qμ _qν, from which the Euler-

Lagrange equation d
dτ

∂L
∂ _qμ ¼ ∂L

∂qμ provides the equations of
motion of the particle.
For the C metric (1), the Lagrangian is explicitly

L ¼ 1

2A2ðx − yÞ2
�
−F_t2 þ _y2

F
þ _x2

G
þ G _ϕ2

�
: ð7Þ

The momenta pμ ¼ ∂L
∂ _qμ conjugate to the four coordinates

are

pt ¼ −
F

A2ðx − yÞ2 _t≡ −E; ð8aÞ

pϕ ¼ G
A2ðx − yÞ2

_ϕ≡Φ; ð8bÞ

py ¼
1

A2ðx − yÞ2
_y
F
; ð8cÞ

px ¼
1

A2ðx − yÞ2
_x
G
: ð8dÞ

Since ∂t and ∂ϕ are Killing vectors of the spacetime, the
momenta along these directions are conserved along the
geodesics. We will regard these constants as the energy and
angular momentum of the particle denoted by E and Φ
respectively.
Using Eqs. (8a) and (8b) to eliminate _t and _ϕ in favor of

E and Φ, the null condition reduces to

V þ _y2

F
þ _x2

G
¼ 0; ð9Þ

where V is our effective potential given by1

V ¼ A4ðx − yÞ4
�
Φ2

G
−
E2

F

�
: ð10Þ

Since F and G are positive in the static Lorentzian patch
(4), Eq. (9) constrains the photons to domains of ðx; yÞ
where V ≤ 0. In the author’s previous work [17], this was
used to visualize the regions accessible to timelike particles
and photons. However, as we will see below, the sepa-
rability of the equations for photons will provide a stronger
restriction of their domains of existence.
Applying the Euler-Lagrange equations to x and y, we

have [17]

ẍ ¼
�
G0

2G
þ 1

x − y

�
_x2 −

G_y2

ðx − yÞF −
2_x _y
x − y

þ A4ðx − yÞ3G
�
E2

F
þ
�ðx − yÞG0

2G
− 1

�
Φ2

G

�
; ð11aÞ

ÿ ¼
�
F0

2F
−

1

x − y

�
_y2 þ F _x2

ðx − yÞGþ 2_x _y
x − y

− A4ðx − yÞ3F
��ðx − yÞF0

2F
þ 1

�
E2

F
−
Φ2

G

�
; ð11bÞ

where we have denoted G0 ¼ dG
dx and F0 ¼ dF

dy. Solutions to
Eqs. (11) have already been studied in the author’s earlier
paper [17] in the case of zero cosmological constant.
Here numerical solutions to (11) for zero and nonzero
cosmological constants are used as an independent con-
sistency check against the analytical results to be derived
in Secs. III and IV.
Before separating the equations of null geodesics in the

C metric (1), we first point out that the general family of
Plebański-Demiański spacetimes admits a hidden sym-
metry described by a Killing-Yano two-form [25] rendering
the equations for null geodesics separable. Since the C
metric is a member of the Plebański-Demiański family, it
inherits the separability of the Hamilton-Jacobi equations.
The separation procedure was done, e.g., in [21,26,27]
which includes the rotating version of the spacetime. In the
case of the nonrotating AdS C metric, the separation of
the geodesic equations was also performed in [12], where
the separation constant plays a role in the study of
gravitational radiation of the spacetime.
Here let us briefly review the procedure for the present

form of the metric (1). To start, we seek the Hamilton-Jacobi
equation Hðq; ∂S∂qÞ þ ∂S

∂τ ¼ 0 where H is the Hamiltonian
and is obtained by a Legendre transform of (7). Explicitly,
it is

Hðq;pÞ¼ 1

2
A2ðx−yÞ2

�
−
p2
t

F
þFp2

yþGp2
xþ

p2
ϕ

G

�
: ð12Þ

The Hamilton-Jacobi equation is then

1

2
A2ðx−yÞ2

�
−
1

F

�∂S
∂t
�

2

þF

�∂S
∂y
�

2

þG

�∂S
∂x
�

2

þ 1

G

�∂S
∂ϕ
�

2
�
þ∂S
∂τ ¼ 0: ð13Þ

We take the ansatz for Hamilton’s principal function S to
have the separable form

S ¼ −EtþΦϕþ SxðxÞ þ SyðyÞ: ð14Þ
Substitution of the ansatz into (13) leads us to a Carter-
like separation constant Q where the equation separates to
the pair

1This definition of effective potential is slightly different from
the one used in [17].
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F

�
dSy
dy

�
2

¼ −
Q
F
þ E2

F2
; G

�
dSx
dx

�
2

¼ Q
G
−
Φ2

G2
: ð15Þ

Then, with the relations pμ ¼ ∂S
∂qμ, along with (8), we obtain

the set of first-order differential equations

_t
A2ðx − yÞ2 ¼

E
F
; ð16aÞ

_ϕ

A2ðx − yÞ2 ¼
Φ
G
; ð16bÞ

_x
A2ðx − yÞ2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
XðxÞ

p
; ð16cÞ

_y
A2ðx − yÞ2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
YðyÞ

p
; ð16dÞ

where X and Y are third-degree polynomials given by

XðxÞ ¼ QG −Φ2; ð17Þ

YðyÞ ¼ −QF þ E2: ð18Þ

Indeed, Eqs. (16a) and (16b) are reproductions of (8a)
and (8b); and eliminating Q between (16c) and (16d)
recovers (9).

III. PARAMETER AND COORDINATE RANGES
OF THE GEODESICS

By investigating the root structure of X and Y, we will be
able to characterize the different possible types of orbits.
From Eqs. (16c) and (16d), the geodesics are restricted to
domains where X ≥ 0 and Y ≥ 0. The boundaries of these
domains are the roots of X and Y. Notice that these two
polynomials are obtained by G and F by multiplication and
shifts by constants. Therefore the root structures of X and Y
are closely related to those of G and F. In particular,
the quantities Ω� defined in Eq. (3) continue to play a
role here.

A. The root structure of X

As mentioned above, the geodesics can only exist in the
domains of x where X ≥ 0. This condition immediately
requires Q ≥ 0, and that Q ¼ 0 is only possible for geo-
desics of zero angular momentum.
Let us denote the roots by fx�; x1; x2g with the ordering

x� ≤ x1 ≤ x2 whenever they are real. Assuming for the
moment that this is the case, we see from Eq. (17) that X is
obtained from G by multiplication with Q, then shifted
down byΦ2 units, as sketched in Fig. 1. From the figure we
infer that the relative positions of the roots of G and X are

x� ≤ γ < −1 ≤ x1 < x2 ≤ 1; ð19Þ

and that geodesics exist in the domain

x1 ≤ x ≤ x2; ð20Þ

for which X ≥ 0, this domain is marked blue in Fig. 1.
The other domain x ≤ x� is outside (4) and is therefore
irrelevant.
The reality of the roots are determined by the

discriminant

ΔðXÞ ¼ 4Q2½−27m2A2Φ4 − ð1 − 36m2A2ÞQΦ2

þ ð1 − 4m2A2ÞQ2�: ð21Þ

The function X will have real and distinct roots if
ΔðXÞ > 0, or

−ΩþQ < Φ2 < −Ω−Q; ð22Þ

where Ω� is as defined in Eq. (3). If Φ2 > −Ω−Q, x1 and
x2 become a complex conjugate pair, while ifΦ2 < −ΩþQ,
the complex conjugate pair is x� and x1. As we have
previously noted,Ωþ is positive for 0 < mA < 1

2
. Therefore

this latter case is physically irrelevant.
With the Descartes rule of signs, we can further pin

down the specific regions occupied by the roots. Using this
rule, we see that if Q −Φ2 > 0, X has one positive root,
and if Q −Φ2 > 0, X has two positive roots. Furthermore,
since −Ω− is always greater than 1 for 0 < mA < 1

2
, then

Q −Φ2 crosses from negative to positive before reaching
Φ2 ¼ −Ω−Q, where the discriminant vanishes. In other
words, x1 crosses from negative to positive before coa-
lescing with x1 in the positive domain.
From these considerations, we may organize the x

motion of the geodesics into five cases.

1. Case A, Φ2 = 0

These are geodesics with zero angular momentum in the
z component. In this case, x1 ¼ −1 and x2 ¼ 1 and the

FIG. 1. The graphs of X (solid curve) and G (dashed curve) as
functions of x. The allowed domains for null geodesics corre-
spond to X ≥ 0 and G > 0. The physically relevant domains
satisfying this condition are marked blue.
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photon can access the full Lorentzian domain −1 < x < 1.
By Eq. (16b), ϕ is constant for these geodesics. These
are polar orbits that intersect with the north or south axis
of the C metric (and possibly colliding with the cosmic
string/strut).

2. Case B, 0 < Φ2 < Q

In this case the motion is restricted to x1 ≤ x ≤ x2 which
is a proper subset of the Lorentzian region (4). The root x1
is negative while x2 is positive, so this domain contains the
“equatorial plane” x ¼ 0. The distinguishing feature of this
case is that the geodesics oscillate in the polar direction
between x1 and x2, and crosses the equatorial plane x ¼ 0
in between. Increasing the angular momentum narrows the
range between x1 and x2. AsΦ2 is increased towardsQ, the
root x1 approaches zero.

3. Case C, Φ2 =Q

In this case, the constant term of X vanishes and 0 is one
of its roots. By continuity from the previous case, we
identify this root to be x1 ¼ 0. The other two roots can be
written explicitly as

x� ¼
−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16m2A2

p

4mA
; x2¼

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16m2A2

p

4mA
: ð23Þ

In this case, the photon’s domain of polar oscillation is
bounded at one side by the equatorial plane as measured in
coordinates x ¼ cos θ ¼ 0, and the southern hemisphere is
no longer accessible to the photons.

4. Case D, Q < Φ2 < −Ω−Q

By the Descartes rule of signs, there are now at least two
positive roots. This is by continuity from the previous cases
as x1 crosses past the point x ¼ 0 and now becomes a
positive root. Therefore the roots in this case are ordered by

x� < 0 < x1 < x2 < 1: ð24Þ

In this case, the domain of polar oscillation is now
strictly to the north of the equatorial plane. Further
increasing Φ2 towards QΩ− continues to narrow the
domain as x1 approaches x2.

5. Case E, Φ2 = −Ω−Q

Here the discriminant ΔðXÞ vanishes, and the two roots
x1 and x2 coalesce into a degenerate root given by

x1 ¼ x2 ≡ xpc ¼
−ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12m2A2

p
Þ

6mA
: ð25Þ

Since this is a degenerate root, we have XðxprÞ ¼
X0ðxprÞ¼0. By Eq. (16c), we see that this trajectory
corresponds to a constant x ¼ xpc > 0 fixed at a polar
angle located north of the equator. This is the case referred
to by Ref. [26] as the photon cone. The other root is

x� ¼ −ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ12m2A2

p
Þ

6mA , which is still located beyond the
physically relevant range of interest.
For values of Φ2 > −Ω−Q the two roots x1 and x2

become complex and X is negative in the domain
−1 ≤ x ≤ 1. No geodesics can exist in this case. The cases
described above are summarized in Fig. 2, showing the root
structure of X as Φ2 varies from 0 to −Ω−Q.

B. The root structure of Y

Let us denote the roots of Y by fy1; y2; y�g with the
ordering y1 ≤ y2 ≤ y� whenever they are real. The constant
term of Y is always positive. The Descartes rule of sign tells
us that there is only one positive root, which would be the
largest, y�.
We note that Eq. (16d) requires E2 to be nonzero. So in

the following we consider E2 > 0. Assuming for the
moment that all roots of F and Y are real, we notice that
Y is obtained from −F by multiplication of Q, then shifted
upwards by E2 units. The existence of geodesics requires
Y ≥ 0. Recalling that the domain for our static Lorentzian
patch is where F > 0, the relevant domain for null geo-
desics are marked blue in Fig. 3. From this graph we infer
the roots are ordered by

a ≤ y1 ≤ y2 ≤ b ≤ c ≤ y� ð26Þ

From Fig. 3, we can see that as E2 increases, the graph of
Y is raised further up and eventually y1 coalesces with y2,
becoming complex. The precise value of E2 where this
happens can be determined from the discriminant of Y,

FIG. 2. The root structure of X, for various values of Φ2. The quantity Ω� is as defined in Eq. (3).
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ΔðYÞ ¼ 4Q2

�
−27m2A2E4 þ

�
1 − 36m2A2 þ 54

m2

l2

�
QE2

þ
�
ð1 − 4m2A2Þ2 − 1 − 36m2A2

A2l2
−
27m2

A2l4

�
Q2

�
:

ð27Þ

The polynomial Y has real and distinct roots for
ΔðYÞ > 0, or�

1

A2l2
þΩ−

�
Q < E2 <

�
1

A2l2
þ Ωþ

�
Q; ð28Þ

where Ω� is the same as in Eq. (3). As E2 approaches the
upper bound, y1 approaches y2, whereas if E2 approaches
the lower bound, y2 approaches y�. Now, in the AdS
(l2 > 0) case the lower bound consists of a positive and
negative term, and one may wonder whether this gives a
positive nonzero lower bound for E2. However, we can
show that this lower bound is always negative as long as F
has distinct real roots. Recalling Eq. (2), this condition

requires l2 > 54m2A2Ωþ
2A2ð1−4m2A2Þ2. Upon rearranging, we have

1

A2l2
<

2ð1 − 4m2A2Þ2
54m2A2Ωþ

: ð29Þ

Using the relation ΩþΩ− ¼ − ð1−4m2A2Þ2
27m2A2 , one directly

computes

1

A2l2
þ Ω− < 0: ð30Þ

Therefore this lower bound could not be reached by a
positive E2.
Next we organize the different cases as we increase E2

continuously:

1. Case I, 0 < E2 < ðΩ + + 1
A2l2ÞQ

This is the case depicted in Fig. 3, where Y has distinct
roots. A photon may propagate in one of the two possible
disconnected domains

a < y ≤ y1 or y1 ≤ y < b: ð31Þ

In other words, there is a “potential barrier” at y1 < y < y2
which prevents photons in a < y ≤ y1 to access
y1 ≤ y < b, and vice versa. As E2 is increased, the potential
barrier narrows and y1 and y2 approach each other.

2. Case II, E2 = ðΩ+ + 1
A2l2ÞQ

Here y1 and y2 coalesce into a degenerate root given by

y1 ¼ y2 ¼ yps ¼
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12m2A2

p

6mA
: ð32Þ

In this case, YðypsÞ ¼ Y 0ðypsÞ ¼ 0, and Eq. (16d) is solved
by y being constant at yps. This is the aspherical photon
surface of the C metric. This terminology was introduced
by Gibbons and Warnick [28] where they have shown that
the geometry of constant-y surfaces is that of a deformed
sphere. This is also the analog to the photon spheres around
the Kerr black hole [29].

3. Case III, E > ðΩ+ + 1
A2l2ÞQ

In this case y1 and y2 become complex conjugate pairs.
Then F is always positive in the Lorentzian region a <
y < b and the potential barrier no longer exists. So photons
from the neighborhood of the black-hole horizon have
access to the acceleration horizon, and vice versa.
The cases described above are summarized in Fig. 4,

showing the different cases as E2 varies from E2 > 0.

C. Organization of parameter ranges and examples

In ametric ofmass parameterm, acceleration parameterA
and (A)dS parameter l2, a photon trajectory can take either
of the following cases classified byA, B, C, or D based on its

FIG. 3. The graphs of Y (solid curve) and −F (dashed curve) as
functions of y. The allowed domains for null geodesics corre-
spond to X ≥ 0 and −F < 0. The physically relevant domains
satisfying this condition are marked blue.

FIG. 4. The root structure of Y, for various values of E2. The quantity Ω� is as defined in Eq. (3).
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angularmomentum, and cases I, II, or III based on its energy.
We have seen that the root structure of X depends onΦ2=Q,
whereas the root structure of Y depends on E2=Q. It is then
convenient to define dimensionless quantities

η ¼ Φ2

Q
; ξ ¼ E2

Q
: ð33Þ

The type of motion can now be parametrized in ðη; ξÞ space
subdivided into 12 domains which we denote AI, AII, AIII,
BI, …, EIII. For example, a photon trajectory with angular
momentum in the range 1 < η < 1 (Case B) andwith energy

ξ ¼ Ωþ þ 1
A2l2 (Case I), will be called Case BII. For another

example, the circular photon orbits of constant x and y
belongs to EII, where ðη; ξÞ ¼ ð−Ω−;Ωþ þ 1

A2l2Þ.
The respective domains for each case are sketched in

Fig. 5. The cases AI, AIII, BII, CI, CIII, DII, EI, and EIII
occupy one-dimensional lines, while AII, CII, and EII are
points. The aspherical photon surfaces are represented by the
blue horizontal line, starting from the part where 0 ≤ η < 1
is the case AII, for which the domain of polar oscillation
crosses the equatorial plane x ¼ 0. For 1 < η < −Ω− on this
line is where the surface lies completely in the northern
hemisphere x > 0 and never crosses the equatorial plane.
The critical case between the two is the point BII, where the
southernmost part of the polar oscillation just touches the
equatorial plane. The vertical red line represents l ¼ −Ω−
where the geodesics have constant x, containing the cases
DI, DII, and DIII. The photon surface and constant-x lines
intersect at the point ð−Ω−;Ωþ þ 1

A2l2Þ, corresponding to the
circular photon orbit where both x and y are constant.
Let us now demonstrate some examples of the various

cases. The trajectories are obtained either by solving
Eq. (11) or using the analytical solutions of Sec. IV, giving
parametric equations for x and y. We can convert to
more familiar Boyer-Lindquist-type coordinates by the
transformation

θ ¼ arccos x; r ¼ −
1

Ay
: ð34Þ

In the Ricci-flat case, these coordinates are those used in
Refs. [17,19,20]. We further transform to Cartesian-like
coordinates by the transformation

X1¼ rsinθcosϕ; X2¼ rsinθsinϕ; X3¼ rcosθ: ð35Þ

For the moment, we assume the azimuthal coordinate has
periodicity ϕ ∈ ½0; 2πÞ, leaving both the cosmic strut and

FIG. 5. The parameter space of null geodesics in the (A)dS C
metric. The relevant domains are labeled with the Latin alphabet
followed by Roman numerals, where the Latin parts A, B,…
denote the cases in the root structure analysis for XðxÞ, and the
Roman numerals I, II, and III denote the cases listed in the
analysis for YðyÞ. The blue horizontal line denotes the photon
surfaces of constant y, and the red vertical line denotes the photon
cones of constant x. The intersection point ð−Ω−;Ωþ þ 1

A2l2Þ
corresponds to the parameters required for the circular photon
orbits, where Ω� are given by Eq. (3).

FIG. 6. Examples of orbits from case BI in a spacetime with parameters mA ¼ 0.2, l2 ¼ m2

50
. The left panel shows the trajectory in the

Cartesian-like coordinates defined in Eq. (35) while the right panel is in ðx; yÞ coordinates. The energy and angular momentum
parameters are η ¼ 0.9, ξ ¼ 1.1. The blue line represents a photon starting just before the acceleration horizon at y ¼ −0.6 and the red
curve represents a photon starting just outside the black hole horizon at y ¼ −2.6 heading outwards.
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string present. As mentioned in Sec. II and in the literature,
we can remove one of them by appropriately redefining
the periodicity of ϕ. For concreteness, the following
examples in this section take place in an AdS C metric
with parameters

mA ¼ 0.2;
m2

l2
¼ 50: ð36Þ

For these values, we have2

Ωþ þ 1

A2l2
≃ 1.1299; −Ω− ≃ 1.0373: ð37Þ

We start with an example from Case BI shown in Fig. 6,
with ðη; ξÞ ¼ ð0.9; 1.1Þ. In this case, geodesics can propa-
gate in two disconnected domains separated by a potential
barrier y1 < y < y2. The blue curves in Fig. 6 represent
a photon starting just before the acceleration horizon at
y ¼ −0.6 towards the black hole, encountering the poten-
tial barrier at y1 before going off into the acceleration
horizon. The red curve represents a photon starting just
outside the black hole horizon at y ¼ −2.6 heading out-
wards. It encounters the potential barrier at y2 and sub-
sequently falls into the black hole.
For the next example let us consider photon cones

where η ¼ −Ω−. Here the geodesics are confined to
xpc ¼ constant. In Fig. 7 we show explicitly the cases EI
and EIII. For the case EI shown in Fig. 7(a), the blue curve
shows the photon initially at a position just before the

(a)

(b)

FIG. 7. Examples of orbits on the photon cone, with Case EI (a) and Case EIII (b).

2The symbol “≃” indicates that numerical values are being
displayed up to five significant figures.
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(a)

(b)

(c)

FIG. 8. Orbits on the photon surface.
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acceleration horizon, y ¼ −0.6, heading towards the black
hole until it encounters the potential barrier y1, before
heading away and falling beyond the acceleration horizon.
The red curve is a trajectory starting just outside the black-
hole horizon, y ¼ −2.6 heading outwards before encoun-
tering the potential barrier at y2, upon which it turns
back and falls into the black hole. The case EIII example
is shown in Fig. 7(b), showing the photon initially at
y ¼ −0.6 taking a trajectory that eventually falls into the
black-hole horizon. At all times the x coordinate is constant
at x ¼ xpc.
Perhaps the more interesting case would be the aspheri-

cal photon surface with ξ ¼ Ωþ þ 1
A2l2 and y is constant at

yps. The examples are depicted in Fig. 8. In Fig. 8(a), we
show a geodesic from case BII for η ¼ 0.9. Here the
geodesics oscillate in the polar direction that contains the
equatorial plane. Increasing η to 1.02, the domain of the x
oscillation narrows. This value of η corresponds to case DII
shown in Fig. 8(b), where x2 is positive. So the photon
oscillates in a domain contained in the northern hemisphere
and does not cross the equatorial plane. Further increasing η
to the value −Ω−, we now have x also being constant at xpc.
This is now a circular photon ring of Case EII, shown in
Fig. 8(c).

IV. ANALYTICAL SOLUTIONS

Analogous to the case of Kerr geodesics, it will be
convenient to introduce a Mino-like parameter [30] λ,
which is defined in the present case by dλ

dτ ¼ A2ðx − yÞ2.
Under this reparametrization Eqs. (16a)–(16d) appear as

dt
dλ

¼ E
F
; ð38aÞ

dϕ
dλ

¼ Φ
G
; ð38bÞ

dx
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffi
XðxÞ

p
; ð38cÞ

dy
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffi
YðyÞ

p
; ð38dÞ

so that the equations for x and y can be integrated directly
as functions of λ.

A. Solution for xðλÞ
Here, it is convenient to express X in terms of its roots.

Here we shall assume the roots are distinct (corresponding
to cases A–D), since there are no physically relevant
geodesics for when X has complex roots, and the case

with degenerate roots simply corresponds to the photon
cones of constant x. Therefore we write

X ¼ 2mAQðx2 − xÞðx − x1Þðx − x�Þ: ð39Þ

Choosing the branch and the initial conditions will
determine the specific forms of the solutions. When a
geodesic encounters a turning point where X ¼ 0, care
must be taken in correctly choosing the correct branch for
its subsequent motion. Essentially one must always choose
the branch such that future-directed geodesics remain
future-directed, and similarly for the past-directed geo-
desics. Future-directed geodesics are those where λ
increases throughout the motion, since by Eq. (38a) lead
to t increasing as well, and the opposite holds for past-
directed geodesics.
First, suppose we take the initial conditions xð0Þ ¼ x2. In

this case we choose the lower sign of Eq. (38c) so that λ
increases as the x coordinate of the photon decreases away
from x2. Then, Eq. (38c) can be integrated as

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAQ

p
Z

x2

x

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2−x0Þðx0−x1Þðx0−x�Þ
p ¼

Z
λ

0

dλ0: ð40Þ

This integral can be evaluated exactly (see, e.g., [31]).
The result is3

F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x
x2−x1

r
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1
x2−x�

r �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
mAQðx2−x�Þ

r
λ;

ð41Þ

where Fðφ; kÞ is the elliptic integral of the first kind.
Inverting to express x as a function of λ, we get

xðλÞ¼ x2− ðx2−x1Þsn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
mAQðx2−x�Þ

r
λ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−x1
x2−x�

r �2

;

ð42Þ

where snðψ ; qÞ is the Jacobi elliptic function of the
first kind.
On the other hand, if we take the initial conditions

xð0Þ ¼ x1, we choose the upper sign of Eq. (38c) so that λ
increases as the x coordinate of the photon increases
away from the southern boundary x1. In this case the
integral is

3Note that λ lies outside the square root.
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1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAQ

p
Z

x

x1

dx0

ðx2 − x0Þðx0 − x1Þðx0 − x�Þ
¼
Z

λ

0

dλ0

F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x�Þðx − x1Þ
ðx2 − x1Þðx − x�Þ

s
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x1
x2 − x�

r �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
mAQðx2 − x�Þ

r
λ:

Inverting this to solve for x, we have

xðλÞ ¼
ðx2 − xÞx1 − x�ðx2 − x1Þsn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mAQðx2 − x�Þ

q
λ;

ffiffiffiffiffiffiffiffiffi
x2−x1
x2−x�

q �
2

x2 − x� − ðx2 − x1Þsn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
mAQðx2 − x�Þ

q
λ;

ffiffiffiffiffiffiffiffiffi
x2−x1
x2−x�

q �
2

: ð43Þ

B. Solution for yðλÞ
Similar to the solutions for xðλÞ the specific forms of the

solutions depend on the initial conditions and the choice
of branch. As before we shall choose the branches that
correspond to future-directed geodesics. Here we shall
consider Cases I and III, since Case II is simply the photon
surface where y is constant.
We first consider Case I, where the roots of Y are real and

distinct. Hence we write

Y¼ 2mAQðy�−yÞðy−y2Þðy−y1Þ; y1<y2<y�: ð44Þ

In this case the geodesics can either exist in y > y2 or
y < y1. In the former case, we take the initial conditions
yð0Þ ¼ y2. We choose the upper branch of the square root
so that λ increases as the photon increases in y away from
y2 (and heads towards the acceleration horizon). Then
Eq. (38d) can be integrated as

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAQ

p
Z

y

y2

dy0

ðy� − y0Þðy0 − y2Þðy0 − y1Þ
¼
Z

λ

0

dλ0

F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� − y1Þðy − y2Þ
ðy� − y2Þðy − y1Þ

s
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� − y2
y� − y1

r �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
mAQðy� − y1Þ

r
λ:

We invert this to solve for y,

yðλÞ ¼
ðy� − y1Þy2 − y1ðy� − y2Þsn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mAQðy� − y1Þ

q
λ;

ffiffiffiffiffiffiffiffiffi
y�−y2
y�−y1

q �
2

y� − y1 − ðy� − y1Þsn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
mAQðy� − y1Þ

q
λ;

ffiffiffiffiffiffiffiffiffi
y�−y2
y�−y1

q �
2

: ð45Þ

On the other hand, for photons in the domain y < y1, we shall take yð0Þ ¼ y1 and choose the lower branch of the square
root so that λ increases as the photon’s y coordinate decreases away from y1 (and heads towards the black hole). Here the
integral is

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAQ

p
Z

y1

y

dy0

ðy1 − y0Þðy2 − y0Þðy� − y0Þ ¼
Z

λ

0

dλ0

F
�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffi
y1 − y
y2 − y

r
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� − y2
y� − y1

r �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
mAQðy� − y1Þ

r
λ:

Solving for y, we obtain

yðλÞ ¼
y2sn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mAQðy� − y1Þ

q
λ;

ffiffiffiffiffiffiffiffiffi
y�−y2
y�−y1

q �
2
− y1

sn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
mAQðy� − y1Þ

q
λ;

ffiffiffiffiffiffiffiffiffi
y�−y2
y�−y1

q �
2
− 1

: ð46Þ

Turning to Case III, we now have the situation where y1 and y2 are complex conjugate pairs. We write y1 ¼ αþ iβ,
y2 ¼ α − iβ for α; β ∈ R. Then, the function Y takes the form
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4Note that ϕ lies outside the square root.

Y ¼ 2mAQðy� − yÞ½ðy − αÞ2 − β2�: ð47Þ

Let us choose the initial conditions yð0Þ ¼ y0 for some arbitrary y0. Choosing the lower branch means we have λ increasing
as y decreases away from its initial position. The integral is

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAQ

p
Z

y

y0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� − y0Þ½ðy − αÞ2 − β2�

p ¼ −
Z

λ

0

dλ0

2
64F
0
B@arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� − y0

y� − α − β

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� − α − β

y� − αþ β

s 1
CA
3
75
y

y0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
mAQðy� − αþ βÞ

r
λ:

Solving this for y,

yðλÞ¼ y� þðαþβ−y�Þ

×sn

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
mAQðy�−αþβÞ

r
ðλþCÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�−α−β

y�−αþβ

s !
2

;

ð48Þ

where C is an integration constant chosen so that
yð0Þ ¼ y0.

C. Equation between x and ϕ

Here we can obtain an exact expression describing how
ϕ evolves with x. This would be helpful in comparing the
frequencies of x oscillations with the angular motion. In
particular, it enables us to find periodic or closed orbits,
which is where the ratio of the two frequencies are rational
numbers.
Equations (38b) and (38c) together give

dϕ
dx

¼ � Φ
G
ffiffiffiffi
X

p : ð49Þ

Again, the specific form of the solution depends on the
choice of initial condition and branch.
We first consider the initial condition ϕðx2Þ ¼ 0, and

choosing the lower sign we haveZ
ϕ

0

dϕ0 ¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mAQ
p

Z
x

x2

Φdx0

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2−x0Þðx0−x1Þðx0−x�Þ

p :

ð50Þ

To perform this integral, it helps to do a partial fraction
decomposition on 1=G. This turns the right-hand side of
(50) into a sum of three integrals,4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAQ

p
ϕ ¼ I1 þ I2 þ I3; ð51Þ

where

I1¼−
Φ

2ð1þ2mAÞ
Z

x

x2

dx0

ð1−x0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2−x0Þðx0−x1Þðx0−x�Þ
p ;

ð52aÞ

I2¼−
Φ

2ð1−2mAÞ
Z

x

x2

dx0

ð1þx0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2−x0Þðx0−x1Þðx0−x�Þ
p ;

ð52bÞ

I3¼
4m2A2Φ
1−4m2A2

Z
x

x2

dx0

ð1þ2mAx0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2−x0Þðx0−x1Þðx0−x�Þ
p :

ð52cÞ

Evaluating the integrals, the result is

ϕ2ðxÞ ¼
Φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mAQðx2 − x�Þ
p
×

�
−

1

ð1þ 2mAÞðx2 − 1ÞΠ
�
ζ;
x2 − x1
x2 − 1

; p

�

þ 1

ð1 − 2mAÞðx2 þ 1ÞΠ
�
ζ;
x2 − x1
x2 þ 1

; p

�

−
4mA

ð1 − 4m2A2Þðx2 þ 1
2mAÞ

Π
�
ζ;

x2 − x1
x2 þ 1

2mA

; p

��
;

ð53Þ

whereΠðφ; n; kÞ is the elliptic integral of the third kind, and

ζ ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x
x2 − x1

r
; p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x1
x2 − x�

r
: ð54Þ

On the other hand, if we consider the initial condition
ϕðx1Þ ¼ ϕ0 for some ϕ0, we choose the upper sign for
Eq. (38c). Performing the same partial fraction decom-
position, the integral results in4Note that ϕ lies outside the square root.
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ϕ1ðxÞ ¼ ϕ0 þ
Φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mAQðx2 − x�Þ
p 	

−1
ð1þ 2mAÞðx� − 1Þðx2 − 1Þ

�
ðx� − x1ÞΠ

�
κ;
x� − 1

x1 − 1
p2; p

�
þ ðx1 − 1ÞFðκ; pÞ

�

þ 1

ð1 − 2mAÞðx� þ 1Þðx2 þ 1Þ
�
ðx� − x1ÞΠ

�
κ;
x� þ 1

x1 þ 1
p2; p

�
þ ðx1 þ 1ÞFðκ; pÞ

�

−
4mA

ð1 − 4m2A2Þðx� þ 1
2mAÞðx1 þ 1

2mAÞ
�
ðx� − x1ÞΠ

�
κ;
x� þ 1

2mA

x1 þ 1
2mA

p2; p

�
þ
�
x1 þ

1

2mA

�
Fðκ; pÞ

�

; ð55Þ

where

κ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x�Þðx − x1Þ
ðx2 − x1Þðx − x�Þ

s
ð56Þ

and p is as defined in Eq. (54).

V. PERIODIC ORBITS ON THE
PHOTON SURFACE

Periodic orbits are closed trajectories in which photons
return exactly to their initial condition within a finite τ.
Having the analytical solutions of Sec. IV is particularly
useful in seeking out these orbits. In the spirit of Ref. [32],
periodic orbits may help in understanding the structure of
bound orbits. A simple example of a periodic orbit in the
(A)dS C metric would be the circular photon rings. Besides

(a) (b)

(c)

FIG. 9. Examples of periodic photon orbits in the AdS, dS, and Ricci-flat Cmetrics. The parameters used in each figure aremA ¼ 0.2,
m2

l2 ¼ 50, η ¼ 0.25936 for (a), mA ¼ 0.3, m
2

l2 ¼ −0.01, and η ¼ 0.460579 for (b), and mA ¼ 0.4, m
2

l2 → 0, and η ¼ 0.572579 for (c). To
avoid cluttering the figure, we do not plot the black hole horizons.
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those, one could also have periodic orbits on the photon
surface.
On the photon surface, as the ϕ coordinate of the photons

revolve around the axis, it also executes oscillations in the x
direction. A periodic orbit occurs if, during the interval of
one period of x oscillation is completed, the ϕ coordinate
has changed by a rational multiple of Δϕ. Therefore, using
the analytical solutions of the previous section, we seek

qΔϕ ¼ ϕ1ðx2Þ þ ϕ2ðx1Þ; q ∈ Q; ð57Þ

where ϕ1ðxÞ and ϕ2ðxÞ are as given in Eqs. (55) and (53),
respectively. To find a periodic orbit in a spacetime of a
given m, A, and l, we fix ξ ¼ Ωþ þ 1

A2l2 to consider the
photon surfaces. For a choice of Φ2, one can compute the
roots fx�; x1; x2g and evaluate the right-hand side of (57).
We then tuneΦ2 until a value corresponding to rational q is
found (or at least sufficiently close to desired numerical
accuracy). In Fig. 9, we plot some examples of periodic
orbits found in this way.

VI. CONCLUSION

In this paper we have derived the equations of null
geodesics in the C metric by means of separating the

Hamilton-Jacobi equations. This involves a Carter-like
quantity Q that is conserved throughout the motion.
Scaling energy and angular momentum in units of Q,
we obtained a two-dimensional parameter space which
characterizes the possible types of photons orbits in the C
metric. Exact solutions in the x and y coordinates can be
obtained with the aid of elliptic integrals.
In the analysis of the coordinate domains, it is interesting

to note that there is an obvious asymmetry in the existence
domain in the x coordinate. Regarding x ¼ 0 as the
equatorial plane, the domain of existence is skewed towards
the northern hemisphere (x > 0). This is in contrast to
photon spheres around the Kerr black hole where its polar
motion is symmetric about the equator. While it is
important to remember that x is merely a coordinate and
not a physical invariant, this observation is consistent with
the intuition that the photons are being “dragged along” by
the gravitational attraction of the black hole, which is
accelerating towards the southern direction.
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