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We investigate the Noether symmetries of the Lagrangian for the stationary rotating Banados, Teitelboim,
and Zanelli (BTZ)-type three-dimensional spacetimes in the f(R) theory of gravity. A detailed analysis of
Noether symmetries of (2 + 1)-dimensional rotating BTZ-type black hole spacetime model is presented.
Applying the Noether symmetry approach, the first integrals (constants of motion) for each of the Noether
symmetries are obtained to look for the exact solutions. After solving the first integral equations depending
on the form of the function f(R), we derived some new (2 + 1)-dimensional rotating BTZ-type black hole
solutions. We discussed the physical implications of the derived exact solutions. The thermodynamical
properties of the obtained BTZ-type black hole solutions are analyzed by making use of the mass M and the
angular momentum J in terms of ., where r_is the event horizon and r_ is the inner horizon. Further, it is
shown that thermodynamic quantities obey the first law, and the Smarr-like formulas of the solutions we

found are obtained.
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I. INTRODUCTION

Because of the fact that the simplest theory of gravity
possessing some nice properties is in three dimensions, a
black hole in three-dimensional gravity theory can be a
perfect toy model to study its properties. The mathematical
complexity of general relativity is significantly softened in
order to get further insights on the fundamental nature
of gravitation in the (2+ 1) dimension. The (2 + I)-
dimensional black hole solutions are inherent for all
typical characteristics that can be found in (3 + 1)- or
higher-dimensional black holes such as horizon(s),
black hole thermodynamics, and Hawking radiation.
Thermodynamical properties of low-dimensional black
holes are ill-defined because of a few degrees of freedom.
The (2 4 1)-dimensional vacuum solution in three-
dimensional gravity theory is necessarily flat if the cos-
mological constant is zero, which means that there is no
black hole solution of three-dimensional gravity without a
cosmological constant [1].

In (2 + 1)-dimensional gravity with a negative cosmo-
logical constant, Bafados, Teitelboim, and Zanelli (BTZ)
has found a black hole solution [2], which is commonly
called a BTZ black hole and describes an asymptotically
anti—de Sitter rotating black hole. The prominent feature of
this black hole model lies in the simplicity of its con-
struction. Also, it is shown that this black hole solution
can have an arbitrarily high entropy [2], and plays
a good role in the understanding of thermodynamics of
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black holes [3-6]. Later on, the vacuum BTZ solution is
enlarged to include an electric charge ¢, with similar
nice properties [3]. Afterwards, Einstein-Maxwell [7]
and Einstein-Maxwell-dilaton [8] extensions were also
found. Furthermore, BTZ-type solutions have been studied
in the context of f(R) gravity [9], dilaton gravity [10],
teleparallel and f(7') gravities [11], and noncommutative
geometries [12]. Among the problems studied in the
(2 4+ 1)-dimensional context so far, it is also mentioned
that the magnetic counterparts of the electrically charged
BTZ solution [13,14], gravitational collapse [15], geo-
metric and thermodynamic features of several nonlinear
models [16], wormholes [17], or BTZ-like solutions are out
of the coupling to scalar fields [18].

Noether symmetries are associated with differential
equations possessing a Lagrangian, and they describe
physical features of differential equations in terms of
conservation laws admitted by them [19]. The Noether
symmetry approach without a gauge term (strict Noether
symmetry) is a kind of symmetry in which the Lie
derivative of the Lagrangian that arises from the metric
of interest dragging along a vector field X vanishes, i.e.,
£xL = 0 [20-24]. This approach has also been used to
obtain f(R) gravity models respecting the Noether sym-
metry. Darabi et al. [24] have used the Noether symmetry
without a gauge term to produce (2 + 1)-dimensional black
hole solutions in f(R) gravity. The Noether symmetry
approach with a gauge term is the generalization of strict
Noether symmetry as the existence of some extra sym-
metries is expected [25-29]. This approach will be exhaus-
tively considered in the following section. In many of the
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extended theories of gravity, the dynamical Lagrangian
involves any arbitrary functions (the function of f(R) in
this paper or the potential or the coupling functions) which
are unknown quantities. Using the Noether symmetry
approach, the form of the unknown functions in the
Lagrangian may be determined. We also note that the
Noether symmetry with a gauge term is a physical criterion
which allows one to find f(R) gravity models compatible
with this symmetry.

In this work, we consider stationary rotating BTZ-type
three-dimensional spacetimes. Therefore, the affine param-
eter 7 will be the radial coordinate . Through this paper, we
aim to find Noether symmetries of the dynamical
Lagrangian £ for the (2 + 1)-dimensional rotating black
hole spacetimes in f(R) gravity. The action for the f(R)
theory of gravity in three dimensions is of the form

§= /d3xv_gf<R) +Sm’ (1)
where ¢ = det(g,,) and S, is the matter action. By

employing the variational principle with respect to the
metric tensor it gives rise to the field equations as

1 1
fRR/w - Egﬂvfue) - vyvufR + g/waR = _ET;”U’ (2)

where fr =df(R)/dR, OO=V'V, is the Laplace-

Beltrami operator, and T}, = —\/L_—gg;ﬁ. The trace of the
field equation (2) implies
3 ™
RfR+ZDfR_§f:_77 (3)

in which 7" = T,;*. Hereafter, we assume 7™ = 0. To
emphasize the physical significance after obtaining new
solution(s), one can recast the field equation (2) to an
appropriate form by introducing a curvature stress-energy
tensor and defining effective density p. and pressure pg
as given in Sec. V. Then, we suggest an effective equation
of state in the form p g = Wegeperr to study the properties of
the obtained solutions, where w. is the equation of state
parameter which may be a constant or a function of r.
Furthermore, it would be useful to derive the thermody-
namical quantities such as temperature and entropy to show
that the first law of thermodynamics is satisfied for the
solutions we found. We also calculate the Smarr-like mass
formulas of our solutions.

The rest of the paper is organized as follows. In the
following section, for the dynamical Lagrangian, we
present the Noether symmetry approach with a gauge term
in an arbitrary dimensional configuration space, where the
Lagrangian includes a velocity term. In Sec. III, we will
focus on the most general (2 4 1)-dimensional rotating
BTZ-type black hole spacetime in the context of the

Noether symmetry approach. In Sec. IV, we will use the
obtained first integrals related with the Noether symmetries
of Sec. III to find exact solutions for f(R) gravity. The
Sec. V is devoted to study physical properties of the
solutions shown in Sec. IV. Conclusions are presented
in Sec. VL

II. NOETHER SYMMETRY APPROACH

The models for gravity theories are expressed in terms
of the configuration space variables which are usually
the metric coefficients, matter fields, scalar fields, etc.
Therefore, the corresponding configuration space of the
model is a d-dimensional Riemannian manifold with
coordinates ¢',i = 1,2,...,d, in which is constructed a
pointlike Lagrangian to produce the dynamics of the model.

The equations of gravity theories can be both derived
from the field equations or deduced by a Lagrangian
function L(z,q', ¢"") of the system related to the action
S = [ Ldr. Here the prime represents the derivative with
respect to an affine parameter  which is the cosmic time ¢
in most of the physical models, but it could be the radial
coordinate r in some of the models. Note that Q = {qi ,
i=1,...,d} is the configuration space from which it is
possible to derive the corresponding tangent space 7Q =
{¢', ¢'""} on which the Lagrangian £ is defined.

Taking the variation of £ with respect to the generalized
coordinates ¢, the Euler-Lagrange equations of motion
become

d oL 0L
dtdq" 0q'
The energy function associated with L is
oL
— k
EC - q/ (:)q/k - E’ (5)

which is also the Hamiltonian of the system. From a first-
order Lagrangian £ = L(r, ¢, ¢’%) for stationary space-
times, it follows the system of second-order ordinary
differential equations (ODEs) of the form

q" =w(r.q".q"). (6)

The Noether symmetry generator for the system of ODEs
(6) is

X =¢&(r.q"0, +n'(r.4)0,.

if there exists a gauge function h(r, g¥) and the Noether
symmetry condition

XUz + £(D,&) =D, h (7)
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is satisfied. Here D, = 0, + q’kﬁqk is the total derivative

operator and X' is the first prolongation of Noether
symmetry generator X, i.e.,

XU =X +1%(r.q" . q'")0 p. (8)

where 7'%(r, q°,¢'*) = D#* — ¢'*D,&. For every Noether
symmetry generator, there is a conserved quantity (a first
integral) of the system of equations (6) given by

0L
I:—é:Eﬁ‘FﬂlW—h. (9)

Most of the applications of the Noether theorem to the
extending theories of gravity are concerned with the
following standard form of the Lagrangian:

L=T-V

1 o .
=50i(r, 4“)q"q" +v;(r.q")q" = V(r.4"), (10)

where 7 is the kinetic energy with a kinetic metric [25]
ds; = Gijdqidqjv (11)

for the configuration space, the indices i, j, k, ... run over
the dimension of this space and V(r, gX) is the potential
energy function. The function y;(r, ¢*) is a factor of the
velocity term.

For the form of Lagrangian (10), we obtain the first
prolongation of the Noether symmetry generator X as

XUL ==&V, =V + yin®

+ (‘fﬂyj - gry] + éyj,r + Gl]nlr)qu
1
+ = (£;76ij =28 .0+ &0, —257,)4" 97
- ¢x0i4"q" 4", (12)

where £, is the Lie derivative operator along 7 = nk(')qk.
Putting (12) into (7) together with D& = &, 4 &,4"% and
D,h=h,+ hxq'*, the Noether symmetry condition (7)
becomes

£i=0, £yi+&rirt+ Uij'l,jr —h; =0, (13)
£n5ij = (f,r)ffij - gaij,r’ (14)
nkv.k + (Vg),r - 7i77fr + h,r =0. (15)

The above conditions explicitly yield the geometrical
character of the Noether symmetry. Here, £; = 0 implies

&= ¢&(r).

III. NOETHER SYMMETRY IN
THREE-DIMENSIONAL SPACETIME

The most general line element for the (24-1)-dimensional
rotating black hole spacetime can be written in the form

dr?
+——5 + P(r)*[Q(r)dt + dg*.  (16)

A(r)
where N(r) is the lapse function and Q(r) is the angular
shift function. For this metric the Ricci scalar is given by

ds> = —N(r)*dt*

Nl/ PI/ AIN/ A/P/
R=-2A2(—+—
<N TP AN Tap
NP P?
NP _WQQ)’ (17)

where the prime () represents the derivative with respect to
r. Now, taking fr = % and frr = %, one can obtain the
following field equations:

f N_U+P_H+A/N/+A/P/ P2Ql2
RN AN AP  2N?
N P f
!
A 1
~Jx (N P) + 2A2 0 (18)
P// A/P/ N/P/ P2 Q/2
Ik (? Tar TP T )
A’ N’ f
- = 1
I <A N) (8 2A2? =0, (19)
Q// 3P/ Ql A/ Ql N/ Ql Ql
G+ e Ng) g =0 @
A/Nl N/P/

N//
fR( AN T NP TN

' P/ // f —
fR<A P) htoe=0 (@)

corresponding to (rr), (¢¢), (t¢), and (¢t) components of
Eq. (2), respectively. After some calculations, it follows
from the above field equations that

P// A/ N/ /
fR?‘f'f%‘f'(X ><fR+fR >_O’ (22)

which will be useful to generate solutions for the f(R)
theory of gravity.

To study Noether symmetries we need to obtain a
canonical Lagrangian of f(R) gravity for the considered
metric (16). Then, selecting the suitable Lagrange multi-
plier and integrating by parts, the Lagrangian £ becomes
canonical. Thus the pointlike canonical Lagrangian of f(R)

P2 Ql2>
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gravity for (2 + 1)-dimensional black hole metric has the
form
AP ’ /2 1 p! 1 !
L= WfRQ + 2fRAN'P’ + 2APfrN'R

+2ANfRRP’R’+¥(f—RfR). (23)

The field equations obtained by variation of the action with
respect to the metric coefficients N, A, P, O, and R take the
form, respectively,

P// A/P/ P2 QIZ A/ P/
fR<7+ AP T ane > +fR<A P)

¥ fh= 5 (= Rix) =0 (24)
N/P/ PZ 2 N/ P
fR( +41§2)+fR<N P>

~ 5~ RF) =0, (25)

A/N/ 3P2Q/2 , A’ N/

AN 4N2> Tk ( N)

(f =Rfx) =0, (26)
3 i

(5 ) =0 (27)

N// P// A/N/
2A?
TrR { (N T TN

fx (N

/!
+ R 2A2

AP NP P2,
- R| =0. (28
AP TP 4N2Q>+] (28)

Note that the latter equation gives the Ricci scalar (17) if
frr # 0. Itis seen that by inserting the Ricci scalar R given
by (17) into the above Egs. (24)—(27), one gets the field
equations (18)—(21), which are the verification of varia-
tional field equations to be equivalent with the ones
obtained from the tensorial form of the field equation (2).
Furthermore, the energy functional (5) for the Lagrangian
(23) becomes

! p! 2 N2 4 /
EE—ZANP{fR<NP+PQ>+fR<N P)

4N? N P

- =R (29)

After using the Ricci scalar (17) in the above equation it
yields £, = 0 due to the field equation (18).

Taking the configuration space variables as ¢' =
(N,A,Q,P,R), i=1, 2, 3, 4, 5, the kinetic metric for
the Lagrangian (23) of f(R) gravity is

AP3
ds: =—— fRdQ2 + 2fRrAdNdP + 2f prAPANdR
+ 2 fRRANdeR, (30)

and the potential is

VIN.AP.R) =" Rfg = f(R). (1)

Then, the geometrical Noether symmetry conditions (13)-
(15) yield £ = &(r) and

fr’y =0, h, =0,

2A(f xS + Pfrrmy) —hy =0,
AP3frip, —Nh g =0,

2A(fr1’ + Nfrrimy) —hp =0,
2Afrr(PnY + Nipb) —h g =0,

ey + Pfrey =0, fri'y + PfRR’?,SA =0,
2N(fR’7f¥Q + PfRR’?,SQ) + frPry =0,

SRy + freNwy =0, Fre(Prly + Nip%y) =0,
Tri's + freNT, =0, fre(Pnly + Nng) =0,
Jr(PPp + 2Nn'y) + 2f rpN*1’y = 0,

fRPS’I?R +2NfRR(P’71Q +N774Q) =0,
1 2

35
I (—”—+’j\+—+2ng 3 )+fRRn5=o,

P
fR< +’7N+’IP §r> +fRR(775+N77,5N+P’7,5P) =0,

1 2
o P
fRR< +

A N’?P""?P""?R §,r>

fR

ﬁﬂR+fRRR77 =0,

2 4

N P
fRR<X+P+ N+N’7N+’7R f,r>

fR

77713 + frern® =0,

Van' + Var + Vo + Ve’ + VE, +h, =0, (32)

where V(N,A, P,R) is given by (31) and the Noether
symmetry generator to be found is

=&(r)0,+n' Oy +1n*0a + 12 0g +1*0p +1°0g.  (33)
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For this generator, the corresponding first integral (9) of the
f(R) Lagrangian (23) is

AP3
I = —EE + 2A(frP)'n' +TfRQ,773
+ 2A(frN)'n* + 2Af rr(NP)' . (34)

The function & of Eq. (32) is assumed constant, unless
otherwise stated.

It follows from the Noether symmetry equations given
by (32) that for an arbitrary form of the function f(R), there
are four Noether symmetries

Xl — 8Q, X2 — N@N + 2Q8Q - Pap, (35)

N2
X;=NQ0dy + (Q2 +ﬁ> do—PQ0p, X4=0,, (36)

with the Lie algebra

(X0 Xo]=2X,, [X1.X5]=X,, [X5,X;]=2X;. (37)
Then the corresponding first integrals of X, X,, X3, and

X, are

AP3

P !/
Il :TfRQ/, 12 :211Q+2AN2fR<N> ’ (38)

2
I; =1, <——Q2> + 15,0, I, =-E;, (39)

where [, I, I, I, are constants of motion and /, vanishes
due to the Hamiltonian constraint £, = 0.

It is possible to find solutions to the Noether symmetry
equations (32) where the form of f is f(R) = foR" with f
and n being constants. In this case, there are five Noether
symmetries X, X,, X3, Xy, given above by (35) and (36),
and additionally

2A 4R
X5 = N0y — 04 + POp — Og, (40
5 N TS A+ Pdp 7~ 1Yk (40)
which gives rise to the first integral
1 =24 B2 o Py - anpy (41)
> (2n-1)"F Rl

where fr=fonR"!, fh=fon(n—1)R"2R',and n # 1/2.
For n = 1/2, the vector field X5 is found from (32) such
that

X5 - AaA + 2R3R, (42)

with the first integral

1, =12 wpy. (43)

VR

Here the Lie algebra of these five Noether symmetries are
the same as (37).

One also finds that there are seven Noether symmetries
satisfying the Noether symmetry equations (32), which are
X1, X5, X3, X, given in (35) and (36), and

1 A
X5 :N(?N%—ﬁam (44)
0 AQ 1
XG:N8N+W8A+EQQ, (45)
Q*, APQP-N), Q. |
X7:ﬁ8N W3A+E8Q—§8P, (46)

while the form of f becomes f(R) = R — 2A, where A is a
constant. Thus the first integrals for X5, X¢, X, are

 2AP

I
Is == =

PZ

Is =—+ 150, (47)

2
A
17:IGQ—157—FN/. (48)

Furthermore, for this case the Hamiltonian constraint
E, =0 yields

1 I?
A= N (ﬁ + 2AP>, (49)

with I3N’ # 0. Also, the corresponding Lie algebra of
Noether symmetries X, ..., X; has the following non-
vanishing commutators:

X1, X, =2X;,  [X.X3]=X,, [X}.X¢]=Xs,
X X7 =X6,  [X0.X5]=2X5,  [X;,X5]=-2X,
(X5, X7]=2X7,  [X5,X5]=-2Xg,  [X3,Xq]=-2X5.

(50)

In the following section, we will use the above Noether
symmetries to derive exact solutions for the corresponding
(2 + 1)-dimensional f(R) theories of gravity.

IV. EXACT SOLUTIONS

For any form of f(R), we consider the first integrals I,
I,, I3 given in (38) and (39). For the sake of simplicity, we
take the constants of motion as I; = a, I, = b, and I3 = c.
It follows from those of the first integrals that

N> =P? <—C _abQ + Q2>, (51)
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aN

Q' = FoAPY (52)
P\ b-2aQ
<N> T 2fRAN?’ (53)

where fr # 0. Let us now consider the cases having five
and seven Noether symmetries obtained before.

Case (i): In this case, the form of f is f(R) = R —2A
and there exist seven Noether vectors given in (35), (36),
(44), (45), and (46). Here, A is obviously identified as the
cosmological constant. Then, taking /s = k and rearrang-
ing the first integrals for these Noether symmetries, we
obtain

aQ*-bQ +c¢ p_ 4

2 = 54
N Ig—kQ —ko Y
kN aN
p="" -
24° 0 AP3’ (53)
2PAN' — kN* —2aQ +b =0, (56)
k
AN’+P<§Q2 —16Q+I7> =0, (57)
a2
2kAN' + I3 +4AP =0, (58)

with Q # I¢/k. To solve the above system of differential
equations one can define a function F(r),

F(r)= /%dr, (59)

which means that N(r) = A(r)F’(r). Then, the metric
functions P and Q can be found via (55) as

4a
EGEET

k
PZEF(r)—i_dl’ Q:
where d;, d, are integration constants. Thus, the first
relation in Eq. (54) yields

2

a k 2
W+d3(EF(r)+dl> + Ny, (61)

N? =
where d; = (¢ — bd,)/a+ d3, Ny = (b—2ad,)/k, and
k # 0. The remaining equations (56)—(58) give the Noether
constants as follows:

k
Ig =kdy, I = 5(dg ~dy), (62)
4A
d3 = _F’ c = bdZ + a(d3 - d%) (63)

It has to be noted that the solutions (60) and (61) of the
metric functions N, P, and Q are found in terms of an
arbitrary function F(r) under the condition N(r) =
A(r)F'(r). Therefore, if one chooses the function F(r),
then one can find the metric functions explicitly.
Equation (22) for this case becomes

P// / N/ P/

P+<A N)P_O’ (64)
which is easily satisfied by taking P =4F(r) +d, and
N(r) = A(r)F'(r) for any form of F(r) with the condition
F'(r) #0. In the following we conclude this case by
pointing out some examples.

First, we simply take A = N and F(r) =2(r—d,)/k,
which gives rise to the well-known form of BTZ metric [2].
Then, it follows from (60) and (61) that one can explicitly
write

a

00 = -5+ (69)

and

aZ

2 __
N _k2r2

+ d3r* + Ny. (66)
Here, the Noether constants are the same ones as in (62)
and (63). Taking the special values of parameters such as
d, =0, Ng=-M, a=kJ/2, and dy =72 in the
obtained metric functions N, P, and Q one can reach
the BTZ black hole solution [2]

2 J2
N2 =-M+_ 4+

242 Q<r):_i (67)

P =r, )
(r)=r 2r?

where M = —b/k and J = 2a/k are the mass and angular
momentum of the black hole, respectively. Here, the
other Noether constants become I, =0, I; = —k£72/2,
dy = —4A/k?, and ¢ = kJ£72/2. It should be pointed out
that not only the mass and angular momentum of the black
hole but also the cosmological constant are Noether
constants, i.e. b = —kM, a = kJ/2, and I; = 2A/k.
Second, now let us consider the special case where the
solution is asymptotically the Lifshitz black hole [30,31].
For this aim, we use the ansatz N = (£)*H(r) and A =
£ H(r) which yields F(r) =£(%)? from the relation (59),
where H(r) is a function of the radial coordinate, and z is
the dynamical critical exponent. The z =1 value corre-
sponds to the standard scaling behavior of conformal
invariant solutions. Thus, one can write the metric functions
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k¢ (r\= 4az?
P="(1) +a, — - ds,
2 <f> T O ey 2d T
(68)
and
4a? d, {kﬂ <r>Z r
N? = —|— (=) +2d;| + N,
RPEG +24 " 4 [z \7 v

(69)
which gives

_ 4q?
(5% (5)F + 24, )

d; [k¢ r\%]? r\ %
+Z3 [Z+2d1 (Lﬂ) ] +N0(f> . (70)
It is easily found that for z > 1 the function H(r) given by
(70) obeys lim,_,, H(r) = 1 when A = —z%/£>.
Case (ii): For this case, we consider the five Noether
symmetries given by (35), (36), and (40) where the function
f(R) has the form f(R)= foR" due to the Noether

symmetry equations. The corresponding conserved quan-
tities (first integrals of motion) yield (51) and

H2

N/P/ P2Ql2
NP T an?
R (N P\ (n-1R
==+ ——=0, (71
+n )R<N+P)+ 2nA? (1)
Rl—n
) aNR" . (72)
fonAP‘
(2aQ — b)R'™
NP —PN' + 2270 ), 73
A (73)
(3 - 2n) R kR
NP) +2(n—1)NP— = . (74
no) VPV +2n-DNP =0z (4

where n # 1/2. Then, we will search for the exact solutions
of the above first integral equations to find the metric
coefficients A, N, P, and Q.

First of all, we assume A = N to arrive at solutions from
the above differential equations (71)—(74). Then, Eq. (22)
becomes

11 " 2
%+(n—1){%+("—2)§—2]—0- (75)

This equation relates the metric function P and the
Ricci scalar R, and if one chooses P, one can find R by
solving (75), or vice versa. For example, for P(r) =
P10z 4 p p(1=0)/2 Eq. (75) has a solution of the
Ricci scalar R as

R(r) = [RyrV D2 4 RyF-P/2imn n#1, (76)
where R and R, are integration constants and a and f are
real constant parameters having the property a” + > = 2.
It is very difficult to solve Eqgs. (71)—(74) using these
forms of P and R. So we need to simplify the forms of P
and R choosing the coefficients P, P,, R;, and R,. Now,
taking P, = 1 and P, = R, = 0, that is, P(r) = r(1+®)/2

(1)
and R(r) = K707 with K, =RY"Y, we find from
(71)—(74) that

2qr—Batp+2)/2

o(r) = " fonR,(3a+ f+2)

+ g, (77)

2a

Alr) = fonR,Ba+ f+2)

r—(2a+ﬁ+l)/2’ (78)

where the conditions k = 0, b = 2aq,, and ¢ = aq? have
to be satisfied, and

- Zf%n(n— (3a+p+2)?
(@ +p)B-a+4)

2n-1
R, (79)

(281 —52n+23) (4n*+4n-17)

__ L opo_\amHan=l) g
=i e 17 P o sen 1 B0

Here, using (80) in the term 3a + f + 2 appearing at (77)
and (78) gives rise to the constraint n # 1, % For n = 5/6,
we observe that k needs not to vanish, and one gets
a=p =1 from (80). Then, the metric functions P, Q,
and A = N, given as

Pr)=r. Q) =-gp—s+a. (1)
A(r)? = a’ (b —2aq,) (82)

9R%r4

solve Egs. (71)—~(74) under the conditions ¢ = bq, — aq?
and k = 2b — 4agq,. Here the Ricci scalar is R(r) = K, /r°
with K| = —5a?/(6R?). Furthermore, for n = 3/2, one can
get the following solution of Egs. (71)—(74) taking @ = 1,
p=—-1,and R, =0,

a

PO =r 00 =gt ®
b—2aq,) a* r?

A(r = 2 _bg+o)-. (34

(r) 2Rl +4R%r2+(aQI QI+C)a ( )

with k =0 and R(r) = 6(bq, —aq? — c)/a = const. If
one assumes ¢; = 0, a = R\J, b = —2R,M, and ¢ = a/¢?
in the above metric functions, one can arrive at the original
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BTZ black hole solution. This interestingly means that the
f(R) = foR/? theory of gravity also gives rise to the BTZ
black hole solution. For n # 3/2, one can find the solution

when a = = —1 and R, = 0, such as
a
P(r)=r, o(r) = Tlrz—i_q“ (85)
k(1 —=2n) a?
A(r)? = , 86
0 = 3ran=3) Tk (86)

through the conditions b = 2aq; + k(1 —2n)/(2n —3)
and ¢ = bg; —aq?, which yields that the Ricci scalar
vanishes, i.e., R = 0. Therefore, we conclude that the metric
for n # 3/2, which includes the metric for n = 7/6, is a
vacuum solution. Furthermore, for n = 1/2, we have to use
the first integral (43) instead of (41) or (74). Then, one can
obtain a vacuum solution, namely R = 0, in which the metric
functions have the form

=t qi» (87)

A(r)=N(r) == (88)

where k = 0, b = 2agq,, and ¢ = aq?. Therefore, one can
conclude that the metric for n = 1/2 is also a vacuum
solution.

Now, we look for the solutions of (71)—(74) under the
assumption of A # N, where Eq. (22) reads

PU+(n—1)[R” (n—2)R/2]

-
H(G-N) [Fro-nE] =0

One can explicitly solve Eq. (74) for k = 0, finding that

N
N = —0 PG (90)
P

where N is an integration constant and n # 3/2. Using
(90) in (51), the metric function Q is obtained as

b NO 2(n—=1)(2n-1)
=—+—R 25 91
Q 2a  P? ’ (o1)
for ¢ = b?/4a. Then, assuming P(r) = r(@*1)/2 Egs. (71)-
(73) and (89) have the following solutions:

2(a+1) 2n—1)-a

R() = (Ko )55, A() = A ™55, (92)

where Ay is

2(a+1)(n—1)

a2n -3)K, ™!
fon(a+1)(6n—=17)

Ag= - (93)

and

_ fo  [n(2n—=1)(6n-17)
_Kg“\/ 8(1-n) (94)

with n # 0,1, 1/2,7/6. Put the latter form of P and R into
N and Q given in (90) and (91), and then N and Q take the
form

N _(at1)(10n-11)
Or 2(2n-3)
N(r) = At )(n1) (95)
73
2
and
—(a+1)(6n-7)
b Nor =3
Q(r) =5+~ - (96)
a KZZT

Forn =3/2,if k = 0 and R = R, = const, we can find the
following exact solution of metric functions:

P(r) =1, o(r) =———+4q1, (97)
qdo’
2 b 2 bh-2
A(l")2 _ r_z q, +c 2a4l/ ZQI i (98)
v a q5r qor
N(r)? = 2r=DA(r)?, (99)

in which ¢y = 3fov/Ro, Ry = 6(bq, — aqi —¢)/a, and v
is a constant parameter. We note that for v = 1 the latter
exact solution reduces to (83) and (84) where A = N.

Case (iii): In this case, we take the four Noether
symmetries given in (35) and (36), which imposes an
arbitrary form of the function f(R). The first integrals of
this case are given by (51), (52), (53), and E, = 0 which
gives

fR(NP

N/ P/
+fR<N P) S (F = Rfr) =0

P2 Q/2
4N? )

(100)

For this case, we can first choose that P(r) = r and
A = N. Then, Eq. (22) becomes fj =0 which has a
solution fr = Ryr + R,, where R;, R, are integration
constants. This information is sufficient to solve Eq. (52)
to find Q as follows:
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aR? r a (R, 1
A —— — , (101
0(r) = R3 <R1r+R2) & <R2r 272 ) +0r. (101)
where Q; is an integration constant. Furthermore, the field
Eq. (28) yields

2

" 2 !/
(A?) +;(A2) - s+R=0, (102

2"4(er + R2)

for frr #0, i.e., Ry # 0 in this case. Thus, one needs to
select the function R(r) to find a solution of the above
ordinary differential equation, i.e., the function A(r)>.
Because of the differential equation fr = R;r + R,, using
the ansatz R(r) = Kyr™ proposed in [24], the f(R) takes
the form

mR,
(m+ 1K™

f(R) = R + R,R+ Ry,  (103)

where K, is a dimensional constant, R, is a constant of
integration, and m # —1. Putting R(r) = Kor™ into
Eq. (102), we can integrate (102) to find

a’R, (1 3R, r a’
p3 —+55-|In + 2.2
R2 r 2R2 R1r+R2 4R21"
R1a2 1 Kor’n+2
il /I
+ (ZR% + 1) r

(m+2)(m+3)

where A; and A, are constants of integration and m # —2,
—3. Note that the above solution (104) was reported before
[24]. Unfortunately, the metric functions P(r) = r, Q(r) by
(101) and N(r) by (104) are not solved by the first integral
relations (53) and (100). Thus, those metric functions are
not solutions of the field equations (24)—(28) unless one
takes that Rl = O, Al = 0, m = 0, R2 = 1, KO = —3R0,
a=J, Ay =—M, and R, = 2¢~? which is just the BTZ
black hole solution. Let us discuss why this happened. The
pointlike Lagrangian used in Ref. [24] is a poorly described
one because it gives rise to incomplete variational field
equations of motion, in which there are three variational
equations of motion, Eqs. (11), (12), and (12) of [24]. We
observe that the reason for missing some of the field
equations after the variation of the Lagrangian given in
Ref. [24] is the lack of taking variation with respect to some
metric functions that depend explicitly on r. To tackle this
problem, we have written all of the metric coefficients in
terms of implicit functions of » which are N, A, P, and Q.
Afterwards, to recover the underlying field equations, we
have varied the obtained Lagrangian (23) with respect to
these implicit functions, i.e., the metric coefficients, and the
Ricci scalar R that implicitly depends on r. So, we have
arrived at the fact that the number of variational equations
of motion is five given by (24)—(28), not three as in
Ref. [24].

A%(r) =

A, (104)

Now, we want to obtain exact solutions for N # A.
For this purpose, by employing P(r) = r and N(r) =
(r/ro)*A(r) which gives a Lifshitz-like three-dimensional
spacetime, Eq. (22) has the following solution:

1”2 (z+1+4a) + D, }"2( z+1- (1)

Jr= (105)

where D; and D, are integration constants, z is a real
number so-called Lifshitz-like parameter, r is an arbitrary
(positive) length scale, and @ = V/z> + 6z + 1 which yields
that z <z, =-3-2v2 and z> 2z, = -3 +2V2. It is
very difficult to find out a general form of f(R) from
(105) for arbitrary z. Therefore, we will take z = —6 as an
example. Then, Eq. (105) becomes

Dy D,
= —+—, 106
fR r2 + r3 ( )
which can be written in the form
D, D
f'= (;+ 2>R’ (107)
I r

where ' = frR'.If D| # 0 and D, = 0, then the solution

of Eq. (52) is
a ro 6
6D, (r) + 0y,

where Q; is an integration constant. Using the latter Q,
P(r) =r and N(r) = (ry/r)°A(r) in Egs. (51) and (53),
one can obtain the lapse function A(r)? as

o(r) = (108)

(b —2aQ) 6 a?
6D17‘8 36D%

A(r)2 =1 [—Alrn + ] (109)

with the constraint ¢ = bQ; — a(A;r}?> + 0%), where A, is
a constant of integration. Putting the metric functions
obtained here to the definition given in (17), we have
the Ricci scalar

24>

R(r) = 304,112 = 2= (110)
3D?

which gives f(r) = 36A,D,r'° from (107). Thus, one can
easily find f(R) as f(R) = fo(R + Ry)>/®, where f, =
36D, (A)°/30)/® and R, = 24%/3D?. Note that Eq. (100)
and the field equations are equivalently satisfied for this
solution. If D; =0 and D, # 0, then using P(r) = r and
N(r) = (ro/r)®A(r) in the first integrals (51), (52), and
(53), we have the following solutions:

ar8

o) = ~55 05 (1)

+ QZ’
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_ 2
(b —2a0,) S a
5D2r8 ZSD%

A(r)? = 4[—A2r10+ ] (112)

with the constraint ¢ = bQ, — a(A,rl* + Q3), where A,

and Q, are constants of integration. Then, the Ricci scalar R
given by (17) reads

2
R(r) =32 (104,710 - £ ). 113

(=3 (100 - )
Thus, it follows from Eq. (107) that this form of R gives rise
to the following f(r):

3a?

5D2r.

f(r) = 40A,D,r° + (114)
To obtain the function of f(R), one needs to solve the
12th degree algebraic equation (113), i.e., the equation

10A,r1% — #Z)% r> =% =0, in terms of r. After solving this
algebraic equation to find at least one real root, one can
obtain f(R) by putting this root r into (114).

If we take P(r) = r= and N(r) = (ry/r)°A(r), then the
solution of (22) that gives f in terms of r is the same as
(106). Hence, there are two possible cases for this selection.
The first one is D # 0 and D, = 0, and for this condition
the obtained solutions from Egs. (51)—(53) are

0t =48 151 g (115)
r) = r ,
15D, 3

2aQ5 — b) a’
AP = —A, + 292: 15 0 (116
() S spge T s (119

where it should be satisfied with the constraint ¢ =
bQ; —a(Asrl* + Q3), and A; and Q3 are integration
constants. For the latter solution, the Ricci scalar and the
corresponding function f(r) due to the relation (107) are

2404; 13d
R(r) = -8 11
== "3 (117)
120D,4;  7a*
- - . 11
(r) A 15D, (118)

Here, the function f(R) can be obtained from Eq. (118) if
the algebraic equation (117) in terms of r is solvable.
For the second possibility, i.e., if D; =0 and D, # 0,
we have the following solutions from the first integral
relations (51)—(53):

6

ar§
O(r) = 1gp, " + 9 (119)

2aQ, — b) a?
A =~y + 4 16 4 2 (120
() T Tepye " Tasepz” (120

where A, and Q, are constants of integration and ¢ =
bQy — a(A4rl* + Q3). Thus, the Ricci scalar for this
solution yields

2404, 942

e 121
r? 16D% " (121)

R(r)
which gives the function f(r) from Eq. (107) as

- 96D2A4 5612 77
f(r)= 3 8D2r . (122)

If we take general expressions P(r) =" and N(r) =
(r/ro)"~'A(r), where y is a real parameter, and use those in
Eq. (22), we find fz = Dsr" in which D5 is a constant of
integration. Then, putting those expressions into Eq. (52)
and solving it, the angular shift function Q(r) has the form
ary

_ =3y
37D, =7 + Qs,

o(r) = (123)

where Qs is an integration constant. Considering these in
the remaining first integral relations (51) and (53), one can
get the following solution:

b-2 2
( ags)r3y+ Z 5[, (124)
3yDsry ” 9°D;3

A(}’)2 _ r2(l—3y) _A5r67_|_

where As is a constant of integration. Here, the constraint
relation ¢ = bQs — a(A5r§_2y + 02) has to be satisfied.
For this solution, the Ricci scalar is

2

Sa

R(r) = 6Asy> — ——r75, 125
(1) = 64 v (125)
and the corresponding function f(r) by solving the
equation ' = D3r"R’ is

a2

flr) = —D—3r_57. (126)

By using (125) and (126), one can easily find f(R) such
that

f(R) :fl(R] —R)g,

where f; = —(6/5)%/%(aD2?)!'/3 and R, = 6Asy>.

Finally, if we assume P(r) = rand N(r) = v"A(r), then
it follows from Eq. (22) that fr = D4rv", where v is a real
parameter and D, is an integration constant. Therefore,
using the first integral (52), the shift function Q(r) can be
found as

(127)

a

a3 T Qe

Q(r) - 3D4r*

(128)
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with an integration constant Qg. Thus, we can solve the
remaining first integrals (51) and (53) to find A(r)?

(b=2aQ¢) @

A(r):=v
(r) v 3Dyr 9Dir4

2r [—A6r2 + } . (129)

together with the constraint ¢ = bQy — a(Ag + Q2), where
Ag is the constant of integration. The Ricci scalar of this
solution yields

L, (2aQ¢ —b)  2a*
R(r) = —v {lny {4A6r + 3D, oD%
5a°
— 6Aq +6D—3r6}’ (130)
which gives rise to
v a2
f=-5{%
4
D4(261Q6 - b) 2(12
+2lnv{4A6D%r2+T+W , (131)
by solving the equation ' = D,v"rR’.

V. PHYSICAL SIGNIFICANCE
OF EXACT SOLUTIONS

The BTZ black hole as the (2 + 1)-dimensional sta-
tionary circularly symmetric solution possesses certain
features inherent to (3 + 1)-dimensional black holes. So,
one can naturally expect that the (2 + 1)-dimensional f(R)
gravity may provide new insights toward a better under-
standing of the physics of four- and higher-dimensional
f(R) gravities. Furthermore, it is often much easier to
obtain and analyze black hole solutions in three dimensions
than in other dimensions.

Defining a curvature stress-energy tensor

1 (1
3 = {30~ RE+ (V=000 | (132
the field equation (2) can be recast in the form

G R TCUfV

1
_Eg/w V7] (133)

uw — R/u/
in the absence of ordinary matter. Then, assuming f # O,

one can rewrite the field equations by using (133) as

PN P20% py
==, 134
PN TINT T A2 (134)
N// Al N/ 3 P2 Q/Z Deft
v _ = Pett 135
N + AN 4N? A? (135)

P_”+A’P’ P2Q" _ Perr SR M_g (136)
P AP ' 4N? A " fr\N P
1 3P A NI
QL0 AN
00 AN

_RQ
frQ°

(137)

where p.; and p.g are defined as
A [(f=Rfx) _, (N P
138
Peft = fR |: B A2 f R N P ( )

A2 —R rN!
peff_f:[%_fk(/‘ N)—}é]- (139)

Equations (138) and (139) are the curvature term contri-
butions to energy density and pressure. Because of the lack
of ordinary matter, the latter energy density and pressure
may be related with dark matter and dark energy. For the
solutions obtained in the latter section, one can construct
the equation of state p.y = Wegperr, Where wege is the
equation of state parameter. When wg; iS a constant
parameter, one can assume the values w.y = 0 for pressur-
eless dust, wey = 1 for stiff matter, and w.; = —1 for the
dark energy. Also, one may consider wys as a variable
equation of the state parameter. In (3 4 1) dimensions the
equation of state p = p/3, where w = 1/3, may be used to
describe either actual electromagnetic radiation (photons)
or a gas of massless particles in a thermodynamic equi-
librium (for example, neutrinos). In Ref. [32], it is repre-
sented that it is not appropriate to use the (3 + 1)-
dimensional equation of the state parameter for the radi-
ation in (2 4 1) dimensions, and they concluded that the
equation of state for the radiation in (2 + 1) dimensions
is p=p/2.

It is seen from the above construction of the field
equations that the nonvanishing components of the curva-
ture stress-energy tensor are

Te = %, Toi' =Pper.  (140)
Peff fg?Q/>

Teurv — Q( 141
cu 2/x0 e

A" N\ £,

T = (P?Q% = N?)pes + APN? (A N) f_i

P A QNS

+A2P2Q2< +>R, 142
A Q) fr e

in which the components 77" and 7", the first term on
the right-hand side of Tfﬁ‘jrv, and the first two terms on the
right-hand side of the component 77" make up a perfect
fluidlike contribution to the curvature stress-energy tensor.
We refer the reader to the first reference in [15] for
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discussions on how the stress-energy tensor is determined
from the metric. Now we are ready to point out what are the
physical implications of the exact solutions obtained in the
previous section. For each solution, we will set some
constants that appeared in the solutions to the mass M,
the angular momentum J, and the cosmological constant A
in an appropriate way.

Case (i): The form of f in this case is f(R) = R — 2A.
We note here that the choice d, = 0 is necessary, since
otherwise the metric (16) has unphysical asymptotic
behavior [33]. Then, after setting the remaining constants
suchthatd; =0,dy =¢2, k=2,Ny=—-M,and a = J,
the metric (16) for this case reduces the BTZ-like form

Plz J 2
ds2:—del2+mdr2+P2<d¢_—dt> ’ (143)

2P?

where N> =—-M +%; o+ Jzz and P = F(r). Thus, the Noether
constants given by (63) become a=J, b= -2M,
c=J/? A=—-1/¢? I, =0, and I; = A, in which the
condition that the cosmological constant must be negative
is satisfied. Taking P(r) = rand P(r) = ( )¢ in (143), we
arrive at the original rotating BTZ black hole and the
asymptotically Lifshitz black hole, respectively.

For this solution, the effective energy density p.¢ and the
effective pressure p.; can be found by (138) and (139) as

Deft = Pett = —A = (144)

ﬁ?
which satisfies the conditions pey > 0 and pege > pegr- It
seems that the latter equation can be interpreted as the
equation of state for stiff dark matter, since wo; = 1. The
point particle solutions in 241 dimensions are good
models for parallel cosmic strings in 3 + 1 dimensions.
An important fact is that the line element (143) with
P(r) = r, the BTZ black hole, corresponds to the point
particle solution which has also been used to draw con-
clusions about the behavior of cosmic strings [33].

In this case, the horizons are located at the positive roots
of the equation N(r)> =0, ie., P*— M¢?P2 +L£L£ =0,
which has the following exact positive roots:

4
P.= E(Mf +VM** - J?) (145)

where |J| < MZ. Here, the positive roots given by (145)
correspond to the outer and inner horizons (r, and r_) of
the black hole if P(r) = r. For instance, the lapse function
N?, the mass M, and the angular momentum J for the
original BTZ black hole, where P(r) = r, can be rewritten
in terms of r,

NP =5 (P=R) (=), (140

2 2
rie +r2 2r.r_

]‘4:4+ N J: +
2 4

(147)

The angular velocity for the solution (143) is defined by

9y  _ I

QH = = == .
Ipplr—r, 2%

(148)

For other forms of P(r), one can easily obtain physically
important quantities such as mass, angular momentum, and
angular velocity in terms of the outer and inner horizons.

Case (ii): Here, the function f(R) follows from the
Noether symmetry equations as the power law form
f(R) = foR". In this case, we have found five exact
solutions for A =N and two for A # N. For physical
reason, we set ¢; = 0 throughout this case.

The first solution of this case given by (77) and (78)
becomes

4 r2a+ﬁ+ 1

2 __ dr2 + ra+1d¢2

ds? = —didp,  (149)

a+ﬂ

by taking a as

J
a:ZfOnR1(3a+ﬂ+2), (150)
and the parameters o and S depend on n as given
in (80) The Ricci scalar of the metric (149) is R(r) =

32(n ry(a+p) (38 - a+4)r2" T It is obviously seen that

the above metric is a massless rotating (2 + 1)-dimensional
BTZ-type solution of f(R) = fyR" gravity, where n # 1,
1/2,7/6. Then, using the definitions of a and f given in
(80), the computation of p.; and p.g for the metric (149)
gives

J*(n—1)(2n — 1)(4n* — 24n + 23)
peff = - _ 4(2n-3) k)
(201’[2 —36n + 17)2r 2002 36n+17

(151)

4(2n-3)
2_
120n°=36n+17 R

472(n—1)*(2n —1)?
(20n? — 36n + 17)?

Peft = (152)

which yields a constant equation of the state parameter

" :M:_(4n2—24n+23)
T perr 4n—-1)2n-1)

(153)

We point out that we = —1 (the dark energy) if n =
—3/2 £/7, wegg = 1/2 (the dark radiation) if n = 5/4,
5/2, and w = 1 (the stiff dark matter) if n = 3/2. In the
solution (149), one can introduce a special value of r, say
r = ry, that is a sort of natural unit of length. Of course, this
does not make r = r, an event horizon. Further, the metric
(149) has the nonzero angular velocity such that
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919 B J

QH - - .
) — 2r§3a+ﬂ+2)/2

(154)

Setting a = R,J and b = uR,q* which yields ¢ = 0 and
k = 2b = 2uR,q*, the second solution with the metric
coefficients (81) and (82) takes the form

2J

2 2
2 Mg dr s 2
ds* = == dP 4y Pd = S didg. (155

where N? = 9% —i—@, in which the second term differs
from the charge term of BTZ-Maxwell solutions which is
logarithmic form. Here, we can infer from the literature
such as [34] that ¢ is a constant related to the charge of the
black hole in power-Maxwell nonlinear electrodynamics,
and y is a constant parameter to control the character of the
charge. So the spacetime (155) is a massless charged
BTZ-type black hole with J # 0. For this solution, the
Ricci scalar is R(r) = _%7 and f(R) = f,RY®. The

equation N> = 0 has only one root at r, given by

J2\1/3
T <_9ﬂ612> ’

which exists provided y < 0. Thus the angular velocity
of (155) is Qy = J/(3r}). Also, we find the effective
pressure and density for the above solution as follows:

(156)

137 uq® S g

=——+—=, =————, 157

Pett 36,9 3 Peff 36/ 2,3 (157)
which concludes that the equation of state is

Pett = Wett (7)Pefi (158)

where weg (r) is a variable equation of the state parameter
that has the form

132 + 36ugr?
= 159
Weff(r) J2_ 18/4(]2}’3 ( )
Furthermore, one can deduce from (157) the following
relations between p.g and pegr:

5 15uq>

Deit = —2Peft T ¢ Peit = 13pegs +——5—»

12/°° 253 (160)

which gives that the equation of state parameter is wqg =
—2ifJ=0,g#0,and wey = 13 if ¢ =0, J #0.

The third solution, where f(R) = f,R*?, has the metric
coefficients (83) and (84) in which N = A, and the
spacetime reduces to the well-known BTZ black hole
solution by setting @ = R,J, b = —2R,M, and ¢ = a/>.

For n # 3/2, the fourth solution has the following
spacetime:

d 2
ds* = MdP + —"— + Pdg? — Jdidg,
-M + L

(161)

taking @ = RyJ, b = —2R,M, and k = 2= R, M in (85)
and (86). This is a standard (2 + 1)-dimensional black hole
without a cosmological constant. For the metric (161), the
Ricci scalar vanishes, i.e., R =0, and it has a horizon
r. =J/(2y/M). So it has no extremal limit in the usual
sense. In addition, we find for this solution that p.; = 0
and p.; = 0. This means that the spacetime (161) repre-
sents a true vacuum.

For the f(R) = foR'/? gravity, the fifth solution given
by (87) and (88) has the same form and the same properties
with metric (161), but there is no mass parameter, i.e.,
M = 0, in this solution.

We obtained the remaining two solutions under the
assumption A # N. Then, setting b =0, ¢ =0, and Ny =

JKENE=D/C13) 50 92)(96), the sixth solution yields
the metric

dr 2Jdidg
ds* = 5 =12 + raquﬁz T A=)t (162)
Aor 21 = 3

3

where A =—a(2n—3)(J/No)T
The Ricci scalar of this solution is

/fon(6n=T)(a+1)].

~ 8n(n—1)(6n—T7)(a+1)?A} 2w
A (5 (G i

(163)

while the form of f is f(R) = foR". Now, for the energy
density and pressure relations, it follows from Eqgs. (138)
and (139) that

4(a+1)2(n —1)(n* — 6n + 2)A3
Dett = — 2(at1) ’
(2n—1)(2n = 3)%r2m

(164)

dla+1)2(n—1)2A3 2w
(2n —3)? ST (165)

Peft =

where n # 1, 1/2,3/2. The latter equations give rise to the
same constant equation of state parameter w.g with (153).
For the solution (162), it is not possible to get wey = 1
due to the restriction n # 3/2.

By setting a = qoJ/2, b = —qyM, and ¢ = a2, the
seventh solution in this case includes the metric

dr? Jdt\?2
ds? = —12r2v=DA2q72 + A_r2 + <d¢ - 2r2”> , (166)

where
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M r? J?

y2r2(u—l) + yszz 4127 2(2v-1) 7

A2 =

with f(R) = f,R3/?. The Ricci scalar of the above metric is
a constant, R = —6/772, and the effective pressure and
density becomes peg = peir = A, Where A = —£72 is the
cosmological constant. It is obviously seen that the metric
(166) gives the original BTZ black hole if v = 1. So the
metric (166) is more general than the BTZ one, but both this
metric and the BTZ spacetime are physically identical. The
horizons are given by the condition that the function
A(r)? =0, and read

f 1
3 (ME £V =) (167)

ro =

Then, in terms of the horizons r, the mass M, the angular
momentum J, and the angular velocity Qy become,
respectively,

r2p + r2v 2 P v
M="_"- J="" Qy=——. (168
72 Z H= (168)

In addition, the surface r., is the surface of infinite redshift
where g;,(re) vanishes, rey = (M£2)V/). Obviously,
Terg = Ty Theregion r. < r < ryy is called the ergosphere
of the BTZ-type black hole.

Case (iii): This case implies an arbitrary form of the
function f(R). First, for physical reasons, we have to set the
constants Q; = 0(i = 1, ..., 6) that appeared in the angular
shift function Q(r).

If we set a =3D,J, b = —6D\M, c = af~>, and A, =
—r312¢72 in the case D; # 0 and D, = 0, then the metric
coefficients P(r) = r, N(r) = (r/ry)%A(r), Q(r) by (108)
and A(r) by (109) give rise to the spacetime

ds? = — {r—z M ro} d +
r

= (169)

dr? Jrs
ot rdd? —r—fdtd(b,

where A% = [ M+ (5)° +J4'(r) %]. Then, the Ricci
scalar of (169) yields R =-3 ("_0) —6J%, and f(R) =

fo(R + Ry)>/® with Ry = 6J%. The effective pressure and
density can be computed from (138) and (139) such that

peff=;{4M<:0>6—ﬂ+;j< > } (170)

and

(171)

These can be arranged to give a variable equation of state
parameter

12 =4M(E)° =5 (5"
Weit (1) = =5 .

22 +2M(E)° + 5 (5]

AN

(172)

N\,
o

which becomes —1/2 at the limit » — 0. For the solution
(169), there exist two coordinate singularities correspond-
ing to the outer (event) and inner horizon from A(r)? = 0,

% 1/6
ry =1ry E(ij: V MZ{Z_JZ) (173)
where |J| < M¢ and |J| = M¢ corresponds to the extreme
black hole. The radius of the ergosphere r, is defined as
the stationary limit, which is obtained by solving g,, = 0 as
follows:

Ferg = Fo(M£?)V/6. (174)
Then, one can express the mass M and the angular
momentum (spin) in terms of r, and r_ such as

6 6 3.3

o+ 2l
2.6 - 6 -
or rg

(175)

The angular velocity of the black hole horizon for metric
(169) is given as
()
rr, 2 \I'4

For the second possibility D; = 0 and D, # 0, we have
the spacetime

2 Mr
ds?=— | -0 ar +

I
I

QH:_

(176)

dr? Jry
ye —5+rdg? - 3 drdgp, (177)

by taking a = 5JD,/(2ry), b =—=5MD,/ry, and A, =
—1/(r}?¢?) in the metric coefficients, where

Az_r4 v r 5+1 r 10_}_]2
o ro > \ry 4|

Here, the Ricci scalar differs from that of (169) as

R=-2(£)" - FJ*(£)? and we do not have an explicit
form 0f f(R), but we have f(r) = — j}/fz‘% (£)° =322, For

this solution, the p.g and pgs are of the form

2772 r\> 7 [r\!0
—am( L) - L (L 1
Pet = { 6 > <V0> & <r0> ] (178)

and
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9> 3 r\> 1 /r\1°
—M|— —|— , 179
pert = i16 "2 <r0> +f2 (Vo> i (179)
which leads to the following variable equation of the state
parameter:

2707 — 48M (f)° = 2 (5)"]
(97 +24M(£)> + 18 (1))

The metric coefficient A(r) of (177) vanishes at r = r_,
where the outer and inner horizons are

et (r) = = (180)

4 1/5
ry =1ry E(Mfii: MZKQ—J2 (|J|SM£), (181)

The radius of ergosphere r., by solving g, = 0O is obtained as

Ferg = ro(M¢?)1/5. (182)
Then, the quantities M and J can be written by r,.
o+ 2
M=—"  J=——(r,r)%* (183
r or (ryr-) (183)

For metric (177), the angular velocity of the black hole

horizon is
J ro 5
Qyp=—=—1].
" 2(’"+>

The third solution of this case includes P(r) = r~® with
the possibility D, #0 and D, = 0. Then, assuming a =
—15JD,/(2r3Y), b = 15MD, /73!, and A; = —1/(r}?*¢?),
the relation N = (r,/r)®A and the metric coefficients (115)
and (116) bring the spacetime (169), (177), (185),

1 M dr? d¢2 Jr

ds? = — [— ( ) ]d +—+— - dtdqb
2212 (1)2 Yo A2 12 0

(185)

(184)

where A% = o (m)15 + fz 1 + L prc (r0)30. Then, the quan-
tities porr and peff for the above metric are obtained as
3 [14 r\15  51J% [ r\3
=5 |5 —4M | — — | — 186
Pt ry’r’ Lpz <r0> - 16 <r0> i (186)

and

9 4 r\15  J? /r\30
M| — — | — . 187
e s L] o

Also, the Ricci scalar of this solution is R = f22:}£)2 -

199 (2% and £(r) = 54 + J% 1. Then, the black hole

solution (185) admits the outer and inner horizons provided
A(ry) = 0 such that

2 1/15
rL =ry f—‘]z(Mf:i: MZKZ_JQ) (|J|SMK), (188)
which implies
15(,.15 15 2,15
M _w, J :#‘ (189)
(ror )b £(ror_ )37

The radius of ergosphere and the angular velocity of the
event horizon then become

B o T\ B
l"erg - —(Mf2)1/15 s QH - 5 <r—0) . (190)

If we consider D; = 0 and D, # 0 with P( ) r=6, and
we set a = —16JD,/(2r3*), b =16MD,r}?, and A4 =
—rg"?¢7% in (119) and (120), then the fourth solution
occurs as

1 M [r dr’ d¢> Jrt
ds? = _|:—f2r12 (1)2 ( 0) :|d +— A2 +— 12 _ﬁdtd(l),

(191)
in which A2= %(—)16—1- 7 + 4r12( )32. Here the Ricci
scalar becomes R = — 2105 — 3?#( )30 and the function

0 0
f(r) has the form f(r)= 112;;5 +5alry(£ ) . Furthermore,

the latter solution has the effective pressure p. and the
effective density p.y in the form

1 [42 r\16 2972 [ r\®
pa = z[fz 18M<r—0> + 20 <_> ] (192)

and

1 [36 16 r\ 32
Peft = 122L2+12M<r0) +J2(r—0> } (193)

Now, it is easy to find exact expressions for the roots of the
A(r) = 0 which are the horizons of the metric (191) such as

2 2.2 2 1/16
ry =ry W(Mf:i: M=t —J) . (194)

where |J| < M¢ and |J| = M¢ for the extreme black hole.
Thus, one can obtain M and J by using (194) as

M_r(l)G(rf—f—rlf) J_ 2r}® (195)
B fz(r+”—)16 ’ _'/ﬂ("Jr’”—)S.

For the metric (191), the quantities r,, and Q4 are
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B ro T (r\16
rerg = W’ QH = 5 (r—()) . (196)

The fifth solution expressed by the metric coefficients
P =17r",N = (r/ry)"'A, Q by (123) and A by (124) can be
written as

2(y-1)
ds? = — (i> A2dP?
ro

dr? J 2
+A—rz+ P {dqﬁ—zr‘”dt} . (197)

when we set a :%yJD3r(7)_1, b= =3yD;Mr;""", and

As = —rg" V42 where we have
2 2
A2 =21 LI Myl 4+ J—r_67 .
" \ro fzr(l)oy 0 4

Then, a straightforward calculation of p.; and p.g gives

2 [rg™ 132
_ T r -6
o == |——— M| — — Y 198
Peft rg{ﬁ <r0> +16r62Vr ] (198)
and
2 1,8 -3 2
YAl M (r\7 J 6
== |—+—=(— —_— . 199
Peft 2 [fz + > <r0> +16r52yr (199)
The Ricci scalar can be recast in the form R=

—%yzrazwﬂ)—%yzﬁré(y_l)r‘(’y, and the functions f(r)
and f(R) become f(r)= —%ay]rg_lr‘sl’ and f(R) =
f1(R; = R)*/® with R, = —6y2f‘2r52(4y+1), respectively.
For the metric (197), the existence of horizons requires the
vanishing of the ¢’" component, i.e., A(r)?> = 0. The roots

of the latter equation give rise to the outer and inner
horizons such as

f 1
ro=r)? 5 (MZ £ VM6 - 1) (200)
which yields that
i+ 2 (ror 200
M="21 " J=""_(r.r)¥2 (201
2ry e

Finally, the radius of ergosphere and the angular velocity of
the event horizon are
Ferg = r(5)/3 (Ml/ﬁz);_ya

Qy = %rfy. (202)

By setting a = 3JD4/2, b = =3D,M, and Ay = —£72,
the resulting spacetime for the sixth solution of this case is

2 2
s (T M\ o dr s T
ds? = (fz r>dt +op g =g, (203)

where we have used P(r) =r, N(r) =v"A(r), Q(r) by
(128) and A(r) by (129) together with

M J?
A2 — g 2r _ — .
v < r +L”2 +4r4>

The corresponding Ricci scalar for metric (203) is

Rl (M 4r+ J? N 6 N 1572
=V VWW—5——F5t—= —t+t—==
2 2r 2 8

and the function f(r) yields

) 3L LA (M 8r2+1
r)y=—-aJv' |=+-nv| ———=+—<5|-
2 P9\ 22

For the solution (203), p.s and p.s become

L M 1 13J2 v (J* M 2r
P =V T T AT s T2 \F TR T2
(204)
and
=v i+£+J—2 (205)
Peit =V AT 23 T 168

The outer and inner horizons which are the black hole
horizons, concerning the positive mass black hole spectrum
with spin (J # 0) of the line element (203) are given by

3 3
ry = [5 (M¢ £V M*¢* - JZ)]’,

(206)

and therefore, in terms of the inner and outer horizons, the
black hole mass and the angular momentum are given,
respectively, by

3 3
2
S Z(rr 2 (207)

The ergosphere radius and angular velocity Qg of the event
(outer) horizon can be computed

Ferg = (ME?)3, (208)
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We conclude for this case that the equation of state
parameter w.gi = Pofr/pPers Obtained for each of the sol-
utions is a function of r.

A. Thermodynamics

In the previous part of this section, we have studied the
properties of obtained solutions associated with the black
hole event horizon r_, the effective energy density and
pressure. In this subsection, we investigate the thermody-
namic analysis of the solutions throughout this study. For
three-dimensional rotating black hole metric (16) in the
framework of f(R) gravity, the derivation of thermody-
namic quantities such as temperature and entropy for each
of the obtained BTZ-type solutions in this study can be
accomplished. It is worth pointing out that the entropy of
BTZ black holes, S = 4zr,, does not necessarily hold in
the case of extended theories of gravity. In the f(R) theory
of gravity the horizon entropy of the black hole has the
following formula [35]:

_ Aufx
4G, | _, "

r=r,

S

(209)

where A, is the horizon area of black holes, in (24 1)
dimensions a circumference, A, = 2zr., G5 is the three-
dimensional gravitational constant, and r, is the radius of
the event horizon of the black hole. Here the units are
such that G3 = 1/8. The thermodynamic quantities for the
obtained solutions should satisfy the first law of thermo-
dynamics,

dM =TdS + QgdJ, (210)
where the Hawking temperature 7" and angular velocity Q
are given by

M M
T = 8— , = 8— . (211)
0S|, . oJ 5.2
Also, in terms of the formula
oM a8
Cr=—| =T—| , 212
'orl,, "ot (212)

one can get the heat capacity of the hole which determines
the thermodynamic stability. The black hole is locally
stable if C; > 0, while the corresponding black hole is
locally unstable if C; < 0. Now, first we find the Hawking
temperature of the BTZ-type black holes obtained in cases
(1)—(iii) and then check that the first law of thermodynamics
(210) is satisfied for these solutions. The Smarr relation
[36], together with the first law of black hole thermody-
namics, has a main role in black hole physics. Furthermore,
we can get the Smarr-type mass formula of the obtained
BTZ-type black holes, and these Smarr-type relations may

sometimes be useful in the Euclidean approach to quantum
gravity. Now we investigate the thermodynamics for each
BTZ-type black hole given in cases (i)—(iii).

Case (i): Making use of Eq. (209) and the relations M
and J written by r_, one can get the mass formula in terms
of §, J, and 7 after selecting the metric coefficient P. For
this case, the entropy of the BTZ-type black hole (143) is
S =4ar,, since f(R) = R — A, that is, fz = 1. The mass
M and angular momentum J for the BTZ black hole in
terms of r are already given by (147), and for the Lifshitz
black hole these quantities are of the form

2z 2z
e +rs

2ri re
M=—+t_"- _ +
Z22/02z ’

=7 (213)
Then, it follows immediately that for the BTZ black hole
and the Lifshitz black hole the mass formula of the
spacetime (143) reads, respectively,

s? 47%J?
M:W—’—T forP(r):r (214)
and
52 2 (4nt)*2J? ?(r\z
M= forP(r)=—(-) . (215
2ntE T assm o rP=2lz) - 29

Now, using (214) and (215), the Hawking temperatures and
angular velocities are obtained from Eq. (211) as

2_,2

;;fzr_ for P(r)=r,
T = N : (216)
pwmr for P(r)=£(),

and

Z= for
Q=19 . (217)
7 for P(r)= f(;)z.

The heat capacities at constant angular momentum can be
computed as

4ar A
2-A
CJ - {

877, A
Crica for P(r) =2 ()%,

for P(r) =r, 218)

where C; =2z -2 +2z+1, C, =27 -7 -2z-1,
and A = [1 —J?/(M¢£)?]"/2. The first relation in (218) is
the usual heat capacity of BTZ black holes [37]. Also, the
quantities 7, S, Qy, and J obtained in the above give rise to
the Smarr-like mass formulas
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TABLE I. List of thermodynamic quantities the entropy S, the temperature 7, and the heat capacity C; together with the Smarr-like
formulas for BTZ-type black hole solutions in case (iii) are presented.
Solution N T o Smarr-like formula
. (5 4D A . _a _
Eq. (169) 420, 32;5)?%%) lotay With Dy =35 M=—iTS+QyJ
5 ? 162D, 3A . 2
Eq. (177) 47;52 5;,;5;:%’ ~ 2528 With Dy =53 M= —-3TS+QyuJ
x 0 4xD, A . 2ar}!
A 4zD,A - ar?
Ha. (1D s ig}i? (s = 76) ~rsia) With Dy = =% M =3TS+Qy)
+
1 —(r+1) y +1 1-y p
Eq. (197) AnDyr 3O =) A i Dy = 20 M =2UTS + Q)

4nDs* (147)ry”
3

=

. (2 2 . 3 (R=r)) 4rDy VA —2a =-3
Eq. (203) 4zDsr2v woen sy with Dy =2 M=-1TS+QuJ
1 - A
e TS +QyJ for P(r)=r, (219) C,= % (223)
= v(2v —
=TS +QyJ for P(r) =£(%).

Thus, varying the above mass formulas yields the conven-
tional differential expression of the first law of black hole
thermodynamics given in (210).

Case (ii): In this case f(R) =f(R", and so fr=nf,R""".
First, we point out that the solutions (149) and (162) are a
massless BTZ-type black holes; they have zero Hawking
temperature, zero entropy, and vanishing heat capacity.
These are the same as the corresponding quantities of the
usual extremal BTZ black holes. The spacetime (155) is
also a massless but charged BTZ-type black hole with spin
(J/ #0). This has zero Hawking temperature, vanishing
heat capacity, but a constant entropy such as S = 4zf
where fr = f{/r,. The metric (161) is a standard (2 4 1)-
dimensional black hole without a cosmological constant.

For the black hole solution (166), the mass M, angular
momentum J, and angular velocity Q4 parameters are
given in (168). Therefore, by expressing the mass formula
in terms of S and J

S2y ( f2 Jf) 2u

M = ,
LﬂZf%y (45)1/521/

(220)
and using the entropy relation S = f,r,, one can compute

the Hawking temperature as

T 2u(r? — 1)
l/ﬂfz’ﬁr ’

where f, = 6xf,V6A. Thus, the Smarr-like formula of this
solution becomes

(221)

1
M=—TS+QylJ, (222)
2u

which easily verifies the mass differential (210). By
considering the relation (212), we obtain the heat capacity
for BTZ-type black hole (166) in the form

Case (iii): In this case, it appears that there are six new
BTZ-type black hole solutions. For these solutions, we
calculated analytic expressions for thermodynamic quan-
tities S, T, and C;, and the corresponding Smarr-like
formulas, which are given in Table I. Note that the
thermodynamic quantities 7, S, J, and M for each black
hole in this case obey the first law of thermodynamics (210).

VI. CONCLUSIONS

In this study, we have derived the Noether symmetries of
a canonical Lagrangian for the f(R) theory of gravity in the
background of three-dimensional rotating black hole space-
time (16). Using the effective pointlike Lagrangian (23) of
this spacetime in terms of its configuration space variables
N, A, Q, and P which are the metric coefficients, and R (the
Ricci scalar), and their velocities N’, A’, Q’, P’ and R', we
have determined the kinetic metric o;; by (30) in the
configuration space of the system. Thus we have consid-
ered this kinetic metric and used it to calculate and classify
Noether symmetry generators by the derived geometrical
Noether symmetry conditions (32). Later, we obtained the
first integrals for each of the Noether symmetries admitted
by the Lagrangian of representing the physical system.
Furthermore, we have used the first integrals of motion in
order to generate new exact solutions for the f(R) gravity
theory of the three-dimensional rotating black hole metric
(16). Also, we have worked the physical properties of these
new exact solutions in the previous section. We would like
to stress that our results are richer than the strict Noether
symmetry approach because we have considered the
Noether symmetry approach with a gauge term which also
includes the term &0, in the generator.

The Noether symmetry approach considered in this work
is capable to construct exact solutions of field equations for
any gravity theory by reducing their complexity through the
first integral(s) of motion [25,26,28,29] without using the
cyclic variables. To find out analytical solutions of field
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equations for the f(R) gravity in three-dimensional BTZ-
like black hole spacetime (16), the obtained Noether first
integrals have mainly been considered in cases (i), (ii), and
(iii). Also, Eq. (22) has played a key role of finding new
exact black hole solutions of the (2 + 1)-dimensional f(R)
theory of gravity. Throughout the paper we have denoted
the constants of motion /,, I,, and I3 by a, b, and c,
respectively, which are valid for any form of f(R). Also, I
is represented by k in cases (i) and (ii). We have first
considered case (i) where there are seven Noether sym-
metries and the form of f is f(R) = R —3A. Using the
rearranged first integrals in this case, we have found a
general solution of the metric coefficients, which are (60)
and (61), depending on a function F(r) defined by (59). We
have concluded that case (i) represents two examples, the
well-known BTZ black hole solution and the asymptoti-
cally Lifshitz black hole solution. The obtained metric
functions (60) and (61) of this case are very generic to
produce any other black hole solutions. The most important
finding in case (i) is the fact that the mass and angular
momentum of the black hole and the cosmological constant
are Noether constants for the well-known BTZ black hole.
In case (ii), we have found five Noether symmetries with
the power law form f(R) = foR" from the Noether
symmetry equations (32). Then, starting from Eq. (22)
which relates the metric functions P, A, N and the Ricci
scalar R under the assumption either A = N or A # N, we
have obtained the metric functions from the first integral
equations (51) and (71)—(74), which are solutions of the
f(R) gravity. In this case, we have found five different
solutions for A = N and two different ones for A # N. In
case (iii), it is found from the Noether symmetry equations
that there are four Noether symmetries for an arbitrary form
of the function f(R). As a first example of this case, we
have considered the ansatz R(r) = Kyr"™ proposed in [24]
which yields the explicit form of the function f(R) as in
(103). Unfortunately, this selection of the Ricci scalar R(r)
does not provide the metric functions satisfying all the field
equations as explained in the first part of case (iii).
Afterwards, for A # N, we have obtained some Lifshitz-
like new solutions taking P(r)=r and N(r)=(r/ry)*A(r),
or P(r) = r=% and N(r) = (r/ro)%A(r), or P(r) = r” and
N(r) = (r/ro)"'A(r), or P(r)=r and N(r)=v"A(r),
which brings the f in terms of r from Eq. (22). In some
solutions, we are able to find the function f(R) explicitly,
but in the other ones we have only found f(r) due to the
difficulty of solving the algebraic equations of high degree.

By transforming the field equation (2) to the usual form
(133), we have introduced a curvature stress-energy tensor
(132) and defined energy density p.; and pressure pog as
curvature term contributions by (138) and (139), respec-
tively. For each of the solutions given in cases (i)—(iii), we
found the effective pressure p.; and energy density p.g,
and so the corresponding effective equation of state
parameter w.y which is a constant or a variable one.

In case (i), the BTZ-like solution (143) has a constant
equation of state parameter wo; = 1, a stiff dark matter. In
case (ii), the solution (177) has only a variable equation of
the state parameter given in (180), and the remaining ones
have a constant equation of state parameters. For case (iii),
all of the solutions that are (169), (177), (185), (191), (197),
and (203) have the variable equation of state parameters.
Through Sec. V, we have determined the mass M, the
angular momentum J, and the angular velocity Qy in terms
of the event horizon r, and the inner horizon r_ for all the
solutions. Then, using the functional form of the mass
M(r,,r_) and the angular momentum J(r, r_), we have
determined the thermodynamic quantities such that the
Hawking temperature, the entropy, and the heat capacity in
cases (i)—(ii1) for the BTZ-like black hole solutions. We
have shown that all the obtained solutions satisty the first
law of thermodynamics, and also attained the Smarr-like
mass formulas of the new BTZ-type black holes.

In Appendix A, we have solved the metric symmetries
for the kinetic metric o;; of the configuration space given by
(30). It is found in this Appendix that for any form of f(R)
the kinetic metric admits at least six-dimensional Killing
algebra, seven-dimensional homothetic algebra, and
seven-dimensional conformal Killing algebra if the func-
tion @ depends only on A. For the linear form of
f(R) = R —2A, we have explored that the kinetic metric
admits a 10-dimensional Killing algebra, 11-dimensional
homothetic algebra, and 11-dimensional conformal Killing
algebra if ¥ = W(A). Thus, we have represented that some
of the Noether symmetries are the metric symmetries of the
kinetic metric o;;.

APPENDIX: SPACETIME SYMMETRY
A conformal Killing vector (CKV) Y has to satisfy

ng;u/ = ZW(xa)gm/’ (Al)
where g, is the metric tensor, £y is the Lie derivative
operator along Y, and y(x%) is a conformal factor. When
W # 0, the CKV field is said to be proper [38]. The
vector field Y is called the special conformal Killing vector
(SCKV) field if y,,, = 0, the homothetic vector (HV) field
ify , = 0,e.g.,yis a constant, and the Killing vector (KV)
field which gives the isometry if = 0. The metric (16) is
stationary and axially symmetric, with the KVs 0, and 9,
which describe the two parameters, mass M and angular
momentum (spin) J, respectively. The BTZ black hole
solution in (2 + 1)-dimensional spacetime generically has
no other symmetries.

The conformal Killing equations for the kinetic metric
o;; can be written in the form

0;ju Y + oy Y5 + 0y Y =20(q")oy;,  (A2)
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where ¢ ={N,A,Q.P,R},i,j, k., =1,2,3,4,5. Now, we
use the kinetic metric of the configuration space given in (30)
to look into the metric symmetry. The conformal Killing
equations (A2) for this kinetic metric are obtained as

frY} =0,
fRﬂN"‘fRRPY,SN:O,
frY'S + freNY> =0,
frr(PYl + NYY,

fRYiq+fRRPY?A:O,
frRYY + freNY>, =0,
0, frr(PY'% +NY%) =0,

) =
fR( Y3N+Y4Q)+fRRPYQ—0
fR( +—Y3P —I—fRRNYQ_O
fRR(PYQ+NY4)+fR

fR< Y2+l +Yf‘P>

+ frr(Y? + NY + PY%) = 2y f,

:O,

1 N
fRR< Y2+ Y4+Y +Y,5R+FYT‘N>
+FfRYf‘R + frrY’ = 2y frr.

1 1 3
fR(—NYl +ZY2+FY4+2Y?Q> +fRRY5 :lelfR,

1 P
fRR< Y1+AY2+Y + Y% ~|—NY,‘P>

+NfRY,1R + frrrY® = 2y f g, (A3)

where N, A, Q, P, and R are the configuration space variables
and Y = Y'Oy + Y20, + Y30y + Y*O0p + Y 0.

For any form of the function f(R) under the condition
frr # 0, we find six KVs, which means y = 0, as follows:

Yl :aQ, Y2 :AaA‘l—QaQ—Pap,

Y4 == —A@A + fR 8R’

Y3:N8N—2A8A+Pap, f
RR

N2
= NQOy + (Q2 + ﬁ> dp — PQOp,

Ys = In(NP)(NOy + POp) + Aln <Z{]1;) N

_ frIn(NPf})

O A4
o R (A4)

with the nonvanishing Lie brackets

Y1, Y] =Y, [Y1,Ys] =2Y, + Y3,
Y5, Ys] = Ys, (Y2, Y] = =Y;5 + Yy,

[Y3. Y6 = 2(Y5 — Yy), (Y4, Y] = =2Y,.  (A5)
Thus, using the above KVs of the configuration space, it is
seen that some of the KVs are also Noether symmetries,
that is, X| =Y, X, =2Y, + Y3, and X3 = Y5. In the
case of y = const, it is found that there are seven HVs of
the configuration space which are

1
Y1 = 8Q, YHV QaQ - Pap with Y = 5

YV = NOy + PO, with y =1,
1

LI N

Y I 2

N2
Ys = NQOy + <Q2 + P2> do — PQOp,

2
Y = In(NP)(NOy + POp) +Aln(]£’;>8A

_feIn(NPf3)
fRR

1
with l//IE,

aRs
YHY = 40, (A6)

and the corresponding homothetic Lie algebra for the above
HVs has the nonvanishing Lie brackets

[Yl’ YHV} =Y,
(Y1, Ys] =2Y3Y + Y, Y3V, Ys5] = Y5,
[YIZ{V, 6} — _YHV + Y?V + YHV,
VY. ¥e] = 2(V5 - YV = i),
[VEY. Y] = 2(=Y{V + YY), (A7)

If v, # 0 which imposes that Y;’s are the CKV fields,
then one can obtain from (A3) that the vector fields
Y,,..., Y5 are the same as in (A6), but Yq and Y, have
the following form:

YKV =In(NP)(NOy + POp) + @In (1{,R ) N

frIn(NPf%) 1/ @\ (NP
LRyt (1-2)(22),

YSKY = (A8)

O}
(I)aA with l//—ﬁ

where the component ® of Y, is an arbitrary function
of configuration space variables N, A, Q, P, and R.
The corresponding conformal Killing algebra is seven-
dimensional and the nonvanishing Lie brackets of this
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algebra are the same as (A7) by changing Y4 and Y; to
YEKY and YSKV, respectively, if @ = ®(A).

For the form of f(R) = R—2A which requires that
frr =0, Eq. (A3) with y = 0 yields ten KVs such as

leaQ, Z2 :A8A+Q8Q—Pap,
Z3:N8N—A8A+Q6Q, Z4:P2(P8P—3A8A),

8N+ 504,

Q Q

Z7 — QZ4—N aQ,
N2
Zg=NQOy+ (QZ_"ﬁ)aQ_PQaP’

Zy=—QZ;+N*Z;—2N?AD,,

_ @, (PO-N)

Q
=9
VTN

Ady+-500 -5 ap (A9)

The nonvanishing Lie brackets of the above KVs are

2,.2,)=Z,, [2,Z;]=1,, [Z1,.Z¢|=1Zs,
2,.27)=2,, (2, Zs]=7y+Z;, [L,.Zy]=-2Z;,
Z,.Zy0)|=Zs. [Z,,Z,)=-2Z,, [L,,Z¢]=1ZLs,
Z),27)=~2,, (2, Zs]=1Zg, [Ly.Zyy]|=21Z,,
(23.25)=-2Zs, [13.2¢]=-Zs. [L3.27]=1Z,,

23, Z5]=Zs, [Z3.Zo|=2Z,,

Z4.Z6)=—-2Z,, [14.24]|=2Z;, [L4.20)=-2Z,,
(Z5,27)=-2Z,, [LsZs]=2Zs, [Ls5 Zo]=4Zs,
(Z6.Z7)=~Zy+Zs, [LsZg]=2Z, [L¢,ZLo]|=2Zs,
[Z%ZS] =—2Zy, [Z%Zlo] =—Zs. (A10)

Furthermore, if y is a constant, then there are 11 HVs for
this case which are Z,Zy, ..., Zg and Z, given in (A9)
and the following ones:

1
ZHV QaQ—Pap with Y = —E,
1
2}V =Noy + 00y with y = 3
Zy = —QZ; + N?ZEV — 3N?AD,,

1

The nonvanishing Lie brackets for those of HV's are almost
the same with (A10), but the following ones are different:

2.4, Z0) = —2(Z}Y + 7)),

Z5.Zo] = 4(Z5Y - 7)),
Z6.27]) = -2 + 23V - 2Z,,. (A12)
The 11 CKV fields for the form of f(R) = R —2A are

obtained such that Z, Z!V, Z!!V, and Zg are the same in
(A9) and (Al1), and the remaining ones are

3 y
Z§XY = P2(POp —3¥0,) with ”’:§<1_X>P2’

1 vy . vy 1
ZgKV:ﬁﬁN-i-—z@A Wlth Y= (Z—I)Nz,

0 oY 1 /¥ 0
Z6CKV aN+ 8A+ 8Q with l//—z Z—l m,
ZCKV CKV 2 : 3 hd 2
Z§KY = - Q75 + N* 25V —3N*Y0,

1/¥

ith w==(-——1)(P>?Q>-N?),

win vt (2 )

0° (P°Q*-N?) 0
Zi =S5 On + 5 rapr— Y0a+ 5300

. /¥ (PZQZ—Nz)

- th y=-(—-1)—5—>—~

2P8P vV 4(A ) NZPE

v
28K =9, with y=—,

A (A13)
where ¥ = W(N,A, O, P,R). If ¥ = ¥(A), then the alge-
bra of the CKVs is closed with the nonvanishing Lie
brackets similar to ones as in (A10) by changing some of
the Z;’s to the Z$XV, and the different nonvanishing Lie
brackets take the form

[ZEKY, ZEKY] = —2(ZEY + ZSKY),
[ZCKV ZCKV] 4(ZHV Z?IKV)’
28V, 25K = iV 2V S 226K, (Al

It is explicitly seen here that the CKVs reduce to the HVs
it ¥ =A.

It can also be seen that the Noether symmetries
X] = 8Q, X2 :N6N+28Q —Pap, and X3 :NQ8N+
(Q* + N*P%)dy — PQOp are the KVs of the configura-
tion space for any form of the function f(R). Using the
above symmetry equations (A3), we found that the fourth
Noether symmetry X, = 9, for any form f(R) is not a
metric symmetry of the configuration space. The fifth
Noether symmetry X5 given by (40) for f(R) = foR" is
a linear combination of the HVs obtained in (A6) such as
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4

X5:Y§W‘2n—1

2
HV _ —YHV. Al
4 n—1 7 ( 5)

This means that X for f(R) = foR" is the HV of the configuration space. For the function f(R) = R — 2A, we observe that
six of seven Noether symmetries are the KVs of the configuration space.
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