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We study the time evolution of the test scalar and electromagnetic fields perturbations in configurations
of phantom wormholes surrounded by dark energy with state parameter ω < −1. We observe obvious
signals of echoes reflecting wormholes properties and disclose the physical reasons behind such
phenomena. In particular, we find that the dark energy equation of state has a clear imprint in echoes
in wave perturbations. When ω approaches the phantom divide ω ¼ −1 from below, the delay time of
echoes becomes longer. The echo of gravitational wave is likely to be detected in the near future, and the
signature of the dark energy equation of state in the echo spectrum can serve as a local measurement of the
dark energy.
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I. INTRODUCTION

In the universe, there is accumulating evidence that
classical black holes enveloped by event horizons can be
developed from gravitational collapse. There have been
observational arguments, sometimes very strong ones, in
favor of the existence of the event horizon [1], but it was
shown that they cannot prove it [2]. It was also claimed in
Ref. [3] that the probe of initial gravitational waves (GWs)
ringdown signals cannot be regarded as the evidence of the
existence of event horizons, as it suggested that the
horizonless objects which are compact enough to guarantee
a photon sphere can mimic the black holes in the sense that
they can generate almost the identical initial ringdown
signals of GWs to that of black holes.
On the other hand, there are also strong theoretical

motivations and room for different kinds of alternatives to
black holes, motivated from the quantum gravity effects or
the resolutions to the black hole information paradox [4]. In
a broad sense, these horizonless compact objects other than
a neutron star are referred to as exotic compact objects
(ECOs) [5]. We can design ECO models to mimic all
observational properties of black holes with arbitrary
accuracy, such that we can compare the characteristics
of black holes with that of ECOs and to find a classification
for different models [5]. In this context, a number of ECOs

have been proposed, including wormholes [3,6], gravastars
[7–9], boson stars [10], anisotropic stars [11–13], quasi-
black holes [14,15], dark stars [16–21], fuzzballs [22–26],
firewalls [4,26,27], and the Planckian correction from the
dispersion relation of gravitational field [28,29]. For more
detailed introduction to ECOs, please refer to Ref. [5] and
the references therein.
Given the theoretical importance of ECOs, it is of great

significance to explore the evidence of the existence of such
objects. The recent direct observation of GWs [30,31]
provides us a brand new method in astronomical observa-
tions, and it suggests the ending of the era of a single
electromagnetic wave channel observation and announces
the dawn of multimessenger astronomy with GW as a new
probe to study our Universe. Hence, GWs spectroscopy
will play an increasingly important role as more and more
events with large signal-to-noise ratio (SNR) are detected.
It is expected to employ GWs spectroscopy to detect and
distinguish different ECOs [3,32,33] with the detection of
GWs with large SNR. Apart from using GWs spectroscopy
to study ECOs, the recently proposed GWs echoes can be
served as a new characteristic of ECOs [34]. Several groups
have claimed that the potential evidence of GW echoes in
the LIGO/Virgo data has already been found [3,34] (see
Refs. [5,35] for a review). The GWs echoes are produced
due to the centrifugal barrier for the ECOs, which can
reflect the incident GWs, or the quantum corrections to
conventional black holes event horizons [3,6,34,36–48],
which renders the event horizon reflective to incident
waves. Therefore, the GW echoes play a key role in
exploring physics near ECOs and also pave a path toward
quantum gravity. On the other hand, the electromagnetic
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counterpart [49–52] to the GWevents are also an important
probe to study our Universe. Therefore, apart from the GW
echoes, the possible future detection of echoes of electro-
magnetic field waves may serve as another important probe
in the exploration of fundamental physics.
Wormholes are a class of important and simple horizon-

less objects which connect two distinct universes or two
distant regions of the same universe by a throat of worm-
holes [53], and they are also considered as a kind of ECOs
as they can be constructed to have any arbitrary compact-
ness and usually the exotic matter is required to build such
models [5]. Different wormhole spacetimes can have very
different properties. Since people are interested in worm-
holes that mimic black holes, some simple but useful
wormhole models are usually discussed, such as wormhole
constructed by gluing two Schwarzschild black hole
spacetimes [3,34,39,43,54] and the Damour-Solodukhin
wormhole [6,55,56]. We can detect the wormholes by
gravitational lensing as it is known to be one of the most
important tools to test the predictions of general relativity
[57–69]. Recently, the authors in Ref. [54] interestingly
proposed that the objects in our universe can be influenced
by the objects in another universe (or another region of our
Universe) through wormholes and thus provided a new
method to detect wormholes.
Note that the wormholes are ECOs such that it is natural

to apply GWs echoes to detect wormholes and reveal the
characteristics of such ECOs. In Refs. [3,34], the GW
echoes are first disclosed by studying the simple spherically
symmetric wormholes. The GW echo from a wormhole
model with a slowly evolving throat radius is also studied
[43]. It gives rise to a nonconstant delay time of echoes.
Also, the GWechoes are regarded as a probe to characterize
the black hole–wormhole “transition” [70,70,71]. Since the
object after merger would rotate rapidly, several groups
have studied the signals of GW echoes from Kerr-like
wormholes [6,72]. The studies indicate that rotation leads
to two key characteristics: the break of the degeneracy of
the quasinormal frequencies and the emergence of the
modes of the late-time instabilities. In addition, some
preliminary attempts have been implemented to establish
templates of echoes from wormhole models [6,39,42].
In this paper, we intend to study the GW echoes from a

phantom wormhole proposed in Ref. [73]. This wormhole
geometry is supported by phantom dark energy with
equation of state w < −1 [74], which violates the null
energy condition. The wormhole solutions in Ref. [73] are
asymptotically flat, and there is no need to surgically paste
the interior wormhole geometry to an exterior vacuum
spacetime. They are contrary to other phantom wormhole
solutions which are not asymptotically flat [75–79] or for
which the interior wormhole metric is glued to a vacuum
exterior spacetime at a junction interface [80–85]. From
this point of view, these new wormhole solutions are more
natural.

It is very interesting to study wormholes in the back-
ground filled with phantom dark energy. As we all know,
the astrophysical compact objects are believed to be
influenced by their environment, for example, through
the accretion disks. In Ref. [86], the authors studied
perturbations around black holes absorbing dark energy,
and they observed distinct perturbation behaviors when
black holes swallow different kinds of dark energy. This
provides the possibility of disclosing whether the dark
energy is of quintessence type or phantom type. In
Ref. [87], the authors proposed that gravitational radiation
from binary systems of supermassive black holes can
provide information of local properties of dark energy.
Its feasibility was further discussed in Ref. [88]. These
attempts provide ideas of possible local detection of dark
energy in astronomical observations [86,87]. Since the
echoes of a gravitational wave may be detected in the near
future in the third-generation ground-based GW detectors
or space-based GW detectors, examining the influences of
the phantom dark energy parameter on the echo behaviors
is interesting and is possibly a new way to probe dark
energy locally in phantom wormhole backgrounds.
It is necessary to point out that, for simplicity, in this

paper, we would like to discuss echoes of scalar field and
electromagnetic field waves which are regarded as a proxy
for gravitational perturbations instead of directly dealing
with gravitational perturbations in our calculation of
echoes. This simplified treatment is justified by the fact
that the perturbation of scalar fields usually behaves
qualitatively similarly to gravitational perturbations.
Therefore, we believe that the main features of GW echoes
can be reflected by echoes of scalar fields. On the other
hand, the discoveries of the electromagnetic counterparts to
GW events [49,51,52] also motivate us to investigate
echoes of electromagnetic fields, for the reason that both
the GW echoes and electromagnetic field echoes could be
observed at the same time for one single GW event.
Our paper is organized as what follows. In Sec. II, we

present a brief introduction of the phantom wormhole
models and introduce the numeric method to calculate
the waveforms of GW echoes. The echo signals from
phantom wormhole model I and II are worked out and
analyzed in Secs. III and IV, respectively. In Sec. VI, we
calculate the quasinormal modes (QNMs) frequencies in
these two wormhole backgrounds. The final remarks are
given in Sec. VI. Throughout this paper, we set G ¼ c ¼ 1.

II. WORMHOLE MODELS AND METHODS

In this section, we shall present a brief review on the
asymptotically flat phantom wormholes. And then, we
write down the evolution equations of a test scalar field and
an electromagnetic field in the tortoise coordinate. Next, we
introduce the numerical method of time-domain profile to
solve the equation of motion (EOM).
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A. Asymptotically flat phantom wormholes

A new asymptotically flat phantom wormhole solution is
constructed in Ref. [73], which is given by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

BðrÞ ¼ 1

1 − bðrÞ
r

: ð2Þ

The function bðrÞ above is the shape function which
describes the shape of the wormhole. The wormhole throat
connecting two asymptotic regions is located at a minimum
radial coordinate r0 satisfying bðr0Þ ¼ r0. The so-called
flaring-out condition gives ðbðrÞ − b0ðrÞrÞ=2b2ðrÞ > 0,
which results in b0ðr0Þ < 1 at the wormhole throat. To
have a well-defined wormhole, we require BðrÞ > 0 for
r ≥ r0, which leads to bðrÞ < r. In addition, to have an
asymptotically flat geometry, we shall impose the following
conditions: AðrÞ → 1 and bðrÞ=r → 0 at r → ∞.
Considering phantom energy as the content of the

spherically symmetric spacetime, there are several strate-
gies to solve the Einstein field equations. Here, we focus on
two specific wormhole solutions in Ref. [73], which are
obtained by two specific strategies. The first one, denoted
by Wormhole Model I, can be constructed by specifying
a specific shape function. The other one, denoted by
Wormhole Model II, is established by specifying two
equations of state relating the tangential pressure and the
energy density. For more details for finding the phantom
wormhole geometries, we refer to Ref. [73].

1. Wormhole Model I

We construct Wormhole Model I by constructing a
specific shape function, which is

bðrÞ
r0

¼ a

�
r
r0

�
α

þ C: ð3Þ

α, a, and C are dimensionless constants. Asymptotically
flat condition bðrÞ=r → 0 at r → ∞ gives rise to α < 1. At
the throat r ¼ r0, the condition bðr0Þ=r0 ¼ 1 gives rise to
the relation C ¼ 1 − a. Positive energy density imposes the
condition aα > 0, and the flaring-out condition b0ðr0Þ < 1
forces aα to satisfy aα < 1. Therefore, we have the
restrictions of parameters as

α < 1; 0 < aα < 1: ð4Þ

After the shape function is specified, we shall work out
the redshift function AðrÞ, which is determined by the
following ordinary differential equation [73]:

A0ðrÞ
AðrÞ ¼ r0

r2
×
1þ a½ð rr0Þαð1þ ωαÞ − 1�
1 − r0

r f1þ a½ð rr0Þα − 1�g : ð5Þ

The exact solution for the above differential equation only
exists for some specific model parameters. Here, we only
consider the specific case of α ¼ 1=2, which yields

AðrÞ ¼ κ

�
1þ 1 − affiffiffiffiffiffiffiffiffi

r=r0
p �

2

; ð6Þ

where κ is a constant of integration. For simplicity, we take
κ ¼ 1. Then, the line element can be written down as

ds2 ¼ −
�
1þ 1 − affiffiffiffiffiffiffiffiffi

r=r0
p �

2

dt2 þ dr2

1 − affiffiffiffiffiffiffi
r=r0

p − 1−a
r=r0

þ r2ðdθ2 þ sin2θdϕ2Þ: ð7Þ

Note that for this case we have ω ¼ −2=a and 0 < a < 2.

2. Wormhole Model II

We build Wormhole Model II by specifying two equa-
tions of state relating the tangential pressure and the energy
density. For this model, we take the following form of the
redshift function

AðrÞ ¼ 1þ γ

�
r0
r

�
α

; ð8Þ

with α > 0 and AðrÞ → 1 in the limit of r → ∞. γ is a
dimensionless constant. In this paper, we only focus on the
case of α ¼ 1, for which the shape function is given by

bðrÞ ¼ −γr0 þ ðrþ γr0Þ−1=ω½r0ð1þ γÞ�ð1þωÞ=ω: ð9Þ

To have a well-defined wormhole spacetime without an
event horizon, we require AðrÞ > 0, which leads to γ > −1.
It is easy to check b0ðr0Þ ¼ −1=ω < 1 for ω < −1, which
satisfies the flaring-out condition. Without loss of general-
ity, we shall take r0 ¼ 1 in the numerical calculation
through this paper.

B. Methods

We only focus on the evolution of a test scalar field and
an electromagnetic field as a proxy for gravitational
perturbations in this paper. It can be expected to capture
the main properties of GW echoes. In this part, we first
derive the radial EOM for scalar and electromagnetic field
perturbation, and then we introduce the method by which
the time-domain profile of perturbations are obtained in
present paper.

1. Radial wave equations of scalar field

We write down the EOM for massless scalar field and
electromagnetic field as follows:
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1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕðt; r; θ;ϕÞÞ ¼ 0: ð10Þ

We perform the separation of the variables for scalar field
Φðt; r; θ;ϕÞ as

ϕðt; r; θ;ϕÞ ¼
X
l;m

Ψðt; rÞ
r

Ylmðθ;ϕÞ; ð11Þ

where Ylmðθ;ϕÞ is the spherical harmonics and l and m
stand for angular number and azimuthal number, respec-
tively. Substituting Eq. (11) into Eq. (10), we obtain the
radial equation

− ∂2
tΨðt; rÞ þ

A
B
∂2
rΨðt; rÞ þ

BA0 − AB0

2B2
∂rΨðt; rÞ

þ AðrB0 − 2lðlþ 1ÞB2Þ − rBA0

2r2B2
Ψðt; rÞ ¼ 0; ð12Þ

where a prime denotes a derivative with respect to areal
radius r. With the introduction of tortoise coordinate r�
defined by

dr� ¼
ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
dr; ð13Þ

Eq. (12) can be transformed to the well-known wave
equation

−
∂2Ψðt; rÞ

∂t2 þ ∂2Ψðt; rÞ
∂r2� − VsðrÞΨðt; rÞ ¼ 0: ð14Þ

The effective potential of scalar field perturbation VsðrÞ is
given by

VsðrÞ ¼ AðrÞ lðlþ 1Þ
r2

þ 1

2r
d
dr

AðrÞ
BðrÞ : ð15Þ

Furthermore, we take the form of time dependence of
Ψðt; rÞ as Ψðt; rÞ ¼ e−iωlntΦðrÞ, where l denotes the
angular number and n denotes the overtone number, and
then we get the wave equation in the frequency domain

d2ΦðrÞ
dr2�

þ ðω2
ln − VsðrÞÞΦðrÞ ¼ 0; ð16Þ

where ωln indicates the frequency of the perturbation.
The ωln becomes complex and can be understood as
frequencies of QNMs when only outgoing waves are
required at infinity r� → �∞.

2. Radial wave equations of electromagnetic field

It is known that the electromagnetic field perturbation
can be classified into odd (axial) perturbation and even

(polar) perturbation based the behavior of the perturbation
field under the angular space inversion transformation
ðθ;φÞ → ðπ − θ; π þ φÞ. Under this transformation, odd
perturbation changes the sign ð−1Þl, while even perturba-
tion changes the sign ð−1Þlþ1. Usually, the effective
potential of the two kinds of perturbation do not coincide,
as what is reported in Refs. [89,90]. However, in the
wormhole background in our consideration, we will show
that the effective potentials of the odd and even perturba-
tions coincide with each other, and hence the same property
of these two perturbations is expected.
The EOM of electromagnetic field is given by

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð17Þ

where Fρσ ¼ ∂ρAσ − ∂σAρ is the electromagnetic field
tensor and Aσ is the related gauge potential. The odd
electromagnetic field perturbation can be expressed as

Aodd
μ ðt; r; θ;φÞ ¼

X
l;m

0
BBB@
2
6664

0

0
Ψlmðt;rÞ∂φYlmðθ;φÞ

sin θ

−Ψlmðt; rÞ sin θ∂θYlmðθ;φÞ

3
7775
1
CCCA:

ð18Þ

Then, we get the following nonvanishing covariant com-
ponents of electromagnetic field tensor:

Ftθ ¼
1

sin θ
∂tΨlm∂φYlm; ð19aÞ

Ftφ ¼ − sin θ∂tΨlm∂θYlm; ð19bÞ

Frθ ¼
1

sin θ
∂rΨlm∂φYlm; ð19cÞ

Frφ ¼ − sin θ∂rΨlm∂θYlm; ð19dÞ

Fθφ ¼ −Ψlm

�
∂θðsin θ∂θYlmÞ þ

1

sin θ
∂2
φYlm

�
¼ lðlþ 1Þ sin θΨlmYlm: ð19eÞ

Substituting Eq. (19) into Eq. (17), we obtain the radial
wave equation

−
lðlþ1ÞA

r2
ΨlmþBA0−AB0

2B2
∂rΨlmþA

B
∂2
rΨlm−∂2

tΨlm ¼ 0;

ð20Þ

and one should not confuse the metric function AðrÞ with
the gauge potential Aμ. In the tortoise coordinate defined by

dr� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ=AðrÞp

dr, Eq. (20) can be rewritten as
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−
∂2Ψlmðt; rÞ

∂t2 þ ∂2Ψlmðt; rÞ
∂r2� − Vodd

em ðrÞΨlmðt; rÞ ¼ 0; ð21Þ

where Vodd
em ðrÞ denotes the effective potential of odd

electromagnetic perturbation and takes the form [70,91]

Vodd
em ðrÞ ¼ AðrÞ lðlþ 1Þ

r2
: ð22Þ

Now, we turn to discuss the even electromagnetic field
perturbation, which is given in the form

Aeven
μ ðt; r; θ;φÞ ¼

X
l;m

0
BBB@
2
6664

dlmðt; rÞYlmðθ;φÞ
hlmðt; rÞYlmðθ;φÞ
klmðt; rÞ∂θYlmðθ;φÞ
klmðt; rÞ∂φYlmðθ;φÞ

3
7775
1
CCCA: ð23Þ

The nonvanishing components of the electromagnetic field
tensor are given as

Ftr ¼ ð∂thlm − ∂rdlmÞYlm; ð24aÞ

Ftθ ¼ ð∂tklm − dlmÞ∂θYkm; ð24bÞ

Ftφ ¼ ð∂tklm − dlmÞ∂φYkm; ð24cÞ

Frθ ¼ ð∂rklm − hlmÞ∂θYlm; ð24dÞ

Frφ ¼ ð∂rklm − hlmÞ∂φYlm: ð24eÞ

By employing Eqs. (17) and (24), one can get the equations

�
2rA
H

−
r2AH0

2H2

�
∂rdlm þ r2A

H
∂2
rdlm

þ
�
r2AH0

2H2
−
2rA
H

�
∂thlm −

r2A
H

∂t∂rhlm

þ lðlþ 1Þð∂tklm − dlmÞ ¼ 0; ð25Þ

−
r2

A
∂t∂rdlmþ r2

A
∂2
t hlmþ lðlþ1Þðhlm−∂rklmÞ¼ 0; ð26Þ

where, for convenience, we have defined HðrÞ¼AðrÞBðrÞ.
By differentiating Eqs. (25) and (26) with respect to r and t,
respectively, then defining new variable

Ψlmðt; rÞ ¼ r2ffiffiffiffi
H

p ð∂thlm − ∂rdlmÞ; ð27Þ

and introducing tortoise coordinate dr� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ=AðrÞp

dr,
finally we arrive at the wave equation

−
∂2Ψlmðt;rÞ

∂t2 þ∂2Ψlmðt;rÞ
∂r2� −Veven

em ðrÞΨlmðt;rÞ¼ 0; ð28Þ

Veven
em ðrÞ ¼ AðrÞ lðlþ 1Þ

r2
: ð29Þ

It is found that the effective potential Veven
em of even

electromagnetic field perturbation coincides with Vodd
em of

the odd one, and henceforth we omit indices odd and even
due to the identical effective potential for both parities.
Considering time dependence of Ψðt; rÞ ¼ e−iωlntΦðrÞ,
then we get the wave equation in the frequency domain
for both odd and even perturbation,

d2ΦðrÞ
dr2�

þ ðω2
ln − VemðrÞÞΦðrÞ ¼ 0: ð30Þ

Regarding the effective potential, the centrifugal barrier
lðlþ1Þ
r2 in the first term of VsðrÞ and VemðrÞ comes from the

decomposition of spherical harmonic function. The redshift
factor AðrÞ in this term accounts for relativistic effects near
the throat of the wormhole.

3. Time-domain integration

We explore the signals of the GW echo by studying the
time-domain profiles of the scalar and electromagnetic
fields, which can be obtained by directly integrating the
time-dependent differential equation. To achieve this goal,
we recall the EOM shared by scalar and electromagnetic
fields with the following wavelike form:

−
∂2Ψðt; r�Þ

∂t2 þ ∂2Ψðt; r�Þ
∂r2� − Vðrðr�ÞÞΨðt; r�Þ ¼ 0: ð31Þ

In general, it is almost impossible to obtain an analytical
solution to the abovewave equation with the given effective
potential Vðrðr�ÞÞ. So, we turn to resort to the numerical
method.
To this end, we define Ψðt; r�Þ ¼ ΨðiΔt; jΔr�Þ ¼ Ψi;j,

Vðrðr�ÞÞ ¼ VðjΔr�Þ ¼ Vj such that we can discretize
Eq. (31) as

−
ðΨiþ1;j − 2Ψi;j þ Ψi−1;jÞ

Δt2
þ ðΨi;jþ1 − 2Ψi;j þ Ψi;j−1Þ

Δr2�
− VjΨi;j þOðΔt2Þ þOðΔr2�Þ ¼ 0: ð32Þ

The detailed discretization scheme can be found in
Ref. [92]. Considering the initial Gaussian distribution

Ψðt ¼ 0; r�Þ ¼ exp½− ðr�−āÞ2
2b2 � andΨðt < 0; r�Þ ¼ 0, the dis-

cretized equation controlling time evolution of field is
derived as [92]
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Ψiþ1;j ¼ −Ψi−1;j þ
Δt2

Δr2�
ðΨi;jþ1 þ Ψi;j−1Þ

þ
�
2 − 2

Δt2

Δr2�
− Δt2Vj

�
Ψi;j: ð33Þ

The parameters are taken as b ¼ 3, Δt=Δr� ¼ 0.5 (we take
Δt ¼ 0.1 and Δr� ¼ 0.2) in our discussion, and we will
properly choose the values of ā in different cases. Note that
the von Neumann stability conditions usually require that
Δt=Δr� < 1, so the results for a grid size smaller than
Δt=Δr� ¼ 0.5 made in our choice will remain unchanged
if the smaller sizes of Δt and Δr� are taken (e.g.,
Δt=Δr� ¼ 0.1; we need Δt ¼ 0.02 and Δr� ¼ 0.2, and
much more time is required to run the code). Actually, a
reliable numerical result depends not only on the value of
Δt=Δr� but also on the respective value of Δt and Δr�.
Usually, the smaller size of Δt and Δr� leads to more
accurate results.
Before further proceeding our discussion, it is necessary

to clarify the units we are going to use in our calculation.
Since we have adopted G ¼ c ¼ 1, then we have the
dimension relation ½M� ¼ ½L� ¼ ½T� where M, L, and T
stands for mass, length, and time, respectively. For con-
venience and to make our results independent of the
specific unit, we would like to nondimensionalize all the
dimensional parameters. To this end, we decide to measure
all the dimensional parameters with the unit of the worm-
hole throat radius r0. In this way, we get the following
dimensionless parameters:

ω̃ln ¼ ωlnr0; r̃ ¼ r
r0
; t̃ ¼ t

r0
: ð34Þ

Now, all the parameters appearing in our equations are
dimensionless. For simplicity, as we have claimed previ-
ously, we would like to simply set r0 ¼ 1 and still use
parameters ωln, r, and t to represent dimensionless param-
eters in our following discussion because this treatment is
mathematically equivalent to employ the dimensionless
parameters ω̃ln; r̃, and t̃ since relations ω̃ln ¼ ωln, r̃ ¼ r,
and t̃ ¼ t numerically hold when r0 ¼ 1.

III. ECHOES SIGNALS IN WORMHOLE
MODEL I BACKGROUND

In this section, we focus on the time-domain profile of
the scalar field and electromagnetic field in the Wormhole
Model I background. We investigate the signals of echo in
this model and further explore the effects of wormhole
parameters on the behaviors of echo. Next, we shall
study the echoes from scalar field and electromagnetic
field, respectively. A brief comment on the similarities and
differences of both fields is also presented.

A. Echoes of scalar field waves

Before exploring the effects of wormhole parameters on
the echoes, we want to understand the dependence of the
echoes on the angular number l. The echoes appear thanks
to a potential well as the consequence of the structure of the
wormhole geometry. Therefore, the shape of the effective
potential is important in understanding the properties of
the echo from wormhole geometry. To this end, we show
the effective potential in the left column in Fig. 1.
Correspondingly, the time evolution of scalar field is shown
in the right column in Fig. 1. Note that to ensure the
existence of potential well which is the necessary condition
of the occurrence of echoes, the parameter a is required to
be a ≤ 2 such that the value of ω ¼ −2=a can only
approach to ω ¼ −1 from below. We will first fix a ¼
1.9 and treat the angular number l free to explore the
influence of the angular number on echoes.
From the left column in Fig. 1, we indeed observe the

double barriers and so thus the corresponding echo signals
in the time-domain profile of the scalar field (right column
in Fig. 1). Next, we summarize the properties of the
dependence of the echoes on the angular number l as what
follows:

(i) A higher angular number l leads to echo signals with
smaller amplitudes. This observation can be under-
stood by the potential well. From the left column in
Fig. 1, we see that with the increase of l, the potential
grows quickly. The higher potential barriers will
make it more difficult for the scalar waves to escape
from the potential well to generate echoes. Also, it is
instructive to explore the relation between the
amplitude of the first echoes signals and the ampli-
tude of the initial burst for different l. We describe
this relation by the ratio of echoes amplitude to
initial burst amplitude. Intriguingly, we find that for
l ¼ 1, l ¼ 3, and l ¼ 6, the ratio is 0.2501, 0.2832,
and 0.3378, which is growing with the increase of l.

(ii) The time delay between two successive echoes
depends very weakly on the angular number l. It
is because the width of the potential is only slightly
changed with the increase of l.

(iii) Since the higher l is related to higher oscillation
frequency of the waves, the waves with higher l
oscillate more rapidly. We can also understand this
phenomenon intuitively by noting that the higher
potential barriers arising from the higher angular
number only allow the waves with high enough
energy to escape from it, and hence waves with
higher frequencies can be observed.

Now, we fix the angular number l ¼ 1 and turn to focus
on the effect from phantom matter on the echoes. Figure 2
shows the effective potential and time evolution of
scalar field for different phantom wormhole parameter a,
which relates the state of equation of phantom matter as
ω ¼ −2=a. One can see that the model parameter a has a
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strong effect on the time delay between echoes. As a
increases from small values and approaches the upper limit
2, the time delay becomes longer. This is because the
potential becomes wider with the increase of a (left plot in
the top row in Fig. 2). It indicates that the time delay
becomes longer as the equation of state ω approaches −1
from the phantom state. Therefore, once the signals of echo
are detected in future observations, it will be possible to
constrain the state parameter ω of phantom matter. In
addition, we also note that the model parameter a has a very
weak effect on the amplitudes of the echo. It can be

attributed to the fact that the height of the potential barriers
is almost unchanged for different model parameter a (left
plot in the top row in Fig. 2).

B. Echoes of electromagnetic field waves

In this subsection, we briefly discuss the properties of
echoes from probe electromagnetic field by comparing the
similarities and differences with that from scalar field
studied in the above subsection. The left column in
Fig. 3 shows the effective potential of electromagnetic
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FIG. 1. The effective potential behavior in coordinate r� and time evolution of scalar field for different angular number l, and we take
parameter a ¼ 1.9 in this figure.
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field with different angular number l for fixed a ¼ 1.9. We
see that as l increases the potential grows quickly but the
width of the potential well is only slightly changed. This
variation characteristic, even the shape and size of the
potential, is almost the same as that of the scalar field
observed in the left column in Fig. 1. The same thing also
happens when we fix l and change a (see the top left in
Fig. 4). This observation indicates that the role the last term
in the effective potential of the scalar field VsðrÞ is playing
is almost negligible, though we cannot still give a good
interpretation.
Then, we present the time-domain profile of electro-

magnetic field with different angular number l in the right
column in Fig. 3. Just as expected, the main characteristics
of the time evolution of electromagnetic field are almost
same as that of the scalar field exhibited in the above
section. The signal of echo can be clearly observed. The
higher angular number l results in echoes signals with
smaller amplitudes. As the angular number l is turned up,
the amplitudes of the echoes are dramatically decreased,
and the waves oscillate more rapidly. All these are the
universal properties of the time evolution of the test field
affected by the angular number l.

Also, Fig. 4 exhibits the time-evolution profile of
electromagnetic field with different parameter a. We can
clearly see that the time delay between echoes is longer
when a becomes bigger. This observation is consistent with
that of the scalar field. Therefore, the time delay of the
echoes from electromagnetic field also becomes longer as
the equation of state ω increases from the phantom state to
approach ω ∼ −1.

IV. ECHOES SIGNALS IN
WORMHOLE MODEL II

As revealed in the above section, there is only a very
slight difference between the potentials of scalar field
and electromagnetic field. The difference of the effective
potential formula for scalar and electromagnetic field is that
an additional term appears for scalar field as shown in
Eqs. (15) and (28), and this additional term only contributes
little to the potential in Wormhole Model I studied above.
The almost same potentials also result in the almost the
same properties of the signal of echoes. Before starting this
section, we also show the potentials of scalar field and
electromagnetic field over Wormhole Model II in Fig. 5.
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FIG. 2. The left plot in the top row is effective potential behavior of scalar field in coordinate r� for different parameter a, and the other
plots are the time-domain profile of the scalar field corresponding to each potential. We take angular number l ¼ 1 in this figure.
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FIG. 3. The effective potential behavior in tortoise coordinate r� and time evolution of electromagnetic field for different angular
number l, and we take parameter a ¼ 1.9 in this figure.
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From this figure, we clearly see that the characteristics of
effective potential of electromagnetic field are also just
slightly different from that of scalar field in this wormhole
model, and so we infer that the signals of echo from scalar
field and electromagnetic field should be similar. Based on
this point, we only study the time evolution of scalar field in
the configuration of Wormhole Model II in this section.
As we have illuminated above, we shall set r0 ¼ 1 and

α ¼ 1 and leave the parameters γ and ω free, such that we
mainly focus on the effect of the two parameters on the
echoes. Note that to ensure the existence of the wormhole
and the potential well, we restrict γ to be the region of
γ > −1 but very close to −1. Since the state parameter ω is
not involved in the redshift function AðrÞ, we can take any
values of ω in the region ω < −1, which is contrary to the
situation in model I where we must take ω≲ −1 to ensure
echoes are produced.
We also would like to exhibit the properties of the time-

evolution profile of scalar field over model II for different
angular number l (see Fig. 6). From this figure, we again
confirm the effects of the angular number l on the signals of
echo studied in model I, i.e.,

(i) Higher angular number l leads to echo signals with
smaller amplitudes.

(ii) The time delay between two successive echoes
depend very weakly on the angular number l.

(iii) The waves with higher l oscillate more rapidly.
Therefore, we conclude that the above properties of the
dependence of the echoes on the angular number l are
universal. In addition, we note that the amplitude of echo is
usually smaller for model II than that for model I. It can
attribute to a deeper potential well for model II, for which it
is more difficult for the trapped waves to escape.
Next, we turn to study the effect of the parameter γ of the

phantom wormhole. The effective potential and the time
evolution of scalar field for different γ are exhibited in the
bottomofFig. 5. It is shown that themaximumof thepotential
is almost not changed under different γ, but the width of the
potential well is apparently extended with the increase of γ.
Correspondingly, we find in Fig. 7 that the amplitudes of the
scalar wave for different γ almost remain unchanged, but the
time delay of echo signals becomes longer with larger jγj.
What is more, we would like to point out that the oscillation
frequencies of echoes for different γ are in the same order of
magnitude. This observation can also attributed to the height
of the potential, which is almost unchanged for different γ.
The state parameter ω is an important characteristic

quantity of phantom dark energy. Therefore, it is necessary

FIG. 4. The effective potential in coordinate r� for different parameter a and the time evolution of electromagnetic field. We take
angular number l ¼ 1 in this figure.
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FIG. 5. The effective potential in coordinate r� for model II (left column is for the scalar field, and right column is for the
electromagnetic field). Here, we take γ ¼ −0.9999 and ω ¼ −2.
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to investigate the effects of the state parameter on the
property of the evolution of the field perturbations exerted
on the wormhole spacetime supported by this phantom
matter. As the behaviors of the field perturbations could be
affected by different ω, it is thus possible to determine the
sate parameter by analyzing the characteristics of the
perturbations, or echoes as we will demonstrate. Here,
we shall explore carefully the effect of ω on the signals of
echo in model II.

The effective potential and the time-evolution profile of
scalar field for different ω are shown in Figs. 8 and 9,
respectively. From Fig. 8, we can see that the height of the
potential is only slightly influenced by ω. Correspondingly,
the amplitudes of the echo only slightly change as ω varies
(see Fig. 9), which is consistent with the role ω plays in
model I.
Now, we mainly focus on the effect of the state parameter

ω on the delay time of echoes, which is an important
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FIG. 6. The time evolution of scalar field for different angular number l. Here, we take γ ¼ −0.9999 and ω ¼ −2.
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FIG. 7. The time evolution of scalar field for different parameter γ. Here, we take ω ¼ −2 and l ¼ 2.

FIG. 8. The effective potential of scalar field for different state parameter ω, and we take γ ¼ −0.999, l ¼ 2 in this figure.
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testable quantity in future GW observations. First, from
Fig. 8, one can see that the width of the potential well is
decreased with the increase of jωj. In particular, as we
increase jωj from 1 to 2, the width of the potential well is
quickly shortened. But for jωj > 2, even if we further turn
up jωj, the width of the potential well is just slightly
changed. As a result, we see that the delay time of echoes
becomes longer when ω tends to ω ¼ −1 from below. As
dark energy becomes more phantom, the delay time
becomes shorter and shorter. And then for ω < −2, the
delay timescale tends to a constant even when ω further

decreases. Such an obvious characteristic can be easily
detected in future GW observations.

V. QUASINORMAL MODES OF WORMHOLES

It would be instructive to compute the QNMs to
construct a bridge between the echoes and the wormhole’s
modes. In this section, we only focus on the QNMs
frequencies of scalar perturbation for the two wormholes
models. For the QNMs of electromagnetic field, some
similar conclusions can be found.

FIG. 9. The time-domain profile of scalar field for different parameter ω, and we take γ ¼ −0.999, l ¼ 2 in this figure.
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Quasinormal ringing belongs to the ringdown stage of
the external perturbation against the compact objects in
spacetime, and this kind of ringing is characterized by
complex frequencies which only depends on the parameters
describing the spacetime geometry under consideration;
for this reason, the QNMs are considered as the character-
istic “sound” of the compact objects, such as black
holes, neutron stars, and wormholes. One can refer to
Refs. [93–95] for a nice review on this topic. However, the

echoes cannot be represented by a single dominant QNM.
To extract QNM frequencies from the ringdown signals of
perturbation, we are supposed to consider wormhole
parameters with the values that present the existence of
echoes.
In our calculation of QNMs frequencies of wormholes,

we would like to employ the Prony method by which the
oscillation frequencies and the damping rate of the QNMs
can be extracted from the time-domain profile of the

FIG. 10. The semilogarithmic plots of the time-domain profile for perturbation of scalar field with angular number l ¼ 1 with four
different values of parameter a for Wormhole Model I.

TABLE I. The dominant QNMs frequency of the scalar field for Wormhole Model I.

a l ¼ 1 l ¼ 2 l ¼ 3

1.60 0.580105 − 0.029412i 0.978997 − 0.023685i 1.370779 − 0.017403i
1.62 0.524104 − 0.024919i 0.931959 − 0.019711i 1.305067 − 0.014297i
1.65 0.511072 − 0.018521i 0.861576 − 0.013897i 1.206465 − 0.009623i
1.68 0.470023 − 0.012693i 0.791572 − 0.008510i 1.108091 − 0.005237i
1.70 0.442819 − 0.009246i 0.745156 − 0.005402i 1.042695 − 0.002821i
1.72 0.415707 − 0.006258i 0.698859 − 0.002921i 0.977260 − 0.001142i
1.75 0.375022 − 0.002852i 0.629082 − 0.000724i Echoes
1.78 0.333841 − 0.000899i Echoes Echoes
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perturbation. The time-domain profile data can be fitted by
superposition of p complex exponentials as [92,96]

Ψðr; tÞ ≃
Xp
j¼1

Cje−iωjðt−t0Þ; ð35Þ

where t0 is the beginning time of the time period from t0 to
t ¼ NΔtþ t0 in our consideration and N is an integer
which satisfies N ≥ 2p − 1. Then, we have

xn ≡Ψðr; nΔtþ t0Þ ¼
Xp
j¼1

Cje−inωjΔt ¼
Xp
j¼1

Cjznj : ð36Þ

Since Δt is known and xn is the profile data we have
obtained, the Prony method allows us to calculate zj in
terms of xn, and thus the QNMs frequencies ωi can
be found.

A. Quasinormal modes of Wormhole Model I

We show the pictures of evolution of scalar perturbation
with angular number l ¼ 1 in Fig. 10 from which the
characteristic QNMs ringing can be observed, and the
decaying behavior of the perturbed scalar field indicates
that this wormhole spacetime is stable under scalar field
perturbation. The perturbation at different values of worm-
hole parameter a shows a different damping rate. For larger
value of a, the perturbation decays more slowly, but the
change of oscillation frequencies is not as apparent as the
change of damping rate. To have a quantitative under-
standing of this ringdown stage of perturbation, we are
required to work out the QNMs frequencies.

We calculate scalar QNMs frequencies for different
angular number l and wormhole parameter a, and the
numerical results are listed in Table I. The “echoes”
appearing in the table means that under the corresponding
values of ða; lÞ the echoes are observed in the evolution
picture of perturbation. From the data listed in Table I, it is
easy to see how the QNMs frequencies change with the
parameter value of a and angular number l. By fixing l and
increasing a from a ¼ 1.6 to a ¼ 1.78, both the magnitude
of real part and the imaginary part of the QNMs frequencies
decrease, implying that the oscillation frequencies and
damping rate are reduced, which agrees with the behavior
of time-domain profiles we demonstrate in Fig. 10. By
fixing parameter a and increase angular number l, as
expected, we can see that the real part of the frequencies
grows, while the magnitude of the imaginary part
decreases.
In the above discussion, we have discussed the QNMs in

the wormhole parameter regime in which echoes are absent.
However, it is also interesting to investigate the properties
of QNMs related to echoes so that we can get a better
understanding of echoes. In Fig. 11, we show the semi-
logarithmic plots of the time-domain profile for perturba-
tion of scalar field for parameter a ¼ 1.88, a ¼ 1.90,
and a ¼ 1.92 and from which signals of echoes can be
observed. In this figure, we focus on the earliest three
stages of the scalar waves temporal evolution, and each
stage is marked by “initial ringdown,” “1st echo,” and “2ed
echo,” respectively. The production of the initial ringdown
signal is attributed to the scalar waves scattered by the right
side potential such that the initial ringdown signal is almost
identical to the QNMs ringing of the black holes with the
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FIG. 11. The semilogarithmic plots of the time-domain profile for perturbation of scalar field with angular number l ¼ 1 with three
different values of parameter a at which the echoes are produced for Wormhole Model I.

TABLE II. The dominant QNMs frequency of the scalar field echoes for Wormhole Model I.

a Initial ringdown 1st echo 2ed echo

1.88 0.283153 − 0.028672i 0.282574 − 0.013536i 0.280713 − 0.004446i
1.90 0.265241 − 0.026886i 0.253247 − 0.010243i 0.250167 − 0.005585i
1.92 0.249768 − 0.031092i 0.214583 − 0.013641i 0.203499 − 0.007895i
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same potential. Given this fact, the true QNMs of the
wormhole spacetime only manifest in the echoes.
In Table II, we list the QNMs frequencies calculated by

the Prony method. For a fixed value of a, we find that the
initial ringdown signals have the highest QNMs frequen-
cies (for both oscillation frequency and damping rate).
The first echo signal shows lower oscillation frequency and
damping rate than the initial ringdown waves, and the
second echo possesses lowest frequencies among all. This
phenomenon is due to the slow leaking of the echo modes
which contain less energy than the previous one [34].

On the other hand, when increasing the value of a, one
can see that the real part of the QNMs frequencies will
become smaller, while the imaginary part changes non-
uniformly, and this result may be partly ascribed to the
wider potential well related to bigger a as we have shown
in Fig. 4.

B. Quasinormal modes of Wormhole Model II

In this subsection, we deal with the QNMs of scalar
field for Wormhole Model II. The time evolution of

FIG. 12. The semilogarithmic plots of the time-domain profile for perturbation of scalar field with angular number l ¼ 1 with four
different value of parameter γ for Wormhole Model II.

TABLE III. The dominant QNMs frequency of the scalar field for Wormhole Model II.

γ l ¼ 1 l ¼ 2 l ¼ 3

−0.70 0.862639 − 0.069110i 1.410393 − 0.055482i 1.959254 − 0.046957i
−0.72 0.840143 − 0.062443i 1.369947 − 0.047802i 1.900899 − 0.038571i
−0.75 0.805425 − 0.052499i 1.307465 − 0.036512i 1.810667 − 0.026595i
−0.78 0.768769 − 0.042793i 1.241783 − 0.026130i 1.715816 − 0.016364i
−0.80 0.743357 − 0.036509i 1.196103 − 0.019830i 1.649544 − 0.010745i
−0.82 0.716594 − 0.030449i 1.147950 − 0.014268i 1.579318 − 0.006354i
−0.85 0.673975 − 0.021988i 1.070724 − 0.007633i 1.465840 − 0.002299i
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the scalar perturbation is displayed in Fig. 12. The features
of the QNMs ringing reflected by this figure are
qualitatively similar to that in Fig. 10, as the decaying
perturbation implies a stable wormhole spacetime under
scalar perturbation, and the change of parameter from
γ ¼ −0.7 to γ ¼ −0.85 leads to a smaller damping
rate.
In Table III, we list our numerical results of QNMs

frequencies. Interestingly, these complex frequencies
behave similarly to what we have revealed for QNMs data
in Table I under the change of wormhole parameter and
angular number. Improving l will increase the real part of
the QNMs frequencies which meets our expectation, while
the magnitude of imaginary part of frequencies will be
decreased. On the other hand, when increasing the magni-
tude of parameter γ, it is found that both the real part and the
magnitude of the imaginary part of the QNMs frequencies
become smaller.
Finally, we also give a brief discussion of QNMs for

echoes. In Fig. 13, we show the semilogarithmic plots of
the time-domain profile for Wormhole Model II, and the
echoes can be clearly observed. To get a strong and
clear signals of echoes, here we take l ¼ 2. We calculate
QNMs frequencies for γ ¼ −0.9999 and γ ¼ −0.99999,
and the numerical results are listed in Table IV, from
which one can see that the behaviors of the QNMs of
echoes are qualitatively similar to the case of Wormhole
Model I.

VI. CONCLUSIONS

In this paper, we have investigated the properties of
signals of echo from testing scalar field and electromagnetic
field perturbations around phantom wormhole configura-
tions. The phenomena of echo behaviors are rooted deeply in
physical properties of the effective potential well of the
corresponding spacetimes. Here, we summarize the main
properties of signals of echo from phantom wormhole
configurations and their relations to effective potential
properties. When the effective potential becomes deeper,
for example, because of the increase of the angular index, it
will be harder for the perturbation to escape from the
potential well, which results in a smaller signal amplitude
of the echo. When the effective potential well becomes wider
due to the change of parameters a or γ, for example, there
appears a time delay in the echo spectrum.
Here, we examined the echoes of scalar field and

electromagnetic field perturbations. Regardless of an
additional term in the scalar potential, echo behavior in
the scalar perturbation is found very similar to that in the
electromagnetic field perturbation. We expect that the
properties of echoes we obtained in scalar field and
electromagnetic field perturbations also will persist in
the gravitational perturbation, which we will examine in
the future. As described in Refs. [3,34], the waveform of
echo is composed of two parts. The first part is the initial
ringdown signals from the waves scattered from the

FIG. 13. The semilogarithmic plots of the time-domain profile for perturbation of scalar field with angular number l ¼ 2 with two
different values of parameter γ at which the echoes are produced for Wormhole Model II.

TABLE IV. The dominant QNMs frequency of the scalar field echoes for Wormhole Model II.

γ Initial ringdown 1st echo 2ed echo

−0.9999 0.967385 − 0.194740i 0.911686 − 0.125011i 0.870241 − 0.075868i
−0.99999 0.967207 − 0.195333i 0.907550 − 0.135190i 0.855666 − 0.086071i
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potential wall. The second part is the signal of echo arising
from the trapped waves leakage through the potential
barrier. This suggests that each echo is a low-frequency
filtered version of the previous one. The original shape of
the mode gets quickly washed out after a few echoes, such
that at later times the lower frequencies of echoes will be
observed. This description of echoes also holds in our
discussion of the phantom wormhole configurations.
It is of great interest that in phantom wormhole con-

figurations the dark energy equation of state can influence
the echo spectrum. In the wormhole model I, there are two
entangled parameters influence the echo spectrum. In this
model, the dark energy equation of state does not show
apparently in the parameter space; it is tuned by changing
the parameter a through ω ¼ −2=a. Increasing the model
parameter a will increase the equation of state of dark
energy from ω < −1. When a reaches the maximum
allowed value 2, ω ¼ −1. This maximum value of a is
required to keep the configuration. In the process of the
increase of a, the time delay in the echo becomes longer. In
Model II, there are two independent parameters γ and ω the
appear in the metric and affect the echo spectrum
separately. The parameter γ dominates the impacts on
echoes, and the influences of ω is subdominant. The
increase of the absolute value jγj will result in the time
delay of the echoes; however, the oscillation frequency is
not sensitive to the change of γ. The effect of the dark
energy equation of state in model II also modifies the time
delay in echoes. For ω < −2, its influence on echo time
delay is negligible. However, when ω approaches the
phantom divide from −2, the delay time in echoes becomes
longer. The influence of the dark energy equation of state
shown in the echo spectrum is interesting. Once the echo is
detected, the signature of the dark energy equation of state
in the echo can serve as a local measurement of the dark
energy.
Besides the echoes, the QNMs can be regarded as the

“characteristic sound” of wormholes in our consideration,
and thus it can also serve as a probe of wormhole in the
future detection. We have calculated the QNMs frequencies
for both wormhole models by the Prony method.
Interestingly, it is found that QNMs in two wormholes
backgrounds behave similarly, as a higher magnitude of

wormhole parameter will lead to a lower oscillation
frequency and damping rate, while a higher angular number
will naturally cause a higher oscillation frequency but
smaller damping rate. Especially, we also investigate the
QNMs corresponding to echoes. It is found that a wider
potential well may lead to lower oscillation frequencies of
QNMs, and both the oscillation frequency and damping
rate for the echoes occurring later are smaller than the
echoes appearing earlier.
In previous literature [3,6,34,36,43–45,48,97], the time

delay Δt of the echoes is usually simply evaluated by
calculating the time the null geodesic traveling from one
potential peak to another one and coming back to the
first one. Therefore, the delay time is given by Δt ≈ 2L,
where L is the width of the potential well obtained by
r�ðrightpeakÞ − r�ðleftpeakÞ. We would like to point out that this
formula is only valid for a very sharp potential, as in the
case of our Wormhole Model II and the existing literature
[3,6,34,36,43–45,48,97]. However, this formula is not valid
if the potential is “fat” since in this situation we cannot
determine the locations where the waves are reflected by
the potential, as in our Wormhole Model I. One may note
that the null-like geodesics are connected to higher l limit
so that this formula may be valid for echoes with large l.
In fact, as demonstrated in Fig. 1, we find that when l
increases, the shape of potentials remain almost unchanged,
and just the values of potentials are improved. It implies
that formula is still invalid to calculated the period of
echoes. This suggests that the period in echoes is needed to
be studied more carefully, especially if we want to employ
it as a dark energy probe.
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