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We investigate the Noether symmetries of the Lagrangian for the stationary rotating Banados, Teitelboim,
and Zanelli (BTZ)–type three-dimensional spacetimes in the fðRÞ theory of gravity. A detailed analysis of
Noether symmetries of (2þ 1)-dimensional rotating BTZ-type black hole spacetime model is presented.
Applying the Noether symmetry approach, the first integrals (constants of motion) for each of the Noether
symmetries are obtained to look for the exact solutions. After solving the first integral equations depending
on the form of the function fðRÞ, we derived some new (2þ 1)-dimensional rotating BTZ-type black hole
solutions. We discussed the physical implications of the derived exact solutions. The thermodynamical
properties of the obtained BTZ-type black hole solutions are analyzed by making use of the massM and the
angular momentum J in terms of r�, where rþ is the event horizon and r− is the inner horizon. Further, it is
shown that thermodynamic quantities obey the first law, and the Smarr-like formulas of the solutions we
found are obtained.
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I. INTRODUCTION

Because of the fact that the simplest theory of gravity
possessing some nice properties is in three dimensions, a
black hole in three-dimensional gravity theory can be a
perfect toy model to study its properties. The mathematical
complexity of general relativity is significantly softened in
order to get further insights on the fundamental nature
of gravitation in the (2þ 1) dimension. The (2þ 1)-
dimensional black hole solutions are inherent for all
typical characteristics that can be found in (3þ 1)- or
higher-dimensional black holes such as horizon(s),
black hole thermodynamics, and Hawking radiation.
Thermodynamical properties of low-dimensional black
holes are ill-defined because of a few degrees of freedom.
The (2þ 1)-dimensional vacuum solution in three-
dimensional gravity theory is necessarily flat if the cos-
mological constant is zero, which means that there is no
black hole solution of three-dimensional gravity without a
cosmological constant [1].
In (2þ 1)-dimensional gravity with a negative cosmo-

logical constant, Bañados, Teitelboim, and Zanelli (BTZ)
has found a black hole solution [2], which is commonly
called a BTZ black hole and describes an asymptotically
anti–de Sitter rotating black hole. The prominent feature of
this black hole model lies in the simplicity of its con-
struction. Also, it is shown that this black hole solution
can have an arbitrarily high entropy [2], and plays
a good role in the understanding of thermodynamics of

black holes [3–6]. Later on, the vacuum BTZ solution is
enlarged to include an electric charge q, with similar
nice properties [3]. Afterwards, Einstein-Maxwell [7]
and Einstein-Maxwell-dilaton [8] extensions were also
found. Furthermore, BTZ-type solutions have been studied
in the context of fðRÞ gravity [9], dilaton gravity [10],
teleparallel and fðTÞ gravities [11], and noncommutative
geometries [12]. Among the problems studied in the
(2þ 1)-dimensional context so far, it is also mentioned
that the magnetic counterparts of the electrically charged
BTZ solution [13,14], gravitational collapse [15], geo-
metric and thermodynamic features of several nonlinear
models [16], wormholes [17], or BTZ-like solutions are out
of the coupling to scalar fields [18].
Noether symmetries are associated with differential

equations possessing a Lagrangian, and they describe
physical features of differential equations in terms of
conservation laws admitted by them [19]. The Noether
symmetry approach without a gauge term (strict Noether
symmetry) is a kind of symmetry in which the Lie
derivative of the Lagrangian that arises from the metric
of interest dragging along a vector field X vanishes, i.e.,
£XL ¼ 0 [20–24]. This approach has also been used to
obtain fðRÞ gravity models respecting the Noether sym-
metry. Darabi et al. [24] have used the Noether symmetry
without a gauge term to produce (2þ 1)-dimensional black
hole solutions in fðRÞ gravity. The Noether symmetry
approach with a gauge term is the generalization of strict
Noether symmetry as the existence of some extra sym-
metries is expected [25–29]. This approach will be exhaus-
tively considered in the following section. In many of the*ucamci@rwu.edu; ugurcamci@gmail.com
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extended theories of gravity, the dynamical Lagrangian
involves any arbitrary functions (the function of fðRÞ in
this paper or the potential or the coupling functions) which
are unknown quantities. Using the Noether symmetry
approach, the form of the unknown functions in the
Lagrangian may be determined. We also note that the
Noether symmetry with a gauge term is a physical criterion
which allows one to find fðRÞ gravity models compatible
with this symmetry.
In this work, we consider stationary rotating BTZ-type

three-dimensional spacetimes. Therefore, the affine param-
eter τ will be the radial coordinate r. Through this paper, we
aim to find Noether symmetries of the dynamical
Lagrangian L for the (2þ 1)-dimensional rotating black
hole spacetimes in fðRÞ gravity. The action for the fðRÞ
theory of gravity in three dimensions is of the form

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm; ð1Þ

where g ¼ detðgμνÞ and Sm is the matter action. By
employing the variational principle with respect to the
metric tensor it gives rise to the field equations as

fRRμν −
1

2
gμνfðRÞ −∇μ∇νfR þ gμν□fR ¼ −

1

2
Tm
μν; ð2Þ

where fR ¼ dfðRÞ=dR, □ ¼ ∇μ∇μ is the Laplace-

Beltrami operator, and Tm
μν ¼ − 2ffiffiffiffi−gp ∂Sm∂gμν. The trace of the

field equation (2) implies

RfR þ 2□fR −
3

2
f ¼ −

Tm

2
; ð3Þ

in which Tm ¼ Tmμ
μ . Hereafter, we assume Tm ¼ 0. To

emphasize the physical significance after obtaining new
solution(s), one can recast the field equation (2) to an
appropriate form by introducing a curvature stress-energy
tensor and defining effective density ρeff and pressure peff
as given in Sec. V. Then, we suggest an effective equation
of state in the form peff ¼ weffρeff to study the properties of
the obtained solutions, where weff is the equation of state
parameter which may be a constant or a function of r.
Furthermore, it would be useful to derive the thermody-
namical quantities such as temperature and entropy to show
that the first law of thermodynamics is satisfied for the
solutions we found. We also calculate the Smarr-like mass
formulas of our solutions.
The rest of the paper is organized as follows. In the

following section, for the dynamical Lagrangian, we
present the Noether symmetry approach with a gauge term
in an arbitrary dimensional configuration space, where the
Lagrangian includes a velocity term. In Sec. III, we will
focus on the most general (2þ 1)-dimensional rotating
BTZ-type black hole spacetime in the context of the

Noether symmetry approach. In Sec. IV, we will use the
obtained first integrals related with the Noether symmetries
of Sec. III to find exact solutions for fðRÞ gravity. The
Sec. V is devoted to study physical properties of the
solutions shown in Sec. IV. Conclusions are presented
in Sec. VI.

II. NOETHER SYMMETRY APPROACH

The models for gravity theories are expressed in terms
of the configuration space variables which are usually
the metric coefficients, matter fields, scalar fields, etc.
Therefore, the corresponding configuration space of the
model is a d-dimensional Riemannian manifold with
coordinates qi; i ¼ 1; 2;…; d, in which is constructed a
pointlike Lagrangian to produce the dynamics of the model.
The equations of gravity theories can be both derived

from the field equations or deduced by a Lagrangian
function Lðτ; qi; q0iÞ of the system related to the action
S ¼ R

Ldτ. Here the prime represents the derivative with
respect to an affine parameter τ which is the cosmic time t
in most of the physical models, but it could be the radial
coordinate r in some of the models. Note that Q ¼ fqi;
i ¼ 1;…; dg is the configuration space from which it is
possible to derive the corresponding tangent space TQ ¼
fqi; q0ig on which the Lagrangian L is defined.
Taking the variation of L with respect to the generalized

coordinates qi, the Euler-Lagrange equations of motion
become

d
dτ

∂L
∂q0i −

∂L
∂qi ¼ 0: ð4Þ

The energy function associated with L is

EL ¼ q0k
∂L
∂q0k − L; ð5Þ

which is also the Hamiltonian of the system. From a first-
order Lagrangian L ¼ Lðr; qk; q0kÞ for stationary space-
times, it follows the system of second-order ordinary
differential equations (ODEs) of the form

q00i ¼ wiðr; qk; q0kÞ: ð6Þ

The Noether symmetry generator for the system of ODEs
(6) is

X ¼ ξðr; qkÞ∂r þ ηiðr; qkÞ∂qi ;

if there exists a gauge function hðr; qkÞ and the Noether
symmetry condition

X½1�Lþ LðDrξÞ ¼ Drh ð7Þ
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is satisfied. Here Dr ¼ ∂r þ q0k∂qk is the total derivative

operator and X½1� is the first prolongation of Noether
symmetry generator X, i.e.,

X½1� ¼ Xþ η0kðr; ql; q0lÞ∂q0k ; ð8Þ

where η0kðr; ql; q0lÞ ¼ Drη
k − q0kDrξ. For every Noether

symmetry generator, there is a conserved quantity (a first
integral) of the system of equations (6) given by

I ¼ −ξEL þ ηi
∂L
∂q0i − h: ð9Þ

Most of the applications of the Noether theorem to the
extending theories of gravity are concerned with the
following standard form of the Lagrangian:

L ¼ T − V

¼ 1

2
σijðr; qkÞq0iq0j þ γjðr; qkÞq0j − Vðr; qkÞ; ð10Þ

where T is the kinetic energy with a kinetic metric [25]

ds2σ ¼ σijdqidqj; ð11Þ

for the configuration space, the indices i; j; k;… run over
the dimension of this space and Vðr; qkÞ is the potential
energy function. The function γjðr; qkÞ is a factor of the
velocity term.
For the form of Lagrangian (10), we obtain the first

prolongation of the Noether symmetry generator X as

X½1�L ¼ −ξVr − ηkV;k þ γkη
k
;r

þ ð£ηγj − ξ;rγj þ ξγj;r þ σijη
i
;rÞq0j

þ 1

2
ð£ησij − 2ξ;rσij þ ξσij;r − 2ξ;iγjÞq0iq0j

− ξ;kσijq0iq0jq0k; ð12Þ

where £η is the Lie derivative operator along η ¼ ηk∂qk .
Putting (12) into (7) together with Drξ ¼ ξ;r þ ξ;kq0k and
Drh ¼ h;r þ h;kq0k, the Noether symmetry condition (7)
becomes

ξ;i ¼ 0; £ηγi þ ξγi;r þ σijη
j
;r − h;i ¼ 0; ð13Þ

£ησij ¼ ðξ;rÞσij − ξσij;r; ð14Þ

ηkV;k þ ðVξÞ;r − γiη
i
;r þ h;r ¼ 0: ð15Þ

The above conditions explicitly yield the geometrical
character of the Noether symmetry. Here, ξ;i ¼ 0 implies
ξ ¼ ξðrÞ.

III. NOETHER SYMMETRY IN
THREE-DIMENSIONAL SPACETIME

The most general line element for the (2þ1)-dimensional
rotating black hole spacetime can be written in the form

ds2 ¼ −NðrÞ2dt2 þ dr2

AðrÞ2 þ PðrÞ2½QðrÞdtþ dϕ�2; ð16Þ

where NðrÞ is the lapse function and QðrÞ is the angular
shift function. For this metric the Ricci scalar is given by

R ¼ −2A2

�
N00

N
þ P00

P
þ A0N0

AN
þ A0P0

AP

þ N0P0

NP
−

P2

4N2
Q02

�
; ð17Þ

where the prime ( 0) represents the derivative with respect to
r. Now, taking fR ¼ df

dR and fRR ¼ d2f
dR2, one can obtain the

following field equations:

fR

�
N00

N
þ P00

P
þ A0N0

AN
þ A0P0

AP
−
P2Q02

2N2

�

− f0R

�
N0

N
þ P0

P

�
þ f
2A2

¼ 0; ð18Þ

fR

�
P00

P
þ A0P0

AP
þ N0P0

NP
þ P2Q02

2N2

�

− f0R

�
A0

A
þ N0

N

�
− f00R þ f

2A2
¼ 0; ð19Þ

fR

�
Q00

Q
þ 3P0Q0

PQ
þ A0Q0

AQ
−
N0Q0

NQ

�
þ f0R

Q0

Q
¼ 0; ð20Þ

fR

�
N00

N
þ A0N0

AN
þ N0P0

NP
−
P2Q02

2N2

�

− f0R

�
A0

A
þ P0

P

�
− f00R þ f

2A2
¼ 0; ð21Þ

corresponding to ðrrÞ; ðϕϕÞ; ðtϕÞ, and ðttÞ components of
Eq. (2), respectively. After some calculations, it follows
from the above field equations that

fR
P00

P
þ f00R þ

�
A0

A
−
N0

N

��
f0R þ fR

P0

P

�
¼ 0; ð22Þ

which will be useful to generate solutions for the fðRÞ
theory of gravity.
To study Noether symmetries we need to obtain a

canonical Lagrangian of fðRÞ gravity for the considered
metric (16). Then, selecting the suitable Lagrange multi-
plier and integrating by parts, the Lagrangian L becomes
canonical. Thus the pointlike canonical Lagrangian of fðRÞ
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gravity for (2þ 1)-dimensional black hole metric has the
form

L ¼ AP3

2N
fRQ02 þ 2fRAN0P0 þ 2APfRRN0R0

þ 2ANfRRP0R0 þ NP
A

ðf − RfRÞ: ð23Þ

The field equations obtained by variation of the action with
respect to the metric coefficients N, A, P,Q, and R take the
form, respectively,

fR

�
P00

P
þ A0P0

AP
þ P2Q02

4N2

�
þ f0R

�
A0

A
þ P0

P

�

þ f00R −
1

2A2
ðf − RfRÞ ¼ 0; ð24Þ

fR

�
N0P0

NP
þ P2Q02

4N2

�
þ f0R

�
N0

N
þ P0

P

�

−
1

2A2
ðf − RfRÞ ¼ 0; ð25Þ

fR

�
N00

N
þ A0N0

AN
−
3P2Q02

4N2

�
þ f0R

�
A0

A
þ N0

N

�

þ f00R −
1

2A2
ðf − RfRÞ ¼ 0; ð26Þ

�
AP3

N
fRQ0

�0
¼ 0; ð27Þ

fRR

�
2A2

�
N00

N
þ P00

P
þ A0N0

AN

þ A0P0

AP
þ N0P0

NP
−

P2

4N2
Q02

�
þ R

�
¼ 0: ð28Þ

Note that the latter equation gives the Ricci scalar (17) if
fRR ≠ 0. It is seen that by inserting the Ricci scalar R given
by (17) into the above Eqs. (24)–(27), one gets the field
equations (18)–(21), which are the verification of varia-
tional field equations to be equivalent with the ones
obtained from the tensorial form of the field equation (2).
Furthermore, the energy functional (5) for the Lagrangian
(23) becomes

EL ¼ 2ANP

�
fR

�
N0P0

NP
þ P2Q02

4N2

�
þ f0R

�
N0

N
þ P0

P

�

−
1

2A2
ðf − RfRÞ

�
: ð29Þ

After using the Ricci scalar (17) in the above equation it
yields EL ¼ 0 due to the field equation (18).

Taking the configuration space variables as qi ¼
ðN;A;Q; P; RÞ, i ¼ 1, 2, 3, 4, 5, the kinetic metric for
the Lagrangian (23) of fðRÞ gravity is

ds2σ ¼
AP3

2N
fRdQ2 þ 2fRAdNdPþ 2fRRAPdNdR

þ 2fRRANdPdR; ð30Þ

and the potential is

VðN;A; P; RÞ ¼ NP
A

½RfR − fðRÞ�: ð31Þ

Then, the geometrical Noether symmetry conditions (13)–
(15) yield ξ ¼ ξðrÞ and

fRη3;A ¼ 0; h;A ¼ 0;

2AðfRη4;r þ PfRRη5rÞ − h;N ¼ 0;

AP3fRη3;r − Nh;Q ¼ 0;

2AðfRη1;r þ NfRRη5;rÞ − h;P ¼ 0;

2AfRRðPη1;r þ Nη4;rÞ − h;R ¼ 0;

fRη4;N þ PfRRη5;N ¼ 0; fRη4;A þ PfRRη5;A ¼ 0;

2NðfRη4;Q þ PfRRη5;QÞ þ fRP3η3;N ¼ 0;

fRη1;A þ fRRNη5;A ¼ 0; fRRðPη1;A þ Nη4;AÞ ¼ 0;

fRη1;P þ fRRNη5;P ¼ 0; fRRðPη1;R þ Nη4;RÞ ¼ 0;

fRðP3η3;P þ 2Nη1;QÞ þ 2fRRN2η5;Q ¼ 0;

fRP3η3;R þ 2NfRRðPη1;Q þ Nη4;QÞ ¼ 0;

fR

�
−
η1

N
þ η2

A
þ 3η4

P
þ 2η3;Q − ξ;r

�
þ fRRη5 ¼ 0;

fR

�
η2

A
þ η1;N þ η4;P − ξ;r

�
þ fRRðη5 þ Nη5;N þ Pη5;PÞ ¼ 0;

fRR

�
η1

N
þ η2

A
þ P
N
η1;P þ η4;P þ η5;R − ξ;r

�

þ fR
N

η1;R þ fRRRη5 ¼ 0;

fRR

�
η2

A
þ η4

P
þ η1;N þ P

N
η4;N þ η5;R − ξ;r

�

þ fR
P

η4;R þ fRRRη5 ¼ 0;

V;Nη
1 þ V;Aη

2 þ V;Pη
4 þ V;Rη

5 þ Vξ;r þ h;r ¼ 0; ð32Þ

where VðN;A; P; RÞ is given by (31) and the Noether
symmetry generator to be found is

X¼ ξðrÞ∂rþη1∂N þη2∂Aþη3∂Qþη4∂Pþη5∂R: ð33Þ
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For this generator, the corresponding first integral (9) of the
fðRÞ Lagrangian (23) is

I ¼ −ξEL þ 2AðfRPÞ0η1 þ
AP3

N
fRQ0η3

þ 2AðfRNÞ0η4 þ 2AfRRðNPÞ0η5: ð34Þ

The function h of Eq. (32) is assumed constant, unless
otherwise stated.
It follows from the Noether symmetry equations given

by (32) that for an arbitrary form of the function fðRÞ, there
are four Noether symmetries

X1 ¼ ∂Q; X2 ¼ N∂N þ 2Q∂Q − P∂P; ð35Þ

X3¼NQ∂N þ
�
Q2þN2

P2

�
∂Q−PQ∂P; X4¼ ∂r; ð36Þ

with the Lie algebra

½X1;X2�¼2X1; ½X1;X3�¼X2; ½X2;X3�¼2X3: ð37Þ

Then the corresponding first integrals of X1, X2, X3, and
X4 are

I1 ¼
AP3

N
fRQ0; I2 ¼ 2I1Qþ 2AN2fR

�
P
N

�0
; ð38Þ

I3 ¼ I1

�
N2

P2
−Q2

�
þ I2Q; I4 ¼ −EL; ð39Þ

where I1, I2, I3, I4 are constants of motion and I4 vanishes
due to the Hamiltonian constraint EL ¼ 0.
It is possible to find solutions to the Noether symmetry

equations (32) where the form of f is fðRÞ ¼ f0Rn with f0
and n being constants. In this case, there are five Noether
symmetriesX1, X2, X3, X4, given above by (35) and (36),
and additionally

X5 ¼ N∂N −
2A

2n − 1
∂A þ P∂P −

4R
2n − 1

∂R; ð40Þ

which gives rise to the first integral

I5 ¼ 2A

�ð3 − 2nÞ
ð2n − 1Þ fRðNPÞ0 þ 2NPf0R

�
; ð41Þ

where fR¼f0nRn−1, f0R¼f0nðn−1ÞRn−2R0, and n ≠ 1=2.
For n ¼ 1=2, the vector field X5 is found from (32) such
that

X5 ¼ A∂A þ 2R∂R; ð42Þ

with the first integral

I5 ¼ −
f0Affiffiffiffi
R

p ðNPÞ0: ð43Þ

Here the Lie algebra of these five Noether symmetries are
the same as (37).
One also finds that there are seven Noether symmetries

satisfying the Noether symmetry equations (32), which are
X1, X2, X3, X4 given in (35) and (36), and

X5 ¼
1

N
∂N þ A

N2
∂A; ð44Þ

X6 ¼
Q
N
∂N þ AQ

N2
∂A þ 1

P2
∂Q; ð45Þ

X7¼
Q2

2N
∂N þAðP2Q2−N2Þ

2N2P2
∂Aþ

Q
P2

∂Q−
1

2P
∂P; ð46Þ

while the form of f becomes fðRÞ ¼ R − 2Λ, where Λ is a
constant. Thus the first integrals for X5, X6, X7 are

I5 ¼
2AP0

N
; I6 ¼

I1
P2

þ I5Q; ð47Þ

I7 ¼ I6Q − I5
Q2

2
−
A
P
N0: ð48Þ

Furthermore, for this case the Hamiltonian constraint
EL ¼ 0 yields

A ¼ −
1

I3N0

�
I21
2P3

þ 2ΛP
�
; ð49Þ

with I3N0 ≠ 0. Also, the corresponding Lie algebra of
Noether symmetries X1;…;X7 has the following non-
vanishing commutators:

½X1;X2� ¼ 2X1; ½X1;X3� ¼X2; ½X1;X6� ¼X5;

½X1;X7� ¼X6; ½X2;X3� ¼ 2X3; ½X2;X5� ¼−2X5;

½X2;X7� ¼ 2X7; ½X3;X5� ¼−2X6; ½X3;X6� ¼−2X7:

ð50Þ

In the following section, we will use the above Noether
symmetries to derive exact solutions for the corresponding
(2þ 1)-dimensional fðRÞ theories of gravity.

IV. EXACT SOLUTIONS

For any form of fðRÞ, we consider the first integrals I1,
I2, I3 given in (38) and (39). For the sake of simplicity, we
take the constants of motion as I1 ¼ a, I2 ¼ b, and I3 ¼ c.
It follows from those of the first integrals that

N2 ¼ P2

�
c − bQ

a
þQ2

�
; ð51Þ

THREE-DIMENSIONAL BLACK HOLES VIA NOETHER … PHYS. REV. D 103, 024001 (2021)

024001-5



Q0 ¼ aN
fRAP3

; ð52Þ

�
P
N

�0
¼ b − 2aQ

2fRAN2
; ð53Þ

where fR ≠ 0. Let us now consider the cases having five
and seven Noether symmetries obtained before.
Case (i): In this case, the form of f is fðRÞ ¼ R − 2Λ

and there exist seven Noether vectors given in (35), (36),
(44), (45), and (46). Here, Λ is obviously identified as the
cosmological constant. Then, taking I5 ¼ k and rearrang-
ing the first integrals for these Noether symmetries, we
obtain

N2 ¼ aQ2 − bQþ c
I6 − kQ

; P2 ¼ a
I6 − kQ

; ð54Þ

P0 ¼ kN
2A

; Q0 ¼ aN
AP3

; ð55Þ

2PAN0 − kN2 − 2aQþ b ¼ 0; ð56Þ

AN0 þ P

�
k
2
Q2 − I6Qþ I7

�
¼ 0; ð57Þ

2kAN0 þ a2

P3
þ 4ΛP ¼ 0; ð58Þ

with Q ≠ I6=k. To solve the above system of differential
equations one can define a function FðrÞ,

FðrÞ ¼
Z

N
A
dr; ð59Þ

which means that NðrÞ ¼ AðrÞF0ðrÞ. Then, the metric
functions P and Q can be found via (55) as

P¼ k
2
FðrÞþd1; Q¼−

4a
kðkFðrÞþ 2d1Þ2

þd2; ð60Þ

where d1, d2 are integration constants. Thus, the first
relation in Eq. (54) yields

N2 ¼ a2

k2ðk
2
FðrÞ þ d1Þ2

þ d3

�
k
2
FðrÞ þ d1

�
2

þ N0; ð61Þ

where d3 ¼ ðc − bd2Þ=aþ d22, N0 ≡ ðb − 2ad2Þ=k, and
k ≠ 0. The remaining equations (56)–(58) give the Noether
constants as follows:

I6 ¼ kd2; I7 ¼
k
2
ðd22 − d3Þ; ð62Þ

d3 ¼ −
4Λ
k2

; c ¼ bd2 þ aðd3 − d22Þ: ð63Þ

It has to be noted that the solutions (60) and (61) of the
metric functions N, P, and Q are found in terms of an
arbitrary function FðrÞ under the condition NðrÞ ¼
AðrÞF0ðrÞ. Therefore, if one chooses the function FðrÞ,
then one can find the metric functions explicitly.
Equation (22) for this case becomes

P00

P
þ
�
A0

A
−
N0

N

�
P0

P
¼ 0; ð64Þ

which is easily satisfied by taking P ¼ k
2
FðrÞ þ d1 and

NðrÞ ¼ AðrÞF0ðrÞ for any form of FðrÞ with the condition
F0ðrÞ ≠ 0. In the following we conclude this case by
pointing out some examples.
First, we simply take A ¼ N and FðrÞ ¼ 2ðr − d1Þ=k,

which gives rise to the well-known form of BTZ metric [2].
Then, it follows from (60) and (61) that one can explicitly
write

PðrÞ ¼ r; QðrÞ ¼ −
a
kr2

þ d2; ð65Þ

and

N2 ¼ a2

k2r2
þ d3r2 þ N0: ð66Þ

Here, the Noether constants are the same ones as in (62)
and (63). Taking the special values of parameters such as
d2 ¼ 0, N0 ¼ −M, a ¼ kJ=2, and d3 ¼ l−2 in the
obtained metric functions N, P, and Q one can reach
the BTZ black hole solution [2]

NðrÞ2¼−Mþ r2

l2
þ J2

4r2
; PðrÞ¼r; QðrÞ¼−

J
2r2

; ð67Þ

where M ¼ −b=k and J ¼ 2a=k are the mass and angular
momentum of the black hole, respectively. Here, the
other Noether constants become I6 ¼ 0, I7 ¼ −kl−2=2,
d3 ¼ −4Λ=k2, and c ¼ kJl−2=2. It should be pointed out
that not only the mass and angular momentum of the black
hole but also the cosmological constant are Noether
constants, i.e. b ¼ −kM, a ¼ kJ=2, and I7 ¼ 2Λ=k.
Second, now let us consider the special case where the

solution is asymptotically the Lifshitz black hole [30,31].
For this aim, we use the ansatz N ¼ ðrlÞzHðrÞ and A ¼
r
lHðrÞ which yields FðrÞ ¼ l

z ðrlÞz from the relation (59),
where HðrÞ is a function of the radial coordinate, and z is
the dynamical critical exponent. The z ¼ 1 value corre-
sponds to the standard scaling behavior of conformal
invariant solutions. Thus, one can write the metric functions
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P ¼ kl
2z

�
r
l

�
z
þ d1; Q ¼ −

4az2

k½klðrlÞz þ 2d1z�2
þ d2;

ð68Þ

and

N2 ¼ 4a2

k2½klz ðrlÞz þ 2d1�2
þ d3

4

�
kl
z

�
r
l

�
z
þ 2d1

�
2

þ N0;

ð69Þ
which gives

H2 ¼ 4a2

k2ðrlÞ2z½klz ðrlÞz þ 2d1�2

þ d3
4

�
kl
z
þ 2d1

�
r
l

�
−z
�
2

þ N0

�
r
l

�
−2z

: ð70Þ

It is easily found that for z > 1 the function HðrÞ given by
(70) obeys limr→∞HðrÞ → 1 when Λ ¼ −z2=l2.
Case (ii): For this case, we consider the five Noether

symmetries given by (35), (36), and (40) where the function
fðRÞ has the form fðRÞ ¼ f0Rn due to the Noether
symmetry equations. The corresponding conserved quan-
tities (first integrals of motion) yield (51) and

N0P0

NP
þ P2Q02

4N2

þ ðn − 1ÞR
0

R

�
N0

N
þ P0

P

�
þ ðn − 1ÞR

2nA2
¼ 0; ð71Þ

Q0 ¼ aNR1−n

f0nAP3
; ð72Þ

NP0 − PN0 þ ð2aQ − bÞR1−n

2f0nA
¼ 0; ð73Þ

ð3 − 2nÞ
ð2n − 1Þ ðNPÞ0 þ 2ðn − 1ÞNP

R0

R
¼ kR1−n

2f0nA
; ð74Þ

where n ≠ 1=2. Then, we will search for the exact solutions
of the above first integral equations to find the metric
coefficients A, N, P, and Q.
First of all, we assume A ¼ N to arrive at solutions from

the above differential equations (71)–(74). Then, Eq. (22)
becomes

P00

P
þ ðn − 1Þ

�
R00

R
þ ðn − 2ÞR

02

R2

�
¼ 0: ð75Þ

This equation relates the metric function P and the
Ricci scalar R, and if one chooses P, one can find R by
solving (75), or vice versa. For example, for PðrÞ ¼
P1rð1þαÞ=2 þ P2rð1−αÞ=2, Eq. (75) has a solution of the
Ricci scalar R as

RðrÞ ¼ ½R1rð1þβÞ=2 þ R2rð1−βÞ=2� 1
n−1; n ≠ 1; ð76Þ

where R1 and R2 are integration constants and α and β are
real constant parameters having the property α2 þ β2 ¼ 2.
It is very difficult to solve Eqs. (71)–(74) using these
forms of P and R. So we need to simplify the forms of P
and R choosing the coefficients P1, P2, R1, and R2. Now,
taking P1 ¼ 1 and P2 ¼ R2 ¼ 0, that is, PðrÞ ¼ rð1þαÞ=2

and RðrÞ ¼ K1r
ð1þβÞ
2ðn−1Þ with K1 ¼ R1=ðn−1Þ

1 , we find from
(71)–(74) that

QðrÞ ¼ −
2ar−ð3αþβþ2Þ=2

f0nR1ð3αþ β þ 2Þ þ q1; ð77Þ

AðrÞ ¼ 2a
f0nR1ð3αþ β þ 2Þ r

−ð2αþβþ1Þ=2; ð78Þ

where the conditions k ¼ 0, b ¼ 2aq1, and c ¼ aq21 have
to be satisfied, and

a2 ¼ 2f20nðn − 1Þð3αþ β þ 2Þ2
ðαþ βÞð3β − αþ 4Þ R

2n−1
n−1
1 ; ð79Þ

α¼−
ð28n2−52nþ23Þ
20n2−36nþ17

; β¼−
ð4n2þ4n−7Þ
20n2−36nþ17

: ð80Þ

Here, using (80) in the term 3αþ β þ 2 appearing at (77)
and (78) gives rise to the constraint n ≠ 1

2
; 7
6
. For n ¼ 5=6,

we observe that k needs not to vanish, and one gets
α ¼ β ¼ 1 from (80). Then, the metric functions P, Q,
and A ¼ N, given as

PðrÞ ¼ r; QðrÞ ¼ −
a

3R1r3
þ q1; ð81Þ

AðrÞ2 ¼ a2

9R2
1r

4
þ ðb − 2aq1Þ

3R1r
; ð82Þ

solve Eqs. (71)–(74) under the conditions c ¼ bq1 − aq21
and k ¼ 2b − 4aq1. Here the Ricci scalar is RðrÞ ¼ K1=r6

withK1 ¼ −5a2=ð6R2
1Þ. Furthermore, for n ¼ 3=2, one can

get the following solution of Eqs. (71)–(74) taking α ¼ 1,
β ¼ −1, and R2 ¼ 0,

PðrÞ ¼ r; QðrÞ ¼ −
a

2R1r2
þ q1; ð83Þ

AðrÞ2 ¼ðb−2aq1Þ
2R1

þ a2

4R2
1r

2
þðaq21−bq1þcÞr

2

a
; ð84Þ

with k ¼ 0 and RðrÞ ¼ 6ðbq1 − aq21 − cÞ=a ¼ const. If
one assumes q1 ¼ 0, a ¼ R1J, b ¼ −2R1M, and c ¼ a=l2

in the above metric functions, one can arrive at the original
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BTZ black hole solution. This interestingly means that the
fðRÞ ¼ f0R3=2 theory of gravity also gives rise to the BTZ
black hole solution. For n ≠ 3=2, one can find the solution
when α ¼ β ¼ −1 and R2 ¼ 0, such as

PðrÞ ¼ r; QðrÞ ¼ −
a

2R1r2
þ q1; ð85Þ

AðrÞ2 ¼ kð1 − 2nÞ
2R1ð2n − 3Þ þ

a2

4R2
1r

2
; ð86Þ

through the conditions b ¼ 2aq1 þ kð1 − 2nÞ=ð2n − 3Þ
and c ¼ bq1 − aq21, which yields that the Ricci scalar
vanishes, i.e.,R ¼ 0. Therefore, we conclude that the metric
for n ≠ 3=2, which includes the metric for n ¼ 7=6, is a
vacuum solution. Furthermore, for n ¼ 1=2, we have to use
the first integral (43) instead of (41) or (74). Then, one can
obtain a vacuum solution, namelyR ¼ 0, inwhich themetric
functions have the form

PðrÞ ¼ r; QðrÞ ¼ −
a
2r2

þ q1; ð87Þ

AðrÞ ¼ NðrÞ ¼ a
2r

; ð88Þ

where k ¼ 0, b ¼ 2aq1, and c ¼ aq21. Therefore, one can
conclude that the metric for n ¼ 1=2 is also a vacuum
solution.
Now, we look for the solutions of (71)–(74) under the

assumption of A ≠ N, where Eq. (22) reads

P00

P
þ ðn − 1Þ

�
R00

R
þ ðn − 2ÞR

02

R2

�

þ
�
A0

A
−
N0

N

��
P0

P
þ ðn − 1ÞR

0

R

�
¼ 0: ð89Þ

One can explicitly solve Eq. (74) for k ¼ 0, finding that

N ¼ N0

P
R

2ðn−1Þð2n−1Þ
2n−3 ; ð90Þ

where N0 is an integration constant and n ≠ 3=2. Using
(90) in (51), the metric function Q is obtained as

Q ¼ b
2a

� N0

P2
R

2ðn−1Þð2n−1Þ
2n−3 ; ð91Þ

for c ¼ b2=4a. Then, assuming PðrÞ ¼ rðαþ1Þ=2, Eqs. (71)–
(73) and (89) have the following solutions:

RðrÞ ¼ ðK2rÞ−
2ðαþ1Þ
2n−1 ; AðrÞ ¼ A0r

2ðn−1Þ−α
2n−1 ; ð92Þ

where A0 is

A0 ¼ −
að2n − 3ÞK

2ðαþ1Þðn−1Þ
2n−1

2

f0nðαþ 1Þð6n − 7Þ ð93Þ

and

a ¼ f0
Kαþ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2n − 1Þð6n − 7Þ

8ð1 − nÞ

s
; ð94Þ

with n ≠ 0; 1; 1=2; 7=6. Put the latter form of P and R into
N and Q given in (90) and (91), and then N and Q take the
form

NðrÞ ¼ N0r
−ðαþ1Þð10n−11Þ

2ð2n−3Þ

K
4ðαþ1Þðn−1Þ

2n−3
2

ð95Þ

and

QðrÞ ¼ b
2a

� N0r
−ðαþ1Þð6n−7Þ

2n−3

K
4ðαþ1Þðn−1Þ

2n−3
2

: ð96Þ

For n ¼ 3=2, if k ¼ 0 and R ¼ R0 ¼ const, we can find the
following exact solution of metric functions:

PðrÞ ¼ rν; QðrÞ ¼ −
a

q0r2ν
þ q1; ð97Þ

AðrÞ2 ¼ r2

ν2

�
aq21 − bq1 þ c

a
þ a2

q20r
4ν þ

b − 2aq1
q0r2ν

�
; ð98Þ

NðrÞ2 ¼ ν2r2ðν−1ÞAðrÞ2; ð99Þ

in which q0 ¼ 3f0
ffiffiffiffiffiffi
R0

p
, R0 ¼ 6ðbq1 − aq21 − cÞ=a, and ν

is a constant parameter. We note that for ν ¼ 1 the latter
exact solution reduces to (83) and (84) where A ¼ N.
Case (iii): In this case, we take the four Noether

symmetries given in (35) and (36), which imposes an
arbitrary form of the function fðRÞ. The first integrals of
this case are given by (51), (52), (53), and EL ¼ 0 which
gives

fR

�
N0P0

NP
þ P2Q02

4N2

�

þ f0R

�
N0

N
þ P0

P

�
−

1

2A2
ðf − RfRÞ ¼ 0: ð100Þ

For this case, we can first choose that PðrÞ ¼ r and
A ¼ N. Then, Eq. (22) becomes f00R ¼ 0 which has a
solution fR ¼ R1rþ R2, where R1, R2 are integration
constants. This information is sufficient to solve Eq. (52)
to find Q as follows:
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QðrÞ¼aR2
1

R3
2

ln

�
r

R1rþR2

�
þ a
R2

�
R1

R2r
−

1

2r2

�
þQ1; ð101Þ

where Q1 is an integration constant. Furthermore, the field
Eq. (28) yields

ðA2Þ00 þ 2

r
ðA2Þ0 − a2

2r4ðR1rþ R2Þ2
þ R ¼ 0; ð102Þ

for fRR ≠ 0, i.e., R1 ≠ 0 in this case. Thus, one needs to
select the function RðrÞ to find a solution of the above
ordinary differential equation, i.e., the function AðrÞ2.
Because of the differential equation fR ¼ R1rþ R2, using
the ansatz RðrÞ ¼ K0rm proposed in [24], the fðRÞ takes
the form

fðRÞ ¼ mR1

ðmþ 1ÞK1=m
0

R
mþ1
m þ R2Rþ R0; ð103Þ

where K0 is a dimensional constant, R0 is a constant of
integration, and m ≠ −1. Putting RðrÞ ¼ K0rm into
Eq. (102), we can integrate (102) to find

A2ðrÞ¼ a2R1

R3
2

�
1

r
þ3R1

2R2

�
ln

�
r

R1rþR2

�
þ a2

4R2
2r

2

þ
�
R1a2

2R3
2

þA1

�
1

r
−

K0rmþ2

ðmþ2Þðmþ3ÞþA2; ð104Þ

where A1 and A2 are constants of integration and m ≠ −2,
−3. Note that the above solution (104) was reported before
[24]. Unfortunately, the metric functions PðrÞ ¼ r,QðrÞ by
(101) and NðrÞ by (104) are not solved by the first integral
relations (53) and (100). Thus, those metric functions are
not solutions of the field equations (24)–(28) unless one
takes that R1 ¼ 0, A1 ¼ 0, m ¼ 0, R2 ¼ 1, K0 ¼ −3R0,
a ¼ J, A2 ¼ −M, and R0 ¼ 2l−2 which is just the BTZ
black hole solution. Let us discuss why this happened. The
pointlike Lagrangian used in Ref. [24] is a poorly described
one because it gives rise to incomplete variational field
equations of motion, in which there are three variational
equations of motion, Eqs. (11), (12), and (12) of [24]. We
observe that the reason for missing some of the field
equations after the variation of the Lagrangian given in
Ref. [24] is the lack of taking variation with respect to some
metric functions that depend explicitly on r. To tackle this
problem, we have written all of the metric coefficients in
terms of implicit functions of r which are N, A, P, and Q.
Afterwards, to recover the underlying field equations, we
have varied the obtained Lagrangian (23) with respect to
these implicit functions, i.e., the metric coefficients, and the
Ricci scalar R that implicitly depends on r. So, we have
arrived at the fact that the number of variational equations
of motion is five given by (24)–(28), not three as in
Ref. [24].

Now, we want to obtain exact solutions for N ≠ A.
For this purpose, by employing PðrÞ ¼ r and NðrÞ ¼
ðr=r0ÞzAðrÞ which gives a Lifshitz-like three-dimensional
spacetime, Eq. (22) has the following solution:

fR ¼ D1r
1
2
ðzþ1þαÞ þD2r

1
2
ðzþ1−αÞ; ð105Þ

where D1 and D2 are integration constants, z is a real
number so-called Lifshitz-like parameter, r0 is an arbitrary
(positive) length scale, and α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ 6zþ 1
p

which yields
that z < z1 ¼ −3 − 2

ffiffiffi
2

p
and z > z2 ¼ −3þ 2

ffiffiffi
2

p
. It is

very difficult to find out a general form of fðRÞ from
(105) for arbitrary z. Therefore, we will take z ¼ −6 as an
example. Then, Eq. (105) becomes

fR ¼ D1

r2
þD2

r3
; ð106Þ

which can be written in the form

f0 ¼
�
D1

r2
þD2

r3

�
R0; ð107Þ

where f0 ¼ fRR0. If D1 ≠ 0 and D2 ¼ 0, then the solution
of Eq. (52) is

QðrÞ ¼ −
a

6D1

�
r0
r

�
6

þQ1; ð108Þ

where Q1 is an integration constant. Using the latter Q,
PðrÞ ¼ r and NðrÞ ¼ ðr0=rÞ6AðrÞ in Eqs. (51) and (53),
one can obtain the lapse function AðrÞ2 as

AðrÞ2 ¼ r2
�
−A1r12 þ

ðb − 2aQ1Þ
6D1r60

r6 þ a2

36D2
1

�
; ð109Þ

with the constraint c ¼ bQ1 − aðA1r120 þQ2
1Þ, where A1 is

a constant of integration. Putting the metric functions
obtained here to the definition given in (17), we have
the Ricci scalar

RðrÞ ¼ 30A1r12 −
2a2

3D2
1

; ð110Þ

which gives fðrÞ ¼ 36A1D1r10 from (107). Thus, one can
easily find fðRÞ as fðRÞ ¼ f0ðRþ R0Þ5=6, where f0 ¼
36D1ðA1=5

1 =30Þ5=6 and R0 ¼ 2a2=3D2
1. Note that Eq. (100)

and the field equations are equivalently satisfied for this
solution. If D1 ¼ 0 and D2 ≠ 0, then using PðrÞ ¼ r and
NðrÞ ¼ ðr0=rÞ6AðrÞ in the first integrals (51), (52), and
(53), we have the following solutions:

QðrÞ ¼ −
ar60

5D2r5
þQ2; ð111Þ
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AðrÞ2 ¼ r4
�
−A2r10 þ

ðb − 2aQ2Þ
5D2r60

r5 þ a2

25D2
2

�
; ð112Þ

with the constraint c ¼ bQ2 − aðA2r120 þQ2
2Þ, where A2

andQ2 are constants of integration. Then, the Ricci scalar R
given by (17) reads

RðrÞ ¼ 3r2
�
10A2r10 −

a2

10D2
2

�
: ð113Þ

Thus, it follows from Eq. (107) that this form of R gives rise
to the following fðrÞ:

fðrÞ ¼ 40A2D2r9 þ
3a2

5D2r
: ð114Þ

To obtain the function of fðRÞ, one needs to solve the
12th degree algebraic equation (113), i.e., the equation
10A2r12 − a2

10D2
2

r2 − R
3
¼ 0, in terms of r. After solving this

algebraic equation to find at least one real root, one can
obtain fðRÞ by putting this root r into (114).
If we take PðrÞ ¼ r−6 and NðrÞ ¼ ðr0=rÞ6AðrÞ, then the

solution of (22) that gives fR in terms of r is the same as
(106). Hence, there are two possible cases for this selection.
The first one is D1 ≠ 0 and D2 ¼ 0, and for this condition
the obtained solutions from Eqs. (51)–(53) are

QðrÞ ¼ ar60
15D1

r15 þQ3; ð115Þ

AðrÞ2 ¼ −A3 þ
ð2aQ3 − bÞ
15D1r60

r15 þ a2

225D2
1

r30; ð116Þ

where it should be satisfied with the constraint c ¼
bQ3 − aðA3r120 þQ2

3Þ, and A3 and Q3 are integration
constants. For the latter solution, the Ricci scalar and the
corresponding function fðrÞ due to the relation (107) are

RðrÞ ¼ 240A3

r2
−

13a2

30D2
1

r28; ð117Þ

fðrÞ ¼ 120D1A3

r4
−

7a2

15D1

r26: ð118Þ

Here, the function fðRÞ can be obtained from Eq. (118) if
the algebraic equation (117) in terms of r is solvable.
For the second possibility, i.e., if D1 ¼ 0 and D2 ≠ 0,
we have the following solutions from the first integral
relations (51)–(53):

QðrÞ ¼ ar60
16D2

r16 þQ4; ð119Þ

AðrÞ2 ¼ −A4 þ
ð2aQ4 − bÞ
16D2r60

r16 þ a2

256D2
2

r32; ð120Þ

where A4 and Q4 are constants of integration and c ¼
bQ4 − aðA4r120 þQ2

4Þ. Thus, the Ricci scalar for this
solution yields

RðrÞ ¼ 240A4

r2
−

9a2

16D2
2

r30; ð121Þ

which gives the function fðrÞ from Eq. (107) as

fðrÞ ¼ 96D2A4

r5
−

5a2

8D2

r27: ð122Þ

If we take general expressions PðrÞ ¼ rγ and NðrÞ ¼
ðr=r0Þγ−1AðrÞ, where γ is a real parameter, and use those in
Eq. (22), we find fR ¼ D3rγ in which D3 is a constant of
integration. Then, putting those expressions into Eq. (52)
and solving it, the angular shift function QðrÞ has the form

QðrÞ ¼ −
ar1−γ0

3γD3

r−3γ þQ5; ð123Þ

where Q5 is an integration constant. Considering these in
the remaining first integral relations (51) and (53), one can
get the following solution:

AðrÞ2¼r2ð1−3γÞ
�
−A5r6γþ

ðb−2aQ5Þ
3γD3r

1−γ
0

r3γþ a2

9γ2D2
3

�
; ð124Þ

where A5 is a constant of integration. Here, the constraint
relation c ¼ bQ5 − aðA5r

2−2γ
0 þQ2

5Þ has to be satisfied.
For this solution, the Ricci scalar is

RðrÞ ¼ 6A5γ
2 −

5a2

6D2
3

r−6γ; ð125Þ

and the corresponding function fðrÞ by solving the
equation f0 ¼ D3rγR0 is

fðrÞ ¼ −
a2

D3

r−5γ: ð126Þ

By using (125) and (126), one can easily find fðRÞ such
that

fðRÞ ¼ f1ðR1 − RÞ56; ð127Þ

where f1 ¼ −ð6=5Þ5=6ðaD2
3Þ1=3 and R1 ¼ 6A5γ

2.
Finally, if we assume PðrÞ ¼ r and NðrÞ ¼ νrAðrÞ, then

it follows from Eq. (22) that fR ¼ D4rνr, where ν is a real
parameter and D4 is an integration constant. Therefore,
using the first integral (52), the shift function QðrÞ can be
found as

QðrÞ ¼ −
a

3D4r3
þQ6; ð128Þ
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with an integration constant Q6. Thus, we can solve the
remaining first integrals (51) and (53) to find AðrÞ2 as

AðrÞ2 ¼ ν−2r
�
−A6r2 þ

ðb − 2aQ6Þ
3D4r

þ a2

9D2
4r

4

�
; ð129Þ

together with the constraint c ¼ bQ6 − aðA6 þQ2
6Þ, where

A6 is the constant of integration. The Ricci scalar of this
solution yields

RðrÞ ¼ −ν−2r
�
ln ν

�
4A6rþ

ð2aQ6 − bÞ
3D4r2

þ 2a2

9D2
4r

5

�

− 6A6 þ
5a2

6D2
4r

6

�
; ð130Þ

which gives rise to

fðrÞ¼−
ν−r

D4

�
a2

r5

þ2 lnν

�
4A6D2

4r
2þD4ð2aQ6−bÞ

3r
þ2a2

9r4

��
; ð131Þ

by solving the equation f0 ¼ D4ν
rrR0.

V. PHYSICAL SIGNIFICANCE
OF EXACT SOLUTIONS

The BTZ black hole as the (2þ 1)-dimensional sta-
tionary circularly symmetric solution possesses certain
features inherent to (3þ 1)-dimensional black holes. So,
one can naturally expect that the (2þ 1)-dimensional fðRÞ
gravity may provide new insights toward a better under-
standing of the physics of four- and higher-dimensional
fðRÞ gravities. Furthermore, it is often much easier to
obtain and analyze black hole solutions in three dimensions
than in other dimensions.
Defining a curvature stress-energy tensor

Tcurv
μν ¼ 1

fR

�
1

2
gμνðf−RfRÞþð∇μ∇ν−gμν□ÞfR

�
; ð132Þ

the field equation (2) can be recast in the form

Gμν ¼ Rμν −
1

2
gμνR ¼ Tcurv

μν ; ð133Þ

in the absence of ordinary matter. Then, assuming fR ≠ 0,
one can rewrite the field equations by using (133) as

P0N0

PN
þ P2Q02

4N2
¼ ρeff

A2
; ð134Þ

N00

N
þ A0N0

AN
−
3P2Q02

4N2
¼ peff

A2
; ð135Þ

P00

P
þ A0P0

AP
þ P2Q02

4N2
¼ peff

A2
þ f0R
fR

�
N0

N
−
P0

P

�
; ð136Þ

Q00

Q
þQ0

Q

�
3P0

P
þ A0

A
−
N0

N

�
¼ −

f0RQ
0

fRQ
; ð137Þ

where ρeff and peff are defined as

ρeff ¼
A2

fR

�ðf − RfRÞ
2A2

− f0R

�
N0

N
þ P0

P

��
; ð138Þ

peff ¼
A2

fR

�ðf − RfRÞ
2A2

− f0R

�
A0

A
þ N0

N

�
− f00R

�
: ð139Þ

Equations (138) and (139) are the curvature term contri-
butions to energy density and pressure. Because of the lack
of ordinary matter, the latter energy density and pressure
may be related with dark matter and dark energy. For the
solutions obtained in the latter section, one can construct
the equation of state peff ¼ weffρeff , where weff is the
equation of state parameter. When weff is a constant
parameter, one can assume the values weff ¼ 0 for pressur-
eless dust, weff ¼ 1 for stiff matter, and weff ¼ −1 for the
dark energy. Also, one may consider weff as a variable
equation of the state parameter. In (3þ 1) dimensions the
equation of state p ¼ ρ=3, where w ¼ 1=3, may be used to
describe either actual electromagnetic radiation (photons)
or a gas of massless particles in a thermodynamic equi-
librium (for example, neutrinos). In Ref. [32], it is repre-
sented that it is not appropriate to use the (3þ 1)-
dimensional equation of the state parameter for the radi-
ation in (2þ 1) dimensions, and they concluded that the
equation of state for the radiation in (2þ 1) dimensions
is p ¼ ρ=2.
It is seen from the above construction of the field

equations that the nonvanishing components of the curva-
ture stress-energy tensor are

Tcurv
rr ¼ ρeff

A2
; Tcurv

ϕϕ ¼ P2peff ; ð140Þ

Tcurv
ϕt ¼ 1

2
P2Q

�
peff

A2
þ f0RQ

0

2fRQ

�
; ð141Þ

Tcurv
tt ¼ ðP2Q2 − N2Þρeff þ A2N2

�
A0

A
−
N0

N

�
f0R
fR

þ A2P2Q2

�
P0

P
−
A0

A
þQ0

Q

�
f0R
fR

; ð142Þ

in which the components Tcurv
rr and Tcurv

ϕϕ , the first term on
the right-hand side of Tcurv

ϕt , and the first two terms on the
right-hand side of the component Tcurv

tt make up a perfect
fluidlike contribution to the curvature stress-energy tensor.
We refer the reader to the first reference in [15] for
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discussions on how the stress-energy tensor is determined
from the metric. Now we are ready to point out what are the
physical implications of the exact solutions obtained in the
previous section. For each solution, we will set some
constants that appeared in the solutions to the mass M,
the angular momentum J, and the cosmological constant Λ
in an appropriate way.
Case (i): The form of f in this case is fðRÞ ¼ R − 2Λ.

We note here that the choice d2 ¼ 0 is necessary, since
otherwise the metric (16) has unphysical asymptotic
behavior [33]. Then, after setting the remaining constants
such that d1 ¼ 0, d3 ¼ l−2, k ¼ 2, N0 ¼ −M, and a ¼ J,
the metric (16) for this case reduces the BTZ-like form

ds2 ¼ −N2dt2 þ P02

N2
dr2 þ P2

�
dϕ −

J
2P2

dt

�
2

; ð143Þ

whereN2¼−MþP2

l2þ J2

4P2 and P ¼ FðrÞ. Thus, the Noether
constants given by (63) become a¼J, b ¼ −2M,
c ¼ J=l2, Λ ¼ −1=l2, I6 ¼ 0, and I7 ¼ Λ, in which the
condition that the cosmological constant must be negative
is satisfied. Taking PðrÞ ¼ r and PðrÞ ¼ l

z ðrlÞz in (143), we
arrive at the original rotating BTZ black hole and the
asymptotically Lifshitz black hole, respectively.
For this solution, the effective energy density ρeff and the

effective pressure peff can be found by (138) and (139) as

peff ¼ ρeff ¼ −Λ ¼ 1

l2
; ð144Þ

which satisfies the conditions peff ≥ 0 and ρeff ≥ peff . It
seems that the latter equation can be interpreted as the
equation of state for stiff dark matter, since weff ¼ 1. The
point particle solutions in 2þ 1 dimensions are good
models for parallel cosmic strings in 3þ 1 dimensions.
An important fact is that the line element (143) with
PðrÞ ¼ r, the BTZ black hole, corresponds to the point
particle solution which has also been used to draw con-
clusions about the behavior of cosmic strings [33].
In this case, the horizons are located at the positive roots

of the equation NðrÞ2 ¼ 0, i.e., P4 −Ml2P2 þ J2l2
4

¼ 0,
which has the following exact positive roots:

P� ¼
�
l
2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
�
1=2

; ð145Þ

where jJj ≤ Ml. Here, the positive roots given by (145)
correspond to the outer and inner horizons (rþ and r−) of
the black hole if PðrÞ ¼ r. For instance, the lapse function
N2, the mass M, and the angular momentum J for the
original BTZ black hole, where PðrÞ ¼ r, can be rewritten
in terms of r�,

NðrÞ2 ¼ 1

l2r2
ðr2 − r2þÞðr2 − r2−Þ; ð146Þ

M ¼ r2þ þ r2−
l2

; J ¼ 2rþr−
l

: ð147Þ

The angular velocity for the solution (143) is defined by

ΩH ¼ −
gtϕ
gϕϕ

				
r¼rþ

¼ J
2r2þ

: ð148Þ

For other forms of PðrÞ, one can easily obtain physically
important quantities such as mass, angular momentum, and
angular velocity in terms of the outer and inner horizons.
Case (ii): Here, the function fðRÞ follows from the

Noether symmetry equations as the power law form
fðRÞ ¼ f0Rn. In this case, we have found five exact
solutions for A ¼ N and two for A ≠ N. For physical
reason, we set q1 ¼ 0 throughout this case.
The first solution of this case given by (77) and (78)

becomes

ds2 ¼ 4r2αþβþ1

J2
dr2 þ rαþ1dϕ2 −

J

rðαþβÞ=2 dtdϕ; ð149Þ

by taking a as

a ¼ J
4
f0nR1ð3αþ β þ 2Þ; ð150Þ

and the parameters α and β depend on n as given
in (80). The Ricci scalar of the metric (149) is RðrÞ ¼
nJ2

32ðn−1Þ ðαþ βÞð3β − αþ 4Þr βþ1

2ðn−1Þ. It is obviously seen that

the above metric is a massless rotating (2þ 1)-dimensional
BTZ-type solution of fðRÞ ¼ f0Rn gravity, where n ≠ 1;
1=2; 7=6. Then, using the definitions of α and β given in
(80), the computation of ρeff and peff for the metric (149)
gives

peff ¼ −
J2ðn − 1Þð2n − 1Þð4n2 − 24nþ 23Þ

ð20n2 − 36nþ 17Þ2r−
4ð2n−3Þ

20n2−36nþ17

; ð151Þ

ρeff ¼
4J2ðn − 1Þ2ð2n − 1Þ2
ð20n2 − 36nþ 17Þ2 r

4ð2n−3Þ
20n2−36nþ17; ð152Þ

which yields a constant equation of the state parameter

weff ¼
peff

ρeff
¼ −

ð4n2 − 24nþ 23Þ
4ðn − 1Þð2n − 1Þ : ð153Þ

We point out that weff ¼ −1 (the dark energy) if n ¼
−3=2� ffiffiffi

7
p

, weff ¼ 1=2 (the dark radiation) if n ¼ 5=4;
5=2, and weff ¼ 1 (the stiff dark matter) if n ¼ 3=2. In the
solution (149), one can introduce a special value of r, say
r ¼ rs, that is a sort of natural unit of length. Of course, this
does not make r ¼ rs an event horizon. Further, the metric
(149) has the nonzero angular velocity such that
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ΩH ¼ −
gtϕ
gϕϕ

				
r¼rs

¼ J

2rð3αþβþ2Þ=2
s

: ð154Þ

Setting a ¼ R1J and b ¼ μR1q2 which yields c ¼ 0 and
k ¼ 2b ¼ 2μR1q2, the second solution with the metric
coefficients (81) and (82) takes the form

ds2 ¼ −
μq2

r
dt2 þ dr2

N2
þ r2dϕ2 −

2J
3r

dtdϕ; ð155Þ

where N2 ¼ J2

9r4 þ μq2

r , in which the second term differs
from the charge term of BTZ-Maxwell solutions which is
logarithmic form. Here, we can infer from the literature
such as [34] that q is a constant related to the charge of the
black hole in power-Maxwell nonlinear electrodynamics,
and μ is a constant parameter to control the character of the
charge. So the spacetime (155) is a massless charged
BTZ-type black hole with J ≠ 0. For this solution, the
Ricci scalar is RðrÞ ¼ − 5J2

6r6
, and fðRÞ ¼ f0R5=6. The

equation N2 ¼ 0 has only one root at rþ given by

rþ ¼
�
−

J2

9μq2

�
1=3

; ð156Þ

which exists provided μ < 0. Thus the angular velocity
of (155) is ΩH ¼ J=ð3r3þÞ. Also, we find the effective
pressure and density for the above solution as follows:

peff ¼
13J2

36r6
þ μq2

r3
; ρeff ¼

J2

36r6
−
μq2

2r3
; ð157Þ

which concludes that the equation of state is

peff ¼ weffðrÞρeff ; ð158Þ

where weffðrÞ is a variable equation of the state parameter
that has the form

weffðrÞ ¼
13J2 þ 36μq2r3

J2 − 18μq2r3
: ð159Þ

Furthermore, one can deduce from (157) the following
relations between peff and ρeff :

peff ¼ −2ρeff þ
5J2

12r6
; peff ¼ 13ρeff þ

15μq2

2r3
; ð160Þ

which gives that the equation of state parameter is weff ¼
−2 if J ¼ 0, q ≠ 0, and weff ¼ 13 if q ¼ 0, J ≠ 0.
The third solution, where fðRÞ ¼ f0R3=2, has the metric

coefficients (83) and (84) in which N ¼ A, and the
spacetime reduces to the well-known BTZ black hole
solution by setting a ¼ R1J, b ¼ −2R1M, and c ¼ al−2.

For n ≠ 3=2, the fourth solution has the following
spacetime:

ds2 ¼ Mdt2 þ dr2

−M þ J2

4r2
þ r2dϕ2 − Jdtdϕ; ð161Þ

taking a ¼ R1J, b ¼ −2R1M, and k ¼ 2ð2n−3Þ
2n−1 R1M in (85)

and (86). This is a standard (2þ 1)-dimensional black hole
without a cosmological constant. For the metric (161), the
Ricci scalar vanishes, i.e., R ¼ 0, and it has a horizon
rþ ¼ J=ð2 ffiffiffiffiffi

M
p Þ. So it has no extremal limit in the usual

sense. In addition, we find for this solution that peff ¼ 0
and ρeff ¼ 0. This means that the spacetime (161) repre-
sents a true vacuum.
For the fðRÞ ¼ f0R1=2 gravity, the fifth solution given

by (87) and (88) has the same form and the same properties
with metric (161), but there is no mass parameter, i.e.,
M ¼ 0, in this solution.
We obtained the remaining two solutions under the

assumption A ≠ N. Then, setting b ¼ 0, c ¼ 0, and N0 ¼
JK4ðαþ1Þðn−1Þ=ð2n−3Þ

2 in (92)–(96), the sixth solution yields
the metric

ds2 ¼ dr2

A2
0r

4ðn−1Þ−2α
2n−1

þ rαþ1dϕ2 −
2Jdtdϕ

r−
4ðn−1Þðαþ1Þ

2n−3

; ð162Þ

where A0¼−að2n−3ÞðJ=N0Þ
2n−3

2ð2n−1Þ=½f0nð6n−7Þðαþ1Þ�.
The Ricci scalar of this solution is

RðrÞ ¼ 8nðn − 1Þð6n − 7Þðαþ 1Þ2A2
0

ð1 − 2nÞðð2n − 3Þ2 r−
2ðαþ1Þ
2n−1 ; ð163Þ

while the form of f is fðRÞ ¼ f0Rn. Now, for the energy
density and pressure relations, it follows from Eqs. (138)
and (139) that

peff ¼ −
4ðαþ 1Þ2ðn − 1Þðn2 − 6nþ 23

4
ÞA2

0

ð2n − 1Þð2n − 3Þ2r2ðαþ1Þ
2n−1

; ð164Þ

ρeff ¼
4ðαþ 1Þ2ðn − 1Þ2A2

0

ð2n − 3Þ2 r−
2ðαþ1Þ
2n−1 ; ð165Þ

where n ≠ 1; 1=2; 3=2. The latter equations give rise to the
same constant equation of state parameter weff with (153).
For the solution (162), it is not possible to get weff ¼ 1
due to the restriction n ≠ 3=2.
By setting a ¼ q0J=2, b ¼ −q0M, and c ¼ al−2, the

seventh solution in this case includes the metric

ds2 ¼ −ν2r2ðν−1ÞA2dt2 þ dr2

A2
þ r2ν

�
dϕ −

Jdt
2r2ν

�
2

; ð166Þ

where
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A2 ¼ −
M

ν2r2ðν−1Þ
þ r2

ν2l2
þ J2

4ν2r2ð2ν−1Þ
;

with fðRÞ ¼ f0R3=2. The Ricci scalar of the above metric is
a constant, R ¼ −6l−2, and the effective pressure and
density becomes peff ¼ ρeff ¼ Λ, where Λ ¼ −l−2 is the
cosmological constant. It is obviously seen that the metric
(166) gives the original BTZ black hole if ν ¼ 1. So the
metric (166) is more general than the BTZ one, but both this
metric and the BTZ spacetime are physically identical. The
horizons are given by the condition that the function
AðrÞ2 ¼ 0, and read

r� ¼
�
l
2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
� 1

2ν

: ð167Þ

Then, in terms of the horizons r�, the mass M, the angular
momentum J, and the angular velocity ΩH become,
respectively,

M ¼ r2νþ þ r2ν−
l2

; J ¼ 2rνþrν−
l

; ΩH ¼ rν−
lrνþ

: ð168Þ

In addition, the surface rerg is the surface of infinite redshift
where gttðrergÞ vanishes, rerg ¼ ðMl2Þ1=ð2νÞ. Obviously,
rerg ≥ rþ. The region rþ ≤ r ≤ rerg is called the ergosphere
of the BTZ-type black hole.
Case (iii): This case implies an arbitrary form of the

function fðRÞ. First, for physical reasons, we have to set the
constants Qi ¼ 0ði ¼ 1;…; 6Þ that appeared in the angular
shift function QðrÞ.
If we set a ¼ 3D1J, b ¼ −6D1M, c ¼ al−2, and A1 ¼

−r−120 l−2 in the case D1 ≠ 0 and D2 ¼ 0, then the metric
coefficients PðrÞ ¼ r; NðrÞ ¼ ðr=r0Þ−6AðrÞ,QðrÞ by (108)
and AðrÞ by (109) give rise to the spacetime

ds2¼−
�
r2

l2
−
Mr60
r4

�
dt2þdr2

A2
þ r2dϕ2−

Jr60
r4

dtdϕ; ð169Þ

where A2 ¼ r8

r6
0

½−M þ 1
l2 ð rr0Þ6 þ J2

4
ð rr0Þ−6�. Then, the Ricci

scalar of (169) yields R ¼ − 30
l2 ð rr0Þ12 − 6J2, and fðRÞ ¼

f0ðRþ R0Þ5=6 with R0 ¼ 6J2. The effective pressure and
density can be computed from (138) and (139) such that

peff ¼
1

2

�
4M

�
r
r0

�
6

− J2 þ 14

l2

�
r
r0

�
12
�

ð170Þ

and

ρeff ¼ 2M

�
r
r0

�
6

þ J2 þ 1

l2

�
r
r0

�
12

: ð171Þ

These can be arranged to give a variable equation of state
parameter

weffðrÞ ¼ −
1

2

½J2 − 4Mð rr0Þ6 − 14
l2 ð rr0Þ12�

½J2 þ 2Mð rr0Þ6 þ 1
l2 ð rr0Þ12�

; ð172Þ

which becomes −1=2 at the limit r → 0. For the solution
(169), there exist two coordinate singularities correspond-
ing to the outer (event) and inner horizon from AðrÞ2 ¼ 0,

r� ¼ r0

�
l
2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
�
1=6

; ð173Þ

where jJj ≤ Ml and jJj ¼ Ml corresponds to the extreme
black hole. The radius of the ergosphere rerg is defined as
the stationary limit, which is obtained by solving gtt ¼ 0 as
follows:

rerg ¼ r0ðMl2Þ1=6: ð174Þ

Then, one can express the mass M and the angular
momentum (spin) in terms of rþ and r− such as

M ¼ r6þ þ r6−
l2r60

; J ¼ 2r3þr3−
lr60

: ð175Þ

The angular velocity of the black hole horizon for metric
(169) is given as

ΩH ¼ −
gtϕ
gϕϕ

				
r¼rþ

¼ J
2

�
r0
rþ

�
6

: ð176Þ

For the second possibility D1 ¼ 0 and D2 ≠ 0, we have
the spacetime

ds2¼−
�
r2

l2
−
Mr50
r3

�
dt2þdr2

A2
þ r2dϕ2−

Jr50
r3

dtdϕ; ð177Þ

by taking a ¼ 5JD2=ð2r0Þ, b ¼ −5MD2=r0, and A2 ¼
−1=ðr120 l2Þ in the metric coefficients, where

A2 ¼ r4

r20

�
−M

�
r
r0

�
5

þ 1

l2

�
r
r0

�
10

þ J2

4

�
:

Here, the Ricci scalar differs from that of (169) as
R ¼ − 30

l2 ð rr0Þ12 − 15
8
J2ð rr0Þ2, and we do not have an explicit

form of fðRÞ, but we have fðrÞ ¼ − 16a
Jl2r2

0

ð rr0Þ9 − 3aJ
2r0r

. For

this solution, the peff and ρeff are of the form

peff ¼ −
r2

r20

�
27J2

16
− 3M

�
r
r0

�
5

−
7

l2

�
r
r0

�
10
�

ð178Þ

and
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ρeff ¼
r2

r20

�
9J2

16
þ 3

2
M

�
r
r0

�
5

þ 1

l2

�
r
r0

�
10
�
; ð179Þ

which leads to the following variable equation of the state
parameter:

weffðrÞ ¼ −
½27J2 − 48Mð rr0Þ5 − 112

l2 ð rr0Þ10�
½9J2 þ 24Mð rr0Þ5 þ 16

l2 ð rr0Þ10�
: ð180Þ

The metric coefficient AðrÞ of (177) vanishes at r ¼ r�,
where the outer and inner horizons are

r� ¼ r0

�
l
2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
�
1=5

ðjJj ≤ MlÞ; ð181Þ

The radius of ergosphere rerg by solvinggtt ¼ 0 is obtained as

rerg ¼ r0ðMl2Þ1=5: ð182Þ

Then, the quantities M and J can be written by r�

M ¼ r5þ þ r5−
l2r50

; J ¼ 2

lr50
ðrþr−Þ5=2: ð183Þ

For metric (177), the angular velocity of the black hole
horizon is

ΩH ¼ J
2

�
r0
rþ

�
5

: ð184Þ

The third solution of this case includes PðrÞ ¼ r−6 with
the possibility D1 ≠ 0 and D2 ¼ 0. Then, assuming a ¼
−15JD1=ð2r210 Þ, b ¼ 15MD1=r210 , and A3 ¼ −1=ðr120 l2Þ,
the relation N ¼ ðr0=rÞ6A and the metric coefficients (115)
and (116) bring the spacetime (169), (177), (185),

ds2 ¼ −
�

1

l2r12
−

M
r120

�
r
r0

�
3
�
dt2 þ dr2

A2
þ dϕ2

r12
−
Jr3

r150
dtdϕ;

ð185Þ

where A2 ¼ − M
r12
0

ð rr0Þ15 þ 1
l2r12

0

þ J2

4r12
0

ð rr0Þ30. Then, the quan-
tities peff and ρeff for the above metric are obtained as

peff ¼
3

r120 r2

�
14

l2
− 4M

�
r
r0

�
15

þ 51J2

16

�
r
r0

�
30
�

ð186Þ

and

ρeff ¼
9

r120 r2

�
4

l2
þM

�
r
r0

�
15

þ J2

16

�
r
r0

�
30
�
: ð187Þ

Also, the Ricci scalar of this solution is R ¼ − 240
l2r12

0
r2 −

195J2

8r14
0

ð rr0Þ28 and fðrÞ ¼ 16ar9
0

Jl2r4 þ 7aJ
2r21

0

r26. Then, the black hole

solution (185) admits the outer and inner horizons provided
Aðr�Þ ¼ 0 such that

r� ¼ r0

�
2

lJ2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2−J2

p
Þ
�
1=15

ðjJj≤MlÞ; ð188Þ

which implies

M ¼ r150 ðr15þ þ r15− Þ
l2ðrþr−Þ15

; J ¼ 2r150
lðrþr−Þ15=2

: ð189Þ

The radius of ergosphere and the angular velocity of the
event horizon then become

rerg ¼
r0

ðMl2Þ1=15 ; ΩH ¼ J
2

�
rþ
r0

�
15

: ð190Þ

If we consider D1 ¼ 0 and D2 ≠ 0 with PðrÞ ¼ r−6, and
we set a ¼ −16JD2=ð2r220 Þ, b ¼ 16MD2r220 , and A4 ¼
−r−120 l−2 in (119) and (120), then the fourth solution
occurs as

ds2 ¼ −
�

1

l2r12
−

M
r120

�
r
r0

�
4
�
dt2 þ dr2

A2
þ dϕ2

r12
−
Jr4

r160
dtdϕ;

ð191Þ

in which A2¼−M
r12
0

ð rr0Þ16þ 1
l2r12

0

þ J2

4r12
0

ð rr0Þ32. Here the Ricci

scalar becomes R ¼ − 240
l2r12

0
r2 −

36J2

r14
0

ð rr0Þ30 and the function

fðrÞ has the form fðrÞ¼ 12ar10
0

Jl2r5
þ5aJr50ð rr0Þ27. Furthermore,

the latter solution has the effective pressure peff and the
effective density ρeff in the form

peff ¼
1

r120 r2

�
42

l2
− 18M

�
r
r0

�
16

þ 29J2

2

�
r
r0

�
32
�

ð192Þ

and

ρeff ¼
1

r120 r2

�
36

l2
þ 12M

�
r
r0

�
16

þ J2
�
r
r0

�
32
�
: ð193Þ

Now, it is easy to find exact expressions for the roots of the
AðrÞ ¼ 0which are the horizons of the metric (191) such as

r� ¼ r0

�
2

lJ2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
�
1=16

; ð194Þ

where jJj ≤ Ml and jJj ¼ Ml for the extreme black hole.
Thus, one can obtain M and J by using (194) as

M ¼ r160 ðr16þ þ r16− Þ
l2ðrþr−Þ16

; J ¼ 2r160
lðrþr−Þ8

: ð195Þ

For the metric (191), the quantities rerg and ΩH are
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rerg ¼
r0

ðMl2Þ1=16 ; ΩH ¼ J
2

�
rþ
r0

�
16

: ð196Þ

The fifth solution expressed by the metric coefficients
P ¼ rγ , N ¼ ðr=r0Þγ−1A,Q by (123) and A by (124) can be
written as

ds2 ¼ −
�
r
r0

�
2ðγ−1Þ

A2dt2

þ dr2

A2
þ r2γ

�
dϕ −

J
2
r−3γdt

�
2

; ð197Þ

when we set a ¼ 3
2
γJD3r

γ−1
0 , b ¼ −3γD3Mr−4γ−10 , and

A5 ¼ −r−2ð4γþ1Þ
0 l−2, where we have

A2 ¼ r2γ0

�
r
r0

�
2
�

1

l2r10γ0

−Mrγ0r
−3γ þ J2

4
r−6γ

�
:

Then, a straightforward calculation of peff and ρeff gives

peff ¼
γ2

r20

�
r−8γ0

l2
−M

�
r
r0

�
−3γ

þ 13J2

16r−2γ0

r−6γ
�

ð198Þ

and

ρeff ¼
γ2

r20

�
r−8γ0

l2
þM

2

�
r
r0

�
−3γ

þ J2

16r−2γ0

r−6γ
�
: ð199Þ

The Ricci scalar can be recast in the form R¼
− 6

l2γ
2r−2ð4γþ1Þ

0 −15
8
γ2J2r2ðγ−1Þ0 r−6γ, and the functions fðrÞ

and fðRÞ become fðrÞ ¼ − 3
2
aγJrγ−10 r−5γ and fðRÞ ¼

f1ðR1 − RÞ5=6 with R1 ¼ −6γ2l−2r−2ð4γþ1Þ
0 , respectively.

For the metric (197), the existence of horizons requires the
vanishing of the grr component, i.e., AðrÞ2 ¼ 0. The roots
of the latter equation give rise to the outer and inner
horizons such as

r� ¼ r5=30

�
l
2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
� 1

3γ

; ð200Þ

which yields that

M ¼ r3γþ þ r−3γ−

l2r10γ0

; J ¼ 2

lr5γ0
ðrþr−Þ3γ=2: ð201Þ

Finally, the radius of ergosphere and the angular velocity of
the event horizon are

rerg ¼ r5=30 ðMl2Þ 1
3γ; ΩH ¼ J

2
r−3γþ : ð202Þ

By setting a ¼ 3JD4=2, b ¼ −3D4M, and A6 ¼ −l−2,
the resulting spacetime for the sixth solution of this case is

ds2 ¼ −
�
r2

l2
−
M
r

�
dt2 þ dr2

A2
þ r2dϕ2 −

J
r
dtdϕ; ð203Þ

where we have used PðrÞ ¼ r, NðrÞ ¼ νrAðrÞ, QðrÞ by
(128) and AðrÞ by (129) together with

A2 ¼ ν−2r
�
−
M
r
þ r2

l2
þ J2

4r4

�
:

The corresponding Ricci scalar for metric (203) is

R ¼ ν−2r
�
ln ν

�
M
r2

−
4r
l2

þ J2

2r5

�
þ 6

l2
þ 15J2

8r6

�
;

and the function fðrÞ yields

fðrÞ ¼ −
3

2
aJν−r

�
1

r5
þ 4

9
ln ν

�
2M
J2r

−
8r2

l2J2
þ 1

r4

��
:

For the solution (203), peff and ρeff become

peff ¼ ν−2r
�
−
M
r3

þ 1

l2
þ 13J2

16r6
þ ln ν

2

�
J2

r5
−
M
r2

−
2r
l2

��
ð204Þ

and

ρeff ¼ ν−2r
�
1

l2
þ M
2r3

þ J2

16r6

�
: ð205Þ

The outer and inner horizons which are the black hole
horizons, concerning the positive mass black hole spectrum
with spin (J ≠ 0) of the line element (203) are given by

r� ¼
�
l
2
ðMl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2l2 − J2

p
Þ
�1

3

; ð206Þ

and therefore, in terms of the inner and outer horizons, the
black hole mass and the angular momentum are given,
respectively, by

M ¼ r3þ þ r3−
l2

; J ¼ 2

l
ðrþr−Þ3=2: ð207Þ

The ergosphere radius and angular velocity ΩH of the event
(outer) horizon can be computed

rerg ¼ ðMl2Þ13; ΩH ¼ J
2r3þ

: ð208Þ
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We conclude for this case that the equation of state
parameter weff ¼ peff=ρeff obtained for each of the sol-
utions is a function of r.

A. Thermodynamics

In the previous part of this section, we have studied the
properties of obtained solutions associated with the black
hole event horizon rþ, the effective energy density and
pressure. In this subsection, we investigate the thermody-
namic analysis of the solutions throughout this study. For
three-dimensional rotating black hole metric (16) in the
framework of fðRÞ gravity, the derivation of thermody-
namic quantities such as temperature and entropy for each
of the obtained BTZ-type solutions in this study can be
accomplished. It is worth pointing out that the entropy of
BTZ black holes, S ¼ 4πrþ, does not necessarily hold in
the case of extended theories of gravity. In the fðRÞ theory
of gravity the horizon entropy of the black hole has the
following formula [35]:

S ¼ AhfR
4G3

				
r¼rþ

; ð209Þ

where Ah is the horizon area of black holes, in (2þ 1)
dimensions a circumference, Ah ¼ 2πrþ, G3 is the three-
dimensional gravitational constant, and rþ is the radius of
the event horizon of the black hole. Here the units are
such that G3 ¼ 1=8. The thermodynamic quantities for the
obtained solutions should satisfy the first law of thermo-
dynamics,

dM ¼ TdSþΩHdJ; ð210Þ

where the Hawking temperature T and angular velocity Ω
are given by

T ¼ ∂M
∂S

				
J;l

; ΩH ¼ ∂M
∂J

				
S;l

: ð211Þ

Also, in terms of the formula

CJ ¼
∂M
∂T

				
J;l

¼ T
∂S
∂T

				
J;l
; ð212Þ

one can get the heat capacity of the hole which determines
the thermodynamic stability. The black hole is locally
stable if CJ ≥ 0, while the corresponding black hole is
locally unstable if CJ < 0. Now, first we find the Hawking
temperature of the BTZ-type black holes obtained in cases
(i)–(iii) and then check that the first law of thermodynamics
(210) is satisfied for these solutions. The Smarr relation
[36], together with the first law of black hole thermody-
namics, has a main role in black hole physics. Furthermore,
we can get the Smarr-type mass formula of the obtained
BTZ-type black holes, and these Smarr-type relations may

sometimes be useful in the Euclidean approach to quantum
gravity. Now we investigate the thermodynamics for each
BTZ-type black hole given in cases (i)–(iii).
Case (i): Making use of Eq. (209) and the relations M

and J written by r�, one can get the mass formula in terms
of S, J, and l after selecting the metric coefficient P. For
this case, the entropy of the BTZ-type black hole (143) is
S ¼ 4πrþ, since fðRÞ ¼ R − Λ, that is, fR ¼ 1. The mass
M and angular momentum J for the BTZ black hole in
terms of r� are already given by (147), and for the Lifshitz
black hole these quantities are of the form

M ¼ r2zþ þ r2z−
z2l2z ; J ¼ 2rzþrz−

z2l2z : ð213Þ

Then, it follows immediately that for the BTZ black hole
and the Lifshitz black hole the mass formula of the
spacetime (143) reads, respectively,

M ¼ S2

16π2l2
þ 4π2J2

S2
for PðrÞ ¼ r ð214Þ

and

M¼ S2z

z2ð4πlÞ2zþ
z2ð4πlÞ2zJ2

4l2S2z
for PðrÞ¼l

z

�
r
l

�
z
: ð215Þ

Now, using (214) and (215), the Hawking temperatures and
angular velocities are obtained from Eq. (211) as

T ¼
8<
:

r2þ−r2−
2πl2rþ

for PðrÞ ¼ r;

r2zþ−r2z−
2πzl2zrþ

for PðrÞ ¼ l
z ðrlÞz;

ð216Þ

and

ΩH ¼
( r−

lrþ
for PðrÞ ¼ r;

rz−
lrzþ

for PðrÞ ¼ l
z ðrlÞz:

ð217Þ

The heat capacities at constant angular momentum can be
computed as

CJ ¼
( 4πrþΔ

2−Δ for PðrÞ ¼ r;

8πrþz3Δ
C1þC2Δ

for PðrÞ ¼ l
z ðrlÞz;

ð218Þ

where C1 ¼ 2z4 − z3 þ 2zþ 1, C2 ¼ 2z4 − z3 − 2z − 1,
and Δ ¼ ½1 − J2=ðMlÞ2�1=2. The first relation in (218) is
the usual heat capacity of BTZ black holes [37]. Also, the
quantities T; S;ΩH, and J obtained in the above give rise to
the Smarr-like mass formulas
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M ¼
(

1
2
TSþΩHJ for PðrÞ ¼ r;

1
2z TSþ ΩHJ for PðrÞ ¼ l

z ðrlÞz:
ð219Þ

Thus, varying the above mass formulas yields the conven-
tional differential expression of the first law of black hole
thermodynamics given in (210).
Case (ii): In this case fðRÞ¼f0Rn, and so fR¼nf0Rn−1.

First, we point out that the solutions (149) and (162) are a
massless BTZ-type black holes; they have zero Hawking
temperature, zero entropy, and vanishing heat capacity.
These are the same as the corresponding quantities of the
usual extremal BTZ black holes. The spacetime (155) is
also a massless but charged BTZ-type black hole with spin
(J ≠ 0). This has zero Hawking temperature, vanishing
heat capacity, but a constant entropy such as S ¼ 4πf1
where fR ¼ f1=rþ. The metric (161) is a standard (2þ 1)-
dimensional black hole without a cosmological constant.
For the black hole solution (166), the mass M, angular

momentum J, and angular velocity ΩH parameters are
given in (168). Therefore, by expressing the mass formula
in terms of S and J

M ¼ S2ν

l2f2ν2
þ ðf2JlÞ2ν

ð4lÞνS2ν ; ð220Þ

and using the entropy relation S ¼ f2rþ, one can compute
the Hawking temperature as

T ¼ 2νðr2νþ − r2ν− Þ
l2f2rþ

; ð221Þ

where f2 ¼ 6πf0
ffiffiffiffiffiffi
6Λ

p
. Thus, the Smarr-like formula of this

solution becomes

M ¼ 1

2ν
TSþΩHJ; ð222Þ

which easily verifies the mass differential (210). By
considering the relation (212), we obtain the heat capacity
for BTZ-type black hole (166) in the form

CJ ¼
f2rþΔ

νð2ν − ΔÞ : ð223Þ

Case (iii): In this case, it appears that there are six new
BTZ-type black hole solutions. For these solutions, we
calculated analytic expressions for thermodynamic quan-
tities S, T, and CJ, and the corresponding Smarr-like
formulas, which are given in Table I. Note that the
thermodynamic quantities T, S, J, and M for each black
hole in this case obey the first law of thermodynamics (210).

VI. CONCLUSIONS

In this study, we have derived the Noether symmetries of
a canonical Lagrangian for the fðRÞ theory of gravity in the
background of three-dimensional rotating black hole space-
time (16). Using the effective pointlike Lagrangian (23) of
this spacetime in terms of its configuration space variables
N, A,Q, and Pwhich are the metric coefficients, and R (the
Ricci scalar), and their velocities N0, A0, Q0, P0 and R0, we
have determined the kinetic metric σij by (30) in the
configuration space of the system. Thus we have consid-
ered this kinetic metric and used it to calculate and classify
Noether symmetry generators by the derived geometrical
Noether symmetry conditions (32). Later, we obtained the
first integrals for each of the Noether symmetries admitted
by the Lagrangian of representing the physical system.
Furthermore, we have used the first integrals of motion in
order to generate new exact solutions for the fðRÞ gravity
theory of the three-dimensional rotating black hole metric
(16). Also, we have worked the physical properties of these
new exact solutions in the previous section. We would like
to stress that our results are richer than the strict Noether
symmetry approach because we have considered the
Noether symmetry approach with a gauge term which also
includes the term ξ∂r in the generator.
The Noether symmetry approach considered in this work

is capable to construct exact solutions of field equations for
any gravity theory by reducing their complexity through the
first integral(s) of motion [25,26,28,29] without using the
cyclic variables. To find out analytical solutions of field

TABLE I. List of thermodynamic quantities the entropy S, the temperature T, and the heat capacity CJ together with the Smarr-like
formulas for BTZ-type black hole solutions in case (iii) are presented.

Solution S T CJ Smarr-like formula

Eq. (169) 4πD1

rþ
3rþðr6−−r6þÞ
2πD1l2r6

0

− 4πD1Δ
rþð6þΔÞ with D1 ¼ a

3J M ¼ − 1
6
TSþΩHJ

Eq. (177) 4πD2

r2þ
5r2þðr5−−r5þÞ
8πD2l2r10

0

− 16πD2r50Δ
r2þð5þ2ΔÞ with D2 ¼ 2ar0

5J M ¼ − 2
5
TSþΩHJ

Eq. (185) 4πD1

rþ
15r15

0
rþ

4πD1l2
ð 1
r15þ

− 1
r15−
Þ − 4πD1Δ

rþð15þΔÞ with D1 ¼ − 2ar11
0

15J M ¼ 1
15
TSþ ΩHJ

Eq. (191) 4πD2

r2þ
2r16

0
r2þ

πD2l2
ð 1
r16þ

− 1
r16−
Þ − 4πD2Δ

r2þð8þΔÞ with D2 ¼ − ar22
0

8J M ¼ 1
8
TSþΩHJ

Eq. (197) 4πD3r
γþ1
þ 3γr−ðγþ1Þ

þ ðr3γþ−r3γ− Þ
4πD3l2ð1þγÞr10γ

0

4πD3r
γþ1
þ Δ

3γ
γþ1

−Δ
with D3 ¼ 2ar1−γ

0

3γJ
M ¼ ðγþ1Þ

3γ TSþΩHJ

Eq. (203) 4πD3r2þνrþ 3νrþ ðr3−−r3þÞ
4πl2r2þ

4πD4r2þν
rþΔ

3D4−ð3þ2D4ÞΔ with D4 ¼ 2a
3J

M ¼ − 1
3
TSþΩHJ
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equations for the fðRÞ gravity in three-dimensional BTZ-
like black hole spacetime (16), the obtained Noether first
integrals have mainly been considered in cases (i), (ii), and
(iii). Also, Eq. (22) has played a key role of finding new
exact black hole solutions of the (2þ 1)-dimensional fðRÞ
theory of gravity. Throughout the paper we have denoted
the constants of motion I1, I2, and I3 by a, b, and c,
respectively, which are valid for any form of fðRÞ. Also, I5
is represented by k in cases (i) and (ii). We have first
considered case (i) where there are seven Noether sym-
metries and the form of f is fðRÞ ¼ R − 3Λ. Using the
rearranged first integrals in this case, we have found a
general solution of the metric coefficients, which are (60)
and (61), depending on a function FðrÞ defined by (59). We
have concluded that case (i) represents two examples, the
well-known BTZ black hole solution and the asymptoti-
cally Lifshitz black hole solution. The obtained metric
functions (60) and (61) of this case are very generic to
produce any other black hole solutions. The most important
finding in case (i) is the fact that the mass and angular
momentum of the black hole and the cosmological constant
are Noether constants for the well-known BTZ black hole.
In case (ii), we have found five Noether symmetries with
the power law form fðRÞ ¼ f0Rn from the Noether
symmetry equations (32). Then, starting from Eq. (22)
which relates the metric functions P, A, N and the Ricci
scalar R under the assumption either A ¼ N or A ≠ N, we
have obtained the metric functions from the first integral
equations (51) and (71)–(74), which are solutions of the
fðRÞ gravity. In this case, we have found five different
solutions for A ¼ N and two different ones for A ≠ N. In
case (iii), it is found from the Noether symmetry equations
that there are fourNoether symmetries for an arbitrary form
of the function fðRÞ. As a first example of this case, we
have considered the ansatz RðrÞ ¼ K0rm proposed in [24]
which yields the explicit form of the function fðRÞ as in
(103). Unfortunately, this selection of the Ricci scalar RðrÞ
does not provide the metric functions satisfying all the field
equations as explained in the first part of case (iii).
Afterwards, for A ≠ N, we have obtained some Lifshitz-
like new solutions taking PðrÞ¼r and NðrÞ¼ðr=r0ÞzAðrÞ,
or PðrÞ ¼ r−6 and NðrÞ ¼ ðr=r0Þ6AðrÞ, or PðrÞ ¼ rγ and
NðrÞ ¼ ðr=r0Þγ−1AðrÞ, or PðrÞ ¼ r and NðrÞ ¼ νrAðrÞ,
which brings the fR in terms of r from Eq. (22). In some
solutions, we are able to find the function fðRÞ explicitly,
but in the other ones we have only found fðrÞ due to the
difficulty of solving the algebraic equations of high degree.
By transforming the field equation (2) to the usual form

(133), we have introduced a curvature stress-energy tensor
(132) and defined energy density ρeff and pressure peff as
curvature term contributions by (138) and (139), respec-
tively. For each of the solutions given in cases (i)–(iii), we
found the effective pressure peff and energy density ρeff,
and so the corresponding effective equation of state
parameter weff which is a constant or a variable one.

In case (i), the BTZ-like solution (143) has a constant
equation of state parameter weff ¼ 1, a stiff dark matter. In
case (ii), the solution (177) has only a variable equation of
the state parameter given in (180), and the remaining ones
have a constant equation of state parameters. For case (iii),
all of the solutions that are (169), (177), (185), (191), (197),
and (203) have the variable equation of state parameters.
Through Sec. V, we have determined the mass M, the
angular momentum J, and the angular velocity ΩH in terms
of the event horizon rþ and the inner horizon r− for all the
solutions. Then, using the functional form of the mass
Mðrþ; r−Þ and the angular momentum Jðrþ; r−Þ, we have
determined the thermodynamic quantities such that the
Hawking temperature, the entropy, and the heat capacity in
cases (i)–(iii) for the BTZ-like black hole solutions. We
have shown that all the obtained solutions satisfy the first
law of thermodynamics, and also attained the Smarr-like
mass formulas of the new BTZ-type black holes.
In Appendix A, we have solved the metric symmetries

for the kinetic metric σij of the configuration space given by
(30). It is found in this Appendix that for any form of fðRÞ
the kinetic metric admits at least six-dimensional Killing
algebra, seven-dimensional homothetic algebra, and
seven-dimensional conformal Killing algebra if the func-
tion Φ depends only on A. For the linear form of
fðRÞ ¼ R − 2Λ, we have explored that the kinetic metric
admits a 10-dimensional Killing algebra, 11-dimensional
homothetic algebra, and 11-dimensional conformal Killing
algebra if Ψ ¼ ΨðAÞ. Thus, we have represented that some
of the Noether symmetries are the metric symmetries of the
kinetic metric σij.

APPENDIX: SPACETIME SYMMETRY

A conformal Killing vector (CKV) Y has to satisfy

£Ygμν ¼ 2ψðxαÞgμν; ðA1Þ

where gμν is the metric tensor, £Y is the Lie derivative
operator along Y, and ψðxαÞ is a conformal factor. When
ψ ;μν ≠ 0, the CKV field is said to be proper [38]. The
vector field Y is called the special conformal Killing vector
(SCKV) field if ψ ;μν ¼ 0, the homothetic vector (HV) field
if ψ ;μ ¼ 0, e.g., ψ is a constant, and the Killing vector (KV)
field which gives the isometry if ψ ¼ 0. The metric (16) is
stationary and axially symmetric, with the KVs ∂t and ∂ϕ

which describe the two parameters, mass M and angular
momentum (spin) J, respectively. The BTZ black hole
solution in (2þ 1)-dimensional spacetime generically has
no other symmetries.
The conformal Killing equations for the kinetic metric

σij can be written in the form

σij;kYk þ σikYk
;j þ σkjYk

;i ¼ 2ψðqlÞσij; ðA2Þ
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where ql¼fN;A;Q;P;Rg, i, j, k, l ¼ 1, 2, 3, 4, 5. Now, we
use the kineticmetric of the configuration space given in (30)
to look into the metric symmetry. The conformal Killing
equations (A2) for this kinetic metric are obtained as

fRY3
;A ¼ 0;

fRY4
;N þ fRRPY5

;N ¼ 0; fRY4
;A þ fRRPY5

;A ¼ 0;

fRY1
;P þ fRRNY5

;P ¼ 0; fRY1
;A þ fRRNY5

;A ¼ 0;

fRRðPY1
;A þNY4

;AÞ ¼ 0; fRRðPY1
;R þNY4

;RÞ ¼ 0;

fR

�
P3

2N
Y3
;N þ Y4

;Q

�
þ fRRPY5

;Q ¼ 0;

fR

�
Y1
;Q þ P3

2N
Y3
;P

�
þ fRRNY5

;Q ¼ 0;

fRRðPY1
;Q þNY4

;QÞ þ fR
P3

2N
Y3
;R ¼ 0;

fR

�
1

A
Y2 þ Y1

;N þ Y4
;P

�
þ fRRðY5 þNY5

;N þ PY3
;PÞ ¼ 2ψfR;

fRR

�
1

A
Y2 þ 1

P
Y4 þ Y1

;N þ Y5
;R þ

N
P
Y4
;N

�

þ 1

P
fRY4

;R þ fRRRY5 ¼ 2ψfRR;

fR

�
−
1

N
Y1 þ 1

A
Y2 þ 3

P
Y4 þ 2Y3

;Q

�
þ fRRY5 ¼ 2ψfR;

fRR

�
1

N
Y1 þ 1

A
Y2 þ Y4

;P þ Y5
;R þ

P
N
Y1
;P

�

þ 1

N
fRY1

;R þ fRRRY5 ¼ 2ψfRR; ðA3Þ

whereN,A,Q,P, andR are the configuration spacevariables
and Y ¼ Y1∂N þ Y2∂A þ Y3∂Q þ Y4∂P þ Y5∂R.
For any form of the function fðRÞ under the condition

fRR ≠ 0, we find six KVs, which means ψ ¼ 0, as follows:

Y1 ¼ ∂Q; Y2 ¼ A∂A þQ∂Q − P∂P;

Y3 ¼ N∂N − 2A∂A þ P∂P; Y4 ¼ −A∂A þ fR
fRR

∂R;

Y5 ¼ NQ∂N þ
�
Q2 þ N2

P2

�
∂Q − PQ∂P;

Y6 ¼ lnðNPÞðN∂N þ P∂PÞ þ A ln

�
f2R
NP

�
∂A

−
fR ln ðNPf2RÞ

fRR
∂R; ðA4Þ

with the nonvanishing Lie brackets

½Y1;Y2� ¼ Y1; ½Y1;Y5� ¼ 2Y2 þ Y3;

½Y2;Y5� ¼ Y5; ½Y2;Y6� ¼ −Y3 þ Y4;

½Y3;Y6� ¼ 2ðY3 − Y4Þ; ½Y4;Y6� ¼ −2Y4: ðA5Þ

Thus, using the above KVs of the configuration space, it is
seen that some of the KVs are also Noether symmetries,
that is, X1 ¼ Y1, X2 ¼ 2Y2 þ Y3, and X3 ¼ Y5. In the
case of ψ ¼ const, it is found that there are seven HVs of
the configuration space which are

Y1 ¼ ∂Q; YHV
2 ¼ Q∂Q − P∂P with ψ ¼ −

1

2
;

YHV
3 ¼ N∂N þ P∂P with ψ ¼ 1;

YHV
4 ¼ fR

fRR
∂R with ψ ¼ 1

2
;

Y5 ¼ NQ∂N þ
�
Q2 þ N2

P2

�
∂Q − PQ∂P;

Y6 ¼ lnðNPÞðN∂N þ P∂PÞ þ A ln

�
f2R
NP

�
∂A

−
fR ln ðNPf2RÞ

fRR
∂R;

YHV
7 ¼ A∂A with ψ ¼ 1

2
; ðA6Þ

and the corresponding homothetic Lie algebra for the above
HVs has the nonvanishing Lie brackets

½Y1;YHV
2 � ¼ Y1;

½Y1;Y5� ¼ 2YHV
2 þ YHV

3 ; ½YHV
2 ;Y5� ¼ Y5;

½YHV
2 ;Y6� ¼ −YHV

3 þ YHV
4 þ YHV

7 ;

½YHV
3 ;Y6� ¼ 2ðYHV

3 − YHV
4 − YHV

7 Þ;
½YHV

4 ;Y6� ¼ 2ð−YHV
4 þ YHV

7 Þ: ðA7Þ

If ψ ;μν ≠ 0 which imposes that Yi’s are the CKV fields,
then one can obtain from (A3) that the vector fields
Y1;…;Y5 are the same as in (A6), but Y6 and Y7 have
the following form:

YCKV
6 ¼ lnðNPÞðN∂N þP∂PÞþΦ ln

�
f2R
NP

�
∂A

−
fR lnðNPf2RÞ

fRR
∂R with ψ ¼ 1

2

�
1−

Φ
A

�
ln

�
NP
f2R

�
;

YCKV
7 ¼Φ∂A with ψ ¼ Φ

2A
; ðA8Þ

where the component Φ of Y7 is an arbitrary function
of configuration space variables N, A, Q, P, and R.
The corresponding conformal Killing algebra is seven-
dimensional and the nonvanishing Lie brackets of this
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algebra are the same as (A7) by changing Y6 and Y7 to
YCKV

6 and YCKV
7 , respectively, if Φ ¼ ΦðAÞ.

For the form of fðRÞ ¼ R − 2Λ which requires that
fRR ¼ 0, Eq. (A3) with ψ ¼ 0 yields ten KVs such as

Z1¼ ∂Q; Z2 ¼A∂AþQ∂Q−P∂P;

Z3¼N∂N −A∂AþQ∂Q; Z4¼P2ðP∂P−3A∂AÞ;

Z5¼
1

N
∂N þ A

N2
∂A;

Z6¼
Q
N
∂N þQA

N2
∂Aþ

1

P2
∂Q;

Z7¼QZ4−N2∂Q;

Z8¼NQ∂N þ
�
Q2þN2

P2

�
∂Q−PQ∂P;

Z9¼−QZ7þN2Z3−2N2A∂A;

Z10¼
Q2

2N
∂Nþ

ðP2Q2−N2Þ
2N2P2

A∂Aþ
Q
P2

∂Q−
1

2P
∂P: ðA9Þ

The nonvanishing Lie brackets of the above KVs are

½Z1;Z2�¼Z1; ½Z1;Z3�¼Z1; ½Z1;Z6�¼Z5;

½Z1;Z7�¼Z4; ½Z1;Z8�¼Z2þZ3; ½Z1;Z9�¼−2Z7;

½Z1;Z10�¼Z6; ½Z2;Z4�¼−2Z4; ½Z2;Z6�¼Z6;

½Z2;Z7�¼−Z7; ½Z2;Z8� ¼Z8; ½Z2;Z10� ¼2Z10;

½Z3;Z5�¼−2Z5; ½Z3;Z6�¼−Z6; ½Z3;Z7� ¼Z7;

½Z3;Z8�¼Z8; ½Z3;Z9�¼ 2Z9;

½Z4;Z6�¼−2Z1; ½Z4;Z8�¼ 2Z7; ½Z4;Z10� ¼−2Z2;

½Z5;Z7�¼−2Z1; ½Z5;Z8�¼ 2Z6; ½Z5;Z9�¼ 4Z3;

½Z6;Z7�¼−Z2þZ3; ½Z6;Z8� ¼ 2Z10; ½Z6;Z9�¼ 2Z8;

½Z7;Z8�¼−Z9; ½Z7;Z10�¼−Z8: ðA10Þ

Furthermore, if ψ is a constant, then there are 11 HVs for
this case which are Z1;Z4;…;Z8 and Z10 given in (A9)
and the following ones:

ZHV
2 ¼ Q∂Q − P∂P with ψ ¼ −

1

2
;

ZHV
3 ¼ N∂N þQ∂Q with ψ ¼ 1

2
;

Z9 ¼ −QZ7 þ N2ZHV
3 − 3N2A∂A;

Z11 ¼ A∂A with ψ ¼ 1

2
: ðA11Þ

The nonvanishing Lie brackets for those of HVs are almost
the same with (A10), but the following ones are different:

½Z4;Z10� ¼ −2ðZHV
2 þ Z11Þ;

½Z5;Z9� ¼ 4ðZHV
3 − Z11Þ;

½Z6;Z7� ¼ −ZHV
2 þ ZHV

3 − 2Z11: ðA12Þ

The 11 CKV fields for the form of fðRÞ ¼ R − 2Λ are
obtained such that Z1, ZHV

2 , ZHV
3 , and Z8 are the same in

(A9) and (A11), and the remaining ones are

ZCKV
4 ¼P2ðP∂P−3Ψ∂AÞ with ψ ¼ 3

2

�
1−

Ψ
A

�
P2;

ZCKV
5 ¼ 1

N
∂N þ Ψ

N2
∂A with ψ ¼

�
Ψ
A
−1

�
1

N2
;

ZCKV
6 ¼Q

N
∂N þQΨ

N2
∂Aþ

1

P2
∂Q with ψ ¼ 1

2

�
Ψ
A
−1

�
Q
N2

;

ZCKV
7 ¼QZCKV

4 −N2∂Q with ψ ¼ 3

2

�
1−

Ψ
A

�
QP2;

ZCKV
9 ¼−QZCKV

7 þN2ZHV
3 −3N2Ψ∂A

with ψ ¼ 1

2

�
Ψ
A
−1

�
ðP2Q2−N2Þ;

ZCKV
10 ¼Q2

2N
∂N þðP2Q2−N2Þ

2N2P2
Ψ∂Aþ

Q
P2

∂Q

−
1

2P
∂P with ψ ¼ 1

4

�
Ψ
A
−1

�ðP2Q2−N2Þ
N2P2

;

ZCKV
11 ¼Ψ∂A with ψ ¼ Ψ

2A
; ðA13Þ

where Ψ ¼ ΨðN;A;Q; P; RÞ. If Ψ ¼ ΨðAÞ, then the alge-
bra of the CKVs is closed with the nonvanishing Lie
brackets similar to ones as in (A10) by changing some of
the Zi’s to the ZCKV

i , and the different nonvanishing Lie
brackets take the form

½ZCKV
4 ;ZCKV

10 � ¼ −2ðZHV
2 þ ZCKV

11 Þ;
½ZCKV

5 ;ZCKV
9 � ¼ 4ðZHV

3 − ZCKV
11 Þ;

½ZCKV
6 ;ZCKV

7 � ¼ −ZHV
2 þ ZHV

3 − 2ZCKV
11 : ðA14Þ

It is explicitly seen here that the CKVs reduce to the HVs
if Ψ ¼ A.
It can also be seen that the Noether symmetries

X1 ¼ ∂Q, X2 ¼ N∂N þ 2∂Q − P∂P, and X3 ¼ NQ∂N þ
ðQ2 þ N2P−2Þ∂Q − PQ∂P are the KVs of the configura-
tion space for any form of the function fðRÞ. Using the
above symmetry equations (A3), we found that the fourth
Noether symmetry X4 ¼ ∂r for any form fðRÞ is not a
metric symmetry of the configuration space. The fifth
Noether symmetry X5 given by (40) for fðRÞ ¼ f0Rn is
a linear combination of the HVs obtained in (A6) such as

THREE-DIMENSIONAL BLACK HOLES VIA NOETHER … PHYS. REV. D 103, 024001 (2021)

024001-21



X5 ¼ YHV
3 −

4

2n − 1
YHV

4 −
2

2n − 1
YHV

7 : ðA15Þ

This means thatX5 for fðRÞ ¼ f0Rn is the HVof the configuration space. For the function fðRÞ ¼ R − 2Λ, we observe that
six of seven Noether symmetries are the KVs of the configuration space.
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