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The static and spherically symmetric solutions in the nð≥ 4Þ-dimensional Einstein-phantom-scalar
system fall into three families: (i) the Fisher solution, (ii) the Ellis-Gibbons solution, and (iii) the Ellis-
Bronnikov solution. We exploit these solutions as seed to generate a bunch of corresponding asymptotically
(A)dS spacetimes, at the price of introducing the potential of the scalar field. Despite that the potentials
are different for each solution, each potential is expressed in terms of the superpotential as in supergravity.
We discuss the global structure of these solutions in detail and spell out the domain of parameters under
which each solution represents a black hole/wormhole. The Ellis-Bronnikov class of solutions presents
novel examples of spherical traversable wormholes that interpolate two different (A)dS critical points of
the (super)potential.
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I. INTRODUCTION

The advent of the AdS=CFT correspondence and gauge/
gravity duality [1] has sparked a considerable interest in the
anti–de Sitter (AdS) spacetimes. Asymptotically AdS black
holes are expected to describe the dual thermal states of a
boundary conformal field theory. Despite the increasing
importance of asymptotically AdS solutions, the exact
solutions are fairly elusive, contrary to the asymptotically
flat case. In the latter case, we have a powerful mechanism
that allows us to generate new solutions based on the
symmetry for the nonlinear sigma model of the scalar fields.
In the context of supergravity, AdS vacua appear as the
critical point of the scalar field potential. Any studies of
seeking useful algorithms for constructing new solutions in
AdS spaces are hampered by the fact that the symmetry of
the sigma model is partly or completely broken by the scalar
potential, or more simply by the cosmological constant [2].
This circumstance makes it exceedingly difficult to system-
atically construct gravitational solutions of physical interest
in AdS.
In the spirit of holographic entanglement and quantum

teleportation, the past decade has witnessed a resurging
interest for the wormholes in AdS [3–8]. Wormholes
describe the neck structure of spacetimes bridging two
separate universes [9,10]. Much effort has been devoted
to the global structure [11–13], stability [14–16], astro-
physical signature [17], and possible time travels [18]
in wormhole spacetimes. The most prominent property
of the wormholes is that they disobey the standard energy

conditions [18–20]. In the classical perspective, the require-
ment of suitable energy conditions appears to be physically
sensible [21,22]. For instance, the dominant energy con-
dition is called for in the proof of the positive energy
theorem [23–25], which guarantees the stability of the
ground state. In the aforementioned holographic context,
wormholes are sustained instead by quantum fields.
Recently, the new nonlocal concept of the quantum null
energy condition has been proposed [26,27], and its
possible violation has been discussed extensively [28].
Putting this mainstream aside, it is fully encouraging to
clarify the properties of wormhole spacetimes in AdS
within the classical regime. So far, not so many fully
fledged examples of AdS wormhole solutions are available
in the literature. Some nontrivial examples are the solution
obtained by the cut-and-paste technique [29,30], the higher
curvature solution [31], the dynamical solution [32] and the
asymptotically locally AdS solution [33].
Combining the above two motivations together, we try in

this paper to find a prescription for constructing exact
asymptotically (A)dS solutions with a phantom field. We
consider the static and spherically symmetric solutions to
the Einstein-phantom scalar system with a potential. We
contrive a simple ansatz that gives rise to the asymptotically
(A)dS spacetimes from the asymptotically flat seed sol-
utions in the Einstein-phantom scalar system without a
potential. In our previous paper [34], we generalized
the illustrious work by Ellis [35] and demonstrated that
the static and spherically symmetric solutions to the
n-dimensional Einstein-phantom scalar system are system-
atically classified into three different family of solutions
(see [36] for the dilatonic charged solutions): the Fisher*masato.nozawa@yukawa.kyoto-u.ac.jp

PHYSICAL REVIEW D 103, 024005 (2021)

2470-0010=2021=103(2)=024005(18) 024005-1 © 2021 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.024005&domain=pdf&date_stamp=2021-01-06
https://doi.org/10.1103/PhysRevD.103.024005
https://doi.org/10.1103/PhysRevD.103.024005
https://doi.org/10.1103/PhysRevD.103.024005
https://doi.org/10.1103/PhysRevD.103.024005


solution [37], the Ellis-Gibbons solution [35,38,39], and
the Ellis-Bronnikov solution [35,40]. Among these, only
the Fisher class of solutions is allowed to exist in a system
with a conventional scalar field, and the other two solutions
are intrinsic to the phantom case. The Fisher solution has
been rediscovered many times by Bergmann and Leipnik
[41], Buchdahl [42], Janis, Newman and Winicour [43],
Ellis [35], Bronnikov [40] and Wyman [44]. The Ellis-
Gibbons class is sometimes called the “exponential metric”
and can be generalized to be a multicenter solution [38,39].
As established in [34], the Fisher and the Ellis-Gibbons
solutions always suffer from the naked scalar/parallelly
propagated (p.p) curvature singularity in the entire param-
eter region (excluding the Schwarzschild case). In contrast,
the Ellis-Bronnikov solution is regular and describes the
famous wormhole geometry connecting two asymptotically
flat regions. It is then natural to ask if these solutions can be
embedded into (A)dS spaces.
This paper devises a simple recipe to generate solutions

in (A)dS space from the asymptotically flat solutions. Our
algorithm to generate new solutions is explained as follows.
First we write the corresponding spherical solutions in the
asymptotically flat spacetimes in terms of the isotropic
coordinate. Then, we insert the time dependence for the
spacetime in such a way that the solution asymptotically
approaches to the de Sitter (dS) universe, and that the
solution is invariant under an additional scaling symmetry.
The obtained metric does not solve the field equations in
the original Einstein-phantom scalar system. Nevertheless,
the time dependence can be precisely offset by the
introduction of the appropriate scalar potential. Lastly,
we can cast the metric into the static patch of the dS
universe by suitable coordinate transformations. The
Hubble parameter of the solution is then Wick rotated to
obtain the asymptotically AdS spacetimes. Furthermore,
the final expression of the metric can be used to make yet
another ansatz to yield new asymptotically (A)dS solutions.
This simple-minded scheme turns out to be of extreme help
to economically access the novel exact solutions.
In the foregoing procedure, the potential of the phantom

scalar field is derived, rather than given beforehand. For
each family of the solutions, the derived potentials are
considerably different in appearance. Although these scalar
potentials are determined a posteriori, it deserves to stress
that each potential is given in terms of the “superpotential.”
The existence of the superpotential is quite nontrivial and
indicative of the profound supergravity origin.
Given the exact solutions at hand, we will next elaborate

on the global structure of these solutions in detail. We show
that the Fisher and the Ellis-Gibbons solutions in (A)dS
may admit a black hole horizon which covers the central
scalar/p.p curvature singularity. This property is not shared
by the asymptotically flat counterparts. We further reveal
that the (A)dS generalizations of the Ellis-Bronnikov
solutions would describe the regular traversable wormhole

spacetimes. These wormhole solutions differ in several
respects from those obtained in the literature [29–33]. Our
exact, static and spherically symmetric wormhole solution
is smooth everywhere (i.e., free of any distributional shells)
and admits geodesic completeness. Further, our solution
asymptotically approaches to the global, rather than local,
AdS spacetime with I ≃R × Sn−2, corresponding to the
critical point of the potential origin. After the maximal
extension, the other side of AdS vacuum corresponds to the
different critical point of the scalar potential. Namely, our
solution interpolates two different vacua, which is remi-
niscent of the fundamental property of the soliton. Our new
wormhole solutions would therefore be a valuable corner-
stone in the context of holography.
The construction of the present paper is as follows. In the

next section, we encapsulate the static and spherically
symmetric solutions to the Einstein-phantom-scalar system,
and illustrate the construction procedure for (A)dS solutions.
In Secs. III–V, we derive a bunch of new asymptotically
(A)dS solutions corresponding to the generalization of the
Fisher, Gibbons and Ellis-Bronnikov class respectively, and
explore their causal structures. We summarize the conclu-
sions of the present paper in Sec. VI. Appendix A summa-
rizes curvature formula and Appendix B presents the
extension of the Gibbons solution into the Friedman-
Lemaître-Robertson-Walker (FLRW) universe.
Our basic notations follow [45]. The conventions of

curvature tensors are ½∇ρ;∇σ�Vμ ¼ Rμ
νρσVν and Rμν ¼

Rρ
μρν. The Lorentzian metric is taken to be the mostly

plus sign, and Greek indices run over all spacetime indices.
We denote the n-dimensional gravitational constant to be
κn ¼ 8πGn for brevity.

II. EINSTEIN’S GRAVITY WITH
A PHANTOM SCALAR

We begin this paper by a brief review of static
and spherically symmetric solutions to the n-dimensional
Einstein-phantom-scalar system. A comprehensive analysis
can be found in our previous paper [34]. Next, we
explain the procedure to obtain the asymptotically (A)dS
solutions.

A. Massless scalar

The Einstein-(phantom-)scalar field system is described
by the action

S ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κn
R −

1

2
ϵð∇ϕÞ2

�
; ð1Þ

where ϵ ¼ þ1 corresponds to the ordinary scalar field,
whereas the ϵ ¼ −1 case represents the phantom scalar
field meditating the repulsive force. We are primarily
interested in the static metric with the spherical symmetry,
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ds2 ¼ −f1ðrÞdt2 þ f2ðrÞdr2 þ S2ðrÞdΩ2
n−2; ϕ¼ ϕðrÞ;

ð2Þ

where dΩ2
n−2 ¼ γijðzÞdzidzj is the line element of the unit

sphere in (n − 2) dimensions, and S ¼ SðrÞ is the areal
radius. As demonstrated in [34], there appear three classes
of solutions: the Fisher solution [37], the Ellis-Gibbons
solution [35,38,39], and the Ellis-Bronnikov solution
[35,40]. The classification scheme and the global structures
of these solutions have been discussed in detail in our
previous paper [34].
In order to make the present paper to be self-contained, let

us summarize the necessary ingredients to inquire the global
structure for the metric of the form (2). To this aim, a crucial
role is played by the affine-parametrized radial null geo-
desics for the metric (2), whose tangent vector is given by

kμ ¼ 1

f1ðrÞ
� ∂
∂t
�

μ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrÞf2ðrÞ

p � ∂
∂r
�

μ

; kν∇νkμ ¼ 0:

ð3Þ

The affine parameter λ of the geodesics can then be extracted
(modulo affine transformation) as

λ ¼ �
Z

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrÞf2ðrÞ

p
dr: ð4Þ

If the scalar polynomials of the curvature tensors become
unboundedly large, one concludes the existence of a
spacetime curvature singularity. Instead, the p.p curvature
singularity is characterized by the divergence of the
Riemann tensor components in a frame parallelly propa-
gated along some curve [21]. The existence of the p.p
curvature singularities cannot be captured solely by the
curvature polynomials. For our present purpose, the double
projection of the radial null geodesic tangent vector kμ onto
the Ricci tensor is of importance, giving

Rμνkμkν ¼ ðn − 2Þ f2f
0
1S

0 þ f1f02S
0 − 2f1f2S00

2f21f
2
2S

; ð5Þ

where the prime denotes the differentiation with respect
to r. Taking the orthonormal frame eîi by γijðzÞ ¼ δî ĵe

î
ieĵj

and defining Eî
μ ¼ SðrÞeîiðdziÞμ, one finds kμ∇μEî

ν ¼ 0,
i.e., this frame is parallelly propagated along the radial
null geodesics with the tangent vector kμ. Then one has
RμνρσkμEî

νkρEĵ
σ ¼ ðn − 2Þ−1Rμνkμkν. It follows that the

divergence of the Ricci tensor component Rμνkμkν implies
the p.p curvature singularity [34]. For later sections, we
repeatedly encounter this kind of singularity.
The causal structure of the spacetime is essentially

encoded into the two-dimensional part ds22 ¼ −f1ðrÞdt2 þ
f2ðrÞdr2 of the metric, which is recast into

ds22 ¼ −f1ðrÞdt2 þ f2ðrÞdr2 ¼ −f1ðr�ðrÞÞðdt2 − dr2�Þ;

r� ¼
Z

r
ffiffiffiffiffiffiffiffiffiffiffi
f2ðrÞ
f1ðrÞ

s
dr: ð6Þ

Since this coordinate manifests the conformal flatness,
one can extract the causal structure just by a comparison
with that in Minkowski spacetime. In short, if the tortoise
coordinate r� blows up at some locus r, it corresponds
to the null surface. If r� fails to diverge, it corresponds
to the timelike (spacelike) surface for f1ðr�ðrÞÞ >
0 (f1ðr�ðrÞÞ < 0).
In what follows, we enumerate three solutions belonging

to the class (2) and discuss the fundamental aspects.

1. Fisher solution

The nð≥ 4Þ-dimensional Fisher class solution [37] reads

ds2 ¼ −fðrÞαdτ2 þ fðrÞ−ðαþn−4Þ=ðn−3Þðdr2 þ r2fðrÞdΩ2
n−2Þ;
ð7aÞ

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ
4ðn − 3Þκn

s
ln fðrÞ; fðrÞ ¼ 1 −

M
rn−3

;

ð7bÞ

where α and M are constants. We have chosen the
asymptotic value of the scalar field to vanish for definite-
ness of the argument, which can be easily restored by
ϕ → ϕ − ϕ0. This solution in four dimensions reduces to
the original solution found by Fisher [37]. The higher
dimensional generalization can be found in [46]. For the
ordinary (phantom) scalar case ϵ ¼ 1 (ϵ ¼ −1), we have
α2 ≤ 1 (α2 > 1). By inspecting the form of the metric, one
finds that the coordinate change rn−3 → rn−3 þM leads to
the following reflection symmetry:

M → −M; α → −α; ð8Þ

which will be used to focus on the M > 0 case. In due
course, we will see that this symmetry carries over to
the asymptotically (A)dS solutions. The combination αM
only contributes to the Arnowitt-Deser-Misner (ADM)
mass [47] MADM ∝ αM.
When α2 ¼ 1, the Fisher solution (7) reduces to the

Schwarzschild-Tangherlini vacuum solution. As shown in
[34], the Fisher class solution with α2 ≠ 1 is always
singular, in that it inescapably admits a scalar curvature
singularity or a p.p curvature singularity at r ¼ M1=ðn−3Þ
(for M > 0) which is not covered by a horizon.
For later purposes, let us rewrite the Fisher solution (7) in

the isotropic coordinate system as
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ds2 ¼ −
�
1 − M

4ρn−3

1þ M
4ρn−3

�2α

dτ2 þ
�
1þ M

4ρn−3

� 4
n−3

×

�
1 − M

4ρn−3

1þ M
4ρn−3

�2ð1−αÞ
n−3

ðdρ2 þ ρ2dΩ2
n−2Þ; ð9aÞ

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ

ðn − 3Þκn

s
ln

���� 1 −
M

4ρn−3

1þ M
4ρn−3

����; ð9bÞ

where ρ is defined by the relation

r ¼ ρ

�
1þ M

4ρn−3

�
2=ðn−3Þ

: ð10Þ

2. Ellis-Gibbons solution

The next class of solutions we consider is the nð≥ 4Þ-
dimensional Ellis-Gibbons solution [35,38]. This is a
solution for the phantom case (ϵ ¼ −1) only and is
given by

ds2 ¼ −e−M=rn−3dτ2 þ eM=½ðn−3Þrn−3�ðdr2 þ r2dΩ2
n−2Þ;

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n − 2

4ðn − 3Þκn

s
M
rn−3

; ð11Þ

where M being a constant proportional to the ADM mass.
As pointed out by Gibbons [38] in four dimensions, the

above metric can be generalized to have multiple point
sources as

ds2 ¼ −e−Hdτ2 þ eH=ðn−3ÞhIJdyIdyJ;

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n − 2

4ðn − 3Þκn

s
H; ð12Þ

where hIJ is an arbitrary (n − 1)-dimensional Ricci-flat
Riemannian metric ðn−1ÞRIJ ¼ 0 and H is a harmonic
function ΔhH ¼ 0. If we consider the flat space
hIJdyIdyJ ¼ dr2 þ r2dΩ2

n−2 and restrict only to the spheri-
cal harmonics, the Gibbons solution (12) goes back to the
Ellis-Gibbons solution (11).
As demonstrated in a companion paper [34], the Ellis-

Gibbons solution (11) is always singular at r ¼ 0, regard-
less of the sign onM and the spacetime dimensionality. The
divergence of the scalar curvature only occurs forM < 0. In
the positive mass case (M > 0), there appears alternatively
a naked p.p curvature singularity at r ¼ 0. Moreover, the
r ¼ 0 surface for M > 0 can be reachable within a finite
affine time for the radial null geodesics. This means that the
r ¼ 0 surface is not null infinity, despite the divergence
of the areal radius. These properties thereby rule out the

possibility that the Eills-Gibbons solution (11) describes
a regular wormhole spacetime (see the argumentation e.g.,
in [48]). As we will discuss later, this situation changes
considerably, provided the scalar potential is introduced,
for which the singularity at r ¼ 0 may be covered by the
event horizon of a black hole.

3. Ellis-Bronnikov solution

The third class of spacetimes is the nð≥ 4Þ-dimensional
Ellis-Bronnikov solution [34,35,40]. This solution exists
only in the phantom case (ϵ ¼ −1) and is given by

ds2 ¼ −e−2βUðrÞdτ2 þ e2βUðrÞ=ðn−3ÞVðrÞ1=ðn−3Þ

×

�
dr2

VðrÞ þ r2dΩ2
n−2

�
; ð13aÞ

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
UðrÞ; ð13bÞ

where

UðrÞ≡ arctan

�
M

2rn−3

�
; VðrÞ≡ 1þ M2

4r2ðn−3Þ
: ð14Þ

The solutions are specified by two parameters β and M.
By virtue of the symmetry

M → −M; β → −β; ð15Þ

one can confine to the M > 0 case to explore the physical
properties of the solution. The ADMmass is controlled by a
combination MADM ∝ βM.
As explained in our previous paper [34], the Ellis-

Bronnikov solution is entitled to be a traversable wormhole
which bridges the two asymptotically flat regions. The
r ¼ 0 surface is merely a coordinate singularity. The
extension through r ¼ 0 is best achieved by the replace-
ment UðrÞ → π=2 − arctanð2rn−3=MÞ and x ¼ rn−3.1 The
resulting metric is smooth at x ¼ 0 and can be extended
into the x < 0 region. This yields a maximal extension of
the spacetime with two asymptotically flat regions, i.e., the
spacetime describes a regular wormhole. It deserves to
remark that this extension is asymmetric for β ≠ 0, since
the ADM mass in each asymptotic region has unequal
value. The symmetric extension only occurs for the zero
mass wormhole β ¼ 0.
In terms of the isotropic coordinate ρ defined by

r ¼ ρ

�
1 −

M2

16ρ2ðn−3Þ

�
1=ðn−3Þ

; ð16Þ

1Remark arctanðxÞ þ arctanð1=xÞ ¼ π=2 for x > 0.
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the Ellis-Bronnikov solution (13) can be transformed into

ds2 ¼ −e−2βÛðρÞdτ2 þ e2βÛðρÞ=ðn−3Þ
�
1þ M2

16ρ2ðn−3Þ

�
2=ðn−3Þ

× ðdρ2 þ ρ2dΩ2
n−2Þ; ð17aÞ

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
ÛðρÞ; ð17bÞ

where ÛðρÞ ¼ UðrðρÞÞ. This form of the metric will be of
use in obtaining asymptotically (A)dS solutions.

B. Toward (A)dS generalization

In the previous subsection, we have briefly reviewed
static and spherical solutions with a massless phantom
scalar field. In the subsequent sections, we explore their
generalizations in (A)dS spacetimes. For the nontrivial
(A)dS asymptotics, we need the scalar field potential.
Consequently, we are concerned with the system described
by the action2

S ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
R
2κn

−
1

2
ϵð∇ϕÞ2 − VðϕÞ

�
: ð18Þ

As discussed at the Introduction, no systematic process is
available in the construction of solutions with a scalar
potential or a cosmological constant. Nevertheless, our
proposed procedure works properly and is compiled as
follows:

(i) Write the static seed metric in Einstein-phantom
scalar system by means of the isotropic coordinates.

(ii) Insert the scale factor aðτÞ ¼ eHτ into the metric and
the scalar field configuration in such a way that the
metric asymptotes to the dS universe with a Hubble
parameter H in a flat chart, and that the solution is
invariant under the generalized time translation [see
(24) below].

(iii) Substitute the ansatz into field equations derived by
the action (18) and determine the scalar field
potential V ¼ VðϕÞ.

(iv) Exploit the newly appeared symmetry in the metric
ansatz at step (ii) to bring the solution into the
manifestly static, asymptotically dS form.

(v) Perform the Wick rotation H → −il−1 of the
Hubble parameter to obtain the asymptotically
AdS solutions.

Adapting this guiding principle to the Schwarzschild
solution, one can derive the Schwarzschild-(A)dS solution,
which has a constant scalar potential, i.e., the scalar field is
trivial and the potential is nothing but the cosmological

constant. When the seed metric solves Einstein’s equations
with a massless (phantom-)scalar field, the new solution
derived in the above prescription solves Einstein’s equa-
tions sourced by a (phantom-)scalar field with a potential.
To precisely compensate the expansion of the universe by
the introduction of the potential of the scalar field, it is
essential to write the metric in terms of the isotropic
coordinate [step (i)]. It seems that other gauges of radial
coordinate do not work.
Since the potential of the scalar field is derived in the

above prescription, one may envisage that it gives rise to
unusual form, which has no origin in fundamental physics.
An intriguing outcome here is that all the potentials VðϕÞ
obtained in the above procedure are represented in terms of
the superpotential WðϕÞ as

VðϕÞ ¼ 2ðn − 2Þ
�
ϵ

κn
ðn − 2Þ

� ∂
∂ϕWðϕÞ

�
2

− ðn − 1ÞWðϕÞ2
�
: ð19Þ

For ϵ ¼ þ1 and real WðϕÞ, this form of the potential
commonly appears in supergravity and in the positive
energy theorems [49–52]. The critical point of the super-
potential is the extremum of the potential, but the converse
is not true. As we will see later, the functionWðϕÞ turns out
purely imaginary for the solutions asymptotic to dS/FLRW
universes. In contrast, the superpotential can be made to be
real for the asymptotically AdS case.
We also note that the final expression of the static metric

in steps (iv) and (v) can be further used to put an ansatz
to generate yet another new solution. In the subsequent
sections, we determine the potential for each class of
solutions and discuss physical/causal properties.

III. FISHER CLASS OF SOLUTIONS IN (A)dS

We begin by the analysis of the Fisher class of solutions.
The whole technical scheme expanded here can be straight-
forwardly used also in the subsequent sections.

A. Fisher solution in dS: Plus branch

We suppose the following ansatz for the generalization
of the Fisher solution (7) into dS space:

ds2¼−
�1− M

4ðaðτÞρÞn−3

1þ M
4ðaðτÞρÞn−3

�2α

dτ2þa2ðτÞ
�
1þ M

4ðaðτÞρÞn−3
� 4

n−3

×

�1− M
4ðaðτÞρÞn−3

1þ M
4ðaðτÞρÞn−3

�2ð1−αÞ
n−3

ðdρ2þρ2dΩ2
n−2Þ; ð20aÞ

ϕ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ

ðn − 3Þκn

s
ln

���� 1 −
M

4ðaðτÞρÞn−3

1þ M
4ðaðτÞρÞn−3

����; ð20bÞ
2We apologize to the reader that we use the same letter V for

the potential as the one in (14). Nonetheless, we expect that no
confusion arises.
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where aðτÞ≡ eHτ and H is a constant playing the role of
Hubble parameter. When H ¼ 0, the above solution
reduces to the spherical Fisher solution written in the
isotropic coordinate (9). Here we have chosen the “plus
sign” of the scalar field for the sake of expedience. We shall
therefore call the solution (20) as the “plus branch.”
As ρ → ∞, the solution (20) approaches to the dS universe
in the flat spatial patch. This metric reduces to the
Schwarzschild-dS solution in the McVittie’s form [53]
for α2 ¼ 1.
Plugging this ansatz into the gravitational field equations

derived from the action (18), the potential for the scalar
field is determined to be

VðϕÞ ¼ n − 2

4κn
H2e−2αα0ϕ½2ðn − 2Þð1 − α2Þ

þ ½ðn − 2Þα − 1�ðα − 1Þe−2α0ϕ
þ ½ðn − 2Þαþ 1�ðαþ 1Þe2α0ϕ�; ð21Þ

where

α0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 3Þκn
ðn − 2Þϵð1 − α2Þ

s
: ð22Þ

Notably, this potential is built out of the following super-
potential:

WðϕÞ ¼ iH
2
ffiffiffiffiffi
κn

p e−αα0ϕðcoshðα0ϕÞ þ α sinhðα0ϕÞÞ; ð23Þ

as (19). Let us emphasize that the parameter α is no longer a
parameter of the solution, as opposed to the asymptotically
flat case (7). Rather, it is promoted to be a parameter to
define the theory (21).
We can verify that the origin for the scalar field

ϕ ¼ 0 is the critical point of the potential corresponding
to the dS vacuum with the Hubble parameter H, as
well as the critical point of the superpotential. The
potential may admit another critical point at ϕ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn− 2Þð1− α2Þϵ=½ðn− 3Þκn�

p
ln½ððn− 2Þα− 1Þ=ððn− 2Þ

αþ 1Þ� when inside the logarithm is positive. However, this
does not play a role in our current analysis.
The solution (20) can be viewed as an interpolating

solution between the Fisher solution (7) and the dS
universe. At first glance, one may expect that this is a
dynamical solution. Nevertheless, the solution (20) is
invariant under

τ → τ þ c; ρ → ρe−Hc; ðc∶ constantÞ; ð24Þ

leading to the existence of a Killing vector ξμ ¼
ð∂=∂τÞμ −Hρð∂=∂ρÞμ. One can then bring the metric into
a manifestly static form:

ds2 ¼ −fFðρ̂Þ
f̂−ðρ̂Þ2α
f̂þðρ̂Þ2α

dt2 þ f̂þðρ̂Þ2ð1þαÞ=ðn−3Þ

× f̂−ðρ̂Þ2ð1−αÞ=ðn−3Þ
�

dρ̂2

fFðρ̂Þ
þ ρ̂2dΩ2

n−2

�
; ð25Þ

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ

ðn − 3Þκn

s
ln

���� f̂−ðρ̂Þf̂þðρ̂Þ

����; ð26Þ

by the coordinate transformations

t¼ τþ
Z

Hρ̂f̂þðρ̂Þ2½1þðn−2Þα�=ðn−3Þf̂−ðρ̂Þ2½1−ðn−2Þα�=ðn−3Þ
fFðρ̂Þ

dρ̂;

ρ̂¼ ρeHτ; ð27Þ

with

fFðρ̂Þ≡1−H2ρ̂2f̂þðρ̂Þ2½1þðn−2Þα�=ðn−3Þf̂−ðρ̂Þ2½1−ðn−2Þα�=ðn−3Þ;
ð28Þ

f̂�ðρ̂Þ≡ 1� M
4ρ̂n−3

: ð29Þ

Performing the further coordinate transformation

ρ̂n−3 ¼ M
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M=rn−3

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M=rn−3

p ; ð30Þ

the solution can be brought into a more familiar form:

ds2 ¼ −fðrÞαFþ
F ðrÞdt2 þ fðrÞ−ðαþn−4Þ=ðn−3Þ

×

�
dr2

Fþ
F ðrÞ

þ r2fðrÞdΩ2
n−2

�
; ð31aÞ

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ
4ðn − 3Þκn

s
ln fðrÞ; ð31bÞ

where fðrÞ ¼ 1 −M=rn−3 as before and

Fþ
F ðrÞ≡ 1 −H2r2fðrÞ−½ðn−2Þα−1�=ðn−3Þ: ð32Þ

The α2 ¼ 1 case reduces to the Schwarzschild-dS solution
in the static patch. This form of the metric convinces one to
recognize that this is a natural generalization of Fisher
solution in dS space. We explore below the causal and
physical properties of the solution (31). For definiteness of
the argument, we suppose H > 0 henceforth.
We first remark that the metric (31) is unaltered under

the simultaneous sign flip (8) of (M, α). Thanks to this
symmetry, we can focus on the M > 0 case, for which the
interior boundary of r is rs ≡M1=ðn−3Þ.
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The Ricci scalar of the solution (31) reads

R ¼ M2

4r2ðn−2Þ
ðn − 2Þðn − 3Þð1 − α2Þfðα−nþ2Þ=ðn−3Þ

þ 1

4
H2ðn − 1Þ

�
4n −

4nM
rn−3

ð1þ αÞ

þ M2

r2ðn−3Þ
ð1þ αÞð6 − 6αþ nð3α − 1ÞÞ

�
f−1−α: ð33Þ

One finds that the r ¼ rs surface corresponds to the curvature
singularity for any parameter region of αð≠ �1Þ. This is in
sharp contrast to theH ¼ 0 case, for which the r ¼ rs surface
might correspond merely to a p.p curvature singularity for
some parameter region, rather than the scalar curvature
singularity.
Let us next investigate the causal properties of this

singularity. Since the function Fþ
F ðrÞ does not contribute to

the equation (4) that determines the affine parameter of
the radial null geodesics, one can use the criterion for the
H ¼ 0 case if the surface r ¼ rs resides at an infinite affine
distance for the radial null geodesics. Inferring from the
results in [34], r ¼ rs is null infinity for α ≤ −ðn − 2Þ=
ðn − 4Þ for n ≥ 5, otherwise it locates at finite
affine distance. For the signature of the surface r ¼ rs,
Eq. (6) gives rise to r� ¼

R ½fðrÞp=Fþ
F ðrÞ�dr with p ¼

−½ðn − 2Þαþ n − 4�=½2ðn − 3Þ�, leading to three cases to
consider: (i) α < 1=ðn − 2Þ, (ii) α ¼ 1=ðn − 2Þ and
(iii) α > 1=ðn − 2Þ. In case (i), Fþ

F ðrsÞ ¼ 1, so that r�
remains finite as r → rs, implying that r ¼ rs is timelike. In
case (ii), r ¼ rs is timelike (spacelike) for H < 1=rs
(H > 1=rs). In case (iii), one finds that r ¼ rs is spacelike.
Another notable feature in the H ≠ 0 case is that the

solution (33) may admit a black hole horizon r ¼ rþ at
Fþ
F ðrþÞ ¼ 0, on top of the cosmological horizon

r ¼ rcð> rþÞ. One can check that any curvature invariants
remain finite at the surfaces Fþ

F ðrÞ ¼ 0, i.e., these are
regular null hypersurfaces and constitute Killing horizons
for the Killing vector ∂=∂t. The condition for the presence
of the event horizon boils down to

α >
1

n − 2
; 0 < M <

αα>>
Hn−3ð1þ α>Þ1þα>

; ð34Þ

where α> ≡ ½ðn − 2Þα − 1�=2 > 0. The first condition
ensures that rþ > rs ≡M1=ðn−3Þ, whereas the second con-
dition implies rc > rþ. It follows that the event horizon
exists both for phantom (α2 > 1) and nonphantom
(α2 < 1) cases.
If the parameters fail to fulfill the criteria above, we have

two conceivable cases. When the first condition in (34) is
false, the equation Fþ

F ðrÞ ¼ 0 admits only a single root,
corresponding to the cosmological horizon, outside the
singularity r ¼ rs. This class of spacetime is static in the
r < rc region and describes a naked singularity. The other

case is that the second condition in (34) is false, while the
first condition is met. In this case, Fþ

F ðrÞ is negative definite,
meaning that the spacetime is not static in the sense that the
Killing vector ∂=∂t is spacelike anywhere. This class of
spacetime looks like the interior of the Schwarzschild black
hole and exhibits the dynamical aspect.
We present in Fig. 1 the Penrose diagram for the plus-

branch Fisher solution in the dS universe satisfying (34)
which admits a black hole horizon. The global structure is
identical to the Schwarzschild-dS black hole. Throughout
the paper, we shall not display the causal diagrams for
singular configurations.

B. Fisher solution in AdS: Plus branch

Since we have a static form of the metric (31) at hand,
one can Wick rotate the Hubble parameter H → −il−1 to
give an asymptotically AdS solution, i.e., Fþ

F ðrÞ in (32) is
now given by

Fþ
F ðrÞ≡ 1þ r2

l2
fðrÞ−½ðn−2Þα−1�=ðn−3Þ: ð35Þ

The solution (31) with (35) solves the field equations
derived from the action (18), where the potential is given
by (21) withH → −il−1. The parameter l has a dimension
of the length and corresponds to the AdS radius. This
solution is contained, for ϵ ¼ 1, in the class of metrics with
topological base found in [54] [set H1 there ¼ fðrÞ,
H2 there ¼ 1 and αthere ¼ 0 in (20) in [54] ]. For the spherical
case, the corresponding asymptotically AdS solution never
admits an event horizon of a black hole for either sign of ϵ,
by virtue of Fþ

F ðrÞ > 0. Thus, the solution describes a
naked singularity at r ¼ M1=ðn−3Þ.

C. Fisher solution in dS: Minus branch

Following the observation in [55], one can obtain
yet another new solution in the theory (21). We reverse
the sign of ϕ in (31), consider the metric (31) with

FIG. 1. Possible conformal diagram for the dS Fisher solutions
[plus (31) and minus (36) branches] and the dS Ellis-Gibbons
solutions [plus (52) and minus (57) branches] admitting the event
horizon of a black hole. The required parameter region is (34),
(42), (55) (59), respectively. I� denote future and past null
infinities and dashed lines correspond to the scalar curvature
singularities. White circles stand for timelike infinities, while the
black circles stand for the bifurcation surfaces, respectively.
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fðrÞ ¼ 1 −M=rn−3 and leave Fþ
F ðrÞ unspecified. Since the

potential is now given by (21), one can determine this
unknown function Fþ

F ðrÞ from Einstein’s equations. It turns
out that this procedure works only in n ¼ 4, yielding

ds2 ¼ −fðrÞαF−
F ðrÞdt2 þ fðrÞ−α

�
dr2

F−
F ðrÞ

þ r2fðrÞdΩ2
n−2

�
;

ð36aÞ

ϕ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
1 − α2

2κ4

s
ln fðrÞ; ð36bÞ

where fðrÞ ¼ 1 −M=r and

F−
F ðrÞ≡ 1 −H2ðr2 −Mð1 − 2αÞr −M2αð1 − 2αÞÞ: ð37Þ

From the minus sign of the scalar field in (36), we refer to
the solution as the “minus branch”. In the massless scalar
case, this sign choice was the matter of convention. In the
presence of the scalar field potential, this sign is crucial and
each solution describes the different spacetime.
The α2 ¼ 1 reduces to the Schwarzschild-dS solution,

while M ¼ 0 describes the dS metric. The solution (36)
also enjoys the reflection symmetry α→−α withM→−M,
which allows us to set M > 0. At the surface r ¼ Mð> 0Þ,
the curvature invariants diverge for α < 2, while it corre-
sponds to the p.p. curvature singularity for any αð≠ �1Þ.
This can be deduced by

R¼M2ð1− α2Þ
2r4

fðrÞα−2 þ H2

2r4
fðrÞα−2½24r3ðrþ ðα− 2ÞMÞ

þ 9M2r2ðα− 3Þðα− 1Þ þM3rðα− 3Þðα− 1Þð2α− 1Þ
þM4αðα2 − 1Þð2α− 1Þ�; ð38Þ

and

Rμνkμkν ¼ −
M2ðα2 − 1Þ
2ðr −MÞ2r2 ; ð39Þ

where kμ ¼ ðfF−
F Þ−1ð∂=∂tÞμ þ ð∂=∂rÞμ is the affine-

parametrized radial geodesic tangent. It is interesting to
observe that the singular nature of fðrÞ ¼ 0 surface is
substantially different from the plus-branch solution,
despite the apparent similarity of the metric. In the entire
parameter region, the minus-branch solution is always
singular at r ¼ Mð> 0Þ, even though the curvature invar-
iants remain finite there for α ≥ 2.
Around r ¼ M, the tortoise coordinate is approximated

by [we exclude the F−
F ðMÞ ¼ 0 case since r ¼ M is

singular]

r� ¼
Z

r dr
fðrÞαF−

F ðrÞ
≃

1

f0ðMÞαF−
F ðMÞ

Z
ðr −MÞ−αdr:

ð40Þ

It follows that the r ¼ M is null for α ≥ 1. Since F−
F ðMÞ ¼

1 −H2M2αð1þ 2αÞ, the r ¼ M surface is spacelike for

0 <
1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1þ 2αÞp < M: ð41Þ

Obviously this is valid for α < −1=2 or 0 < αð< 1Þ. In the
other parameter range, the r ¼ M surface is timelike.
Now we turn our attention to the horizon at F−

F ðrÞ ¼ 0.
The condition for the appearance of the event horizon at
r ¼ rþð> M > 0Þ boils down to

α < −
1

2
; 0 <

1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1þ 2αÞp < M <

2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 − 1

p ;

ð42Þ

which assures 0 < M < rþ < rc, where rþ and rc are
respectively the loci of the event and the cosmological
horizon and are given by

rþ ¼ M
2

�
1 − 2α −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðMHÞ−2 þ 1 − 4α2

q �
;

rc ¼
M
2

�
1 − 2αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðMHÞ−2 þ 1 − 4α2

q �
; ð43Þ

which satisfy F−
F ðrþÞ ¼ F−

F ðrcÞ ¼ 0. The event horizon
exists both for the phantom and nonphantom cases.
Inspecting (41), the singularity is spacelike in the parameter
range (42). The Penrose diagram is therefore the same as
in Fig. 1.

D. Fisher solution in AdS: Minus branch

Upon replacement H → −il−1 for ϵ ¼ þ1, the solution
(37) recovers the N ¼ 2 supergravity solution in AdS,
which allows a parameter range under which the solution
possesses the event horizon [55]. The function F−

F ðrÞ
in (37) is now

F−
F ðrÞ ¼ 1þ 1

l2
ðr2 −Mð1 − 2αÞr −M2αð1 − 2αÞÞ: ð44Þ

We suppose l > 0 (and M > 0) in the hereafter. The
conditions under which the nonphantom solution (ϵ ¼ 1

and α2 ≤ 1) enjoys the event horizon of a black hole were
already addressed in [55]. Here, we discuss this issue in a
wider range of parameters.
As in the dS case, the r ¼ Mð> 0Þ surface is singular

in that it corresponds to the scalar curvature singularity
(α < 2) or the p.p curvature singularity [see (38) and (39)].
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The radial coordinate r is identified as an affine parameter
for the radial null geodesics. Deducing from r� ¼R
dr=ðfðrÞαF−

F ðrÞÞ, the r ¼ Mð> 0Þ surface is null for
α ≥ 1, while it is spacelike for M > l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αð1þ 2αÞp

(requiring −1=2 < α < 0) and timelike otherwise.
We have horizons at r ¼ r�, where

r� ¼ 1

2

�
ð1 − 2αÞM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4α2ÞM2 − 4l2

q �
: ð45Þ

For the solution to represent a black hole which is regular
on and outside the event horizon r ¼ rþ, we must have
rþ > Mð> 0Þ. This condition reduces to

M >
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−αð1þ 2αÞp > 0: ð46Þ

This demands −1=2 < α < 0, i.e., the phantom case results
in the spacetime with a naked singularity. Since the scalar
field is nonphantom for the existence of the event horizon,
we can refer to [55] for the physical property of the black
hole solution. In the parameter region (46) we have
M > r−, so that the singularity at r ¼ M is spacelike. It
turns out that the global structure of the black hole solution
is the same as the Schwarzschild-AdS black hole,
see Fig. 2.

IV. GIBBONS CLASS OF SOLUTIONS IN (A)dS

We shall next consider the (A)dS generalization of the
Gibbons class (12) of metrics.

A. Gibbons solution in dS

We assume the following ansatz (ϵ ¼ −1):

ds2 ¼ −e−HG=aðτÞn−3dτ2

þ aðτÞ2eHG=½ðn−3ÞaðτÞn−3�hIJðyÞdyIdyJ; ð47aÞ

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þ
4ðn − 3Þκn

s
HG

aðτÞn−3 ; ð47bÞ

where aðτÞ ¼ eHτ, HG ¼ HGðyIÞ with ΔhHG ¼ 0, and hIJ
is a τ-independent Ricci flat metric. H is the Hubble
parameter and the H ¼ 0 case reduces to the Gibbons
solution (12). Substituting the above ansatz into the field
equations obtained from the action (18), the potential is

VðϕÞ ¼ H2

κn
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−3Þκn=ðn−2Þ

p
ϕ

�
1

2
ðn − 1Þðn − 2Þ

− ðn − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þðn − 3Þκn

p
ϕ

þ ðn − 3Þðn − 2Þκnϕ2

�
; ð48Þ

which is expressed as (19) in terms of the superpotential as

WðϕÞ¼ iH
2
ffiffiffiffiffi
κn

p e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−3Þκn=ðn−2Þ

p
ϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−3Þκn
n−2

r
ϕ−1

�
: ð49Þ

The origin ϕ ¼ 0 is the unique critical point of the
superpotential. Another critical point of the potential
ϕ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 2Þðn − 3Þκn
p

does not extremize the super-
potential and is irrelevant for the present analysis.
Contrary to the Fisher solution in dS, this solution (47)

is generically dynamical, since the solution fails to admit
any additional symmetry like (24). In this dynamical form,
one cannot obtain the asymptotically AdS solution by the
Wick rotation H → −il−1. This is reminiscent of the
Kastor-Traschen solution [56] in the Einstein-Maxwell-
Λð> 0Þ system. Kastor and Traschen have demonstrated
that the Majumdar-Papapetrou multicenter solution
[57,58] can be embedded into the dS universe at the
expense of introducing the positive cosmological constant
[56]. Their solution is specified by a harmonic function
despite the explicit time dependence. If the harmonic
function has the multiple point sources, the Kastor-
Traschen solution describes multiple colliding black holes
in contracting dS universe (H < 0) or multiple splitting
white holes in the expanding dS universe (H > 0). In
contrast, the case with a single point source culminates in
the lukewarm limit of the Reissner-Nordstöm-dS solution,
which admits a static patch [59].
Here we argue that an analogous situation happens also

for the Gibbons solution in the dS universe (47). As it turns
out, the static Killing vector emerges by restricting to the
spherically symmetric case. In the Appendix B, we also
present a dynamical generalization of the Gibbons solution
into the asymptotically FLRW universe, in lieu of the dS
universe.

FIG. 2. A conformal diagram for the minus-branch AdS Fisher
solution (44) admitting the event horizon of a black hole. The
condition for the existence of the horizon is (46), under which
the central singularity at r ¼ M is spacelike. I in the figure
represents the AdS infinity.
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B. Ellis-Gibbons solution in dS: Plus branch

For an exceptional case, let us consider a monopole
source HG ¼ M=ρn−3 in a flat space hIJdyIdyJ ¼
dρ2 þ ρ2dΩ2

n−2, for which the solution is unchanged under
τ → τ þ c, ρ → ρe−Hc. In this case, one can find the static
patch, which is achieved by

r ¼ ρeHτ; t ¼ τ þ
Z

Hreðn−2ÞM=½ðn−3Þrn−3�

Fþ
GðrÞ

dr; ð50Þ

where

Fþ
GðrÞ≡ 1 −H2r2eðn−2ÞM=½ðn−3Þrn−3�; ð51Þ

yielding the static solution in the form

ds2 ¼ −e−M=rn−3Fþ
GðrÞdt2

þ eM=½ðn−3Þrn−3�
�

dr2

Fþ
GðrÞ

þ r2dΩ2
n−2

�
; ð52aÞ

ϕ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þ
4ðn − 3Þκn

s
M
rn−3

: ð52bÞ

This is a natural generalization of the Ellis-Gibbons
solution (11) in the dS universe. Note that the appealing
property of linearization inherent to the Gibbons solution is
now marred in this static form. In the following analysis,
we assume H > 0.
As established in our previous paper [34], the asymp-

totically flat Gibbons solution is necessarily singular at
r ¼ 0, which corresponds to the scalar curvature singularity
only for M < 0. In contrast, the corresponding dS solution
inescapably possesses the scalar curvature singularity at
r ¼ 0, which can be deduced by the behavior of the Ricci
scalar:

R ¼ −
ðn − 2Þðn − 3ÞM2

4r2ðn−2Þ
e−M=½ðn−3Þrn−3�

þ ðn − 1ÞH2eM=rn−3
�
n −

nM
rn−3

þ 3ðn − 2ÞM2

4r2ðn−3Þ

�
: ð53Þ

This blows up at r ¼ 0 insensitive to the sign of M for
H ≠ 0.
Let us look into the causal nature of this singularity.

Since Fþ
GðrÞ does not enter in the expression for the affine

parameter of the radial null geodesics, the singularity r ¼ 0
locates at an infinite affine distance forM < 0 in n ≥ 5, and
at finite affine distance otherwise. To see the signature of
the r ¼ 0 surface, the following criterion is of use:

lim
r→0þ

Z
r
rpeq=r

n−3
dr →

�þ∞ ðq > 0Þ;
0 ðq < 0Þ; ð54Þ

where p and q are constants. From r� ¼R ðeðn−2ÞM=½2ðn−3Þrn−3�=Fþ
GÞdr → 0 ∓ as r → 0 for M≷0,

the singularity at r ¼ 0 is spacelike for M > 0, while it
is timelike for M < 0.
Contrary to the H ¼ 0 case, the singularity at r ¼ 0 can

be covered by an event horizon of a black hole, provided
that the mass parameter M satisfies

0 < M <
2H3−n

ðn − 2Þe : ð55Þ

Under this condition, the equation Fþ
GðrÞ ¼ 0 admits two

real distinct roots rþ and rcð>rþ > 0Þ, which stand for
respectively the event horizon of a black hole and the
cosmological horizon. Consequently, the global structure
of the solution under (55) is the same as the Schwarzschild-
dS black hole (see Fig. 1).
Leaving aside the regularity of these horizons, we have

to pay some attention to the asymptotic structure of the
spacetime. At first glance, it may be conceivable that the
metric (52) approaches to the dS universe as r → ∞. In
spite of this, the r > rc region is highly dynamical, so that
the notion of “asymptotically dS” is rather ambiguous,
as opposed to the ρ → ∞ limit of the McVittie’s form (47).
Since the static solution (52) does not look like the
dS metric around the cosmological horizon, it is not sure
whether the solution (52) falls into the well-defined
framework of the asymptotic dS family.

C. Ellis-Gibbons solution in AdS: Plus branch

Since the Hubble parameter enters in the metric (51) in
the quadratic form, one can simply Wick rotateH → −il−1

to give an asymptotically AdS static solution (52). The
function Fþ

GðrÞ in (51) is now replaced by

Fþ
GðrÞ ¼ 1þ ðr2=l2Þeðn−2ÞM=½ðn−3Þrn−3� > 0; ð56Þ

implying the nonexistence of the horizon.
The r ¼ 0 surface has a timelike structure, which

becomes null infinity for M < 0 with n ≥ 5. The metric
therefore describes a naked singularity at r ¼ 0 in asymp-
totically AdS spacetime.

D. Ellis-Gibbons solution in dS: Minus branch

As in the Fisher solution in dS space (36), we try to look
for a new solution, by leaving Fþ

GðrÞ arbitrary, taking a
different sign in the scalar field (52b), while maintaining
the metric form (52). This prescription works again only in
n ¼ 4 and reads

ds2 ¼ −e−M=rF−
GðrÞdt2 þ eM=r

�
dr2

F−
GðrÞ

þ r2dΩ2
2

�
; ð57aÞ
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ϕ ¼ −
ffiffiffiffiffiffiffi
−ϵ
2κ4

r
M
r
: ð57bÞ

where F−
GðrÞ is fixed by Einstein’s equations with the

potential (48) to be

F−
GðrÞ≡ 1 −H2ð2M2 þ 2Mrþ r2Þ: ð58Þ

We call (57) the minus-branch solution and set H > 0
hereafter.
The coordinate r corresponds to the affine parameter

of the radial null geodesics. The curvature invariants for
the above solution is singular at r ¼ 0 only for M < 0.
But in either sign of M, the r ¼ 0 deserves a p.p curvature
singularity because of the divergence of Rμνkμkν ¼
−M2=ð2r4Þ. Inspecting (54), the r ¼ 0 surface is null for
M > 0, spacelike for M < −1=ð ffiffiffi

2
p

HÞ < 0 and timelike
for −1=ð ffiffiffi

2
p

HÞ < M < 0.
The minus branch solution (57) also admits a parameter

range under which the event horizon exists for r > 0,
leading to

−
1

H
< M < −

1ffiffiffi
2

p
H
: ð59Þ

Namely, only the negative mass parameter provides the
geometry of a black hole with an event horizon at
rþ ¼ −M −H−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2M2

p
> 0 and a cosmological hori-

zon at rc ¼ −M þH−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2M2

p
> rþ. Under the

parameter range (59), the singularity at r ¼ 0 is spacelike,
so that the Penrose diagram is identical to that of the
Schwarzchild-dS black hole as displayed in Fig. 1.
When the parameters take values out of the range (59),

the scalar/p.p curvature singularity at r ¼ 0 is visible. The
spacetime with jMj ≥ H−1 is dynamical due to F−

GðrÞ ≤ 0,
in the same spirit as the interior of the Schwarzschild
black hole. For −ð ffiffiffi

2
p

HÞ−1 < M < H−1 with M ≠ 0, the
spacetime admits only the cosmological horizon at
rc ¼ −M þH−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2M2

p
in the r > 0 region.

E. Ellis-Gibbons solution in AdS: Minus branch

The asymptotic AdS solutions are merely realized by
H → −il in (57), giving

F−
GðrÞ ¼ 1þ l−2ð2M2 þ 2Mrþ r2Þ > 0; ð60Þ

in (58). This solution has therefore a null (timelike)
singularity at r ¼ 0 for M > 0 (M < 0), which is not
veiled by horizons.

V. ELLIS-BRONNIKOV CLASS
OF SOLUTIONS IN (A)dS

Lastly, we explore the Ellis-Bronnikov class. Contrary to
the Fisher and Gibbons class, it turns out that the Ellis-
Bronnikov solution allows the parameter range under
which the solution describes the traversable wormhole.

A. Ellis-Bronnikov solution in dS: Plus branch

We make a following ansatz (ϵ ¼ −1):

ds2 ¼ −e−2βUðτ;ρÞdτ2 þ a2ðτÞe2βUðτ;ρÞ=ðn−3Þ

×

�
1þ M2

16ðaðτÞρÞ2ðn−3Þ
�

2=ðn−3Þ
ðdρ2 þ ρ2dΩ2

n−2Þ;

ð61aÞ

ϕ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
Uðτ; ρÞ; ð61bÞ

where aðτÞ≡ eHτ and

Uðτ;ρÞ≡ arctan

�
M

2ðaðτÞρÞn−3½1−M2=ð16ðaðτÞρÞ2ðn−3ÞÞ�

�
:

ð62Þ

The H ¼ 0 recovers the Ellis-Bronnikov solution in the
isotropic coordinates (17). For ρ → ∞, the metric
approaches to the dS universe with Hubble parameter H.
Substituting the above ansatz to the field equations derived
from the action (18), the potential of the scalar field is
found to be

VðϕÞ ¼ n − 2

2κn
H2e2ββ0ϕ½ðn − 2Þð1þ β2Þ

þ ð1 − ðn − 2Þβ2Þ cosð2β0ϕÞ
− ðn − 1Þβ sinð2β0ϕÞ�; ð63Þ

where

β0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 3Þκn
ðn − 2Þð1þ β2Þ

s
: ð64Þ

Also in this case, one can express the scalar potential (63)
as (19) in terms of the following superpotential:

WðϕÞ ¼ iH
2
ffiffiffiffiffi
κn

p eββ0ϕðcosðβ0ϕÞ − β sinðβ0ϕÞÞ: ð65Þ

This superpotential has a striking resemblance to (23). Note
that β is now entitled as a constant parametrizing the theory,
instead of the solution parameter. One sees that the
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potential admits an infinite number of critical points ϕðkÞ
and ϕ̂ðkÞ (k ∈ Z), where

ϕðkÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þð1þ β2Þ

ðn − 3Þκn

s
kπ;

ϕ̂ðkÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þð1þ β2Þ

ðn − 3Þκn

s �
arctan

�
1

ðn − 2Þβ
�
þ kπ

�
:

ð66Þ

We can confirm that the former extrema ϕ ¼ ϕðkÞ of the
potential also correspond to the critical points of the
superpotential. This includes the origin ϕ ¼ 0 of the scalar
field, to which our solution approaches asymptotically.
A simple calculation reveals that the values of the potential
at these critical points are related by

VðϕðkÞÞ
Vð0Þ ¼ e2πkβ;

Vðϕ̂ðkÞÞ
Vð0Þ ¼ n − 3

n − 1
e2πkβþ2β arctan½1=ððn−2ÞβÞ�:

ð67Þ

The solution (61) again admits a Killing vector ξμ ¼
ð∂=∂τÞμ −Hρð∂=∂ρÞμ, since it is invariant under τ →
τ þ c, ρ → ρe−Hc. Defining

ρ̂ ¼ ρeHτ; t ¼ τ þ
Z

Hρ̂ V̂ðρ̂Þ2=ðn−3Þe2βðn−2ÞÛðρ̂Þ=ðn−3Þ

fEBðρ̂Þ
dρ̂;

ð68Þ

with

fEBðρ̂Þ≡ 1 −H2ρ̂2V̂ðρ̂Þ2=ðn−3Þe2ðn−2ÞβÛðρ̂Þ=ðn−3Þ; ð69aÞ

Ûðρ̂Þ≡ arctan

�
M

2ρ̂n−3½1 −M2=ð16ρ̂2ðn−3ÞÞ�

�
; ð69bÞ

V̂ðρ̂Þ≡ 1þ M2

16ρ̂2ðn−3Þ
; ð69cÞ

one arrives at a static form

ds2 ¼ −e−2βÛðρ̂ÞfEBðρ̂Þdt2 þ V̂ðρ̂Þ2=ðn−3Þ

× e2βÛðρ̂Þ=ðn−3Þ
�

dρ̂2

fEBðρ̂Þ
þ ρ̂2dΩ2

n−2

�
; ð70aÞ

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
Ûðρ̂Þ: ð70bÞ

By the further coordinate transformation

ρ̂n−3 ¼ 1

2
rn−3

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

4r2ðn−3Þ

s !
; ð71Þ

one can cast the above solution into a simpler form,

ds2 ¼ −e−2βUðrÞFþ
EBðrÞdt2 þ VðrÞ1=ðn−3Þe2βUðrÞ=ðn−3Þ

×
�

dr2

VðrÞFþ
EBðrÞ

þ r2dΩ2
n−2

�
; ð72aÞ

ϕ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
UðrÞ; ð72bÞ

where UðrÞ¼ arctanðM=2rn−3Þ, VðrÞ¼1þM2=ð4r2ðn−3ÞÞ
as before (14), and

Fþ
EBðrÞ≡ 1 −H2r2VðrÞ1=ðn−3Þe2ðn−2ÞβUðrÞ=ðn−3Þ: ð73Þ

Here use has been made of

Ûðρ̂Þ ¼ UðrÞ; ρ̂2V̂ðρ̂Þ2=ðn−3Þ ¼ r2VðrÞ1=ðn−3Þ;
V̂ðρ̂Þ2=ðn−3Þdρ̂2 ¼ VðrÞ−ðn−4Þ=ðn−3Þdr2: ð74Þ

The metric (72) can be viewed as the Ellis-Bronnikov
solution in the dS universe, since the M ¼ 0 case reduces
to the dS spacetime, while H ¼ 0 recovers the Ellis-
Bronnikov solution. The solution (72) is invariant under
the simultaneous sign change (15) of ðM; βÞ, which permits
one to get centered on the M > 0 case. From now on,
we set H > 0.
Let us first examine the coordinate singularity r ¼ 0.

We observe that the r ¼ 0 surface is completely regular.
For instance the Ricci scalar is kept finite at r ¼ 0,

R ¼ −
ðn − 2Þðn − 3Þ

4r2ðn−2ÞVðrÞðn−2Þ=ðn−3Þ ð1þ β2Þe−2βUðrÞ=ðn−3Þ

þ ðn − 1ÞH2

r2ðn−3ÞVðrÞ e
2βUðrÞ

�
nr2ðn−3Þ − nMβrn−3

þ 1

4
M2ð2ðn − 3Þ þ 3ðn − 2Þβ2Þ

�
: ð75Þ

One can verify by rudimentary calculations that any
Riemann tensor components in a frame parallelly propa-
gated along the radial null geodesics are nondiverging at
r ¼ 0. It follows that r ¼ 0 is merely a coordinate singu-
larity. The extension across r ¼ 0 can be achieved by the
replacement of UðrÞ by UðrÞ → π=2 − arctanð2rn−3=MÞ
with x ¼ rn−3. In this coordinate system, the solution reads
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ds2 ¼ −e−2βUxðxÞFþ
x ðxÞdt2 þ VxðxÞ1=ðn−3Þ

× e2βUxðxÞ=ðn−3Þ
�

dx2

ðn − 3Þ2VxðxÞFþ
x ðxÞ

þ dΩ2
n−2

�
;

ð76aÞ

ϕ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
UxðxÞ; ð76bÞ

where

UxðxÞ≡ π

2
− arctan

�
2x
M

�
; ð77aÞ

VxðxÞ≡ x2 þM2

4
; ð77bÞ

Fþ
x ðxÞ≡ 1 −H2VxðxÞ1=ðn−3Þe2ðn−2ÞβUxðxÞ=ðn−3Þ: ð77cÞ

One finds that every component of the metric and its
inverse is now smooth for any x ∈ ð−∞;∞Þ. It follows
that the metric (76) yields the maximal extension of the
spacetime. The solution is geodesically complete and
admits no scalar/p.p curvature singularities.
We now argue that there exists a parameter range under

which the solution describes a dS wormhole. Let us first
note that the solution allows two distinct roots xcð�Þ for
Fþ
EBðxcð�ÞÞ ¼ 0, provided Mð>0Þ satisfies the following

inequality:

0 < M <
2H3−nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðn − 2Þ2β2
p e−ðn−2Þβðπ=2−arctan½ðn−2Þβ�Þ: ð78Þ

Both of these roots xð�Þ
c should be regarded as the

cosmological horizons. Hence, the solution satisfying
(78) is identified as a static wormhole in the dS universe.
The Penrose diagram is shown in Fig. 3.
If M is too much larger than the critical value in (78),

Fþ
x ðxÞ is negative definite throughout x ∈ R. This is

dynamical in the same spirit as the interior of the
Schwarzschild black hole.

A local characterization of the wormhole is the existence
of the throat [11], corresponding to the critical point of the
areal radius S≡ VxðxÞ1=½2ðn−3Þ�eβUxðxÞ=ðn−3Þ. In the present
case, this locates at

x ¼ xth ¼
1

2
Mβ: ð79Þ

This does not coincide with the coordinate boundary r ¼ 0
for the original metric (72) when β ≠ 0. As emphasized
in our previous paper [34], the analysis of geodesics is
more important than this local definition, since the worm-
hole is a global concept. Our argument above explicitly
shows that there exist null geodesics emanating from
past infinity (t ¼ −∞ and r → ∞) which can arrive at
distinct future null infinity (t ¼ þ∞ and x → ∞) or
(t ¼ þ∞ and x → −∞), illustrating that the solution
(76) indeed describes a wormhole.

B. Ellis-Bronnikov solution in AdS: Plus branch

Upon the Wick rotation H → −il−1, the solution (72)
becomes asymptotically AdS as r → 0. Since the non-
singular nature of r ¼ 0 does not change compared to the
dS case, the solution can be recast into the form (76) with
x ∈ R, where Fþ

x ðxÞ is now

Fþ
x ðxÞ ¼ 1þ 1

l2
VxðxÞ1=ðn−3Þe2ðn−2ÞβUxðxÞ=ðn−3Þ > 0: ð80Þ

Since there appear no scalar/p.p curvature singularities in
the entire parameter region, the solution indeed describes a
wormhole in AdS. The throat exists at (79).
In the x → ∞ region, the scalar field behaves as

ϕ → 0. The potential VðϕÞ at the origin has the mass
spectrum m2 ¼ ϵV 00jϕ¼0;ϵ¼−1 ¼ −2ðn − 3Þ=l2,3 which
never underruns the Breitenlohner-Freedman bound
m2

BF ¼ −ðn − 1Þ2=ð4l2Þ [60] since m2 −m2
BF ¼ ðn − 5Þ2=

ð4l2Þ ≥ 0. Note that this value of mass lies in the unitary
rangem2

BF ≤ m2 ≤ m2
BF þ l−2 for 4 ≤ n ≤ 7, for which the

scalar field exhibits a slow falloff at infinity. In this case, the
standard definition of globally conserved mass [61–65]
should be modified. Following the prescription in [66,67],
the mass in the x > 0 region reads

Mx>0 ¼
ðn − 2ÞΩn−2

2κn
Mβ: ð81Þ

In an analogous fashion, the mass Mx<0 and the AdS
radius lx<0 in the x < 0 region are given by

FIG. 3. A possible conformal diagram for the dS Ellis-
Bronnikov wormholes [plus (76) and minus (84) branches].
The required parameter range is (78) and (86), respectively.

3The ϵ term in front of V 00 is deduced from the multidimen-
sional covariant form of the mass matrix ðm2Þij ¼ Gik∂k∂jV at
the critical point ∂iV ¼ 0, where Gij is the scalar metric of the
scalar fields normalized by Lpot ¼ 1

2
GijðϕkÞ∇μϕ

i∇μϕj − VðϕkÞ.
The same remark applies to the ϵ term in the potential (19).
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Mx<0 ¼ −
ðn − 2ÞΩn−2

2κn
eβπMβ; lx<0 ¼ −e−πβl: ð82Þ

It follows that the β ≠ 0 case joints the universes of
different masses with the opposite sign.
In the x → −∞ limit, the scalar field converges to the

asymptotic value

ϕðxÞ → ϕð1Þ ðx → −∞Þ; ð83Þ

where ϕð1Þ is given by (66). At this critical point, the mass
eigenvalue normalized by the AdS length is the same as the
one at the originm2jϕ¼ϕð1Þ ¼ −2ðn − 3Þ=l2

x<0. Observe that

this is also the critical point of the potential and the
superpotential V 0ðϕð1ÞÞ ¼ W0ðϕð1ÞÞ ¼ 0. This underlines
the solitonic property of our wormhole solution, connecting
two disjoint vacua.
The global structure of the AdS Ellis-Bronnikov solution

is shown in Fig. 4.

C. Ellis-Bronnikov solution in dS: Minus branch

Lastly, we try to seek a new flipped solution of the Ellis-
Bronnikov solution. As it turns out, this prescription only
works in n ¼ 4, yielding

ds2 ¼ −e−2βUðrÞF−
EBðrÞdt2

þ VðrÞe2βUðrÞ
�

dr2

VðrÞF−
EBðrÞ

þ r2dΩ2
n−2

�
; ð84aÞ

ϕ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

2ð1þ β2Þ
κ4

s
UðrÞ; ð84bÞ

where UðrÞ and VðrÞ are given by (14) respectively.
Inserting above into field equations with a potential given
by (63), one can determine F−

EBðrÞ to be

F−
EBðrÞ ¼ 1 −H2

�
r2 þ 2MβrþM2

1þ 8β2

4

�
: ð85Þ

One can deduce that the metric (84) is invariant under
β → −β and M → −M as in the H ¼ 0 case (15), which
enables one to concentrate on the M > 0 case. Since the

piece multiplied by a Hubble parameter in (85) has a
negligible contribution around r ¼ 0, r ¼ 0 is neither
scalar nor p.p curvature singularity. Since r plays the role
of the affine parameter along the radial null geodesics, the
r ¼ 0 surface is not null infinity. One can then extend the
spacetime across r ¼ 0 by UðrÞ → π=2 − arctanð2r=MÞ
into the r < 0 region.
In either sign of β, there appear the surfaces

F−
EBðrð�Þ

c Þ ¼ 0 in r ∈ R, provided

0 < M <
2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2

p : ð86Þ

These loci rð�Þ
c correspond to the two distinct cosmological

horizons, rather than a black hole horizon. Under the
parameter range (86), the solution then describes a worm-
hole connecting two dS universes with a throat at
r ¼ rth ¼ Mβ=2. The Penrose diagram is identical to
Fig. 3. When the parameter M fails to satisfy the above
criterion, we have a dynamical spacetime in the sense
of F−

EBðrÞ < 0.

D. Ellis-Bronnikov solution in AdS: Minus branch

By the Wick rotation H → −il−1 in (84), one gets the
asymptotically AdS solution where F−

EBðrÞ is now under-
stood to be

F−
EBðrÞ ¼ 1þ ð1þ 4β2ÞM2

4l2
þ ðrþMβÞ2

l2
; ð87Þ

which is obviously positive. One verifies that the r ¼ 0
surface is not the scalar/p.p curvature singularity nor null
infinity, and that it has a timelike structure. It follows that
one can extend the spacetime into the r < 0 region by
UðrÞ → π=2 − arctanð2r=MÞ. The resulting spacetime is
geodesically complete and describes a regular wormhole in
AdS with a throat at r ¼ rth ¼ Mβ=2.
As in the plus branch solution, one can compute the mass

in the r > 0 region as

Mr>0 ¼
4π

κ4
Mβ

�
1þ M2

3l2
ð1þ 4β2Þ

�
: ð88Þ

The mass and the AdS radius in the r < 0 region are

Mr<0 ¼ −
4πeπβ

κ4
Mβ

�
1þ M2

3l2
ð1þ 4β2Þ

�
;

lr<0 ¼ −leπβ: ð89Þ

Thus the β ≠ 0 case yields the asymmetric extension. The
asymptotic value of the scalar field in the r → �∞ is

ϕ → 0ðr → ∞Þ; ϕ → ϕð−1Þ ðr → −∞Þ; ð90Þ

FIG. 4. A possible conformal diagram for the AdS Ellis-
Bronnikov wormholes [plus (80) and minus (87) branches].
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where ϕð−1Þ is given by (66). This critical point also
extremizes the superpotential. We note that this extremum
ϕð−1Þ is different from the one ϕðþ1Þ for the plus-branch
(83). It turns out that the minus-branch solution also
interpolates two different AdS vacua.

VI. SUMMARY AND CONCLUDING REMARKS

This paper is intended to shed some new insight into the
problem for the construction of exact solutions in (A)dS.
We have presented a useful method to generate static
solutions in the Einstein-phantom-scalar system with a
potential. Interestingly, all the potentials are expressed in
terms of the superpotential as (19). This is fairly nontrivial
since the existence of this kind of superpotential is not
guaranteed in general.
Based on our proposed methodology, we have con-

structed the asymptotically (A)dS versions of (i) the Fisher
solution, (ii) the Gibbons solution, and (iii) the Ellis-
Bronnikov solution. For each class of solutions, there
appear two distinct families of solutions (plus and minus
branches). Our main results are summarized in Table I.
Contrary to the asymptotically flat case, the (A)dS Fisher
and Gibbons solutions may admit a black hole horizon
which covers the central singularity. We have clarified the
precise conditions under which each solution possesses the
event/cosmological horizons. One of the central results of
the current paper is that both branches of the dS Ellis-
Bronnikov solutions admit the parameter range under
which the solutions correspond to traversable wormholes
in the dS universe, whereas both branches of the AdS Ellis-
Bronnikov solutions always describe the regular worm-
holes in the entire parameter region. Interestingly, the
extended spacetime admits another AdS vacuum at infinity,
which also corresponds to the critical point of the super-
potential. This provides an invaluable instance of worm-
holes in AdS, which would be fruitful for the holographic
entanglement.

For the generalization of each solution into the (A)dS
case, we have encountered two distinct families (plus and
minus branches) of solutions. Since the scalar field poten-
tial is fixed, one may foresee that there exists a more
general solution which unifies both of these branches. This
can be validated only by a direct integration of Einstein’s
equations. Unfortunately this is a demanding job, since the
nonlinearity still survives even for the spacetimes with
spherical symmetry. We hope to return to this issue in the
future.
The results of the present paper seem to be extended

into many directions. As we argued in Sec. IV, the
spherical Gibbons solutions in dS space are eventually
written into a static form. In contrast, the solution with
multiple point sources (47) is not static. A natural
interpretation of this solution is the collision of point
sources in the contracting universe (H < 0), or splitting
point sources in the expanding universe (H > 0). An
analogous dynamical solution in FLRW universe is
presented in Appendix B. It is interesting to explore
the explicit conditions under which this viewpoint is
correct for these dynamical solutions.
Another direction of future work is to include the

(dilatonic) charge. In our previous paper [36], the dilatonic
charged static solutions satisfying asymptotic flatness have
been constructed. By taking these solutions as a seed, one
may be able to generate asymptotically (A)dS charged
solutions. An important observation in the asymptotically
flat case is that there exists a critical value of the coupling
constant of the dilaton, at which the metric takes a
considerably different form. It would be interesting to
see how the coupling affects the physical/causal properties
of asymptotically (A)dS solutions.
In our series of papers [34,36], we have not discussed the

stability of the wormhole solutions. Obviously, this is an
important issue to be studied. The linear instability for
asymptotically flat cases has been reported in [14–16,68]. It
is worth investigating whether the electric charge or the
scalar potential stabilizes the wormholes.
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Note added.—Recently, we were informed by Jinbo Yang
that they recently derived the (A)dS Ellis-Bronnikov
wormhole in four dimensions [69]. Their discussion has
some overlaps in Sec. V.

APPENDIX A: CURVATURE DECOMPOSITION

The time-dependent metric that we encountered in the
main text takes the following universal form:

TABLE I. Asymptotically (A)dS solutions.

Class Branch Asymptotics Configurations

Fisher Plus dS Black hole for (34)
AdS Naked singularity

Minus dS Black hole for (41)
AdS Black hole for (46)

Ellis-Gibbons Plus dS Black hole for (55)
AdS Naked singularity

Minus dS Black hole for (59)
AdS Naked singularity

Ellis-Bronnikov Plus dS Wormhole for (78)
AdS Wormhole

Minus dS Wormhole for (86)
AdS Wormhole
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ds2 ¼ −fðt; yÞdt2 þ aðtÞ2fðt; yÞ−1=ðn−3ÞhIJðyÞdyIdyJ;
ðA1Þ

where the base space metric hIJ is assumed to be inde-
pendent of the time coordinate t. This class of metric
encompasses the spherical Fisher (20), Ellis-Gibbons (47)
and Ellis-Bronnikov (61) solutions in the dS universe, as
well as multi-Gibbons solution in the dS universe (47).
Besides, the asymptotic FLRW metric which will be
discussed in Appendix B also falls into the above class
of solutions.
The connections are given by

Γt
tt ¼

_f
2f

; Γt
tI ¼

DIf
2f

; Γt
IJ ¼

F

fðn−2Þ=ðn−3Þ
hIJ;

ΓI
tt ¼

f1=ðn−3Þ

2a2
DIf; ΓI

tJ ¼
F
a2

δIJ;

ΓI
JK ¼ ðhÞΓI

JK −
1

2ðn − 3Þf ð2δ
I
ðJDKÞf − hJKDIfÞ; ðA2Þ

where the dot is the partial derivative with respect to t,DI is
the covariant derivative of hIJ and we have denoted

F≡ a _a −
a2 _f

2ðn − 3Þf : ðA3Þ

The Riemann tensors are

RtI
tJ ¼

f1=ðn−3Þ

a2

�ðn − 5ÞDIfDJf
4ðn − 3Þf2 −

DIDJf
2f

þ ðDfÞ2
4ðn − 3Þf2 δ

I
J

�

þ 1

a2f

�
_F −

� ðn − 2Þ _f
2ðn − 3Þf þ _a

a

�
F

�
δIJ; ðA4aÞ

RtI
JK ¼ 1

a2f2
ð2fD½JF − FD½JfÞδIK�; ðA4bÞ

RIJ
KL ¼ f1=ðn−3Þ

a2

�
ðhÞRIJ

KL −
ðDfÞ2

2ðn − 3Þ2f2 δ
I ½KδJL� þ

2

ðn − 3Þf δ
½I ½KDL�DJ�f −

2n − 7

ðn − 3Þ2f2 δ
½I ½KDL�fDJ�f

�
þ 2F2

fa4
δI ½KδJL�:

ðA4cÞ

The Ricci tensors are given by

Rt
t ¼

1

2a2fð2n−7Þ=ðn−3Þ
ððDfÞ2 − fD2fÞ þ n − 1

a2f

�
_F −

� ðn − 2Þ _f
2ðn − 3Þf þ _a

a

�
F

�
; ðA5aÞ

Rt
I ¼ −

n − 2

2ðn − 3Þ
�
1

f
DIð∂tðlog fÞÞ þ

ðn − 3ÞF
a2f2

DIf

�
; ðA5bÞ

RI
J ¼

f1=ðn−3Þ

a2

�
ðhÞRI

J −
1

4ðn − 3Þ
�
ðn − 2ÞD

IfDJf
f2

−
2D2f
f

δIJ þ
2ðDfÞ2

f2
δIJ

��

þ 1

a2f

�
_F −

� ðn − 2Þ _f
2ðn − 3Þf þ _a

a

�
F þ n − 2

a2
F2

�
δIJ: ðA5cÞ

APPENDIX B: GIBBONS SOLUTION IN
EXPANDING UNIVERSE

In the main text, we have discussed the dS generalization
of the Fisher solution, the Gibbons solution and the Ellis-
Bronnikov solution. Suppose that the scale factor in the
ansatz of the dS Fisher solution (20) is replaced by the
power law of the cosmic time. Although this metric is
clearly asymptotically FLRW, this spacetime fails to be
a solution of the Einstein-(phantom-)scalar system with a
potential. This is indeed the case even for the case with a

vanishing scalar field [53]. Nevertheless, this prescription
works for a certain functional form of scale factor as far as
the Gibbons solutions are concerned.
We make an ansatz for the solution (ϵ ¼ −1)

ds2 ¼ −e−ð2htþHGÞdt2 þ eð2htþHGÞ=ðn−3ÞhIJdyIdyJ; ðB1aÞ

ϕ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n− 2

4ðn− 3Þκn

s
ð2htþHGÞ; ΔhHG ¼ 0; ðB1bÞ
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where HG and hIJ are t independent and hIJ is an arbitrary
Ricci flat metric. The parameter h controls the expansion of
the universe and h ¼ 0 reduces to the Gibbons solution
(12). Substituting the above ansatz into the field equations
derived from the action (18) and using the curvature
formula given in the previous Appendix, one can determine
the potential as the runaway form

VðϕÞ ¼ ðn − 2Þ2
ðn − 3Þ2κn

h2e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κnðn−3Þ=ðn−2Þ

p
ϕ: ðB2Þ

The superpotential of the form (19) with ϵ ¼ −1 is found
to be

WðϕÞ ¼ ih
2ðn − 3Þ ffiffiffiffiffi

κn
p e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κnðn−3Þ=ðn−2Þ

p
ϕ: ðB3Þ

The potential above does not allow any critical points.
Assuming h > 0, we can define the cosmic time t̄ by

e−ht ¼ −ht̄ (−∞ < t̄ < 0). The metric is then brought into

ds2 ¼ −e−HGdt̄2 þ eHG=ðn−3Þā2ðt̄ÞhIJdyIdyJ; ðB4Þ

where the scale factor is given by āðt̄Þ ¼ ð−ht̄Þ−1=ðn−3Þ.
Thus, the metric asymptotes to the expanding FLRW
universe as r → ∞, provided hIJ ¼ δIJ and HG ¼Pi Mi=
jx − xijn−3. This solution does not admit additional Killing
vectors even in the case with a single point source, so that
it is genuinely dynamical. Similar dynamical solutions in
FLRW universe can be found e.g., in [70–75], which
describes respectively a single equilibrium black hole in
the expanding universe. However, the present solution
differs from these solutions in that the current metric
(A6) fails to admit any “near-horizon limit,” leading to
the singular spacetime.
The optimal way to capture the conformal structure of

the spacetime is the introduction of the conformal time

η≡ −
ðn − 3Þ
ðn − 2Þh e

−ðn−2Þht=ðn−3Þ; −∞ < η < 0: ðB5Þ

In terms of η, the solution (A6) can be written in the form
conformal to the Gibbons solution as

ds2 ¼ a2ðηÞð−e−HGdη2 þ eHG=ðn−3ÞhIJdyIdyJÞ;

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðn − 2Þ
4ðn − 3Þκn

s
ðHG þ 2ðn − 3Þ ln aðηÞÞ; ðB6Þ

where

aðηÞ≡
�

n − 3

−ðn − 2Þhη
�
1=ðn−2Þ

: ðB7Þ

Let us consider for simplicity the single point source
HGðrÞ ¼ M=rn−3 on the flat space hIJdyIdyJ ¼
dr2 þ r2dΩ2

n−2. The radial null geodesic equations are
integrated once to give

kμ ¼ eHGðrÞ

a2ðηÞ
� ∂
∂η
�

μ

� eðn−4ÞHGðrÞ=½2ðn−3Þ�

a2ðηÞ
� ∂
∂r
�

μ

: ðB8Þ

Along the geodesics, we have ηðrÞ ¼
� R r eðn−2ÞHGðrÞ=½2ðn−3Þ�dr, thereby

λ ¼ �
Z

r
a2ðηðrÞÞe−ðn−4ÞHGðrÞ=½2ðn−3Þ�dr: ðB9Þ

The Ricci scalar reads

R ¼ 1

4ðn − 2ÞaðηÞ2
�
12ðn − 1Þ

η2
eM=rn−3

−
ðn − 2Þ2ðn − 3ÞM2

r2ðn−2Þ
e−M=½ðn−3Þrn−3�

�
: ðB10Þ

The kμ component of the Ricci tensor is

Rμνkμkν ¼ −
n − 3

4ðn − 2ÞaðηÞ4
�
2

η
eM=rn−3

þ ðn − 2ÞM
rn−2

eðn−4ÞM=½2ðn−3Þrn−3�
�

2

: ðB11Þ

The solution is therefore singular both at η ¼ −∞ where
aðηÞ → 0 and at η ¼ 0 where aðηÞ → ∞, as well as
at r ¼ 0.
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