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We propose a covariant entropy bound in gravitational theories beyond general relativity (GR), using
Wald entropy or its extension instead of Bekenstein-Hawking entropy. We first extend the proof of the
bound known in four-dimensional GR to D-dimensional GR, fðRÞ gravity, and canonical scalar-tensor
theory. We then consider Einstein-Gauss-Bonnet (EGB) gravity as a more nontrivial example and, under a
set of reasonable assumptions, prove the bound in the GR branch of spherically symmetric configurations.
As a corollary, it is shown that under the null and dominant energy conditions, the generalized second law
holds in the GR branch of spherically symmetric configurations of EGB gravity at the fully nonlinear level.
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I. INTRODUCTION

Holography is a universal property of gravity that is
expected to hold in a wide class of theories. It states that all
information of a D-dimensional gravitational theory can be
mapped to a (D − 1)-dimensional nongravitational theory.
As a precursor of holography, Bekenstein [1] proposed that
a black hole should have entropy proportional to the area of
the horizon, based on earlier works uncovering the non-
decreasing property of the horizon area [2–4]. Bekenstein
further claimed that the sum of the black hole entropy and
the entropy of matter outside the horizon should not
decrease. This statement is what is known as the general-
ized second law (GSL). The recognition of thermodynamic
properties of black holes was then strengthened by Bardeen
et al. [5], who formulated the four laws of black hole
thermodynamics, and by Hawking [6], who discovered
quantum particle creation by black holes, known as
Hawking radiation. In particular, the proportionality coef-
ficient between the black hole entropy and the horizon area
was fixed to 1=4 in the Planck unit through the temperature
of Hawking radiation. For these reasons, the black hole
entropy is often called Bekenstein-Hawking entropy.
Bekenstein later [7] claimed that the validity of GSL

requires a universal upper bound on the entropy-to-energy
ratio S=E of a gravitationally stable, thermodynamic
system of matter,

S=E≲ 2πR; ð1Þ

where R is the area radius of a sphere surrounding the
system. The argument leading to this inequality is based on
a gedanken experiment in which a matter system is thrown
to a black hole and the assumption that GSL holds. The
bound (1) is called the Bekenstein bound.
The Bekenstein bound is known to hold in many (if not

all) weakly gravitating systems. However, the original
“derivation” of the bound was questioned by Unruh and
Wald [8,9], who argued that the bound is not needed for the
validity of GSL if the buoyancy force due to the thermal
atmosphere near the black hole horizon is taken into
account. (See also Refs. [10,11] for extension to charged
and rotating black holes.) Hence, the logic of the derivation
is still open to discussion. Nonetheless, the bound (1) itself
holds for weakly gravitating systems in the nature.
Furthermore, Casini [12] proved a version of the
Bekenstein bound, using the non-negativity of the relative
entropy. He took a region V on a Cauchy surface and
showed that the von Neumann entropy SV [defined by
SVðσÞ ¼ −Trðσ ln σÞ] and the modular Hamiltonian K
(defined by ρ0V ¼ e−K=Tre−K) satisfy the following
inequality for an arbitrary quantum system,

SVðρVÞ − SVðρ0VÞ ≤ TrðKρVÞ − TrðKρ0VÞ; ð2Þ

where ρ0V ≡ Tr−V ρ0 and ρV ≡ Tr−V ρ are the reduced
density matrices for the vacuum ρ0 and for an arbitrary
quantum state ρ, respectively. Here, Tr−V represents the
partial trace over the states on the complementary set
of V on the Cauchy surface. The left-hand side of (2)
is the increase of the entanglement entropy due to
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excitations encoded in the quantum state ρ and thus may be
interpreted as S in (1). On the other hand, the right-
hand side of (2) is to be interpreted as 2πRE. For example,
if V is chosen to be a half a spatial plane (z > 0) in a
four-dimensional Minkowski spacetime, then K ¼R
dxdy

R∞
0 dz2πzHð0; x; y; zÞ, where ðt; x; y; zÞ is the

Minkowski coordinate system and Hðt; x; y; zÞ is the
Hamiltonian density. (Here, 2πz in the integrand is
the inverse of the local Rindler temperature so that ρ0V is
equivalent to a thermal state with the Rindler temperature.)
Hence, as far as the excitations encoded in ρ have a finite
support along the þz direction, the right-hand side
of (2) may be interpreted as 2π times the product of
the energy and the size. In this sense, the inequality (2)
proved by Casini may be interpreted as a version of the
Bekenstein bound.
While the Bekenstein bound was originally “derived”

through a gedanken experiment including a strongly
gravitating system, i.e., a black hole, the bound itself does
not depend on the gravitational constant and holds in nearly
flat spacetimes, irrespectively of the nature of gravity. In
strongly curved spacetimes, on the other hand, it is not
obvious how to define E and R. It is nonetheless interesting
to speculate how to extend the bound to curved spacetimes.
In general relativity (GR), 2πER for a spherically sym-
metric system is bounded from above by A=4 in the Planck
unit, where A is the area enclosing the system, and thus the
Bekenstein bound would imply

S ≤
A
4
: ð3Þ

This inequality itself is not well defined in curved space-
times: for example, the area A depends on the time slicing
and can be made arbitrarily small by taking an almost
lightlike slice. The speculated inequality (3) is nonetheless
suggestive as it would state that the entropy of a system
surrounded by the area A would be bounded from above by
the entropy of a black hole with the same area A, i.e., that
the state with maximal entropy is a black hole. This is
consistent with the fact that gravitational collapse leads to a
formation of a black hole and the expectation that the
entropy of a system (with or without a black hole) should
not decrease.
The most well-known candidate for a covariant version

of (3) is the one proposed by Bousso [13], called the
covariant entropy bound or Bousso bound. The Bousso
bound is formulated in arbitrary curved spacetimes and
respects the general covariance. The statement of the
conjectured bound is as follows. Let AðBÞ be the area of
a connected (D − 2)-dimensional spatial surface B in a D-
dimensional spacetime. There are four null congruences
projecting away from B. Let L be a null hypersurface
bounded by B and generated by one of the four null
congruences orthogonal to B. Let SL be the entropy passing

through L. If the expansion of the congruence is non-
positive at every point on L, then L is called a light sheet. It
is conjecture that SL for a light sheet will not exceed a
quarter of AðBÞ in the Planck unit:

SL ≤
AðBÞ
4

: ð4Þ

Bousso conjectured that this inequality holds not only for
thermodynamic systems sufficiently smaller than the cur-
vature radius but also for large regions of the spacetime.
This entropy bound can be interpreted as a formulation of
the holographic principle in general spacetime.
Flanagan et al. [14] then showed two proofs of the

Bousso bound, supposing that matter is approximated by
fluids, under two different sets of assumptions. They also
extended the setup so that the light sheet can be terminated
at another connected (D − 2)-dimensional spatial surface
B0 and suggested the stronger bound,

SL ≤
AðBÞ − AðB0Þ

4
; ð5Þ

where AðB0Þ is the area of B0. In the present paper, we
consider this version of the Bousso bound.
As explained above, the Bekenstein bound is indepen-

dent of details of gravitational theories but holds only for
weakly gravitating systems. On the other hand, Bousso’s
covariant entropy bound is applicable to strongly gravitat-
ing systems but specialized in GR. One might therefore
expect that different gravitational theories should have
different covariant entropy bounds in principle. Given
the necessity of modification of GR at short distances
toward the quantum gravity theory and many attempts of
infrared modification of GR with the hope to address the
mysteries of the Universe such as the accelerated expan-
sion, it is important to investigate whether and how far it is
possible to extend the covariant entropy bound to different
gravitational theories. The purpose of the present paper is to
initiate this rather general program, focusing particularly on
fðRÞ gravity, canonical scalar-tensor theory, and Lovelock
gravity.
The rest of the present paper is organized as follows. In

Sec. II, we extend the previously known proof of the
covariant entropy bound in four-dimensional GR to D-
dimensional GR. We also reconsider and clarify motivations
of the key assumptions in the proof. In Sec. III, we propose an
extension of the covariant entropy bound to gravitational
theories beyond GR. As simple examples, in Sec. IV, we
prove the generalized covariant entropy bound in fðRÞ
gravity and canonical scalar-tensor theory in a thermody-
namic limit, usingWald entropy. In Sec. V, we then consider
Lovelock gravity, employing Jacobson-Myers entropy.
Under a set of reasonable assumptions, we prove the bound
in the thermodynamic limit for the GR branch of spherical
symmetric configurations in Einstein-Gauss-Bonnet gravity.
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As a corollary of the proof, we then show that in the GR
branch of Einstein-Gauss-Bonnet gravity under the null and
dominant energy conditions, the generalized second law
holds for spherical symmetric configurations at the fully
nonlinear level. Section VI is devoted to a summary of the
paper and some discussions.

II. PROOF IN D-DIMENSIONAL GR

In four-dimensional GR, the Bousso bound (5) in a
thermodynamic limit was proved by Flanagan et al. [14]
under two different sets of assumptions. Bousso et al. [15]
(see also Ref. [16]) then refined the proof by employing a
slightly different set of assumptions. In this section, we
extend the latter proof to a D-dimensional spacetime.

A. Setup

In a D-dimensional spacetime, let L be a light sheet
generated by a nonexpanding congruence of null geodesics
from a connected (D − 2)-dimensional spatial surface B
and terminated on another connected (D − 2)-dimensional
spatial surface B0. We choose the affine parameter λ on each
null geodesic so that 0 ≤ λ ≤ 1 on L, that λ ¼ 0 on B, and
that λ ¼ 1 on B0. Let x ¼ ðx1;…; xD−2Þ be a coordinate
system on B and hðxÞ be the determinant of the induced
metric on B. We can then promote ðx; λÞ to a coordinate
system on L by extending x to everywhere on L so that all
points on each null geodesic share the same values
of ðx1;…; xD−2Þ.
We then define a null vector kaðx; λÞ on L as

ka ¼ �ð∂=∂λÞa, where the sign � is chosen so that ka

is future directed, i.e., þ (or −, respectively) if L is future
(or past) directed. We also define a functionAðx; λÞ on L as

Aðx; λÞ≡ exp

�Z
λ

0

dλ̃θðx; λ̃Þ
�
; ð6Þ

where θðx; λÞ is the expansion of the null geodesic
congruence, i.e., θ≡∇að∂=∂λÞa. The integral of a function
fðx; λÞ on L can then be split into an integral over the
interval 0 ≤ λ ≤ 1 and an integral on B as

Z
L
f ¼

Z
B
dD−2x

ffiffiffiffiffiffiffiffiffi
hðxÞ

p Z
1

0

dλfðx; λÞAðx; λÞ; ð7Þ

and the difference between the areas of B and B0 is
expressed as

AðBÞ − AðB0Þ ¼
Z
B
dD−2x

ffiffiffiffiffiffiffiffiffi
hðxÞ

p
½Aðx; 0Þ −Aðx; 1Þ�: ð8Þ

In a thermodynamic limit, the matter system admits an
entropy flux D-vector sa. We then define a function sðx; λÞ
on L as

s≡ −kasajL; ð9Þ

so that the entropy passing through L is expressed as

SL ¼
Z
B
dD−2x

ffiffiffiffiffiffiffiffiffi
hðxÞ

p Z
1

0

dλsðx; λÞAðx; λÞ: ð10Þ

B. Proof

Bousso et al. [15] (see also Ref. [16]) made the following
two assumptions in four dimensions,

ðiÞ s0ðx; λÞ ≤ 2πT ðx; λÞ; T ≡ Tabkakb;

ðiiÞ sðx; 0Þ ≤ −
1

4
A0ðx; 0Þ ¼ −

1

4
θðx; 0Þ; ð11Þ

where a prime denotes derivative with respect to λ and Tab
is the stress-energy tensor. Physical meaning and justifi-
cation of these assumptions will be discussed in Secs. II C
and II D.1 In the following, we shall employ the same
assumptions and prove the Bousso bound inD dimensions.
By assumption (i), we have

sðx; λÞ ¼
Z

λ

0

dλ̃s0ðx; λ̃Þ þ sðx; 0Þ

≤ 2π

Z
λ

0

dλ̃T ðx; λ̃Þ þ sðx; 0Þ: ð12Þ

The Raychaudhuri equation combined with the Einstein
equation implies that

T ¼ −
D − 2

8π

G00

G
−

1

8π
σabσ

ab ≤ −
D − 2

8π

G00

G
; ð13Þ

where σab is the shear of the null geodesic congruence and
we have defined

Gðx; λÞ≡ ½Aðx; λÞ� 1
D−2: ð14Þ

Hence, we have

sðx; λÞ ≤ 2π

Z
λ

0

dλ̃

�
−
D − 2

8π

G00ðx; λ̄Þ
Gðx; λ̄Þ

�
þ sðx; 0Þ

¼ D − 2

4

�
G0ðx; 0Þ
Gðx; 0Þ −

G0ðx; λÞ
Gðx; λÞ

�

−
D − 2

4

Z
λ

0

dλ̃

�
G0ðx; λ̃Þ
Gðx; λ̃Þ

�
2

þ sðx; 0Þ: ð15Þ

By using the assumption (ii) and Gðx; 0Þ ¼ Aðx; 0Þ ¼ 1,
we thus have

1See Ref. [17] and references therein for discussions about
related inequalities known as the quantum null energy condition
and the quantum focusing conjecture.
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sðx; λÞ ≤ −
D − 2

4

G0ðx; λÞ
Gðx; λÞ −

D − 2

4

Z
λ

0

dλ̃

�
G0ðx; λ̃Þ
Gðx; λ̃Þ

�
2

≤ −
D − 2

4

G0ðx; λÞ
Gðx; λÞ ¼ −

1

4

A0ðx; λÞ
Aðx; λÞ : ð16Þ

Integrating this inequality over L, we obtain the Bousso
bound (5).

C. Motivation of assumption (i)

As already argued by Bousso et al. [15] (see also
Ref. [16]), assumption (i) in (11) simply requires that
the rate of change of the entropy flux is less than the energy
flux. For this reason, it is expected that assumption
(i) should hold as far as the thermodynamic approximation
is valid.
The assumption (i) can also be considered as a conse-

quence of a version of Bekenstein bound. Let us consider a
subspace ΔB of B and an interval ½λ1; λ2� (⊂½0; 1�) that are
sufficiently smaller than the curvature radius. Suppose that
a version of Bekenstein bound of the following form holds
for the subspace ΔL≡ fðx; λÞjx ∈ ΔB; λ ∈ ½λ1; λ2�g of L,Z

ΔB
dD−2x

ffiffiffiffiffiffiffiffiffi
hðxÞ

p Z
λ2

λ1

dλAðx; λÞ

× ½sðx; λÞ − sðx; λ1Þ − 2πðλ − λ1ÞT ðx; λÞ� ≤ 0; ð17Þ

which is similar2 to the version of Bekenstein bound proved
by Casini [see (2) and the discussion after that]. This holds
for various choices of ΔB and ½λ1; λ2� if and only if

sðx; λÞ − sðx; λ1Þ ≤ 2πðλ − λ1ÞT ðx; λÞ: ð18Þ

From this, we obtain assumption (i) in the limit λ − λ1 → 0.

D. Motivation of assumption (ii)

Assumption (ii) in (11) is just to prevent the Bousso
bound (5) from being violated infinitesimally at the
beginning of L and thus is mandatory.
Moreover, if we consider B in a sufficiently flat region of

spacetime, then assumption (ii) follows from Bekenstein
bound. For simplicity, let us consider an approximately
Minkowski spacetime region with the radial coordinate r
and the time coordinate t, and suppose that B is a sphere of
radius r ¼ r0 at time t ¼ t0. Let us then consider a future-
directed light sheet L and another connected (D − 2)-
dimensional spatial surface B̃ on L at λ ¼ δλ, r ¼ r̃0,
and t ¼ t̃0. While L is by definition generated by a
congruence of future-directed ingoing null geodesics, we

also consider the congruence of future-directed outgoing
null geodesics from B and call the intersection of t ¼ t̃0 and
the latter congruence B̄. Obviously, the radius of B̄ is
r̄0 ¼ r0 þ δr, where δr ¼ r0 − r̃0 (>0). We call the region
between B̃ and B̄ on the t ¼ t̃0 hypersurface δΣ. The
entropy passing through the portion δL of L between B and
B̃ is

δS ¼
Z
B
dD−2x

ffiffiffiffiffiffiffiffiffi
hðxÞ

p Z
δλ

0

dλsðx; λÞAðx; λÞ: ð19Þ

Assuming the dominant energy condition, the entropy flux
passing through the portion δL inevitably passes δΣ, and
thus the second law of thermodynamics states that

δS ≤ δS̃; ð20Þ

where δS̃ is the entropy contained in δΣ. We now divide δΣ
into small pieces with sizes of order 2δr (the distance
between B̃ and B̄), apply Bekenstein bound to each
piece, and then consider the total sum. Demanding
that the total energy in δΣ be not exceeding the
mass ðD − 2ÞaD−2r̄D−3

0 =ð16πÞ of a spherically symmetric
black hole with the area radius r̄0, where aD−2 ¼
ðD − 1ÞπD−1

2 =ΓððDþ 1Þ=2Þ is the surface area of the unit
(D − 2)-sphere, we obtain

δS̃ ≤ 2π · 2δr ·
D − 2

16π
aD−2rD−3

0 þOðδr2Þ

¼ 1

4

Z
B
dD−2x

ffiffiffiffiffiffiffiffiffi
hðxÞ

p
½Aðx; 0Þ −Aðx; δλÞ� þOðδr2Þ:

ð21Þ

Combining (19)–(21) and taking the limit δλ → 0, we obtain
assumption (ii).
For a past-directed light sheet L, we consider the

congruence of future-directed ingoing null geodesics from
B̃, consider B̄ as the intersection of such a congruence with
the t ¼ t0 hypersurface, and consider δΣ as the region
between B and B̄ on the t ¼ t0 hypersurface. Then, from
Bekenstein bound applied to pieces of δΣ and the second
law of thermodynamics, we again deduce assumption (ii).

III. EXTENSION TO GRAVITY BEYOND GR

GR is a neither unique nor complete theory of gravity but
an effective theory valid in a certain range of scales. At
extremely short or/and long distances, GR may break
down, and extra degrees of freedom or/and additional
terms in the gravity action may kick in. On the other hand,
holography is expected to be a universal property of gravity
that holds in various theories. It is therefore natural to ask
whether the covariant entropy bound can be extended to
theories of gravity beyond GR.

2Here, we consider the difference sðx; λÞ − sðx; λ1Þ instead of
sðx; λÞ itself. Otherwise, the bound in the limit λ − λ1 → 0 would
require sðx; λ2Þ ≤ 0. In Casini’s proof, on the other hand, the
difference between the state of interest and the vacuum is
considered.
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As explained in Introduction, the covariant entropy
bound (4) or its refined version (5) is a covariant and
precise version of the statement that the entropy of a system
surrounded by an area A should be bounded from above by
the entropy of a black hole with the same area A. Indeed,
the right-hand side of (4) is the black hole entropy in GR,
and that of (5) is difference between the black hole entropy
corresponding to the final and initial states. In gravitational
theories beyond GR in D dimensions, if there is a formula
of black hole entropy that can be formally applied to not
only black hole horizons but also other connected (D − 2)-
dimensional spatial surfaces, it is rather natural to con-
jecture that the entropy SL passing through a light sheet L,
suitably generalized as explained below, should satisfy

SL ≤ SbhðBÞ − SbhðB0Þ; ð22Þ

where B is the connected (D − 2)-dimensional spatial
surface from which L is generated, B0 is another connected
(D − 2)-dimensional spatial surface at which L is termi-
nated, and SbhðBÞ [and SbhðB0Þ] is the formula of black hole
entropy applied to B (and B0, respectively). We call this
inequality a generalized covariant entropy bound for a
generalized light sheet L defined below.
Since the left-hand side of (22) is non-negative, a

generalized light sheet should be defined so that the
right-hand side is always non-negative. This suggests the
following definition of a generalized light sheet in gravi-
tational theories beyond GR. Let us consider a congruence
of null geodesics from a connected (D − 2)-dimensional
spatial surface B and terminated at another connected
(D − 2)-dimensional spatial surface B0. We assume that
there is no singularity or caustics of the congruence of null
geodesics between B and B0. Again, without loss of
generality, we normalize the affine parameter λ on each
geodesic so that λ ¼ 0 on B and that λ ¼ 1 on B0. We then
introduce a coordinate system x ¼ ðx1;…; xD−2Þ on B and
promote ðx; λÞ to a coordinate system on the null hyper-
surface between B and B0 by extending x along each
geodesic so that all points on each null geodesic share the
same values of ðx1;…; xD−2Þ. This naturally defines a one-
parameter family of connected (D − 2)-dimensional spatial
surfaces BðλÞ parametrized by λ [with Bð0Þ ¼ B and
Bð1Þ ¼ B0], and x can be considered as a coordinate system
on each BðλÞ. Suppose that there is a well-defined formula
of black hole entropy that can be formally applied to BðλÞ
(0 ≤ λ ≤ 1) and that it is of the form

SbhðBðλÞÞ ¼
Z
BðλÞ

dD−2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx; λÞ

p
sbhðx; λÞ; ð23Þ

where hðx; λÞ is the determinant of the induced metric on
BðλÞ and sbhðx; λÞ is a function on BðλÞ. [In GR,
sbhðx; λÞ ¼ 1=4.] We then define a generalized expansion
Θðx; λÞ as

Θðx; λÞ≡ ∂
∂λ ln ½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx; λÞ

p
sbhðx; λÞ�: ð24Þ

If Θðx; λÞ ≤ 0 for ∀x and 0 ≤ ∀λ ≤ 1, then we call the null
hypersurface between B and B0 generated by the congru-
ence of null geodesics a generalized light sheet.
For later convenience, we define a null vector kaðx; λÞ on

a generalized light sheet L as ka ¼ �ð∂=∂λÞa, where the
sign � is chosen so that ka is future directed, i.e., þ (or −,
respectively) if L is future (or past) directed.
Therefore, for a given formula of black hole entropy in a

gravitational theory of interest, if the formula is applicable
to any connected (D − 2)-dimensional spatial surfaces,
then one can define the generalized light sheet in terms
of the generalized expansion (24) and then formulate the
generalized covariant entropy bound (22). This is a rather
general program. However, a well-defined formula of black
hole entropy that can be formally applied to connected
(D − 2)-dimensional spatial surfaces away from a black
hole horizon is not always available for gravitational
theories beyond GR. In the present paper, we shall only
consider fðRÞ gravity, canonical scalar-tensor theory, and
Lovelock gravity. We expect that there should be other
theories of gravity for which the generalized covariant
entropy bound can be formulated, but exploring such
possibilities is beyond the scope of the present paper,
and we shall focus on the three types of theories only.

IV. SIMPLE EXAMPLES

In this section, we consider fðRÞ gravity and a canonical
scalar-tensor theory as simple examples to illustrate the
idea of the generalized covariant entropy bound proposed
in the previous section.

A. Wald entropy

As proposed in the previous section, in order to for-
mulate the generalized covariant entropy bound in a
gravitational theory beyond GR, we need to specify a
definition of black hole entropy. In this section, we shall
adopt Wald entropy, which is defined as a Noether charge
[18] and written as [19]

SbhðHÞ ¼ −2π
Z
H
dD−2x

ffiffiffi
h

p
Eabcd
R ϵabϵcd; ð25Þ

whereH is the bifurcation surface of a Killing horizon, h is
the determinant of the induced metric on H, Eabcd

R is the
functional derivative of the gravitational action with respect
to the Riemann tensor Rabcd with the metric and the
connection held fixed, and ϵab is the binormal to H. In
this section, we apply this formula not only toH but also to
the family of connected spatial (D − 2) surfaces BðλÞ
introduced in the previous section. This corresponds to
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sbh ¼ −2πEabcd
R ϵabϵcd: ð26Þ

In this section, we shall adopt this choice of sbh for fðRÞ
gravity and a canonical scalar-tensor theory.

B. f(R) gravity

For fðRÞ gravity described by the action

If ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p
fðRÞ; ð27Þ

we have

sbh ¼
1

4
f0ðRÞ: ð28Þ

Throughout this section, we assume that

f0ðRÞ > 0; ð29Þ

in order to ensure that tensorial gravitational waves have a
kinetic term with a positive coefficient. The generalized
expansion is then given by (24) with (28).
We shall rewrite the generalized covariant entropy

bound (22) with (23) and (28) in a way that can be easily
proved. For this purpose, we note that the action (27) is
equivalent to

Ĩf ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p ½f0ðφÞRþ fðφÞ − φf0ðφÞ�; ð30Þ

provided that f00ðRÞ ≠ 0.3 On introducing the metric in
Einstein frame gEab and redefining the scalar field as

gEab ≡ ½f0ðφÞ� 2
D−2gab; ϕ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 1Þ
D − 2

r
ln f0ðφÞ; ð31Þ

the equivalent action (30) is rewritten as

Ĩf ¼
Z

dDx
ffiffiffiffiffiffiffiffi
−gE

p �
RE

16π
−
1

2
gabE ∂aϕ∂bϕ − VðϕÞ

�
; ð32Þ

where

VðϕÞ≡ 1

½f0ðφÞ� D
D−2

ðφf0ðφÞ − fðφÞÞ: ð33Þ

The equivalent action (32) written in terms of gEμν is nothing
but the Einstein-Hilbert action coupled to the canonical
scalar field ϕwith the potential VðϕÞ. Therefore, black hole
entropy in the Einstein frame is given by the Bekenstein-
Hawking formula as

SEbhðBðλÞÞ ¼
1

4

Z
BðλÞ

dD−2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hEðx; λÞ

q
; ð34Þ

where hEðx; λÞ is the determinant of the induced metric on
BðλÞ in the Einstein frame.
Null geodesics are mapped to null geodesics by the

conformal transformation. However, the affine parameter λ
in the original frame is not an affine parameter in the
Einstein frame in general. We thus introduce the affine
parameter λE in the Einstein frame as

λE ¼ 1

N ðxÞ
Z

λ

0

½fRðx; λ0Þ� 2
D−2dλ0; ð35Þ

where

N ðxÞ ¼
Z

1

0

½fRðx; λ0Þ� 2
D−2dλ0; ð36Þ

and fRðx; λÞ is the value of f0ðφÞ ¼ f0ðRÞ at ðx; λÞ on L, so
that 0 ≤ λE ≤ 1 on L, that λE ¼ 0 on B, and that λE ¼ 1 on
B0. Correspondingly, we introduce the null generator kaE of
L in the Einstein frame as

kaE ≡N ðxÞ½fRðx; λÞ�− 2
D−2ka: ð37Þ

From the relation between gEab and gab in (31), it is
obvious that hEðx; λÞ ¼ hðx; λÞ · ½fRðx; λÞ�2. Since the
equation of motion for φ implies φ ¼ R, Bekenstein-
Hawking entropy in the Einstein frame (34) agrees with
Wald entropy in the original frame, i.e., Eq. (23) with
Eq. (28). Also, the expansion in the Einstein frame θE is
related to the generalized expansion in the original frame,
Eq. (24) with Eq. (28), as

θE ¼ ∂
∂λE ln

ffiffiffiffiffi
hE

p
¼ N ðxÞ½fRðx; λÞ�− 2

D−2Θ: ð38Þ

Hence, θE and Θ have the same sign, meaning that the
definition of a light sheet in Einstein frame agrees with that
of a generalized light sheet in the original frame.
Therefore, the generalized covariant entropy bound (22)

with (23) and (28) holds if quantities in the Einstein frame
satisfy the assumptions (i) and (ii) in (11), i.e.,

ði-fÞ ∂sE
∂λE ðx; λ

EÞ ≤ 2πT Eðx; λEÞ;

ðii-fÞ sEðx; 0Þ ≤ −
1

4
θEðx; 0Þ; ð39Þ

where sE is the entropy density in Einstein frame,
T E ≡ ðTE

ab þ ∂aϕ∂bϕÞkaEkbE, and TE
ab is the stress-energy

tensor of matter in the Einstein frame. It is straightforward
to rewrite (i-f) and (ii-f) in (39) in terms of quantities in the
original frame. Since the entropy SL is invariant under

3If f00ðRÞ ¼ 0, then fðRÞ is linear in R, and the theory is
reduced to GR.
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frame transformations, we have
ffiffiffiffiffi
hE

p
sEdλE ¼ ffiffiffi

h
p

sdλ and
thus s ¼ sE½fRðx; λÞ� D

D−2=N ðxÞ. The definition of stress-
energy tensors and the relation between gEab and gab in (31)
imply that Tab ¼ TE

abf
0ðRÞ, where Tab is the stress-energy

tensor of matter in the original frame. Therefore, the
condition (i-f) in (39) is rewritten as

ði-fÞ ∂s
∂λ ðx; λÞ ≤ 2πT ðx; λÞ þ Δfðx; λÞ; ð40Þ

where T ≡ Tabkakb and

Δf ≡ 2πfRðx; λÞðka∂aϕÞ2 þ
D

D − 2
s
∂
∂λ ln fRðx; λÞ: ð41Þ

The first term in Δf is always non-negative. For the
estimate of the second term in Δf, we note that we are
working in a thermodynamic limit and thus assuming a
local equilibrium, which means that the system admits the
notion of local temperature T loc and that the rates of change
of relevant physical quantities are less than T loc. In this
situation, the second term in Δf is estimated to be much
smaller than sT loc. Also, in local equilibrium, both sT loc

and T are expected to be of order T4
loc. We thus conclude

that the second term in Δf is much smaller than 2πT ðx; λÞ
as far as the rate of change of ln fRðx; λÞ is much less than
the local temperature of the system as required by the local
equilibrium. In this case, the condition (i-f) holds if
quantities in the original frame satisfy the condition
(i) in (11), i.e., if

ði-fÞ0 ∂s
∂λ ðx; λÞ ≤ 2πT ðx; λÞ: ð42Þ

On the other hand, the condition (ii-f) in (39) is rewritten as

ðii-fÞ sðx; 0Þ ≤ −sbhðx; 0ÞΘðx; 0Þ: ð43Þ

By applying the argument in Sec. II D to the system in
Einstein frame, one can motivate the condition (ii-f) in the
form of (39). One can also extend the argument in Sec. II D
so that it can be directly applied to the system in the original
frame for constant or slowly varying f0ðRÞ to motivate the
condition (ii-f) in the form of (43) by noting that the
effective gravitational constant in this case is inversely
proportional to f0ðRÞ and thus that the upper bound on the
energy inside a sphere of a given radius is proportional
to f0ðRÞ.

C. Canonical scalar-tensor theory

The action of a canonical scalar-tensor theory is

Ist ¼
1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p �
FðφÞR −

1

2
gμν∂μφ∂νφ − UðφÞ

�
;

ð44Þ

for which we have

sbh ¼
1

4
FðφÞ: ð45Þ

Hereafter, we assume FðφÞ ≥ 0 to avoid tensor ghosts. The
generalized expansion is then given by (24) with (45), and
the generalized covariant entropy bound is given by (22)
with (23) and (45).
On introducing the metric in Einstein frame and redefin-

ing the scalar field as

gEab ¼ ½FðφÞ� 2
D−2gab;

ϕ ¼
Z

dφ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðφ̃Þ−1 þ 2ðD − 1Þ

D − 2

�
F0ðφ̃Þ
Fðφ̃Þ

�
2

s
; ð46Þ

we can rewrite the action as

Ist ¼
1

16π

Z
dDx

ffiffiffiffiffiffi
−g̃

p �
R̃ −

1

2
g̃μν∂μϕ∂νϕ − VðϕÞ

�
; ð47Þ

where

VðϕÞ ¼ ½FðφÞ�− D
D−2UðφÞ: ð48Þ

The action (47) is the Einstein-Hilbert action coupled to a
canonical scalar field, and thus the black hole entropy in
this frame is given by Bekenstein-Hawking formula as

SEbhðBðλÞÞ ¼
1

4

Z
BðλÞ

dD−2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hEðx; λÞ

q
; ð49Þ

where hE is the determinant of the induced metric in
Einstein frame. In the same way as in the case of fðRÞ
gravity, we introduce the affine parameter λE in the Einstein
frame as

λE ¼ 1

N ðxÞ
Z

λ

0

½Fðx; λ0Þ� 2
D−2dλ0; ð50Þ

where

N ðxÞ ¼
Z

1

0

½Fðx; λ0Þ� 2
D−2dλ0; ð51Þ

and Fðx; λÞ is the value of FðφÞ at ðx; λÞ on L, so that
0 ≤ λE ≤ 1 on L, that λE ¼ 0 on B, and that λE ¼ 1 on B0.
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Correspondingly, we introduce the null generator kaE of L in
the Einstein frame as

kaE ≡N ðxÞ½Fðx; λÞ�− 2
D−2ka: ð52Þ

Since hE ¼ h · ½Fðx; λÞ�2, Bekenstein-Hawking entropy
in Einstein frame is equal to Wald entropy in the original
frame. Also, the expansion θE in the Einstein frame is related
to the generalized expansion Θ in the original frame as

θE ¼ ∂
∂λE ln

ffiffiffiffiffi
hE

p
¼ N ðxÞ½FðφÞ�− 2

D−2Θ; ð53Þ

and thus θE and Θ have the same sign. Therefore, the
definition of a generalized light sheet in the original frame
coincides with that of a light sheet in the Einstein frame.
Thus, the generalized covariant entropy bound holds if

quantities in Einstein frame satisfy the assumption (i) and
(ii) in (11), i.e.,

ði-sÞ ∂sE
∂λE ðx; λ

EÞ ≤ 2πT Eðx; λEÞ;

ðii-sÞ sEðx; 0Þ ≤ −
1

4
θEðx; 0Þ: ð54Þ

Following the same logic as in the previous subsection for
fðRÞ gravity, we obtain s ¼ sE½Fðx; λÞ� D

D−2=N ðxÞ and
Tab ¼ TE

abf
0ðRÞ. Therefore, the condition (i-s) in (54) is

rewritten as

ði-sÞ ∂s
∂λ ðx; λÞ ≤ 2πT ðx; λÞ þ Δsðx; λÞ; ð55Þ

where T ≡ Tabkakb and

Δs ≡ 2πFðx; λÞðka∂aϕÞ2 þ
D

D − 2
s
∂
∂λ lnFðx; λÞ: ð56Þ

The first term inΔs is always non-negative due to positivity
of FðφÞ. In the same manner as f(R) theory, the second term
in Δs is much smaller than 2πT ðx; λÞ, as far as the
fractional change in FðφÞ is sufficiently small over a
distance of order the inverse temperature, as required by
local equilibrium. In this case, the condition (i-s) holds if
quantities in the original frame satisfy the condition (i) in
(11), i.e., if

ði-sÞ0 ∂s
∂λ ðx; λÞ ≤ 2πT ðx; λÞ: ð57Þ

The condition (ii-s) in (54) is rewritten as

ðii-sÞ sðx; 0Þ ≤ −sbhðx; 0ÞΘðx; 0Þ: ð58Þ

By applying the argument in Sec. II D to the system in the
Einstein frame, one can motivate the condition (ii-s) in the

form of (54). One can also extend the argument in Sec. II D
so that it can be directly applied to the system in the original
frame for constant or slowly varying FðφÞ to motivate the
condition (ii-s) in the form of (58) by noting that the
effective gravitational constant in this case is inversely
proportional to FðφÞ and thus that the upper bound on the
energy inside a sphere of a given radius is proportional
to FðφÞ.

V. LOVELOCK GRAVITY

In this section, we consider Lovelock gravity in D
dimensions described by the action

I ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p X½ðD−1Þ=2�

n¼1

αnLn½gμν�;

Ln½gμν� ¼
1

2n
δμ1ν1…μnνn
α1β1…αnβn

Yn
r¼1

Rαrβr
μrνr ð59Þ

and study the generalized covariant entropy bound, follow-
ing the proposal in Sec. III.

A. Wald-Jacobson-Myers entropy and covariant
entropy bound

The generalized covariant entropy bound proposed in
Sec. III for theories beyond GR assumes a well-defined
formula of black hole entropy that can be applied to not
only black hole horizons but also a family of connected
(D − 2)-dimensional spatial surfaces that generates a gen-
eralized light sheet. In Sec. IV, we adopted the Wald
formula (25) for fðRÞ gravity and a canonical scalar-tensor
theory.
Unfortunately, in the presence of Lovelock terms, Wald

entropy is known to be ambiguous for nonstationary black
hole horizons [20].4 In D dimensions, the nth Lovelock
term

ffiffiffiffiffiffi−gp
Ln½gμν� with n > ðD − 1Þ=2 is the total derivative

and thus does not contribute to the equation of motion.
Nonetheless, by explicit calculation, one can see that such
Lovelock terms with n > ðD − 1Þ=2 can contribute to Wald
entropy. For example, in four dimensions, the second
Lovelock term is the total derivative, but its contribution
to Wald entropy is

Rpq
pq ¼ Rð2Þ þ ðterms bilinear in K1 and K2Þ; ð60Þ

where Rμν
ρσ is the four-dimensional Riemann curvature,

Rð2Þ is the Ricci scalar of the induced metric on the 2-
dimensional horizon cross section with coordinates labeled
by p and q, and K1;2 are second fundamental forms along

4See Refs. [21,22] for a similar situation in the context of
Horndeski theory.
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two null directions orthogonal to the horizon cross section.5

The integral of Rð2Þ over the two-dimensional horizon cross
section is constant, and thus its variation vanishes. On the
other hand, the terms bilinear in K1 and K2 in (60) lead to a
nonvanishing and nonconstant contribution to Wald
entropy. Considering the fact that the second Lovelock
term with an arbitrary constant coefficient does not con-
tribute to the equation of motion in four dimensions, this
result shows that equivalent actions give different Wald
entropies for nonstationary black hole horizons. On the
other hand, for stationary black hole horizons, the K1K2

terms vanish,6 and thus Wald entropy is unique up to a
constant. In the presence of Lovelock terms, it is thus
concluded that the expression of Wald entropy (25) can be
used only for stationary black hole horizons. For more
general situations such as nonstationary black hole hori-
zons and general connected (D − 2)-dimensional spatial
surfaces, one thus needs to correct the Wald formula. Such
corrections are due to ambiguities of theWald formula (25).
As pointed out in Ref. [19], Wald entropy has three kinds of
ambiguities, and two of them can have nonzero contribu-
tions to the entropy of a nonstationary horizon.
In the present paper, we adopt the following formula [24]

of black hole entropy in Lovelock gravity,

SbhðBÞ ¼
Z
B
dD−2x

ffiffiffi
h

p
sbh; ð61Þ

where B is a connected (D − 2)-dimensional spatial sur-
face, h is the determinant of the induced metric hpq on B,
sbh is given by

sbh ¼
1

4

X½ðD−1Þ=2�

m¼1

mαmLm−1½hpq�; ð62Þ

Lm−1½hpq� is the (m − 1)th Lovelock term in (D − 2)
dimensions applied to hpq, and L0½hpq� ¼ 1. In other
words, we fix the remaining two ambiguities of black hole
entropy by adopting this formula. This form of black hole
entropy, when B is set to be a horizon cross section, is
called Jacobson-Myers (JM) entropy. JM entropy coincides
with Wald entropy when B is chosen to be a stationary
black hole horizon. For nonstationary linear perturbations
around a stationary black hole spacetime, JM entropy of the
perturbed black hole horizon has the following three
properties suggesting that JM entropy qualifies as entropy
of not only stationary but also nonstationary black holes in
Lovelock gravity. The first one is that JM entropy does not
decrease along a future pointing generator of an event

horizon [25], meaning that the analog of the classical
second law of black holes holds for JM entropy. The second
one is that the generalized second law holds for JM entropy
under a set of reasonable assumptions [26]. The last
one is that Dong entropy [27], which gives the holo-
graphic entanglement entropy in theories dual to general
f(Riemann) gravity, where the Lagrangian is a scalar
function of the Riemann curvature tensor, reproduces JM
entropy when applied to Lovelock gravity. For these
reasons, it is expected that JM entropy serves as black
hole entropy in Lovelock gravity even for nonstationary
black holes. We thus adopt (62) to formulate the general-
ized covariant entropy bound in Lovelock gravity.

B. EGB gravity with spherical symmetry

In the rest of this section, for simplicity, we consider
Einstein-Gauss-Bonnet (EGB) gravity, for which the gravi-
tational action is given by the first two Lovelock terms as

I ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p ðRþ αL2½gμν�Þ; ð63Þ

where L2½gμν� ¼ R2 − 4RμνRμν þ RμνρσRμνρσ and we have
set α1 ¼ 1 and α2 ¼ α. Hence, sbh for JM entropy given in
(62) is reduced to

sbh ¼
1

4
½1þ 2αRðD−2Þ�; ð64Þ

where RðD−2Þ is the Ricci scalar of hpq on B. We assume

α > 0; ð65Þ

motivated by string theory (see e.g., Refs. [28,29]). This
assumption implies that black hole entropy increases by the
effect of higher derivative terms for a fixed horizon area. If
we consider black hole entropy as the logarithm of the
number of black hole states, the increase of black hole
entropy due to higher derivative terms that encapsulate
extra heavy modes is rather natural.
For further simplicity, we restrict our consideration to

spherically symmetric configurations. Introducing double
null coordinates, the metric is in general written as

ds2 ¼ −2e−fðu;vÞdudvþ r2ðu; vÞΩpqdxpdxq; ð66Þ

where Ωpqdxpdxq is the metric of the unit (D − 2)-sphere.
The JM formula (64) is then reduced to

sbh ¼
1

4

�
1þ 2αðD − 2ÞðD − 3Þ

r2

�
: ð67Þ

The generalized Misner-Sharp mass [30] is defined by

5See e.g., Ref. [23] for the double-null decomposition of the
Riemann curvature.

6For a stationary Killing horizon, one of the two null directions
orthogonal to the horizon cross section is along the horizon, and
thus either K1 or K2 vanishes.
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m ¼ ðD − 2ÞaD−2

16π
½rD−3ð1þ 2efr;ur;vÞ

þ α̃rD−5ð1þ 2efr;ur;vÞ2�; ð68Þ

where aD−2 ¼ ðD − 1ÞπD−1
2 =ΓððDþ 1Þ=2Þ is the surface

area of the unit (D − 2)-sphere and we have introduced
α̃ ¼ ðD − 3ÞðD − 4Þα for brevity of some expressions. It
follows that m is non-negative on a spacelike or lightlike
hypersurface whose intersection with the center (r ¼ 0) is
regular, provided that the dominant energy condition holds
[31]. Furthermore, the above definition of m can be
rewritten as

1þ 2α̃

r2
ð1þ 2efr;ur;vÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64πα̃m

ðD − 2ÞaD−2rD−1

s
; ð69Þ

and this equation defines two branches of spherically
symmetric solutions of the theory: the GR branch for
the “þ” sign and the non-GR branch for the “−” sign. The
two branches are distinct in the sense that they can merge
only at a curvature singularity, provided that the null energy
condition is strictly satisfied for radial null vectors [32].
Since it is the GR branch that reduces to GR in the α → 0

limit, we shall hereafter restrict our consideration to the GR
branch. In the GR branch, the null energy condition for
radial null vectors implies the null convergence condition
for radial null vectors [32] [see (71) below]. This in
particular means that for a black hole spacetime in the
GR branch an apparent horizon is always on or inside the
event horizon, provided that the null energy condition
holds.

C. Proof in EGB gravity with spherical symmetry

In this subsection, we shall consider the GR branch of
EGB gravity with spherical symmetry and prove the
generalized covariant entropy bound proposed in Sec. III
by employing the formula (64) or (67) for sbh. For the
proof, we employ the coordinate system ðx; λÞ on a
generalized light sheet L as introduced in Sec. III and
make the following two assumptions on L.

ði-gbÞ ∂s
∂λ ðx; λÞ ≤ 2πT ðx; λÞ;

ðii-gbÞ sðx; 0Þ ≤ −sbhðx; 0ÞΘðx; 0Þ; ð70Þ

where T ¼ Tabkakb, Tab is the stress-energy tensor of
matter fields and Θ is defined by (24) with (64) or (67).
These two assumptions correspond to Eq. (11) in GR,
Eqs. (42) and (43) in fðRÞ gravity, and Eqs. (57) and (58) in
canonical scalar-tensor theory.
As we assumed the spherical symmetry, we adopt the

metric (66). Furthermore, we redefine the null coordinate u
so that u ¼ λ on L, where λ is the normalized affine
parameter introduced in Sec. III. This in particular implies

that L is described by v ¼ vL and 0 ≤ u ≤ 1, where vL is a
constant, and that the geodesic equation f;u ¼ 0 holds on
L. On the other hand, a priori, there is no relation between
u and λ away from L, and thus e.g., f;uv does not vanish on
L in general. A key equation is

8πTuu ¼ Ruu

�
1þ 2α̃

r2
ð1þ 2efr;ur;vÞ

�
; ð71Þ

where

Ruu ¼ −
D − 2

r
ðr;uu þ f;ur;uÞ: ð72Þ

In the GR branch (i.e. for the “þ” sign in (69)), (71) and
Tuu ≥ 0 imply Ruu ≥ 0. Namely, the null energy condition
for radial null vectors implies the null convergence con-
dition for radial null vectors, as already mentioned in the
previous subsection. Restricting to the generalized light
sheet L, we thus have

T ¼ −
D − 2

8π

r;uu
r

�
1þ 2α̃

r2
ð1þ 2efr;ur;vÞ

�
on L; ð73Þ

and r;uu ≤ 0 on L.
We now proceed to the proof. First, by integrating the

assumption (i-gb) in (70) once and using (73), one obtains

sðλÞ − sð0Þ ≤ −
D − 2

4

Z
λ

0

du
r;uu
r

�
1þ 2α̃

r2
ð1þ 2efr;ur;vÞ

�

¼ −
D − 2

4

�
r;u
r

�
1þ 2α̃

r2

��
u¼λ

u¼0

− FðλÞ; ð74Þ

where v ¼ vL is imposed and

FðλÞ¼D−2
4

Z
λ

0

du

��
r;u
r

�
2
�
1þ6α̃

r2

�
þ4α̃

r;uu
r3

efr;ur;v

�����
v¼vL

:

ð75Þ

Second, the assumption (ii-gb) in (70) is written as

sð0Þ ≤ −
D − 2

4

r;u
r

�
1þ 2α̃

r2

�����
u¼0;v¼vL

: ð76Þ

By combining (74) and (76), one obtains

sðλÞ ≤ −
D − 2

4

r;u
r

�
1þ 2α̃

r2

�����
u¼λ;v¼vL

− FðλÞ: ð77Þ

Multiplying this inequality by aD−2rD−2 and then integrat-
ing it from λ ¼ 0 to λ ¼ 1, where aD−2 is the surface area of
the unit (D − 2)-sphere, one obtains
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SL ≤ SbhðBÞ − SbhðB0Þ − aD−2

Z
1

0

dλFðλÞrD−2ðλÞ: ð78Þ

Provided that Z
1

0

dλFðλÞrD−2ðλÞ ≥ 0; ð79Þ

this completes the proof.
Finally, let us now argue that (79) is a reasonable

assumption. Indeed, whenever the Gauss-Bonnet correction
to GR is subdominant, the leading term in FðλÞ defined by
(75) is FðλÞ ≃ R

λ
0 duðD − 2Þðr;u=rÞ2=4jv¼vL ≥ 0, which

leads to (79). Moreover, even when the GB correction is
not subdominant, one can show that (79) holds if the light
sheet L does not enter a trapped region. In this case, we have
efr;ur;v ≤ 0 on L since efr;ur;v ¼ efθuθv=ðD − 2Þ2r2,
where θu and θv, respectively, are the expansions of the
null geodesics along u and v directions. Combining this with
(65) and r;uu ≤ 0 onL, which in the GR branch is implied by
the null energy condition, it is concluded that FðλÞ ≥ 0 on L
and that (79) holds.

D. Corollary: Generalized second law in
EGB gravity with spherical symmetry

In this subsection, we apply the generalized covariant
entropy bound proved in the previous subsection to a black
hole spacetime in the GR branch of EGB gravity with
spherical symmetry to prove the generalized second law.
Before the proof of the generalized second law, let us

prove the classical second law of black hole event horizons
for JM entropy under the null energy condition. As
mentioned in the previous subsection, for a black hole
spacetime in the GR branch, an apparent horizon is always
on or inside the event horizon, provided that the null energy
condition holds for radial null vectors. (As already stated,
in the GR branch, the null energy condition implies the null
congruence condition. Under the null convergence con-
dition, one can show that a negative expansion of geodesic
results in a divergence of the expansion in finite affine
parameter.) This means that the event horizon is either
outside or on the outermost apparent horizon. Hence, the
area of the event horizon does not decrease in time. Also,
efr;ur;v ≤ 0 holds on the event horizon unless it is anti-
trapped. Since

d
dr

ðsbhrD−2Þ ¼ D − 2

4
rD−3

�
1þ 2α̃

r2

�
; ð80Þ

the definition of GR branch, i.e., (69) with the “þ” sign, the
assumption (65) and the inequality efr;ur;v ≤ 0 shown
above imply that sbhrD−2 is an increasing function of r and
that not only the horizon area but also Sbh are nondecreas-
ing along the event horizon toward the future. Namely, the
classical second law holds for JM entropy of black hole

event horizons, provided that the GR branch is chosen and
that the null energy condition holds.
Let us now prove the generalized second law, which is

stronger than the classical second law. We assume the null
energy condition and the dominant energy condition. As
shown above, efr;ur;v ≤ 0 on a black hole event horizon,
and JM entropy evaluated on the event horizon does not
decrease toward the future. Therefore, one can choose a
part of the event horizon as a past-directed generalized light
sheet L, and the generalized covariant entropy bound holds
for L (see the last paragraph of the previous subsection).
Let B and B0, respectively, be the future and past boundaries
of L. The generalized covariant entropy bound then implies
that

SL ≤ SbhðBÞ − SbhðB0Þ: ð81Þ

Let SmatterðBÞ and SmatterðB0Þ be the entropies of matter
outside the event horizon on spacelike hypersurfaces
intersecting with B and B0, respectively, and suppose that
these two hypersurfaces do not intersect. Under the
dominant energy condition, any matter passing through
B0 inevitably passes through either B or L in the future.
Therefore, from the second law of thermodynamics, we
have

SmatterðBÞ þ SL ≥ SmatterðB0Þ: ð82Þ

Combining the two inequalities, we obtain

SbhðBÞ þ SmatterðBÞ ≥ SbhðB0Þ þ SmatterðB0Þ: ð83Þ

This is the generalized second law.

VI. CONCLUSION

In this paper, we have extended the covariant entropy
bound that was originally formulated in general relativity to
gravitational theories beyond GR, as prescribed in Sec. III
in full generality. For concrete and simple examples, we
have constructed the generalized covariant entropy bound
in fðRÞ gravity and a canonical scalar-tensor theory, by
using Wald entropy instead of Bekenstein-Hawking
entropy, and provided a proof in a thermodynamic limit
in each theory. For a more nontrivial example, we have
considered Lovelock gravity, for which Wald entropy
turned out to be ambiguous in nonstationary spacetimes.
We have therefore employed Jacobson-Myers entropy,
which can be applied to nonstationary spacetimes and is
known to satisfy the classical second law and the gener-
alized second law up to linear order in nonstationary
perturbations around a stationary black hole background.
With JM entropy, we have proposed the generalized
covariant entropy bound in Lovelock gravity and then
provided a proof for spherically symmetric configurations
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of Einstein-Gauss-Bonnet gravity, which is the simplest
nontrivial subset of Lovelock gravity, under a set of
reasonable assumptions. The assumptions of the proof
are summarized in (70) and (79). The ones in (70) are
direct analogs of those in general relativity [see (11) and
justifications of them in Secs. II C and II D], and we have
also argued that (79) is a reasonable assumption (see the
last paragraph of Sec. V C). As a corollary of the proof, we
have also shown that JM entropy satisfies the generalized
second law in the GR branch of EBG gravity with spherical
symmetry at the fully nonlinear order, i.e., without the
assumption of small nonstationarity.
These results serve as supporting evidence for our

proposal of the generalized covariant entropy bound to
some extent. For Lovelock gravity, however, we have only
considered EGB gravity with spherical symmetry. Also, we
have only discussed a thermodynamic limit and a fluidlike
matter, whose entropy flow can be represented by a
timelike vector. If we think of the covariant entropy bound

as a holographic property of gravity, then the bound is
expected to hold in a more general setting of matter. One of
the future works is therefore to remove these restrictions. It
is certainly interesting to extend the bound to other theories
of gravity as well. For example, by employing Dong
entropy [27], one might be able to extend the bound to
f(Riemann) theories.
Another important future work is to find the structural

reason why the generalized covariant entropy bound holds
for various theories of gravity and to identify the space of
theories where the bound holds.
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