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We discuss various novel features of nð≥4Þ-dimensional spacetimes sourced by a massless (non)
phantom scalar field in general relativity. Assuming that the metric is a warped product of static two-
dimensional Lorentzian spacetime and an (n − 2)-dimensional Einstein space Kn−2 with curvature
k ¼ 0;�1, and that the scalar field depends only on the radial variable, we present a complete classification
of static solutions for both signs of kinetic term. Contrary to the case with a nonphantom scalar field, the
Fisher solution is not unique, and there exist two additional metrics corresponding to the generalizations of
the Ellis-Gibbons solution and the Ellis-Bronnikov solution. We explore the maximal extension of these
solutions in detail by the analysis of null/spacelike geodesics and singularity. For the phantom Fisher and
Ellis-Gibbons solutions, we find that there inevitably appear parallelly propagated (p.p) curvature
singularities in the parameter region where there are no scalar curvature singularities. Interestingly, the
areal radius blows up at these p.p curvature singularities, which are nevertheless accessible within a finite
affine time along the radial null geodesics. It follows that only the Ellis-Bronnikov solution describes a
regular wormhole in the two-sided asymptotically flat spacetime. Using the general transformation relating
the Einstein and Jordan frames, we also present a complete classification of solutions with the same
symmetry coupled to a conformal scalar field. Additionally, by solving the field equations in the Jordan
frame, we prove that this classification is genuinely complete.
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I. INTRODUCTION

Scalar fields with negative kinetic energy could con-
stitute a definite menace to the stability of vacuum states.
Still, it seems to be sort of premature to discard theories
with these phantom fields, since some observational data
for the present day accelerating universe does not exclude
the phantomlike equations of state [1]. The viability of
phantom fields has been discussed by many authors from
classical and quantum points of view [2–4].
A discriminative feature of phantom fields is that they

fail to obey energy conditions [5]. Energy conditions bear
relevance to the positivity of local energy density of matter
fields and the causality of energy flux [6]. This property
puts a strong restriction to the spacetime curvature through
Einstein’s field equations. A myriad of significant mile-
stones in general relativity—including a series of singu-
larity theorems [7,8], positive mass theorems [9–11], area
and topology theorem of black holes [12]—have postulated
the validity of energy conditions. Among these, an impor-
tant consequence of the null energy condition together with

asymptotic flatness is the theorem of topological censorship
[13], which claims that any causal curves starting from past
null infinity and ending at future null infinity are homotopi-
cally deformable to a trivial curve in the asymptotic region.
Specifically, the unrealizability of traversable wormholes is
a direct corollary of topological censorship [14].
Wormholes are eminent bridge structures of spacetime

which theoretically provide a way to do interstellar and
time travels, and drive warping into another universe.
A traversable wormhole was first discussed by the seminal
work of Morris and Thorne in 1998 [15,16]. Their con-
struction was based upon the static solution sourced by a
massless phantom scalar field, which has been later
identified with the solution already discovered by Ellis
[17] and Bronnikov [18]. Although traversable wormholes
have been a long-standing arena for paradoxes like closed
timelike curves, they have attracted resurgence of attention
recently, in the context of quantum entanglement and
teleportation in gauge/gravity duality [19–22]. The worm-
hole throat in this context is supported by quantum matter
fields. This dual role of wormholes prompts the renewed
interest in classical geometry of wormholes, as well as the
role of classical matter fields violating energy conditions.
In this paper, we shall employ the phantom scalar field as
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the simplest source to defy energy conditions. A compre-
hensive study in this simple setting will be likely to witness
further progress in the quantum entanglement.
A static and spherically symmetric four-dimensional

solution to Einstein’s equations with a nonphantom scalar
field is unique and constitutes a three-parameter family of
metrics. This exact solution was introduced by Fisher [23]
in 1948, and rediscovered in successive decades by
Bergmann and Leipnik [24], Buchdahl [25], Janis,
Newman and Winicour [26], Ellis [17], Bronnikov [18]
and Wyman [27].1 In this article, we refer to this configu-
ration as the Fisher solution, as well as the higher dimen-
sional and topological generalizations. A complexification
ϕ → iϕ of the scalar field in the Fisher solution then
trivially solves Einstein’s equations with a phantom scalar
field. In the phantom case, the phantom Fisher solution is
not unique in the static and spherically symmetric system,
and there exist two additional offbeat solutions, as first
pointed out by Ellis [17] in four dimensions.2 One is a
renowned wormhole and the other is a solution later
rediscovered and generalized by Gibbons [28,29]. This
nonuniqueness feature is in marked contrast to the non-
phantom case. However, very little is known for the global
structures of each solution, except for the Ellis-Bronnikov
wormhole solution with a vanishing mass. In order to see
what kind of peculiarity comes out when the energy
conditions are false, the global spacetime structure is a
central subject to be studied. To fill this gap is one of the
aims of the current paper.
We generalize the illustrious work of Ellis [17] and

inaugurate the classification of static solutions in the
Einstein-(phantom-)scalar system in arbitrary dimensions.
We extend the setup of [17] in such a way that the
n-dimensional metric is a warped spacetime of static
two-dimensional Lorentzian spacetime and an (n − 2)-
dimensional Einstein space Kn−2 with curvature k ¼ 0;
�1, and that the scalar field depends only on the radial
variable. For each sign of the curvature of Kn−2, we
perform the exhaustive classification of solutions and find
their explicit expressions in a closed form. Restricting to
the spherically symmetric case, we next examine the global
structure of the solutions in detail for all ranges of the
solution parameters. We verify that the Fisher solution and
the Ellis-Gibbons solution admit a parameter range under
which there arise no scalar curvature singularities. Some
preceding works have therefore concluded that these
solutions describe wormholes. We demonstrate, however,
that there exist spacetime points where some Riemann
tensor components in a frame which is parallelly

propagated along the radial null geodesics diverge, i.e.,
these solutions possess naked p.p curvature singularities.
This crucial property has been overlooked in the literature.
These solutions therefore fail to describe regular wormhole
solutions and the only regular wormholes in this class are
the Ellis-Bronnikov solution. This is one of the main results
in this paper. Next, we develop two procedures which
transform the system with a massless scalar field (Einstein
frame) to the system with a conformally coupled scalar
field (Jordan frame) for both signs of the kinetic term.
Exploiting this framework, we perform a complete classi-
fication of solutions with a conformally coupled scalar
field admitting the same symmetry as the original solutions.
In addition, as a consistency check, we find the same
classification by solving directly the field equations in the
Jordan frame.
We organize the present paper as follows: In the next

section, we classify static solutions with a massless scalar
field and derive three distinct families of solutions. In
Sec. III, we elucidate physical properties of these solutions
in detail. In Sec. IV we present the classification for a
massless conformally coupled scalar field. We conclude our
paper in Sec. V with some future prospects. Useful
curvature formulae are encapsulated in the Appendix.
Our basic notations follow [30]. The conventions of

curvature tensors are ½∇ρ;∇σ�Vμ¼Rμ
νρσVν and Rμν¼Rρ

μρν.
The Lorentzian metric is taken to be the mostly plus
sign, and Greek indices run over all spacetime indices.
The n-dimensional gravitational constant is denoted by
κn ¼ 8πGn.

II. CLASSIFICATION

The first part of this paper focuses on the nð≥4Þ-
dimensional spacetimes involving a massless scalar field
in the Einstein frame described by the action

S½gμν;ϕ� ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κn
R −

1

2
ϵð∇ϕÞ2

�
; ð2:1Þ

where ϵ ¼ þ1 for a conventional scalar field and ϵ ¼ −1
for a phantom field, with κn > 0 denoting the gravitational
constant. The Einstein and scalar field equations following
from the above action read

Eμν ≔ Rμν −
1

2
gμνR − κnTμν ¼ 0; ð2:2Þ

□ϕ ¼ 0; ð2:3Þ

respectively, where the energy-momentum tensor for the
massless scalar field is

Tμν ≔ ϵ

�
ð∇μϕÞð∇νϕÞ −

1

2
gμνð∇ϕÞ2

�
: ð2:4Þ

1The formulas presented in [18,24,27] also include the case of
a phantom scalar field.

2In [24], the authors do not provide an explicit treatment for the
phantom field and properly address only the Fisher class II A 1.
As far as we know, the first analysis of solutions with a phantom
scalar field was given by Homer Ellis in 1973 [17].
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For ϵ ¼ 1, the scalar field satisfies all the standard energy
conditions [5]. For ϵ ¼ −1, the phantom field enjoys the
negative kinetic energy and therefore mediates a repul-
sive force.
We consider the n-dimensional warped product metric of

an (n − 2)-dimensional constant curvature space ðKn−2; γijÞ
and a two-dimensional spacetime ðM2; gABÞ. Here γijðzÞ is
the metric on the (n − 2)-dimensional Einstein space Kn−2,
whose Ricci tensor is given by ðγÞRij ¼ kðn − 3Þγij, where
k ¼ 1; 0;−1. This 2þ ðn − 2Þ dimensional curvature
decomposition has been intensively studied in the litera-
ture, which we summarize in the Appendix to make this
paper self-contained. Along this article, we further focus on
the static solutions. Choosing the coordinates of M2 as t
and x, we shall consider solutions described by the
following class of metric:

ds2 ¼ −FðxÞ−2dt2 þ FðxÞ2=ðn−3Þ
×GðxÞ−ðn−4Þ=ðn−3Þðdx2 þGðxÞγijðzÞdzidzjÞ: ð2:5Þ

Since the metric is static, the vector field ∂=∂t denotes its
timelike Killing vector. The above choice of the coordinates

for describing static configurations was proven to be very
convenient to perform a classification in the presence of an
additional electric field [31].
We further assume that the scalar field ϕ does not depend

both on time t and the coordinates zi describing Kn−2,
namely, ϕ is a scalar function of x. As shown below, for the
case where the areal radius S ≔ ðF2GÞ1=½2ðn−3Þ� is constant,
we find no solutions. In consequence, x is considered as the
“radial” coordinate conjugate to t.
Plugging ϕ ¼ ϕðxÞ into (2.3), one can immediately

integrate it once to find

dϕ
dx

¼ ϕ1

G
; ð2:6Þ

where ϕ1 is a constant. The combination Ex
x þ Ei

i ¼ 0 (no
summation over i) gives the master equation for GðxÞ:

d2G
dx2

− 2kðn − 3Þ2 ¼ 0: ð2:7Þ

Upon using (2.7), the rest of Einstein’ equations Eμν ¼ 0

boil down to

Et
t ¼ F

−2
n−3G

n−4
n−3

�
n − 2

8ðn − 3Þ
�
8F−1 d

2F
dx2

− 4F−2
�
dF
dx

�
2

þ 8F−1G−1 dF
dx

dG
dx

−G−2
�
dG
dx

�
2

þ 4kðn − 3Þ2G−1
�
þ κnϵ

ϕ2
1

2
G−2

�
; ð2:8Þ

Ex
x ¼ F

−2
n−3G

n−4
n−3

�
n − 2

8ðn − 3Þ
�
−4F−2

�
dF
dx

�
2

þG−2
�
dG
dx

�
2

− 4kðn − 3Þ2G−1
�
− κnϵ

ϕ2
1

2
G−2

�
; ð2:9Þ

which are further simplified to

F−1 d
2F
dx2

− F−2
�
dF
dx

�
2

þ F−1G−1 dF
dx

dG
dx

¼ 0; ð2:10Þ

F−2
�
dF
dx

�
2

−
1

4
G−2

�
dG
dx

�
2

þ kðn − 3Þ2G−1

þ ϵ
ðn − 3Þκnϕ2

1

n − 2
G−2 ¼ 0: ð2:11Þ

We are now ready to perform the classification of
solutions. GðxÞ and FðxÞ are obtained from Eqs. (2.7)
and (2.10), respectively. The final equation (2.11) corre-
sponds to a constraint on them, giving rise to the scalar field
configuration. The general solution to (2.7) is

GðxÞ ¼ kðn − 3Þ2x2 þ G1xþG0; ð2:12Þ

where G0 and G1 are constants. The following analysis
divides into subclasses depending how many different real
roots the function GðxÞ admits.

A. Solutions for k= � 1

First let us consider the case of k ¼ 1;−1. In this case,
there are three subcases: (i) GðxÞ has two real roots,
(ii) GðxÞ has one degenerate real root, and (iii) GðxÞ has
no real root.

1. Fisher class: GðxÞ has two distinct real roots

In this case, we write GðxÞ as

GðxÞ ¼ kðn − 3Þ2ðx − aÞðx − bÞ; ð2:13Þ

with new parameters a and bð≠aÞ. Then, the general
solution of the master equation (2.10) is
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FðxÞ ¼ A

�
σ
x − a
x − b

�
−α=2

; ð2:14Þ

where α and A are constants. We have introduced an
ancillary constant σ ≔ sgn½ðx − aÞ=ðx − bÞ� ¼ �1 for con-
venience. The constraint (2.11) gives

ϕ2
1 ¼ ϵ

k2ðn − 2Þðn − 3Þ3ð1 − α2Þða − bÞ2
4κn

: ð2:15Þ

The reality of ϕ asks for ϵð1 − α2Þ ≥ 0. The solution is
therefore given by

FðxÞ ¼ A

�
σ
x − a
x − b

�
−α=2

;

GðxÞ ¼ kðn − 3Þ2ðx − aÞðx − bÞ; ð2:16Þ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ
4ðn − 3Þκn

s
ln

�
σ
x − a
x − b

�
; ð2:17Þ

where ϕ0 is yet another integration constant. Here, the
Lorentz signature of the metric demands GðxÞ > 0, which
amounts to σk ¼ 1.
Let us find a more friendly expression of this

solution. By the coordinate transformations t ¼ At̄ and
x − b ¼ rn−3=½Aðn − 3Þ�, the solution is recast into

ds2 ¼ −fðrÞαdt̄2
þ fðrÞ−ðαþn−4Þ=ðn−3Þðdr2 þ r2fðrÞγijðzÞdzidzjÞ;

ð2:18Þ

ϕ¼ϕ0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn−2Þð1−α2Þ
4ðn−3Þκn

s
lnfðrÞ; fðrÞ¼

				k− M
rn−3

				;
ð2:19Þ

where we have renamed the parameter as M ¼
σAðn − 3Þða − bÞ. The scalar field becomes phantom
(ϵ ¼ −1) for α2 > 1 and conventional if α2 ≤ 1. For a
given curvature constant k ofKn−2, this is a three-parameter
family of solutions characterized by M, α and ϕ0. The
spherically symmetric case (k ¼ 1) in n ¼ 4with a conven-
tional scalar field corresponds to the Fisher solution found
in [17,18,23–27]. For n > 4, ϵ ¼ 1 and Kn−2 chosen as the
unit (n − 2)-dimensional round sphere, the solution (2.18)
matches the Xanthopoulos-Zannias solution [32], which
was comprehensively analyzed in [33].

2. Ellis-Gibbons class: GðxÞ has one real
degenerate root

Let us consider the case in whichGðxÞ admits a two-fold
real root. In this case, we write GðxÞ as

GðxÞ ¼ kðn − 3Þ2ðx − aÞ2: ð2:20Þ

Then, the general solution of the master equation (2.10) is

FðxÞ ¼ F0ex0=ðx−aÞ; ð2:21Þ

where F0 and x0 are constants. The constraint (2.11) gives

ϕ2
1 ¼ −ϵ

k2ðn − 2Þðn − 3Þ3x20
κn

: ð2:22Þ

To render the scalar field real, we are forced to choose
ϵ ¼ −1, which allows one to make the right-hand side of
this equation positive. Hence the solution exists only for a
phantom field and is given by

FðxÞ ¼ F0ex0=ðx−aÞ; GðxÞ ¼ kðn − 3Þ2ðx − aÞ2;

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þx20
ðn − 3Þκn

s
1

x − a
: ð2:23Þ

Obviously, the Lorentz signature GðxÞ > 0 is assured
only for k ¼ 1. Since the metric is written in an awkward
form, let us change the coordinates by t ¼ F0 t̄ and
x − a ¼ rn−3=½ðn − 3ÞF0�, which bring the solution into
a more familiar form3

ds2 ¼ −e−M=rn−3dt̄2

þ eM=½ðn−3Þrn−3�ðdr2 þ r2dΣ2
k¼1;n−2Þ; ð2:24Þ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n − 2

4ðn − 3Þκn

s
M
rn−3

; ð2:25Þ

where we have set M ≔ 2ðn − 3ÞF0x0. This is a two-
parameter, given by the constants M and ϕ0, family of
phantom-scalar solutions and sometimes referred to as the
“exponential metric.” When n ¼ 4 and dΣ2

k¼1;2 being a
metric of round sphere, this solution reduces to the one
discovered by Ellis [17] and Bronnikov [18], which was
generalized by Gibbons [28,29] as explained in Sec. II C.

3. Ellis-Bronnikov class: GðxÞ has no real roots

Lastly, we investigate the case in which GðxÞ admits no
real roots. In this case, we write GðxÞ as

GðxÞ ¼ kðn − 3Þ2x2 þG0; ð2:26Þ

where we have used the degree of freedom to change the
origin of x. For the absence of real roots, k and G0 must

3As far as the authors know, the solution first appeared in the
literature in [34], where an alternative theory for gravity was
proposed. There, an analog of the Ricci tensor was defined with a
minus sign, turning in practice the scalar field into a phantom one.
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carry the same sign. Then a unique option in this case is
k ¼ 1 and G0 > 0: otherwise one cannot keep the
Lorentzian signature of the metric. Thus, the general
solution of the master equation (2.10) is4

FðxÞ ¼ F0 exp

�
β arctan

�
x0
x

��
; ð2:27Þ

where F0 and β are integration constants and we have
defined G0 ¼ ðn − 3Þ2x20. The constraint (2.11) gives

ϕ2
1 ¼ −ϵx20

ðn − 2Þðn − 3Þ3ð1þ β2Þ
κn

: ð2:28Þ

Again, only the phantom case ϵ ¼ −1 is allowed and ϕ is
found to be

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
arctan

�
x0
x

�
: ð2:29Þ

With this form of metric at hand, the coordinate change
t ¼ F0t̄, x ¼ 2x0rn−3=M with M ¼ 2ðn − 3Þx0F0 allows
us to have a more suggestive form:

ds2 ¼ −e−2βUðrÞdt̄2

þ e2βUðrÞ=ðn−3ÞVðrÞ1=ðn−3Þ
�

dr2

VðrÞ þ r2dΣ2
k¼1;n−2

�
;

ð2:30Þ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
UðrÞ; ð2:31Þ

UðrÞ≔ arctan

�
M

2rn−3

�
; VðrÞ≔ 1þ M2

4r2ðn−3Þ
: ð2:32Þ

This is a three-parameter family of solutions and reduces to
the Ellis-Bronnikov phantom-scalar solution in n ¼ 4
[17,18]. A higher dimensional solution with β ¼ 0 was
first derived in [35], but the solution is expressed in an
implicit fashion, since the authors employed a gauge
grrgtt ¼ −1.

B. Solutions for k= 0

Let us next consider the case of k ¼ 0, namely, the one
where Kn−2 is chosen to be a Ricci-flat Riemannian space.
In this case, Eq. (2.7) is integrated to give

GðxÞ ¼ G1xþ G0; ð2:33Þ

whereG0 andG1 are constants. Upon integration, the scalar
field is given by

ϕðxÞ ¼ ϕ0 þ
ϕ1

G1

ln jG1xþ G0j ð2:34Þ

for G1 ≠ 0 and

ϕðxÞ ¼ ϕ0 þ
ϕ1

G0

x ð2:35Þ

for G1 ¼ 0. We will study these two subcases separately.

1. Fisher class: G1 ≠ 0

In this case, the general solution of the master equa-
tion (2.10) is

FðxÞ ¼ AðG1xþG0Þα=2; ð2:36Þ

where A and α are constants. The constraint (2.11) gives

ϕ2
1 ¼ ϵ

ðn − 2Þð1 − α2ÞG2
1

4ðn − 3Þκn
; ð2:37Þ

requiring ϵð1 − α2Þ > 0. The solution is therefore given by

FðxÞ ¼ AðG1xþG0Þα=2; GðxÞ ¼ G1xþG0; ð2:38Þ

ϕðxÞ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ
4ðn − 3Þκn

s
ln jG1xþ G0j: ð2:39Þ

By the coordinate transformations t ¼ AGα
1 t̄=ðn − 3Þα and

G1x þ G0 ¼ ½ðn − 3Þα−1=ðAGα−1
1 Þ�rn−3 M ¼ −AGαþ1

1 =
ðn − 3Þαþ1, a straightforward computation shows that one
can transform the above metric into the k ¼ 0 Fisher
solution (2.18) up to a redefinition of the constant ϕ0.
For n ¼ 4 and the conventional scalar field, this solution
was first found in [36–38] and has been also discussed
in [39].

2. G1 = 0

In this case, the Lorentzian signature requests G0 > 0.
The general solution of the master equation (2.10) is

FðxÞ ¼ F0ex=x0 ; ð2:40Þ

where F0 and x0 are constants. The constraint (2.11) gives

ϕ2
1 ¼ −ϵ

ðn − 2ÞG2
0

ðn − 3Þκnx20
: ð2:41Þ

4By virtue of arctanðxÞ þ arctanð1=xÞ ¼ π=2 for x > 0, the
function arctanðxÞ has been used extensively for the analysis of
the Ellis-Bronnikov solution. Here we decided to choose
arctanð1=xÞ, which makes the asymptotic analysis easier. In
contrast, the argument of spacetime extension is simpler if we
make the choice arctanðxÞ, as will be discussed in Sec. III C.
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This class of solutions is therefore allowed only for a
phantom case (ϵ ¼ −1). Hence, by Eq. (2.37), the solution
is given by

FðxÞ ¼ F0ex=x0 ; GðxÞ ¼ G0;

ϕðxÞ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n − 2

ðn − 3Þκnx20

s
x: ð2:42Þ

By the coordinate transformations t ¼ ffiffiffiffiffiffi
G0

p
t̄ and x ¼ffiffiffiffiffiffi

G0

p
x̄ − x0 lnðF0

ffiffiffiffiffiffi
G0

p Þ, the solution becomes

ds2 ¼ −e−2ζx̄dt̄2 þ e2ζx̄=ðn−3Þðdx̄2 þ dΣ2
k¼0;n−2Þ; ð2:43Þ

ϕðx̄Þ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þζ2
ðn − 3Þκn

s
x̄; ð2:44Þ

where we have introduced a new parameter ζ ≔
ffiffiffiffiffiffi
G0

p
=x0

and redefined ϕ0. This is a two-parameter family of
phantom-scalar solutions. The early papers dealing with
planar symmetric solution in four dimensions do not show
this solution since the coordinates chosen are not suitable
for this case. It was in the Appendix of [40] that provides
this solution the first time ever using other radial coor-
dinates.5 The extension to higher dimensions seems to be
original.

C. Short summary and remarks

We have classified static solutions in the Einstein-scalar
system with either sign of kinetic terms. It has not been
fully recognized that the richness of the plausible solutions
depends sensitively to the sign of the scalar kinetic term.
We have obtained a complete catalog of solutions with four
distinct families: the generalized Fisher solution (2.18)
(valid for k ¼ 0;�1), the generalized Ellis-Gibbons sol-
ution (2.24), the generalized Ellis-Bronnikov solution
(2.30) and a new plane-symmetric solution (2.43). We
incorporated “generalized” to highlight that the present
solution is more general than four-dimensional counterparts
in that dΣ2

k;n−2 is not necessarily a maximally symmetric
space. Aside from the Fisher class, all other solutions are
permissible only for the phantom case. In other words, the
nonphantom solutions covered by the metric ansatz (2.5)
are exhausted by the Fisher solution, which has been
broadly discussed in the literature. In the phantom case,
on the other hand, the class of metric (2.5) encompasses a
wide variety of solutions, as we have argued. In four
dimensions, the Fisher solution, the Ellis-Gibbons solution
and the Ellis-Bronnikov solution are related to each
other by complexification of parameters and infinite boost
limit [29].

1. Gibbons solution

Let us go into the structure of the generalized Ellis-
Gibbons solution (2.24). An innovative feature of the Ellis-
Gibbons solution (n ¼ 4) is that one can superpose the
point sources in the exponent of the metric components
without further restrictions [28], in that the term M=r can
be replaced by the arbitrary harmonics

P
i Mi=jx − xij in

flat space R3. In the present setting, we can extend this into
a more general form [41]:

ds2 ¼ −e−Hdt2 þ eH=ðn−3ÞhIJdxIdxJ;

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n − 2

4ðn − 3Þκn

s
H; ΔhH ¼ 0; ð2:45Þ

where hIJ is the arbitrary (n − 1)-dimensional Ricci flat
metric ðhÞRIJ ¼ 0. If we take hIJ as a flat metric on the
Euclid space and consider the point source at the origin
H ¼ M=rn−3, the above metric reduces to the generalized
Ellis-Gibbons solution (2.24). It is worthwhile to observe
that this metric (2.45) also includes (2.43) if we consider
the linear harmonics. To see this explicitly, let us consider
the flat space Rn−1 for which the general solution to
ΔRn−1H ¼ 0 reads

HRn−1 ¼Cð0Þ þCð1Þ
I xIþCð2Þ

IJ x
IxJþ

X
i

Mi

jx−xijn−3
; ð2:46Þ

where Cð0Þ, Cð1Þ
I and Cð2Þ

IJ are constants with TrCð2Þ ¼ 0,
and xIi are the loci of distributional sources. The solution

(2.43) is recovered, provided only the linear term Cð1Þ
1 is

nonvanishing. In what follows, we shall refer to the solution
(2.45) as the Gibbons solution.
The Gibbons solution (2.45) has a striking similarity to

the Majumdar-Papapetrou solution [42,43], for which the
electromagnetic repulsive force between charged point
sources compensates the gravitational attraction. This
precise cancellation of forces is a primary reason behind
the linearization of gravitational field equations. The
Gibbons solution (2.45) realizes the delicate balance by
the repelling force induced by a phantom field. In spite of
the close resemblance, a fundamental difference between
these solutions is that the Majumdar-Papapetrou solution
preserves supersymmetry [44], whereas the multi-Gibbons
solution does not seem to admit any Killing spinors.

2. Spacetime with constant scalar invariants

Let us focus on the metric (2.38), which is the k ¼ 0
Fisher class. Recently, it has been noted6 in [40] that the

5At (A38) in the Appendix of [40], set σ1 ¼ 0,
ffiffiffi
a

p ¼ −2u1
and change the radial coordinate as u0 þ u1r ¼ eζx̄.

6Indeed, it was shown in [40] that CSI spacetimes arise
from phantom cylindrical configurations, which contain the
planar-symmetric ones as particular cases.
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four-dimensional phantom configuration of the k ¼ 0
Fisher class with α ¼ −2,

ds2 ¼ −ðG1xþ G0Þ2A−2dt2 þ ðG1xþ G0Þ−2A2dx2

þ ðG1xþG0Þ−1A2ðdy2 þ dz2Þ; ð2:47Þ

ϕðxÞ ¼ ϕ0 �
ffiffiffiffiffiffiffiffi
−3ϵ
2κ4

s
ln jG1xþ G0j; ð2:48Þ

corresponds to a constant scalar invariant (CSI) spacetime
[45,46], namely, a spacetime featuring all polynomial
scalar invariants constructed from the Riemann tensor
and its covariant derivative constants. To find the higher
dimensional extension, we write down the following
curvature invariants for the metric (2.38):

R ¼ ðn − 2Þð1 − α2ÞA− 2
n−3G2

1ðG1xþG0Þ−αþn−2
n−3

4ðn − 3Þ ; ð2:49Þ

RμνRμν ¼ ðn − 2Þ2ð1 − α2Þ2A− 4
n−3G4

1ðG1xþ G0Þ−
2ðαþn−2Þ

n−3

16ðn − 3Þ2 :

ð2:50Þ

These invariant quantities become constant if α ¼ 2 − n
for any Ricci-flat space Kn−2. By means of the following
replacements in (2.38) and (2.39),

G1xþG0 ¼ A2=ðn−3Þl2=r2;

l ¼ 2A1=ðn−3Þ=G1; t̄ ¼ A1=ðn−3Þt;

ϕ̄0 ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ϵðn − 1Þðn − 2Þ

κn

s
lnA
n − 3

; ð2:51Þ

these special spacetimes, realized only by a phantom scalar
field, are conveniently described by the fields

ds2 ¼ −
�
r
l

�
4−2n

dt̄2 þ l2

r2
dr2 þ r2

l2
dΣ2

k¼0;n−2;

ϕ ¼ ϕ̄0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ϵðn − 1Þðn − 2Þ

κn

s
ln

�
l
r

�
: ð2:52Þ

If Kn−2 is further restricted to the flat space, the invariant
RμνρσRμνρσ is also constant, and the spacetime (2.52)
becomes CSI since it is locally homogeneous. Under this
choice of Kn−2, (2.52) is nothing but the Lifshitz spacetime
with a negative dynamical exponent z ¼ 2 − n [47].

III. PROPERTIES OF SPHERICALLY
SYMMETRIC SOLUTIONS

In this section, we focus on the spherically symmetric
case and study the physical properties of the solutions

obtained in the previous section. In particular, we examine
the asymptotic configuration and the nature of the singu-
larity, which are used to clarify the global structure of the
spacetime. We discuss the Fisher class in full detail, since
the techniques are directly borrowed from Sec. III A.

A. Fisher class

The spherically symmetric phantom Fisher solution in
nð≥4Þ dimensions is given by

ds2 ¼−fðrÞαdt2þfðrÞ−ðαþn−4Þ=ðn−3Þðdr2þ r2fðrÞdΩ2
n−2Þ;
ð3:1Þ

ϕ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn− 2Þð1− α2Þ
4ðn− 3Þκn

s
lnfðrÞ; fðrÞ ¼ 1−

M
rn−3

;

ð3:2Þ

where dΩ2
n−2 is the standard metric of a unit (n − 2)-sphere.

The domain of r in (3.1) and (3.2) is chosen to ensure
fðrÞ>0, i.e., rs < r < ∞ forM > 0, where rs ≔ M1=ðn−3Þ,
and 0 < r < ∞ for M ≤ 0. We have omitted the bar from
the time coordinate to simplify the notation. Vigorous
works have been carried out for the higher-dimensional
solution with ϵ ¼ 1 [32,33].
Defining an isotropic radial coordinate ρ by7

r ¼ ρ

�
1þ M

4ρn−3

�
2=ðn−3Þ

; ð3:3Þ

the metric can be brought into the following form:

ds2¼−

 
1− M

4ρn−3

1þ M
4ρn−3

!
2α

dt2þ
�
1þ M

4ρn−3

� 4
n−3

 
1− M

4ρn−3

1þ M
4ρn−3

!2ð1−αÞ
n−3

× ðdρ2þρ2dΩ2
n−2Þ; ð3:4Þ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
ðn − 2Þð1 − α2Þ

ðn − 3Þκn

s
ln

				 1 −
M

4ρn−3

1þ M
4ρn−3

				: ð3:5Þ

1. Mass

At infinity (ρ ¼ ∞), the metric (3.4) can be expanded as

ds2 ≃ −
�
1 −

αM
ρn−3

�
dt2

þ
�
1þ αM

ðn − 3Þρn−3
�
ðdρ2 þ ρ2dΩ2

n−2Þ: ð3:6Þ

7Expressions of the form x2y should be understood as ðx2Þy for
any finite real numbers x and y.
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Hence, the spacetime is asymptotically flat. As established
in [48], for vacuum solutions or those where the matter
fields decay fast enough at infinity, the Arnowitt-Deser-
Misner (ADM) mass can be extracted by comparison with
the asymptotic form of the Schwarzschild metric. This is
the case for the scalar field with ϕ0 ¼ 0, which behaves as
Oðρ3−nÞ at infinity. For this class of configurations, a
comparison with the asymptotic form of the metric [49]
gives the ADM mass as

MADM ¼ ðn − 2ÞΩn−2

2κn
αM; ð3:7Þ

where Ωn−2 is the area of the unit (n − 2)-sphere:

Ωn−2 ≔
2πðn−1Þ=2

Γððn − 1Þ=2Þ : ð3:8Þ

Although the metric is independent of ϕ0, it corresponds
to the value of the scalar field at infinity and seems to be of
physical relevance. Thus, the choice ϕ0 ¼ 0 is restrictive
and unnecessary. A more general and robust formalism for
determining the charges associated to asymptotic sym-
metries was provided by Regge and Teitelboim [50]. In this
formalism the generators are built with suitable boundary
terms ensuring they have well-defined functional deriva-
tives. Because one obtains the variation of the generators,
boundary conditions are required to be imposed in general,
giving in this way a complete physical meaning to these
generators. In particular, the mass is the value of the
time-translation generator. The application of the Regge-
Teiteiboim method for asymptotically n ≥ 4 anti–de Sitter
spacetimes in the presence of massive scalar fields was
given in [51] and the massless case in [52]. For asymp-
totically flat spacetimes, the only contribution of a massless
scalar field is the surface integral coming from its kinetic
term. This contribution supplements the pure gravity
contribution yielding the following expression for the
variation of the massM for the Fisher class (3.1) and (3.2),

δM ¼
 
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þðn − 3Þð1 − α2Þϵ

κn

s
Mδϕ0

þ ðn − 2Þ
2κn

δðαMÞ
!
Ωn−2: ð3:9Þ

To obtain the mass from its variation (3.9) is required either
(i) a functional relation between ϕ0, M and α or (ii) to set
δϕ0 ¼ 0. Hereafter, the Dirichlet boundary condition
δϕ0 ¼ 0, i.e., that where the scalar field is fixed at infinity,
is adopted. Under this condition the mass is given by

M ¼ ðn − 2Þ
2κn

αMΩn−2: ð3:10Þ

Note that although the expressions (3.7) and (3.10)
coincide, they correspond to different boundary conditions:
the first one assumes a vanishing scalar field at infinity
(ϕ0 ¼ 0), while the second requires only to fix the scalar
field at infinity (δϕ0 ¼ 0).
The spacetime (3.1) reduces to the Schwarzschild-

Tangherlini metric for α2 ¼ 1 by the Birkhoff’s theorem.
The metric (3.1) for α ¼ −1 differs in disguise from
the standard Schwarzschild-Tangherlini metric. This
can be remedied by a coordinate transformation S ¼
ðrn−3 −MÞ1=ðn−3Þ, leading to

ds2 ¼ −
�
1þ M

Sn−3

�
dt2 þ

�
1þ M

Sn−3

�
−1
dS2

þ S2dΩ2
n−2: ð3:11Þ

This corresponds to the Schwarzschild-Tangherlini solution
whose mass parameter has an opposite sign. Namely,
the sign flip of α is compensated by that of the mass
parameter.
The same remark applies also to the α2≠1 case. One sees

immediately that under the simultaneous transformation

M → −M; α → −α; ð3:12Þ

the metric (3.4) is left unaltered and the scalar field varies as
ϕ − ϕ0 → −ðϕ − ϕ0Þ. Since the sign change of ϕ − ϕ0

does not affect the causal structure of spacetime, this
freedom allows us to focus only on the α > 0 case.
However, we shall not attempt to put this restriction for
the easy comparison with the results in the literature.
A distinguished case to be observed is the α ¼ 0 case, for

which the mass vanishes. The metric is “ultrastatic”
(gtt ¼ −1) but is not isometric to the Minkowski spacetime.
This is a prominent example for which the positive mass
theorem is not applied because of the violation of the null
energy condition. The other M ¼ 0 case is achieved by
M ¼ 0, recovering the Minkowski spacetime. Hereafter,
we assume M ≠ 0 and α2 ≠ 1.

2. Areal radius and proper volume

The areal radius S is given by

SðrÞ ¼ rfðrÞð1−αÞ=½2ðn−3Þ�: ð3:13Þ

Hence, for M > 0, S becomes zero for α < 1 and matches
rs if α ¼ 1 in the limit of r → rs, while it diverges for α > 1
as r → rs. ForM < 0, in the limit of r → 0, S becomes zero
for α > −1, is finite for α ¼ −1, while it diverges for
α < −1.
The proper volume of the domain from r ¼ r0 satisfying

0 < fðr0Þ < ∞ to r > r0 on a spacelike hypersurface with
constant t is given by
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VolðrÞ ¼ Ωn−2

				
Z

r

r0

rn−2fðrÞ½2−ðn−1Þα�=½2ðn−3Þ�dr
				: ð3:14Þ

ForM > 0, VolðrÞ is divergent for α ≥ 2ðn − 2Þ=ðn − 1Þ in
the limit of r→rs, while it is finite for α<2ðn−2Þ=ðn−1Þ.
For M < 0, VolðrÞ becomes zero for α>−2ðn−2Þ=ðn−1Þ
in the limit of r → 0, while it diverges for α ≤
−2ðn − 2Þ=ðn − 1Þ.

3. Radial nontimelike geodesics

Let us consider an affinely parametrized radial null
geodesic γ with its tangent vector kμð¼ dxμ=dλÞ, where
λ is an affine parameter for γ. By the existence of a Killing
vector ξμ ¼ ð∂=∂tÞμ, C ¼ −kμξμð>0Þ deserves a constant
of motion—corresponding to the energy of the null
particle—along γ. Combining this with kμkμ¼0, we obtain

dr
dλ

¼ �CfðrÞðn−4Þð1−αÞ=½2ðn−3Þ�; ð3:15Þ

where the � sign represents the outgoing and ingoing
geodesics. This equation showsZ

fðrÞðn−4Þðα−1Þ=½2ðn−3Þ�dr ¼ �Cλ: ð3:16Þ

If λ diverges at some value of r, an infinite amount of affine
time elapses for a radial null geodesic to attain that surface.
In short, it corresponds to null infinity.
Let us consider the r ¼ rs surface for M > 0, around

which fðrÞ ≃ f0ðrsÞðr − rsÞ holds. In n ¼ 4, one finds that
r ¼ rs is not null infinity insensitive to the value of α. In
contrast, r ¼ rs is null infinity for α ≤ −ðn − 2Þ=ðn − 4Þ in
higher dimensions (n ≥ 5). We would like to emphasize
that this null infinity [α ≤ −ðn − 2Þ=ðn − 4Þ with n ≥ 5]
has a vanishing area. On top of this, the area diverging
surface (r ¼ rs with α > 1) can be reached within a finite
affine time for γ. The readers may feel that this is
counterintuitive, as these eccentric behaviors do not occur
e.g., in the Schwarzschild spacetime. This peculiar feature
highlights the spacetime with a phantom scalar field.
To see this more concretely, let us examine the expansion

rate θ− ¼ kμ∇μðSn−2Þ=Sn−2 for the ingoing radial null
geodesics [set C ¼ 1 and choose the minus sign in (3.15)]:

θ− ¼ −ðn − 2Þfðn−4Þð1−αÞ=½2ðn−3Þ�
�
1

r
þ 1 − α

2ðn − 3Þ
∂rf
f

�
:

ð3:17Þ

For the Minkowski spacetime fðrÞ ¼ 1, θ− is negative
definite, implying that the light rays are focusing. In the
α > 1 case, to the contrary, the second term in the bracket
for the above equation changes sign, allowing θ− to have a
positive value. This means that the area is increasing even
along the “ingoing” null geodesics. This property attributes

to the violation of the null energy condition, which controls
kμ∇μθ− through Raychaudhuri’s equation.
Next we consider r ¼ 0 forM < 0, around which fðrÞ ≃

Oðr−ðn−3ÞÞ holds. For n ¼ 4, r ¼ 0 is not null infinity,
independent of the value of α. In contrast, r ¼ 0 is null
infinity for α ≥ ðn − 2Þ=ðn − 4Þ for n ≥ 5.
Let us check the spacelike distance as well. Along a

radial spacelike geodesic on a spacelike hypersurface with
constant t, the proper distance from r0 to r is given by

s ¼
				
Z

r

r0

fðrÞ−ðαþn−4Þ=½2ðn−3Þ�dr
				: ð3:18Þ

If s diverges at some value of r, one measures an infinite
affine length from the ambient space to reach that surface,
i.e., it corresponds to spacelike infinity.
ForM > 0, r ¼ rs is spacelike infinity for α ≥ n − 2. For

M < 0, r ¼ 0 is spacelike infinity for α ≤ −ðn − 2Þ.

4. Singularity

The spacetime singularity is usually characterized by the
divergence of spacetime curvature invariants. For the Fisher
metric (3.1), the Ricci scalar, for instance, is computed as

R ¼ ðn − 2Þðn − 3Þð1 − α2Þ M2

4r2ðn−2Þ
fðrÞðα−nþ2Þ=ðn−3Þ:

ð3:19Þ

Let us first concentrate on the r ¼ rs surface for theM > 0
case. A quick consequence of the above expression of R is
that the r ¼ rs surface is singular when α < n − 2. The
divergence behavior of the Kretschmann scalar is the same
as that of R.
For α > n − 2, scalar quantities constructed out of

curvature tensors tend to be zero as r → rs. One might
be therefore inclined to expect that r ¼ rs is a regular
surface. Let us point out that this is not a completely regular
surface but a p.p curvature singularity, which is charac-
terized by the divergence of curvature tensor in a basis
parallelly propagated along some curve γ0 [6]. It should be
noted that a scalar curvature singularity is always a p.p
curvature singularity, but the converse is not true. To
demonstrate the existence of a p.p curvature singularity,
let us devote ourselves to the radial null geodesic γ as
before. As shown in the Appendix, one can construct
pseudo-orthonormal frame (kμ; nμ; Eî

μ) as (A12), which is
parallelly propagated along the radial null geodesic
kν∇νkμ ¼ kν∇νnμ ¼ kν∇νEî

μ ¼ 0. Setting f1ðrÞ ¼ fðrÞα,
f2ðrÞ ¼ fðrÞ−ðαþn−4Þ=ðn−3Þ and SðrÞ ¼ rfðrÞð1−αÞ=½2ðn−3Þ� in
(A9), the Riemann tensor component (A14) in this frame is
computed as
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RμνρσkμEî
νkρEĵ

σ ¼ −
ðα2 − 1Þðn − 3ÞM2

4r2ðn−2Þ

× fðrÞ−½ðn−4Þαþðn−2Þ�=ðn−3Þδî ĵ: ð3:20Þ

One verifies that this component diverges as r → rs for
α > −ðn − 2Þ=ðn − 4Þ. This range of α covers the param-
eter region in which curvature invariant scalars fail to
diverge. We thus conclude that r ¼ rs is a singular surface
in the entire parameter region.
Let us next explore the causal nature of this singularity.

For our current purpose, it is sufficient to focus on the two-
dimensional Lorentzian portion of the spacetime,

ds22 ¼ fðrÞαð−dt2 þ fðrÞ−fðn−2Þαþn−4g=ðn−3Þdr2Þ
¼ fðrðr�ÞÞαð−dt2 þ dr2�Þ; ð3:21Þ

where we have introduced a tortoise coordinate

r�≔
Z

fðrÞpdr;
�
p≔−

ðn−2Þαþn−4

2ðn−3Þ
�
: ð3:22Þ

If some value of r corresponds to an finite (infinite) value
of r�, it enjoys a timelike (null) structure in the Penrose
diagram. Expanding fðrÞ ≃ f0ðrsÞðr − rsÞ around r ¼ rs,
one sees immediately that the singularity r ¼ rs is timelike
for α < 1, and null for α ≥ 1.
Our results for the M > 0 case is summarized in Table I.

We next turn our attention to the M < 0 case, for which
the domain of r is 0 < r < ∞. Around r ¼ 0, we have
fðrÞ ≃Oðr−ðn−3ÞÞ, giving

lim
r→0

R ∝ r−ðαþn−2Þ: ð3:23Þ

Thus, r ¼ 0 is a scalar curvature singularity in the case of
α>−ðn−2Þ. From (3.20), one sees that RμνρσkμEî

νkρEĵ
σ ≃

rðn−4Þα−ðn−2Þ at r ¼ 0, leading to the conclusion that r ¼ 0
is a p.p curvature singularity for α < ðn − 2Þ=ðn − 4Þ. It is
therefore found that r ¼ 0 is singular, irrespective of the
value of α.
For the signature of the singularity at r ¼ 0, Eq. (3.22)

shows that r ¼ 0 is timelike for α > −1 and null for
α ≤ −1.
We encapsulate the properties of singularity at r ¼ 0 in

Table II. One verifies that the singularity structure of r ¼ rs
and r ¼ 0 is symmetric under α → −α, consistent with the
symmetry (3.12).

5. Penrose diagrams

From the properties of singularity structure and the
behavior of null geodesics, one can depict the global
structure of the spacetime. A convenient device suitable
for the visualization of global causal structure is the
Penrose diagram, which compactifies the spacetime while
keeping light ray propagations conformally invariant.
The Penrose diagrams for the phantom Fisher solution

are shown in Fig. 1. We obtained four different causal

TABLE I. Properties of the singularity r ¼ rs in the Fisher spacetime with M > 0 and α2 ≠ 1. Note −ðn − 2Þ=ðn − 4Þ → −∞ for
n ¼ 4.

α ≤ − n−2
n−4 − n−2

n−4 < α < 1 1 < α < 2ðn−2Þ
n−1

2ðn−2Þ
n−1 ≤ α < n − 2 n − 2 ≤ α

Type Scalar Scalar Scalar Scalar p.p.
Signature Timelike Timelike Null Null Null
Null infinity? Yes No No No No
Spacelike infinity? No No No No Yes
Area 0 0 ∞ ∞ ∞
Volume Finite Finite Finite ∞ ∞
Penrose diagram in Fig. 1 (I) (II) (III) (III) (IV)

TABLE II. Properties of the singularity r ¼ 0 in the Fisher spacetime withM < 0 and α2 ≠ 1. Note ðn − 2Þ=ðn − 4Þ → þ∞ for n ¼ 4.

α ≤ −ðn − 2Þ −ðn − 2Þ < α ≤ − 2ðn−2Þ
n−1 − 2ðn−2Þ

n−1 < α < −1 −1 < α < n−2
n−4 α ≥ n−2

n−4

Type p.p. Scalar Scalar Scalar Scalar
Signature Null Null Null Timelike Timelike
Null infinity? No No No No Yes
Spacelike infinity? Yes No No No No
Area ∞ ∞ ∞ 0 0
Volume ∞ ∞ 0 0 0
Penrose diagram in Fig. 1 (IV) (III) (III) (II) (I)
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structures. The correspondence to each diagram and the
parameter region of α has been already specified in Tables I
and II.

6. Positive mass and violation of the energy conditions

Readers may wonder why the phantom Fisher solution
admits a positive ADMmass, in spite of the violation of the
energy conditions everywhere. To figure out this, it is
instructive to see the Komar integral associated with the
static Killing vector ξμ ¼ ð∂=∂tÞμ:

1

16π

Z
∂Σ

∇μξνdSμν ¼
1

8π

Z
Σ
Rμνξ

μdΣν: ð3:24Þ

Here we have denoted dΣμ¼−uμdΣ and dSμν¼−2u½μnν�dS,
where uμ is a future pointing unit normal to the hypersur-
face Σ ¼ ft ¼ constg and nμ is an outward pointing unit
normal to the boundary ∂Σ in Σ. Since we are considering
the static massless scalar system (2.2), we have the Ricci
staticity Rμνξ

μ ¼ 0, rendering the right-hand side of (3.24)
to vanish. It therefore follows that the contribution from
infinity ∂Σ∞ (giving rise to the ADM mass) must offset the
contribution coming from interior boundary ∂Σint (r ¼ rs
surface in the present case) of Σ. It therefore follows that the
presence of two boundaries—and thus the presence of
image charge at ∂Σint—is a primary reason for the existence
of the positive ADM mass configuration.

B. Ellis-Gibbons class

In the spherically symmetric case (ϵ ¼ −1 and k ¼ 1

with dΣ2
k¼1;n−2 being the metric of round sphere), the Ellis-

Gibbons solution reads

ds2¼−e−M=rn−3dt2þeM=½ðn−3Þrn−3�ðdr2þr2dΩ2
n−2Þ; ð3:25Þ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

n − 2

4ðn − 3Þκn

s
M
rn−3

: ð3:26Þ

The solution is manifestly asymptotically flat for r → ∞.
Following the guidelines introduced in Sec. III A 1, the
mass of the Ellis-Gibbons class is determined as

M ¼ ðn − 2ÞΩn−2

2κn
M: ð3:27Þ

Our next concern is the coordinate singularity at the
origin r ¼ 0, which we turn to discuss. The entire argument
is parallel with that for the Fisher solution. In the sub-
sequent analysis, we will utilize the following integral:

Z
∞

r
rpe−Mq=rn−3dr¼−

ðMqÞð1þpÞ=ðn−3Þ

n− 3
Γ
�
−
1þp
n− 3

;
Mq
rn−3

�
;

ð3:28Þ

where p, q are constants, and Γða; zÞ is an incomplete
gamma function defined by Γða; zÞ ¼ R∞z ta−1e−tdt. The
asymptotic expansion as jzj → ∞ is given by

Γða; zÞ ≃ e−zza−1; ðz ≫ 1Þ;
Γða; zÞ ≃ e−zþ2iða−1Þπð1=zÞ1−a; ðz ≪ −1Þ; ð3:29Þ

Namely the integral (3.28) is divergent as r → 0 for
Mq < 0, while it converges to a finite value as r → 0 for
Mq ≥ 0.

1. Areal radius and proper volume

The areal radius is given by S ≔ reM=½2ðn−3Þrn−3�. For
M > 0, the areal radius diverges as r → 0, while it becomes
zero as r → 0 for M < 0.
The proper volume of the domain r ∈ ½r0; r� on a static

time slice is given by

VolðrÞ ¼ Ωn−2

				
Z

r

r0

rn−2eðn−1ÞM=½2ðn−3Þrn−3�dr
				: ð3:30Þ

This integral can be evaluated by setting p ¼ n − 2 and
q ¼ −ðn − 1Þ=½2ðn − 3Þ� in (3.28). One finds the proper
volume is divergent for M > 0 in the r → 0 limit, while it
tends to be zero for M < 0 as r → 0.

2. Radial nontimelike geodesics

The tangent vector for the radial null geodesics in
the Ellis-Gibbons solution (3.25) is given by kμ ¼
CeM=rn−3ð∂=∂tÞμ � Ceðn−4ÞM=½2ðn−3Þrn−3�ð∂=∂rÞμ, where C
is a geodesic constant. We are therefore led to

�Cλ ¼
Z

e−ðn−4ÞM=½2ðn−3Þrn−3�dr: ð3:31Þ

Substituting p ¼ 0 and q ¼ ðn − 4Þ=½2ðn − 3Þ� in (3.28),
one finds that r ¼ 0 is not null infinity in n ¼ 4 for either

FIG. 1. Possible conformal diagrams for the spherical Fisher
and Ellis-Gibbons solutions. The dashed lines correspond to the
(scalar or p.p) singularities. I� represent the future/past null
infinities, whereas the timelike boundary I in (I) also corresponds
to infinity. White and black circles stand for spatial/timelike
infinities, and for the singular bifurcation, respectively.
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sign of M, and in n ≥ 5 for M > 0. In n ≥ 5 with M < 0,
r ¼ 0 corresponds to the null infinity.
The proper distance along a constant time slice is

computed to

s ¼
				
Z

eM=½2ðn−3Þrn−3�dr
				: ð3:32Þ

Setting p ¼ 0 and q ¼ −1=½2ðn − 3Þ� in (3.28), this blows
up for M > 0 as r → 0, i.e., the r ¼ 0 surface corresponds
to the spacelike infinity for M > 0. For M < 0, the proper
distance to the r ¼ 0 surface is finite.

3. Singularity

Let us next explore the singular behavior at r ¼ 0. The
Ricci scalar is

R ¼ −
ðn − 2Þðn − 3Þ

4r2ðn−2Þ
M2 exp

�
−

M
ðn − 3Þrn−3

�
: ð3:33Þ

In the M < 0 case, r ¼ 0 is an obvious scalar curvature
singularity. For M > 0, R does not blow up at the r ¼ 0
surface. All other curvature invariants seem to be finite
there. However, this is a p.p curvature singularity since
(A14) gives rise to

RμνρσkμEî
νkρEĵ

σ ¼ −
ðn − 3ÞM2

4r2ðn−2Þ
exp

� ðn − 4ÞM
ðn − 3Þrn−3

�
δî ĵ;

ð3:34Þ

which tends to diverge as r → 0 in arbitrary n ≥ 5 for
M > 0, and for n ¼ 4 with anyM ≠ 0. It follows that r ¼ 0
is singular in any parameter region.
The two-dimensional portion of the metric is

ds22 ¼ −e−M=rn−3ðdt2 − eðn−2ÞM=½ðn−3Þrn−3�dr2Þ
¼ −e−M=rðr�Þn−3ðdt2 − dr2�Þ; ð3:35Þ

where the tortoise coordinate r� reads

r� ¼
Z

eðn−2ÞM=½2ðn−3Þrn−3�dr; ð3:36Þ

corresponding to p ¼ 0 and q ¼ −ðn − 2Þ=½2ðn − 3Þ� in
(3.28). It thus follows that the r ¼ 0 surface is null for
M > 0, while it is timelike for M < 0.

4. Penrose diagrams

Properties of the coordinate singularity at r ¼ 0 are
summarized in Table III. The Penrose diagram can be
deduced by bringing the issues obtained above together, as
shown in the last row in Table III.
The areal radius SðrÞ ¼ reM=½2ðn−3Þrn−3� admits a mini-

mum at rn−3th ¼ M=2 for M > 0, which have led some

authors to conclude that the spherical Ellis-Gibbons
solution is a regular traversable wormhole with a throat
at r ¼ rth [53].8 However, our analysis has explicitly
demonstrated that the Ellis-Gibbons metric describes an
asymptotically flat singular solution in any parameter
region.

C. Ellis-Bronnikov class

The spherical Ellis-Bronnikov class of solutions is
given by

ds2¼−e−2βUðrÞdt2

þe2βUðrÞ=ðn−3ÞVðrÞ1=ðn−3Þ
�

dr2

VðrÞþr2dΩ2
n−2

�
; ð3:37Þ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
UðrÞ; ð3:38Þ

UðrÞ≔ arctan

�
M

2rn−3

�
; VðrÞ≔ 1þ M2

4r2ðn−3Þ
: ð3:39Þ

In four dimensions, this solution was first derived by Ellis
[17] and Bronnikov [18]. Defining the isotropic coordinate
ρ by

r ¼ ρ

�
1 −

M2

16ρ2ðn−3Þ

�
1=ðn−3Þ

; ð3:40Þ

the solution can be transformed into

ds2 ¼ −e−2βÛðρÞdt2 þ e2βÛðρÞ=ðn−3Þ
�
1þ M2

16ρ2ðn−3Þ

�
2=ðn−3Þ

× ðdρ2 þ ρ2dΩ2
n−2Þ; ð3:41Þ

TABLE III. Properties of the singularity r ¼ 0 in the spherical
Ellis-Gibbons solution.

M > 0 M < 0

Dimensions n ≥ 4 n ¼ 4 n ≥ 5
Type p.p. Scalar Scalar
Signature Null Timelike Timelike
Null infinity? No No Yes
Spacelike infinity? Yes No No
Areal ∞ 0 0
Volume ∞ 0 0
Penrose diagram in Fig. 1 (IV) (II) (I)

8The assertion in [53] does not directly counter to the unique-
ness theorems of wormholes, since the Ellis-Gibbons solution
does not uphold the prerequisites of the proofs in [54,55], which
have assumed two asymptotically flat regions. The spherical Ellis-
Gibbons solution is not asymptotically flat around r ¼ 0.
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ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
ÛðρÞ; ð3:42Þ

where ÛðρÞ ¼ UðrðρÞÞ. Using the Dirichlet boundary
condition δϕ0 ¼ 0 discussed in Sec. III A 1, the mass of
this class is given by

M ¼ ðn − 2ÞΩn−2

2κn
βM: ð3:43Þ

It is important to recognize that the spacetime admits an
inversion symmetry. In terms of

ρ ¼ ðM2=42Þ1=ðn−3Þ
ρ̂

; ð3:44Þ

the metric can be cast into

ds2 ¼ −e2βÛðρ̂Þdt2 þ e−2βÛðρ̂Þ=ðn−3Þ
�
1þ M2

16ρ̂2ðn−3Þ

�
2=ðn−3Þ

× ðdρ̂2 þ ρ̂2dΩ2
n−2Þ; ð3:45Þ

ϕ ¼ ϕ0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
Ûðρ̂Þ: ð3:46Þ

This amounts to

M → −M; β → −β: ð3:47Þ

Therefore, physical properties of the solution are
unchanged under this sign flip.
Analogous to the α ¼ 0 Fisher solution, the β ¼ 0 case is

noteworthy here, since it gives a nontrivial spacetime
configuration even for the vanishing mass. In this case,
the metric is ultrastatic and the static observer with velocity
vector ∂=∂t encounters no tidal force of the spacetime. This
geometry has been fully studied in the literature, since it
corresponds to the zero mass wormhole, see e.g., [56–60]
and references adduced therein. The other vanishing mass
state M ¼ 0 corresponds to the Minkowski metric, which
we shall exclude from our analysis.
The solution (3.37) admits a coordinate singularity at

r ¼ 0, whichwe are going to study. In the following analysis,
we need to evaluate the integral

R
r
r0
rmepβUðrÞVðrÞqdr around

r ¼ 0. Approximating arctan½M=ð2rn−3Þ� ≃ πsgnðMÞ=2
and VðrÞ ≃M2=ð4r2ðn−3ÞÞ around r ¼ 0, we have

lim
r→0

Z
r

r0

rmepβUðrÞVðrÞqdr ∝ lim
r→0

Z
r

r0

rm−2ðn−3Þqdr: ð3:48Þ

Thus, this integral is divergent at r ¼ 0 for

mþ 1 − 2ðn − 3Þq ≤ 0: ð3:49Þ

1. Areal radius and proper volume

The areal radius of the metric (3.37) is given by
SðrÞ ¼ reβUðrÞ=ðn−3ÞVðrÞ1=½2ðn−3Þ�. For r → 0þ, the areal
radius converges to the finite value SðrÞ → S� ¼
ð4M2Þ2=ðn−3Þ expð�βπ=½2ðn − 3Þ�Þ for M≷0.
The proper volume of the domain 0 < r0 < r on a

spacelike hypersurface with constant t is

VolðrÞ¼Ωn−2

				
Z

rn−2eðn−1ÞβU=ðn−3ÞVðrÞ1=ðn−3Þdr
				: ð3:50Þ

Using the criterion (3.49), the proper volume is kept finite
as r → 0þ.

2. Radial nontimelike geodesics

The tangent vector for the radial null geodesics of the
Ellis-Bronnikov metric (3.37) is given by

kμ ¼ Ce2βU
� ∂
∂t
�

μ

� Ceðn−4ÞβU=ðn−3ÞVðn−4Þ=½2ðn−3Þ�
� ∂
∂r
�

μ

;

ð3:51Þ

where C is a constant of motion along the geodesics. Hence
the affine parameter reads

�Cλ ¼
Z

r

r0

e−ðn−4ÞβU=ðn−3ÞV−ðn−4Þ=½2ðn−3Þ�dr: ð3:52Þ

The criterion (3.49) implies that the affine parameter fails to
diverge as r → 0, i.e., the r ¼ 0 surface is not null infinity.
The affine distance along the radial spacelike geodesic

on the constant t is

s ¼
				
Z

r

r0

eβU=ðn−3ÞV−ðn−4Þ=½2ðn−3Þ�dr
				: ð3:53Þ

From (3.49), one concludes that the affine distance to r ¼ 0
along the static time slice is finite, so that the r ¼ 0 with
t ¼ const is not a spacelike infinity.

3. Singularity

The scalar curvature of the solution (3.37) is given by

R ¼ −
M2

4r2ðn−2Þ
ðn − 2Þðn − 3Þð1þ β2Þe−2βU=ðn−3Þ

× V−ðn−2Þ=ðn−3Þ: ð3:54Þ
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Since Uðr → 0þÞ ¼ sgnðMÞπ=2, the Ricci scalar is finite
as r → 0. Similarly, all other scalar curvature invariants
also remain finite at r ¼ 0.
Taking the pseudo-orthonormal frame as in the

Appendix, let us look into the following Riemann tensor
components:

RμνρσkμEî
νkρEĵ

σ ¼ −
ðn − 3Þð1þ β2ÞM2

4r2ðn−2Þ

× e2ðn−4ÞβU=ðn−3ÞV−ðn−2Þ=ðn−3Þ; ð3:55Þ

RμνρσkμEî
νnρEĵ

σ ¼ ðn − 3ÞM
8r2ðn−2Þ

½4βrn−3 þMð1 − β2Þ�
× e−2βU=ðn−3ÞV−ðn−2Þ=ðn−3Þ: ð3:56Þ

Other components also do not show the blowing up
behavior at r ¼ 0. We thus conclude that r ¼ 0 is merely
a coordinate singularity.

4. Throat structure and Penrose diagram

Since the Ellis-Bronnikov metric (3.37) is free of any
singularities, it would deserve a wormhole solution, which
we would like to elucidate in this subsection. To this end,
let us first try to find the locus of the throat. There exist
several distinct notions and definitions of a throat in the
literature. Restricting to the static and spherically symmet-
ric case, a widely accepted definition is the (n − 2)-dimen-
sional surface whose areal radius satisfies the flare-out
condition [15,61,62].
Since the spherically symmetric spacetimes do not gen-

erate gravitational waves, one is able to localize the gravi-
tational energy. A useful quantity of this sort in spherical
symmetry is the areal radius S ¼ reβUðrÞ=ðn−3ÞVðrÞ1=½2ðn−3Þ�
and the Misner-Sharp mass [63,64] given by

MMS ≔
ðn − 2ÞΩn−2

2κn
Sn−3ð1 − ðDSÞ2Þ

¼ ðn − 2ÞΩn−2

2κn
eβUðrÞVðrÞ−1=2

�
Mβ −

M2ðβ2 − 1Þ
4rn−3

�
:

ð3:57Þ

As r → ∞, one sees thatMMS converges to themass given in
(3.43). In the context of wormhole, the Misner-Sharp mass
plays the role of “shape function” [15] which controls the
shape of thewormhole in the embedding space. The locus of
thewormhole throat r ¼ rth should satisfy ðDSÞ2 ¼ 0 aswell
as the “flare-out condition” [15,61,62]

d
dS

�
MMS

Sn−3

�
< 0: ð3:58Þ

The geometric meaning of this condition is recognizable
as follows. Let us write the metric of (n − 2)-sphere as

dΩ2
n−2 ¼ dθ2 þ sin2θdϕ2 þ cos2θdΩ2

n−4 and consider the
θ ¼ π=2 surface. Then we embed the two-dimensional
surface gSSdS2 þ S2dϕ2 into the flat Euclid space
dS2 þ dZ2 þ S2dϕ2. Then, the flare-out condition (3.58)
requires that the throat is the neck of the curveZ ¼ ZðSÞ.We
caution the reader to distinguish this condition from the
simple minimal radius surface. To figure out this, let us work
in the coordinate ds2¼−f1ðrÞdt2þf2ðrÞdr2þS2ðrÞdΩ2

n−2,
and suppose that ∂rðf−12 Þ is finite at the throat ∂rS ¼ 0. Then
the simple flare-out condition (3.58) reduces to ∂2

rS > 0 at
the throat, which means that Sth is nothing but a minimal
radius. However, the finiteness of ∂rðf−12 Þ at the throat is not
always true, as we will see in the following.
Let us first study the β ¼ 0 case, for which observers

rest at constant r follow geodesics. The areal radius S ¼
rVðrÞ1=½2ðn−3Þ� admits a critical point dS=dr ¼ 0 at r ¼ 0, at
which Sn−3th;β¼0 ¼ jMj=2. In this case the flare-out condition
dðMMS=Sn−3Þ=dS ¼ −ðn− 2Þðn− 3ÞΩn−2=ðκnSth;β¼0Þ < 0

is satisfied, so that Sth;β¼0 is a throat. Note that this
does not coincide with the convexity condition of S,
since the second derivative is computed to yield ∂2

rS ¼
ð2n − 7ÞS−ð2n−7Þth;β¼0 r2ðn−4Þjr¼0. Thus, the minimal condition
∂2
rS > 0 is satisfied only for n ¼ 4, whereas the n ≥ 5 is

marginal ∂2
rS ¼ 0. In any case, one can continue the

spacetime across r ¼ rth to r ¼ 0þ. As we have seen,
r¼0 is a regular surface, since it does not correspond to
neither a scalar curvature singularity nor a p.p curvature
singularity. Since the metric is invariant under r → −r for
β ¼ 0, one can continue the spacetime across the r < 0
region, which will be discussed below.
The β ≠ 0 case asks for a more involved analysis.

Thanks to the property (3.47), we can confine to
the M > 0 case hereafter. For r > 0, the derivative of
the areal radius S ¼ reβUðrÞ=ðn−3ÞVðrÞ1=½2ðn−3Þ� is ∂rS ∝
VðrÞ−ð2n−7Þ=½2ðn−3Þ�ð1 −Mβr3−n=2Þ. When the mass is pos-
itive (β > 0), there exists a critical point dS=dr ¼ 0 at

r ¼ rth ≔
�
1

2
Mβ

�
1=ðn−3Þ

: ð3:59Þ

At this point, we have Sn−3th;β>0 ¼ 1
2
Mβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β−2

p
eβ arctanð1=βÞ

and the flare-out condition reduces to

d
dS

�
MMS

Sn−3

�				
r¼rth

¼ −
ðn − 2Þðn − 3ÞΩn−2

κnSth;β>0
< 0; ð3:60Þ

implying Sth;β>0 is a throat. When the mass is negative
(β < 0), there appear no critical points ∂rS ¼ 0 for r ≥ 0 in
n ¼ 4, while r ¼ 0 deserves a throat in n ≥ 5 at Sth;β¼0.
Our next concern is the spacetime extension across

r ¼ 0. For this analysis, the present coordinate system
(3.37) is not of use by the following two reasons. First,
UðrÞ ¼ arctanðM=ð2rn−3ÞÞ is not continuous at r ¼ 0.
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As commented in footnote 4, this can be remedied if one
replaces the functionUðrÞ ¼ arctanðM=ð2rn−3ÞÞ appearing
in the metric and the scalar field by ŨðrÞ ≔ π=2 −
arctanð2rn−3=MÞ (recall M > 0). Still, the metric is ill-
behaved at r ¼ 0 in higher dimensions, since we have grr ¼
Oð1=r2ðn−4ÞÞ around r ¼ 0. One can circumvent this
second drawback by means of the new coordinate
x ≔ rn−3. To sum up, the metric and the scalar field for
the Ellis-Bronnikov solution (3.37) can be recast into

ds2 ¼ −e−2βUxðxÞdt2 þ e2βUxðxÞ=ðn−3Þ

×
�

dx2

ðn − 3Þ2VxðxÞðn−4Þ=ðn−3Þ
þ VxðxÞ1=ðn−3ÞdΩ2

n−2

�
;

ð3:61aÞ

ϕ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

ðn − 2Þð1þ β2Þ
κnðn − 3Þ

s
UxðxÞ; ð3:61bÞ

where

UxðxÞ≔
π

2
− arctan

�
2x
M

�
; VxðxÞ≔ x2 þM2

4
: ð3:62Þ

Since every component of the metric and its inverse, and
the scalar field given in (3.61), are completely smooth at
x ¼ 0, one can extend the spacetime into the x < 0 region.
Setting x̃ ¼ −eπβx and expanding the metric around
x̃ → ∞, we have Ux ≃ π − eπβM=ð2x̃Þ, leading to

ds2x→−∞ ≃ −e−2πβ
�
1þMβeπβ

x̃

�
dt2

þ
�
1 −

Mβeπβ

ðn − 3Þx̃
��

dx̃2

ðn − 3Þ2x̃2ðn−4Þ=ðn−3Þ

þ x̃2=ðn−3ÞdΩ2
n−2

�
: ð3:63Þ

Defining t̃ ≔ e−πβt and r̃n−3 ¼ x̃, this is the standard falloff
behavior of the metric in the asymptotically flat spacetime.
This means that the spacetime attached to x < 0 region is
also asymptotically flat with the mass given by

Mx<0 ¼ −
ðn − 2ÞΩn−2eβπ

2κn
βM: ð3:64Þ

In n ¼ 4, this gives Mx<0 ¼ −4πβMeβπ=κ4, recovering
Ellis’ results [17].
As far as the global structures are concerned, there are

some notable differences from the β ¼ 0 case. First of all,
the gluing surface r ¼ 0 does not always correspond to the
throat or minimal radius. According to our conventional
intuition, one may visualize the situation in which two
disjoint universes are connected at the throat. This orthodox

picture seems unpalatable. From the viewpoint of maximal
extension of the spacetime metric, the natural boundary of
the one-sided universe is the coordinate singularity at
r ¼ 0, rather than the critical point of the areal radius.
Second, the maximal extension is not right-left symmetric
across x ¼ 0. Specifically, the sign of mass for x > 0 and
x < 0 regions is always opposite for β ≠ 0. These eccentric
facets have not been underscored so seriously in the past
literature.
Let us display the global causal structure of the spherical

Ellis-Bronnikov solution in Fig. 2. As we argued in this
subsection, throat structures are different depending on the
positivity of mass. In spite of this, the extensions through
x ¼ 0 can be performed without any difficulty, and the
maximal extensions of conformal diagram are all identical.

IV. CONFORMALLY COUPLED SCALAR FIELD

In Sec. II, we have systematically classified all possible
static solutions of warped form in the Einstein-massless
scalar system for both signs of the kinetic term. Here, we
proceed with the same classification in the case of a
conformally coupled massless scalar field. We will face
this task by means of two methods. It is well known that
there is a transformation which relates the solutions in the
Einstein and Jordan frames, namely, the minimally and
conformally coupled scalar fields.9 With this transforma-
tion along with the classification presented in Sec. II, we
are able to obtain the catalog of all possible static solutions
of the same warped form in a system with a conformally
coupled scalar field. We revisit two variants for obtaining
this transformation, which are proved to be equivalent.
Indeed, the transformation is necessarily separated in two

FIG. 2. Conformal diagram for the spherical Ellis-Bronnikov
solution. Solid lines denote null infinities I� and the dotted line
corresponds to the x ¼ rn−3 ¼ 0 surface, which does not always
coincide with the throat for β ≠ 0. In any parameter regions, this
wormhole is traversable.

9The transformation was first found by Bekenstein [65] for
n ¼ 4 and ε ¼ 1. The generalization in arbitrary dimensions can
be found as a particular case of the general coupling FðR;ϕÞ
presented by Kei-ichi Maeda [66]. The specific case of a
conventional conformally coupled scalar field was addressed
by Xanthopoulos and Dialynas [67].
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cases providing two branches of solutions. Of course, the
second method is to solve the field equations in the Jordan
frame. The latter approach is usually avoided since the
rather involved field equations are required. However,
Klimčík[68] was able to solve them in the case of a
spherically symmetric conventional scalar field in arbitrary
dimensions. Below, we introduce a generalization of
Klimčík result, by obtaining the general solution assuming
an arbitrary Einstein space Kn−2. The key point in this
derivation is the choice of a suitable Ansatz for the metric.
Let us start our discussion for the nonminimally coupled

scalar field described by the action

S ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κn
R −

ε

2
ð∇ΦÞ2 − 1

2
εζRΦ2

�
; ð4:1Þ

where ε ¼ �1 and ζ is a dimensionless constant. The field
equations derived from the above action are given by

□Φ − ζRΦ ¼ 0; ð4:2Þ

and

ð1 − εζκnΦ2Þ
�
Rμν −

1

2
Rgμν

�

¼ εκn

�
2ζgμνΦ□Φ − 2ζΦ∇μ∇νΦ

þ ð1 − 2ζÞð∇μΦÞð∇νΦÞ þ
�
2ζ −

1

2

�
gμνð∇ΦÞ2

�
:

ð4:3Þ

Note that for a generic constant scalar field the field
equations reduce to Rμν ¼ 0. For the special constant
values εζκnΦ2 ¼ 1, which are possible only for the conven-
tional scalar field, the equations become a single one:
R ¼ 0. In what follows, we discard solutions with a
constant scalar field.
Here we postulate that the scalar field equation (4.2) is

conformally invariant. This restricts ζ to be

ζ ¼ ζc ≔
n − 2

4ðn − 1Þ : ð4:4Þ

At this coupling constant, the trace of (4.3) together with
(4.2) entails a vanishing of the scalar curvature R ¼ 0 in the
conformal frame. The Einstein’s field equations simplify to

Eμν ≔ Rμν − εκnSμν ¼ 0; □Φ ¼ 0; ð4:5Þ

where

Sμν ≔
n∇μΦ∇νΦ − gμνð∇ΦÞ2 − ðn − 2ÞΦ∇μ∇νΦ

2ðn − 1Þð1 − εκnζcΦ2Þ : ð4:6Þ

A. Conformal transformation

We now develop a formulation that enables one to obtain
the solutions with a conformally coupled scalar field from
the solutions with a massless scalar field. This formulation
is insensitive to the particular form of metric and scalar field
(ĝμν;ϕ) in the Einstein frame, and can be presented in two
variants. The first variant is focused on the action and the
second one on the field equations.

1. Relating the actions

For the first approach, let us assume two metrics, gμν and
ĝμν, conformally related, namely,

ĝμν ¼ ω2gμν: ð4:7Þ

The corresponding Ricci scalars are related as [see for
instance Eq. (2.30) in [6] ]

R̂ ¼ ω−2R − 2ðn − 1Þω−3
□ω

− ðn − 1Þðn − 4Þω−4gμν∇μω∇νω: ð4:8Þ

For 1 − εκnζcΦ2 > 0, which is always fulfilled for a
phantom scalar field, the choice

ω ¼ ð1 − εκnζcΦ2Þ1=ðn−2Þ ð4:9Þ

is a well-defined function of Φ for n > 2, yielding
from (4.8)

ffiffiffiffiffiffi
−ĝ

p
R̂

2κn
¼ ffiffiffiffiffiffi

−g
p �ð1− εκnζcΦ2ÞR

2κn

þ κnζcΦ2

2ð1−εκnζcΦ2Þg
μν∇μΦ∇νΦþ ε

4
□Φ2

�
: ð4:10Þ

Using

κnζcΦ2

1 − εκnζcΦ2
¼ ε

1 − εκnζcΦ2
− ε;

and dropping the last term at the left-hand side of (4.10) as a
total divergence, we obtain

Z
dnx

ffiffiffiffiffiffi
−ĝ

p �
R̂
2κn

−
ε

2

ĝμν∇μΦ∇νΦ
ð1−εκnζcΦ2Þ2

�

¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
R
2κn

−
ε

2
ðgμν∇μΦ∇νΦþζcRΦ2Þ

�
: ð4:11Þ

Defining ϕ by means of

dΦ
dϕ

¼ �ð1 − εκnζcΦ2Þ; ð4:12Þ
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the following relation is proved to hold (up to a boundary
term),Z

dnx
ffiffiffiffiffiffi
−ĝ

p �
R̂
2κn

−
ε

2
ĝμν∇μϕ∇νϕ

�

¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
R
2κn

−
ε

2
ð∇ΦÞ2 − ε

2
ζcRΦ2

�
: ð4:13Þ

Thus, Eqs. (4.9) and (4.12) provide the transformation
between both frames.
The adequate choice for the case 1 − εκnζcΦ2 < 0,

which only occurs for ε ¼ 1, is

ω ¼ ðκnζcΦ2 − 1Þ1=ðn−2Þ: ð4:14Þ

Repeating the same steps as before, this choice leads to the
following relation between the actions:Z

dnx
ffiffiffiffiffiffi
−ĝ

p �
R̂
2κn

−
1

2
ĝμν∇μϕ∇νϕ

�

¼ −
Z

dnx
ffiffiffiffiffiffi
−g

p �
R
2κn

−
1

2
ð∇ΦÞ2 − 1

2
ζcRΦ2

�
; ð4:15Þ

where ϕ is also defined by (4.12). Note the overall minus
sign in the right-hand side of the above equation. This
relative minus sign is relevant for the actions, but it does not
affect the field equations.
The differential equation (4.12) crucially depends on ε.

Let us start with the conventional scalar field. In this case,
Eq. (4.12) has the following two solutions:

ffiffiffiffiffiffiffiffiffi
κnζc

p
Φ ¼

�� tanh ð ffiffiffiffiffiffiffiffiffi
κnζc

p ðϕ −Φ0ÞÞ;
� coth ð ffiffiffiffiffiffiffiffiffi

κnζc
p ðϕ −Φ0ÞÞ;

ð4:16Þ

where Φ0 is an integration constant. It is important to note
that only one of the above expressions satisfies the required
condition (1 − κnζcΦ2≷0). Therefore, for 1 − κnζcΦ2 > 0
we have

ffiffiffiffiffiffiffiffiffi
κnζc

p
Φ ¼ � tanh ð

ffiffiffiffiffiffiffiffiffi
κnζc

p
ðϕ −Φ0ÞÞ; ð4:17Þ

and

ω−1 ¼ ½cosh ð
ffiffiffiffiffiffiffiffiffi
κnζc

p
ðϕ −Φ0ÞÞ�2=ðn−2Þ: ð4:18Þ

For 1 − κnζcΦ2 < 0 the proper solution is

ffiffiffiffiffiffiffiffiffi
κnζc

p
Φ ¼ � coth ð

ffiffiffiffiffiffiffiffiffi
κnζc

p
ðϕ −Φ0ÞÞ; ð4:19Þ

giving the conformal factor

ω−1 ¼ ½sinh ð
ffiffiffiffiffiffiffiffiffi
κnζc

p
ðϕ −Φ0ÞÞ�2=ðn−2Þ: ð4:20Þ

According the second theorem by Bekenstein [65], the
Einstein-conformal scalar solutions in n ¼ 4 are obtained
in pairs. In fact, this is what also happens in arbitrary
dimensions with the pair of solutions (4.17) (labeled as I)
and (4.19) (labeled as II), which satisfy κnζcΦIΦII ¼ �1.
In the phantom case, Eq. (4.12) reads

dΦ
dϕ

¼ �ð1þ κnζcΦ2Þ; ð4:21Þ

whose solution is

ffiffiffiffiffiffiffiffiffi
κnζc

p
Φ ¼ � tan ð

ffiffiffiffiffiffiffiffiffi
κnζc

p
ðϕ −Φ0ÞÞ: ð4:22Þ

In this case, the second solution is just obtained by adjusting
Φ0, since tanðxþ π=2Þ ¼ − cotðxÞ ¼ −1= tanðxÞ.

2. Using the field equations of both frames

As a second independent method, let us focus on the
transformation of the equations of motion. To this end, we
consider the conformal rescaling gμν ¼ Ω2ĝμν (note that
ω ¼ 1=Ω, where ω is the conformal factor used in the
previous subsection) and require that (ĝμν;ϕ) satisfies the
Einstein-massless scalar field equations

R̂μν ¼ κnϵð∇̂μϕÞð∇̂νϕÞ; □̂ϕ ¼ 0: ð4:23Þ

At this moment, ϵ ¼ �1 should be distinguished from ε.
Requiring R ¼ 0 and setting Ω ¼ ΩðϕÞ, the conformal
transformation formula (4.8) leads to

0 ¼ Ω2R

¼ ϵκnð∇̂ϕÞ2 − 2ðn − 1Þ□̂ lnΩ− ðn− 1Þðn− 2Þð∇̂ lnΩÞ2
¼ ΩðϕÞ2ð∇̂ϕÞ2½ϵκnΩðϕÞ2 − 2ðn− 1ÞΩðϕÞΩ00ðϕÞ
− ðn− 1Þðn − 4ÞΩ0ðϕÞ2�: ð4:24Þ

The above equation is integrated to yield

ΩðϕÞ¼
�
aþcoshð

ffiffiffiffiffiffiffiffiffiffiffi
ϵζcκn

p
ϕÞþ a−ffiffiffi

ϵ
p sinhð

ffiffiffiffiffiffiffiffiffiffiffi
ϵζcκn

p
ϕÞ
�

2=ðn−2Þ
;

ð4:25Þ

where a� are real constants. Inserting this into Einstein’s
equations, we have three terms proportional to ĝμν,

∇̂μϕ∇̂νϕ, and ∇̂μ∇̂νϕ. The terms proportional to ∇̂μ∇̂νϕ
determineΦðϕÞ up to an integration constant, which can be
fixed by the rest of Einstein’s equations to be

ΦðϕÞ ¼ �
ffiffiffi
ϵ

pffiffiffiffiffiffiffiffiffiffiffi
ζcεκn

p ða−=ϵÞ coshð
ffiffiffiffiffiffiffiffiffiffiffi
ϵζcκn

p
ϕÞ þ ðaþ=

ffiffiffi
ϵ

p Þ sinhð ffiffiffiffiffiffiffiffiffiffiffi
ϵζcκn

p
ϕÞ

aþ coshð ffiffiffiffiffiffiffiffiffiffiffi
ϵζcκn

p
ϕÞ þ ða−=

ffiffiffi
ϵ

p Þ sinhð ffiffiffiffiffiffiffiffiffiffiffi
ϵζcκn

p
ϕÞ : ð4:26Þ
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Then we must have ε ¼ ϵ for the scalar field Φ to be real.
Note that the transformation given by (4.25) and (4.26) is
effectively generated by just one parameter, namely a−=aþ,
since Ω is defined up to an overall factor. The following
analysis will be split into two cases according to ϵ ¼ 1 or
ϵ ¼ −1.
Let us first consider the nonphantom case (ϵ ¼ 1). The

solution is specified by a single parameter a−=aþ, so that
we have thus three cases to consider: (i) ja−=aþj < 1,
(ii) ja−=aþj > 1, (iii) ja−=aþj ¼ 1. In case (iii), Eq. (4.26)
implies that the conformal scalar field is Φ ¼ �ð ffiffiffiffiffiffiffiffiffi

ζcκn
p Þ−1.

As mentioned before, we shall not explore this case by
virtue of 1 − ζcκnΦ2 ¼ 0, for which the coefficient of the
scalar curvature in the action (4.1) vanishes on shell. This
case corresponds to the strong coupling, at which the theory
is not predictable, reducing just to R ¼ 0. Cases (i) and
(ii) should also be distinguished, because the coefficient in
front of the scalar curvature in the action has opposite sign
1 − ζcκnΦ2≷0. Since the overall factor of Ω in (4.25) is
irrelevant, we can set a−=aþ ¼ − tanhð ffiffiffiffiffiffiffiffiffi

ζcκn
p

Φ0Þ when
ja−=aþj < 1, where Φ0 is a constant. We thus obtain the
transformation

Ω ¼
h
cosh


 ffiffiffiffiffiffiffiffiffi
ζcκn

p
ðϕ −Φ0Þ

�i
2=ðn−2Þ

;

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p tanh

 ffiffiffiffiffiffiffiffiffi

ζcκn
p

ðϕ −Φ0Þ
�
; ð4:27Þ

for case (i). In the case of ja−=aþj > 1, we can set
a−=aþ ¼ −1= tanhð ffiffiffiffiffiffiffiffiffi

ζcκn
p

Φ0Þ with Φ0 being a constant,
for which the transformation is given by

Ω ¼
h
sinh


 ffiffiffiffiffiffiffiffiffi
ζcκn

p
ðϕ −Φ0Þ

�i
2=ðn−2Þ

;

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p coth

 ffiffiffiffiffiffiffiffiffi

ζcκn
p

ðϕ −Φ0Þ
�
: ð4:28Þ

Let us next consider the phantom case ϵ ¼ −1. Ignoring
the overall factor, one can set a−=aþ ¼ tanð ffiffiffiffiffiffiffiffiffi

ζcκn
p

Φ0Þ,
thereby

ΩðϕÞ ¼
h
cos

 ffiffiffiffiffiffiffiffiffi

ζcκn
p

ðϕ −Φ0Þ
�i

2=ðn−2Þ
;

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p tan

 ffiffiffiffiffiffiffiffiffi

ζcκn
p

ðϕ −Φ0Þ
�
: ð4:29Þ

Contrary to the nonphantom case, the conformal factor is a
trigonometric function. This alters the causal structure of
the solution considerably, since

ffiffiffiffiffiffiffiffiffi
ζcκn

p ðϕ −Φ0Þ ¼ �π=2
corresponds to the curvature singularity where the square of
the Weyl tensor (A8) necessarily blows up.
Note that this approach provides the same transforma-

tions presented in Sec. IVA 1. Thus, the two variants
employed here to obtain the transformation relating both
frames are equivalent. In the following, we will obtain the

explicit form of metric with a conformally coupled scalar
field, by taking the solutions obtained in Sec. II as a seed.

B. All possible solutions

Exploiting the formulation developed in IVA, we con-
struct all possible solutions for (4.5) with the symmetry
(2.5), by taking the solutions derived in Sec. II as seed
solutions. We only classify solutions and do not attempt to
go into the detail of the physical and causal properties
of the solutions, since the analysis of each solution requires
laborious works more than that in the Einstein frame.
We leave this issue to the future work. We start with
the conventional (nonphantom) conformal scalar field
configurations.

1. Nonphantom Fisher solution: Branch I

Let us take the Fisher solution (2.18) as a seed (M̂; ĝμν)
and perform the transformation (4.27). Introducing10 f0 ≔
exp½ ffiffiffiffiffiffiffiffiffiζcκn

p ðΦ0 − ϕ0Þ=γ�, we have

ds2 ¼
�ðf=f0Þγ þ ðf=f0Þ−γ

2

�
4=ðn−2Þ

× ½−fαdt2 þ f−ðαþn−4Þ=ðn−3Þðdr2 þ r2fdΣ2
k;n−2Þ�;

ð4:30Þ

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p ðf=f0Þ2γ − 1

ðf=f0Þ2γ þ 1
; ð4:31Þ

where f ¼ jk −M=rn−3j is non-negative for ensuring a real
solution and

γ ≔ � n − 2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − α2Þ

ðn − 1Þðn − 3Þ

s
; ð4:32Þ

with ϵ ¼ þ1. When n ¼ 4 and α ¼ 1=2, this solution
recovers the one given in [65,69] and admits a degenerate
horizon. In the spherically symmetric higher-dimensional
case (Kn−2 ¼ Sn−2), there exist no analogous solutions
possessing a regular horizon [67,68].

2. Nonphantom Fisher solution: Branch II

Taking the Fisher solution as a seed and considering the
transformation (4.28), we have

10Although the transformation has a free parameter Φ0, this is
added to the arbitrary constant ϕ0 yielding a general solution with
three integration constants, which is the same number within the
seed general solution.
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ds2 ¼
�ðf=f0Þγ − ðf=f0Þ−γ

2

�
4=ðn−2Þ

× ½−fαdt2 þ f−ðαþn−4Þ=ðn−3Þðdr2 þ r2fdΣ2
k;n−2Þ�;

ð4:33Þ

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p ðf=f0Þ2γ þ 1

ðf=f0Þ2γ − 1
; ð4:34Þ

where f, f0 and γ are the same as in Sec. IV B 1. Compared
to the branch I solution (4.30), the conformal scalar field is
related by the inverse relation ð ffiffiffiffiffiffiffiffiffi

ζcκn
p

ΦÞ → �ð ffiffiffiffiffiffiffiffiffi
ζcκn

p
ΦÞ−1

as announced before.
To classify the phantom solutions, we consider the

transformation (4.29) in the remainder of this subsection.

3. Phantom Fisher solution

Taking the phantom Fisher solution (2.18) as a seed, the
solution is given by

ds2 ¼ ½cosðγ lnðf=f0ÞÞ�4=ðn−2Þ
× ½−fαdt2 þ f−ðαþn−4Þ=ðn−3Þðdr2 þ r2fdΣ2

k;n−2Þ�;
ð4:35Þ

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p tanðγ ln f=f0Þ; ð4:36Þ

where γ is understood to be (4.32) with ϵ ¼ −1.

4. Gibbons solution

Let us take the Gibbons solution (2.45) as a seed metric.
Setting ϵ ¼ −1, the solution in the conformal frame reads

ds2 ¼ ½cosðγ0ðH −H0ÞÞ�4=ðn−2Þ
× ½−e−Hdt2 þ eH=ðn−3ÞhIJdxIdxJ�; ð4:37Þ

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p tanðγ0ðH −H0ÞÞ; ð4:38Þ

where H0 is an arbitrary constant, ΔhH ¼ 0, hIJ is a Ricci-
flat metric and

γ0 ≔ � n − 2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðn − 1Þðn − 3Þ

s
: ð4:39Þ

5. Ellis-Bronnikov solution

Lastly, let us consider the Ellis-Bronnikov solution (2.30)
as a seed. Setting ϵ ¼ −1, the conformal frame metric is

ds2 ¼ ½cosðγ00ðU −U0ÞÞ�4=ðn−2Þ
�
−e−2βUdt2

þ e2βU=ðn−3ÞV1=ðn−3Þ
�
dr2

V
þ r2dΣ2

k¼1;n−2

��
; ð4:40Þ

Φ ¼ � 1ffiffiffiffiffiffiffiffiffi
ζcκn

p tanðγ00ðU −U0ÞÞ; ð4:41Þ

whereU,V aregivenby(2.32),U0 isanarbitraryconstantand

γ00 ≔ � n − 2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β2Þ

ðn − 1Þðn − 3Þ

s
: ð4:42Þ

C. Consistency check: Solving field equations
in the Jordan frame

In this section we explore if the conformal transforma-
tion from the Einstein-massless scalar system enables us to
obtain all possible solutions. The best way to address the
question is to solve directly the field equations (4.5). For
the sake of clarity to readers, we show that this is indeed a
viable task and that both methods provide the same results.
We consider the same class of metrics as in Sec. II,

but with a bit different radial coordinate ρ defined as
dρ ¼ G−1dx. Then, the general metric (2.5) reads

ds2 ¼ −FðρÞ−2dt2 þ FðρÞ2=ðn−3ÞGðρÞ1=ðn−3ÞðGðρÞdρ2
þ γabðzÞdzidzjÞ; ð4:43Þ

and the conformal scalar field is assumed to be a function
of the new radial coordinate, Φ ¼ ΦðρÞ. Using the gauge
(4.43), and defining

F ≔ e−b and G ≔ h−2; ð4:44Þ

we obtain from Et
t; Er

r; Ei
j and□Φ ¼ 0, the following set

of equations:

b00 −
2εκnζcðΦ02 þ ðn − 2Þb0ΦΦ0Þ

ðn − 2Þð1 − εκnζcΦ2Þ ¼ 0; ð4:45Þ
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h00 þ hðb00 − ðn − 2Þb02Þ
n − 2

þ 4εκnζcΦðhb0Φ0 þ ðn − 2Þh0Φ0 þ ðn − 3ÞhΦ00Þ − εκnðn − 3ÞhΦ02

2ðn − 2Þð1 − εκnζcΦ2Þ ¼ 0; ð4:46Þ

�
h00 þ h2b00 − h02 þ kðn − 3Þ2

h
−
2εκnζcððn − 2ÞΦΦ0ðhb0 þ h0Þ − ðn − 3ÞhΦ02Þ

ðn − 2Þð1 − εκnζcΦ2Þ
�
δij ¼ 0; ð4:47Þ

Φ00 ¼ 0; ð4:48Þ

where a prime denotes the derivative with respect to ρ. In
these coordinates, the equation for the conformal scalar
field is easily integrated as

Φ ¼ Φ1ρþΦ0; ð4:49Þ

where Φ0 and Φ1 are integration constants. Hereafter, we
consider Φ1 ≠ 0 for avoiding a constant scalar field. As a
second advantage of the present coordinate system, one can
observe that Eq. (4.45) is a linear differential equation for

b0. Once b is determined, Eq. (4.46) is also linear for h.
Thus, Eq. (4.47) becomes an algebraic constraint for the
integration constants appearing in b and h. The fact we are
dealing with a set of linear differential equations allows us
to find the general solution. Additionally, since we are
considering a nonconstant scalar field, we can use the
scalar field as a coordinate by means of the substitution
ρ ¼ ðΦ −Φ0Þ=Φ1, so that the general solution can be
expressed in terms of Φ.
The integration of (4.45) is straightforwardly done as

b − b0 ¼

8>><
>>:

2b1tanh−1ð
ffiffiffiffiffiffiffiffiffi
κnζc

p
ΦÞ − ln ð1−κnζcΦ2Þ

n−2 ; ε ¼ 1; κnζcΦ2 < 1;

2b1coth−1ð
ffiffiffiffiffiffiffi
κnζ

p
ΦÞ − ln ðκnζcΦ2−1Þ

n−2 ; ε ¼ 1; κnζcΦ2 > 1;

2b1tan−1ð
ffiffiffiffiffiffiffiffiffi
κnζc

p
ΦÞ − ln ð1þκnζcΦ2Þ

n−2 ; ε ¼ −1;

ð4:50Þ

where b0, b1 are integration constants. Replacing (4.50) into (4.46) yields the linear equation

ð1 − εκnζcΦ2Þh00ðΦÞ þ 2εκnζcΦh0ðΦÞ − 2εκnζc

�
2εb21ðn − 2Þ2 − 2

ðn − 2Þ2ð1 − εκnζcΦ2Þ þ 1

�
hðΦÞ ¼ 0; ð4:51Þ

which leads to five different solutions according to ε and Φ, enumerated below with Roman numbers,

h ¼

8>>>>>><
>>>>>>:

ð1 − κnζcΦ2Þðh0e2
ffiffiffiffi
aþ

p
x< þ h1e−2

ffiffiffiffi
aþ

p
x<Þ; I∶ ε ¼ 1; κnζcΦ2 < 1;

ðκnζcΦ2 − 1Þðh0e2
ffiffiffiffi
aþ

p
x> þ h1e−2

ffiffiffiffi
aþ

p
x>Þ; II∶ ε ¼ 1; κnζcΦ2 > 1;

ð1þ κnζcΦ2Þðh0 cosh ð2 ffiffiffiffiffiffi
a−

p
yÞ þ h1 sinh ð2 ffiffiffiffiffiffi

a−
p

yÞÞ; III∶ ε ¼ −1; a− > 0;

ð1þ κnζcΦ2Þðh0 cos ð2 ffiffiffiffiffiffiffiffiffi−a−
p

yÞ þ h1 sin ð2 ffiffiffiffiffiffiffiffiffi−a−
p

yÞÞ; IV∶ ε ¼ −1; a− < 0;

ð1þ κnζcΦ2Þðh0 þ h1yÞ; V∶ ε ¼ −1; a− ¼ 0;

ð4:52Þ

where h0, h1 are integration constants and

x< ≔ tanh−1

 ffiffiffiffiffiffiffiffiffi

κnζc
p

Φ
�
; x> ≔ coth−1


 ffiffiffiffiffiffiffiffiffi
κnζc

p
Φ
�
;

y ≔ tan−1

 ffiffiffiffiffiffiffiffiffi

κnζc
p

Φ
�
; ð4:53Þ

with

a� ¼ ðn − 2Þ2b21 � ðn − 3Þðn − 1Þ
ðn − 2Þ2 : ð4:54Þ

Replacing (4.50) and (4.52) in (4.47), we obtain alge-
braic relations between the integration constants and the
curvature k of the Einstein space Kn−2,

I; II∶ 0 ¼ 16aþh0h1κnζcΦ2
1 þ kðn − 3Þ2;

III∶ 0 ¼ 4a−κnζcΦ2
1ðh20 − h21Þ þ kðn − 3Þ2;

IV∶ 0 ¼ 4a−κnζcΦ2
1ðh20 þ h21Þ þ kðn − 3Þ2;

V∶ 0 ¼ h21κnζcΦ2
1 − kðn − 3Þ2: ð4:55Þ

The above equations fix the amplitude of the constant Φ1

appearing in the scalar field in terms of the constants

CRISTIÁN MARTÍNEZ and MASATO NOZAWA PHYS. REV. D 103, 024003 (2021)

024003-20



appearing in the metric, b1, h0, and h1.
11 We note that

phantom solutions IVand Vexist only for k ¼ 1, while I, II,
and III allow k ¼ 0;�1.
To compare with the conformal transformations exhib-

ited in the previous sections, the general solution can be
written in the form

ds2 ¼ W−2=ðn−2Þ½−f0dt2 þ ½f−10 f−2ðn−2Þ1 �1=ðn−3Þ
× ðdx2 þ f21γijðzÞdzidzjÞ�; ð4:56Þ

≔ W−2=ðn−2Þds2E; ð4:57Þ

with

x¼
Z

W−1dρ; f0¼ exp½4b1
ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕ�; ϕ¼Φ1ðx−x0Þ;

ð4:58Þ

where the remaining functions W, Φ, and f1 are displayed
in Table IV.
Using the radial coordinate

R
f−21 dx and the identifica-

tions G ¼ f−21 and F−2 ¼ f0, we note that ds2E and ϕ
exhibited in the general solution correspond to the line
element and massless minimally coupled scalar field
obtained in Sec. II. Additionally, the conformal factor
and conformal scalar field displayed in Table IV match
those given for the conformal transformation previously
discussed in this section. Thus, the general solution
obtained by a direct integration of the field equations in
the Jordan frame is equivalent to the one achieved by a
conformal transformation applied to the general solution in
the Einstein frame. Table IV summarizes the correspon-
dence between both frames.

V. SUMMARY AND FUTURE PROSPECTS

In this paper, we have studied various aspects of the
n-dimensional static solutions sourced by a (non)phantom
scalar field. We have generalized the classification program
by Ellis [17] for the four-dimensional spherical case into

higher dimensions with the sphere part replaced by an
arbitrary Einstein space. We have found the generalized
Fisher solution (2.18) (valid for k ¼ 0;�1), the generalized
Ellis-Gibbons solution (2.24), the generalized Ellis-
Bronnikov solution (2.30) and the plane-symmetric sol-
ution (2.43). We have uncovered a unified description of
metrics (2.24) and (2.43) in the framework of the Gibbons
solutions. Since the nonphantom field only admits a Fisher
class, the diversity of solutions in this class of metrics is a
marvelous feature of a phantom field. We summarize the
results in Table (V).
After the encyclopedic enumeration of the solutions, we

have spelled out the physical properties of the solutions.
Our intriguing revelation is that the Fisher solution and the
Ellis-Gibbons solution enjoy naked p.p curvature singu-
larities in a parameter region where there are no scalar
curvature singularities. This leads us to conclude that these
geometries do not describe regular wormhole solutions.
What was curious to us is that the locus of these p.p
curvature singularities corresponds to the infinite areal
radius, but is reachable within a finite affine time for radial
null geodesics. From the present analysis, it is not certain to
us whether this peculiar behavior only occurs in a space-
time which violates energy conditions. Nevertheless, we
deduce that the existence of an area-diverging surface
which is achievable within a finite affine time is a strong
indication for the appearance of p.p curvature singularity.
To illustrate, let us consider the flat Friedman-Lemaître-
Robertson-Walker universe with a phantom equation of
state p ¼ wρ (−5=3 < w < −1), which admits this kind of
surface (F4a of Table 1 in [70]). One can easily show that
this surface corresponds to the p.p curvature singularity,
supporting positively our conjecture. Regardless of the
soundness for this speculation, an important lesson from
our results is that the areal radius is not a definitive measure
to examine the spacetime structure.
Only a wormhole candidate is therefore the Ellis-

Bronnikov solution, which we have investigated in detail
the throat structure. Since many of the past works have
been limited to the zero mass wormholes, it has not
been fully recognized that the throat does not always
correspond to the minimal radius and that the gluing
procedure is more sensitive in higher dimensions.
Nevertheless, we have clarified that the Ellis-Bronnikov

TABLE IV. General solution for a massless conformally coupled scalar field and correspondence between Jordan (J) and Einstein (E)
frames. Note that W−2=ðn−2Þ ¼ Ω2.

J W
ffiffiffiffiffiffiffiffiffi
κnζc

p
Φ f1 E

I 1 − κnζcΦ2 tanh ð ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ h0e

2
ffiffiffiffi
aþ

p ffiffiffiffiffiffiffi
κnζc

p
ϕ þ h1e

−2 ffiffiffiffiaþp ffiffiffiffiffiffiffi
κnζc

p
ϕ Fisher, branch 1

II κnζcΦ2 − 1 coth ð ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ h0e

2
ffiffiffiffi
aþ

p ffiffiffiffiffiffiffi
κnζc

p
ϕ þ h1e

−2 ffiffiffiffiaþp ffiffiffiffiffiffiffi
κnζc

p
ϕ Fisher, branch 2

III 1þ κnζcΦ2 tan ð ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ h0 cosh ð2 ffiffiffiffiffiffi

a−
p ffiffiffiffiffiffiffiffiffi

κnζc
p

ϕÞ þ h1 sinh ð2 ffiffiffiffiffiffi
a−

p ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ Phantom Fisher

IV 1þ κnζcΦ2 tan ð ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ h0 cos ð2 ffiffiffiffiffiffiffiffiffi−a−

p ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ þ h1 sin ð2 ffiffiffiffiffiffiffiffiffi−a−

p ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ Ellis-Bronnikov

V 1þ κnζcΦ2 tan ð ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕÞ h0 þ h1

ffiffiffiffiffiffiffiffiffi
κnζc

p
ϕ Ellis-Gibbons

11A rescaling of the t coordinate and the addition of a global
constant factor allow us to set b0 ¼ 0.
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solution with a nonvanishing mass also describes a genuine
wormhole with two-sided asymptotically flat regions. To
examine the stability for the Ellis-Bronnikov solution in
arbitrary dimensions by generalizing the work of [35,71] is
definitely an interesting subject to be studied in the future.
We also presented the classification of the static solutions

in the conformal frame. First, we introduced (by means of
two approaches, proved to be equivalent) a simple trans-
formation formula which allows us to obtain the solution
with a conformally coupled scalar field from the solution
with a massless scalar field. Second, we get the same results
by solving the field equations in the Jordan frame. As
shown in Table V, the system with a conformally coupled
scalar inherits a broader variety of solutions. The physical
and causal properties of these solutions will be an interest-
ing future work to be investigated. We also leave the full
classification of solutions in the Jordan frame where the
coupling constant ζ is arbitrary to a future study.
By taking the three families of solutions obtained in this

paper as a seed, it is possible to obtain charged solutions by
using the symmetry of the target space for the static system.
The (anti–)de Sitter generalization can also be done by
introducing the scalar potential. These issues are reported in
forthcoming papers [72,73]. It would also be of consid-
erable physical interest to construct rotating solutions along
the line of [74].
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APPENDIX: GEOMETRIC QUANTITIES

Suppose the n-dimensional spacetime to be a warped
product of an (n − 2)-dimensional Einstein space ðKn−2; γijÞ
and a two-dimensional spacetime ðM2; gABÞ. Namely, the
line element is given by

gμνdxμdxν ¼ gABðyÞdyAdyB þ S2ðyÞγijðzÞdzidzj; ðA1Þ

where A;B ¼ 0; 1; i; j ¼ 2;…; n − 1. Here S is a scalar on
ðM2; gABÞ and γij is the metric on the Einstein space Kn−2,
whose Ricci tensor is normalized as ðγÞRij ¼ ðn − 3Þkγij,
with k ¼ �1, 0. The nonvanishing components of the Levi-
Civita connections are

ΓA
BC ¼ ð2ÞΓA

BCðyÞ; Γi
jk ¼ Γ̂i

jkðzÞ;

ΓA
jk ¼ −SðDASÞγjk; Γi

jA ¼ DAS
S

δij; ðA2Þ

where the superscript (2) denotes the two-dimensional
quantity andDA is the two-dimensional covariant derivative
compatible with gAB. The nonvanishing components of the
Riemann tensors are

RA
BCD ¼ ð2ÞRA

BCD; ðA3aÞ

RA
iBj ¼ −SðDADBSÞγij; ðA3bÞ

Ri
jkl ¼ ðγÞRi

jkl − ðDSÞ2ðδikγjl − δilγjkÞ; ðA3cÞ

where ðDSÞ2 ≔ ðDASÞðDASÞ and ðγÞRi
jkl is the Riemann

tensor constructed out of γij. The Ricci tensor and the Ricci
scalar are given by

RAB ¼ ð2ÞRAB − ðn − 2ÞDADBS
S

; ðA4aÞ

Rij ¼ f−SD2Sþ ðn − 3Þ½k − ðDSÞ2�gγij; ðA4bÞ

R ¼ ð2ÞR − 2ðn − 2ÞD
2S
S

þ ðn − 2Þðn − 3Þ k − ðDSÞ2
S2

;

ðA4cÞ

where D2S ≔ DADAS and ðγÞRij ¼ ðn − 3Þkγij was used.
The Kretschmann scalar K ≔ RμνρσRμνρσ is

TABLE V. A complete list of static solutions with pseudospherical symmetry.

Frame Scalar k ¼ 1 k ¼ −1 k ¼ 0

Einstein
Nonphantom Fisher (2.18)
Phantom Fisher (2.18), Ellis-Gibbons (2.24),

Ellis-Bronnikov (2.30)
Fisher (2.18) Fisher (2.18),

Gibbons (2.43)

Conformal
Nonphantom Fisher (4.30), (4.33)
Phantom Fisher (4.35), Ellis-Gibbons (4.37),

Ellis-Bronnikov (4.40)
Fisher (4.35) Fisher (4.35),

Gibbons (4.37)
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K ¼ ð2ÞR2 þ 4ðn − 2Þ ðDADBSÞðDADBSÞ
S2

þ 2ðn − 2Þðn − 3Þ ðk − ðDSÞ2Þ2
S4

þ 1

S4
½ðγÞRijkl

ðγÞRijkl − 2k2ðn − 2Þðn − 3Þ�: ðA5Þ

When γij is a metric of a constant curvature space, we have
ðγÞRijkl ¼ 2kγi½kγl�j, implying that the last term in (A5)
drops off.
The Weyl tensor is given by (see e.g., [75])

CABCD ¼ n − 3

n − 1
WgA½CgD�B; ðA6aÞ

CAiBj ¼ −
n − 3

2ðn − 1Þðn − 2ÞWgABS2γij; ðA6bÞ

Cijkl ¼ ðγÞCijklS2 þ
2W

ðn − 1Þðn − 2Þ S
4γi½kγj�l; ðA6cÞ

where

W ≔ ð2ÞRþ 2
D2S
S

þ 2
k − ðDSÞ2

S2
: ðA7Þ

The Weyl square C2 ≔ CμνρσCμνρσ reads

C2 ¼ 1

S4
ðγÞCijkl

ðγÞCijkl þ n − 3

n − 1
W2: ðA8Þ

When γij is a metric of a constant curvature space, the first
term of the right-hand side of this equation vanishes.
In the main text, we meet static spacetimes with the

following form:

ds2 ¼ −f1ðrÞdt2 þ f2ðrÞdr2 þ S2ðrÞγijðzÞdzidzj; ðA9Þ

where f1 and f2 are functions only of r. Then, the tangent
vector kμ for an affinely parametrized outgoing radial null
geodesics is given by

kμ ¼ 1

f1ðrÞ
� ∂
∂t
�

μ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrÞf2ðrÞ

p � ∂
∂r
�

μ

; kν∇νkμ ¼ 0:

ðA10Þ

One can thus constitute the pseudo-orthonormal frame,

gμν ¼ −2kðμnνÞ þ δî ĵE
î
μEĵ

ν; ðA11Þ

by

nμ ¼ 1

2

� ∂
∂t
�

μ

−
ffiffiffiffiffiffiffiffiffiffiffi
f1ðrÞ

p
2
ffiffiffiffiffiffiffiffiffiffiffi
f2ðrÞ

p � ∂
∂r
�

μ

; Eî
μ ¼ 1

SðrÞeî
i

� ∂
∂zi
�

μ

;

γij¼ δî ĵeî
ieĵ

j; ðA12Þ

where î; ĵ ¼ 1;…; n − 2. It is elementary to verify that
these bases are parallelly propagated along kμ:

kν∇νnμ ¼ kν∇νEî
μ ¼ 0: ðA13Þ

In this frame, the components of the Riemann tensor
relevant to the p.p curvature singularity are

RμνρσkμEî
νkρEĵ

σ ¼−S−1kAkBðDADBSÞδî ĵ
¼ f2f01S

0 þf1f02S
0−2f1f2S00

2f21f
2
2S

δî ĵ; ðA14Þ

RμνρσkμEî
νnρEĵ

σ ¼−S−1kAnBðDADBSÞδî ĵ
¼ f2f01S

0−f1f02S
0 þ2f1f2S00

4f1f22S
δî ĵ; ðA15Þ

where the prime denotes the partial differentiation with
respect to r. The trace of (A14) is tantamount to

Rμνkμkν ¼ −ðn − 2ÞS−1kAkBDADBS: ðA16Þ

The divergence of the Riemann tensor component
RμνρσkμEî

νkρEĵ
σ in the pseudospherical symmetric case

therefore implies the strong curvature singularity in the
sense of [76,77].
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