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One of the most interesting candidates for dark matter is massive real scalar particles. Awell-motivated
example is from a pure Yang-Mills hidden sector, which locks up into glueballs in the early universe. The
lightest glueball states are scalar particles and can act as a form of bosonic dark matter. If self-interactions
are repulsive, this can potentially lead to very massive boson stars, where the inward gravitational force is
balanced by the repulsive self-interaction. This can also arise from elementary real scalars with a regular
potential. In the literature it has been claimed that this allows for astrophysically significant boson stars
with high compactness, which could undergo binary mergers and generate detectable gravitational waves.
Here we show that previous analyses did not take into proper account 3 → 2 and 4 → 2 quantum
mechanical annihilation processes in the core of the star, while other work misinterpreted the classical
3 → 1 process. In this work, we compute the annihilation rates, finding that massive stars will rapidly decay
from the 3 → 2 or 4 → 2 processes (while the 3 → 1 process is typically small). Using the Einstein-Klein-
Gordon equations, we also estimate the binding energy of these stars, showing that even the densest stars do
not have quite enough binding energy to prevent annihilations. For such boson stars to live for the current
age of the universe and to be consistent with bounds on dark matter scattering in galaxies, we find the
following upper bound on their mass for Oð1Þ self-interaction couplings: M� ≲ 10−18Msun when 3 → 2

processes are allowed and M� ≲ 10−11Msun when only 4 → 2 processes are allowed. We also estimate
destabilization from parametric resonance which can considerably constrain the phase space further.
Furthermore, such stars are required to have very small compactness to be long-lived.

DOI: 10.1103/PhysRevD.103.023536

I. INTRODUCTION

Perhaps the best motivation for physics beyond the
StandardModel is the presence of darkmatter that comprises
most of themass of the universe. Themost exciting aspect of
dark matter is that it may represent an entirely new sector of
physics. Because of the current lack of discovery of any dark
matter candidates that have direct couplings to the Standard
Model, including weakly interacting massive particles
(WIMPs), it raises the possibility that dark matter may be
part of some hidden sector and/or associated with new very
heavy particles (e.g., see Refs. [1–16]).
Hidden sectors may include pure Yang-Mills inter-

actions, i.e., new collections of massless spin 1 particles
with self-interactions. Such constructions are entirely

plausible from the point of view of fundamental physics.
They are also considered to be entirely natural, since they
do not appeal to any unnecessarily small parameters. In
particular, they have no allowed elementary masses and are
fully described by only two quantities: the scale at which
the theory becomes strong coupled Λ (which can be
naturally small compared to any unification scale due to
the logarithmically slow running of coupling) and the size
of the gauge group, such as SUðNÞ. It is also possible, of
course, that physics beyond the Standard Model includes
various other kinds of particles. Importantly, this may
include elementary spin 0 particles. Both the hidden spin
1 and spin 0 particles are, of course, bosons, and as such
they allow for a rich phenomenology; under some con-
ditions they can organize into interesting states of high
occupancy, as we will discuss in this paper.
Let us address in more detail the case of hidden Yang-

Mills. If there are indeed such sectors of interacting spin 1
particles, it leads to various questions: What happens below
the confinement scale? If theparticles are thermally produced
in the early universe, what is their energy density today? Do
the strong interactions lead to inconsistency with constraints
on dark matter scattering in galaxies? And, very importantly,
are there novel observational signatures of these sectors?
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To address these issues, let us start in the very early
universe. We know that at high temperatures of the early
universe, the particles exhibit asymptotic freedom, and so
we have a gas of almost free particles. When the hidden
sector temperature is on order of the strong coupling scale
∼Λ, the particles are expected to lock up into color neutral
states, known as “glueballs” (for a review, see Ref. [17]).
The lightest glueball states are expected to be spin 0
particles, whose massmϕ is of the order the strong coupling
scale Λ. As the temperature of the dark sector Td lowers
further, these glueballs become nonrelativistic, and can act
as a form of dark matter in the late universe. If one just
focuses on freeze-out, the relic abundance can be estimated
to be roughly [7] Ωϕ ∼ N2ξ3ðΛ=ð100 eVÞÞ where ξ≡
Td=T is the ratio of temperatures of the dark to visible
sectors. If ξ ∼ 1, then one evidently needs rather small
values of Λ, no larger than a few eV, to avoid over-
production. However, there are important regimes in which
the abundance can be modified due to self-interactions
leading to 3 → 2 processes (this will be relevant to the rates
we compute in stars later). For aspects of glueball and self-
interacting dark matter relic abundances, see Refs. [18–25].
On the other hand, if the temperature of the hidden sector

is small (ξ ≪ 1), then one can have larger strong coupling
scales without overclosing the universe. As some of us
showed in Ref. [26], there is a very reasonable scenario in
which the inflaton φ decays predominantly to the Standard
Model through the dimension three coupling to the Higgs
φH†H, while its decays to hidden sector Yang-Mills is
suppressed as it would occur through the dimension five
coupling φGμνGμν. This leads to the expectation ξ ≪ 1

(such as ξ ≈ 0.006 for reasonable parameters considered
in Ref. [26]).
Furthermore, glueballs exhibit scattering in galaxies.

The scattering cross section to mass ratio is expected to
be on the order σϕ=mϕ ∼ few=ðΛ3N4Þ [27]. While con-
straints from the bullet cluster imply σϕ=mϕ ≲ cm2=g ≈
1=ð60 MeVÞ3 [28,29], to satisfy this bound one needs
Λ≳ Λbc where Λbc ∼ 100 MeV=N4=3. This in turn implies
that Ωϕ is large unless ξ ≪ 1, which is compatible with the
reasoning in Ref. [26] (although for extremely high N, one
would need to compensate with extremely small ξ, which
seems less plausible). Or alternatively, if 3 → 2 processes
are significant, this can reduce the abundance further.
If we move beyond the glueball motivation, we can, in

fact, consider any dark matter candidate that organizes into
massive scalars with self-interactions. As an example, we
could just study an elementary scalar with a renormalizable
potential. Generally, these are all interesting candidates that
are the focus of this study.

A. Novel signature

An interesting possibility is that the dark matter scalars
organize into gravitationally bound systems, so-called

“boson stars” (for a review see Refs. [30–33]). For both
glueballs and for elementary scalars with a regular poten-
tial, one anticipates self-interactions, including ∼λ4ϕ4, etc.
For repulsive self-interactions this can give rise to very
dense boson stars. This was carefully studied originally in
Ref. [34] for a complex scalar field with a global Uð1Þ
symmetry (recent work includes Ref. [35]). They solved the
full Einstein-Klein-Gordon equations of motion for spheri-
cally symmetric time independent solutions, finding that
the maximum star mass is

Mmax ∼
ffiffiffiffiffi
λ4

p
M3

Pl

m2
ϕ

ð1Þ

(MPl ≡ 1=
ffiffiffiffi
G

p
≈ 1.2 × 1019 GeV). At this maximum mass,

the physical radius is only a factor of ∼2 larger than the
corresponding Schwarzschild radius. For masses above
Mmax, boson star solutions do not exist; the density is so
high that such configurations can collapse to a black hole.
Interestingly, if λ4 ¼ Oð1Þ, then this scaling is similar to the
Chandrasekhar mass for white dwarf stars Mwd ∼M3

Pl=m
2
p;

one is effectively replacing a repulsion from Pauli exclu-
sion of fermions by a self-interaction repulsion of bosons.
Then if mϕ ≲ GeV, this can be of the order of a solar mass
Msun ∼ 1057 GeV, or larger.
In the literature, this result has been applied to boson stars

from real scalars, including glueballs and elementary sca-
lars. It is not clear that glueballs have the required repulsive
interaction [and in the case of the SUð2Þ gauge group, some
recent lattice calculations suggest itmay, in fact, be attractive
[36,37]]. Since we do not know the sign for a generic gauge
group,wewill simplywork under the assumption that it may
be repulsive for some cases, and this is, of course, certainly
possible for scalars in other kinds of theories. To apply the
result to glueballs, one estimates the quartic coupling as
λ4 ∼ ð4πÞ2=N2 and mϕ ∼ fewΛ. Then using the above
bound on Λ≳ Λbc in order to satisfy bullet bluster con-
straints, one finds that the maximum mass can be as large
as Mmax ∼M3

PlN
5=3=ð100 MeVÞ2 ∼ 100MsunN5=3.

Hence one can readily have boson star masses that are
larger than a solar mass by choosing the strong coupling
scale accordingly. Alternatively, if one is simply studying
elementary scalars, one can just impose the appropriate
values of mϕ and λ4 to obtain such massive stars and
satisfying bullet cluster constraints.
Very interestingly, Refs. [27,38–40] pointed out that if

one has Mmax ≳Oð10ÞMsun and if these boson stars
undergo a merger, they can emit gravitational waves with
a frequency and amplitude that could possibly be detectable
at LIGO, and even heavier stars at LISA, with a signal that
could be potentially distinguished from that of black hole
mergers (for a focus on complex scalars, see Refs. [41,42]).
This presents a novel signature of these hidden sectors.
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This is such an exciting possibility, it acted as a motivation
for the present work.

B. Outline of this work

In this work, we critically examine whether such stars
are, in fact, long-lived. While a complex scalar with an
internal Uð1Þ symmetry, of the sort studied in Ref. [34],
carries a conserved particle number, the same is not true for
a real scalar. In this case there is no distinction between the
particle and its antiparticle. Such real scalars can undergo
quantum annihilation processes in the core of the star,
including 3ϕ → 2ϕ and 4ϕ → 2ϕ processes. Such proc-
esses will cause the star to evaporate away. In this paper we
compute these annihilation rates for the boson stars, finding
that while the processes are negligible for very low mass
stars, they are extremely important for high mass stars
including those above a solar mass. We find that this leads
to short lifetimes, unless the couplings are very small
(associated with huge gauge groups for glueballs).
However, even for small couplings, the stars whose mass
would be relevant to LIGO/LISA typically have low
compactness and so the gravitational wave emission would
be suppressed (unless one takes extreme parameters).
Furthermore, we estimate possible decays from parametric
resonance, finding that this cuts down the available
parameter space considerably further.
One might hope that the star carries enough binding

energy to prevent these number changing processes. We
find that even though the most massive stars have appreci-
able binding energy, it is not sufficient to prevent the
radiation. Finally, for completeness, we also compute 3ϕ →
1ϕ processes, which had previously been claimed to be the
most important process in the work of Ref. [43] (in the
context of axions). We show that the calculations provided
in that work, while appearing as a quantum mechanical
process, are, in fact, properly captured by classical field
theory when the rescaling to the final decay rate of the
condensate is obtained, and we discuss the prefactor. For
the massive stars of interest, these 3ϕ → 1ϕ classical
processes are found to typically be small, while the 4ϕ →
2ϕ or 3ϕ → 2ϕ quantum processes that we focus on can be
very important.
Our paper is organized as follows: In Sec. II we present the

basic effective field theory, show the corresponding classical
equations of motion for a spherically symmetric star, and
recap the properties of stars in a single harmonic approxi-
mation. In Sec. III we compute the quantum annihilation
rates in the core of the stars. In Sec. IVwe use these results to
derive bounds on the mass and compactness. In Sec. V we
also consider parametric resonance. In Sec. VI we estimate
whether the star’s binding energy can prevent decays. In
Sec. VII we compute the classical radiation and compare to
existing claims in the literature. In Sec. VIII we briefly
discuss decays in boson stars supported by quantum pres-
sure. Finally, in Sec. IX we conclude.

II. BOSON STARS

When glueballs form, they organize into spin 0 scalar
particles. In the effective field theory formalism, we can
organize this into a scalar field ϕ. These scalars interact
directly with one another in the effective theory, which is a
consequence of the microscopic hidden gluon interactions.
In this work, the most important form of the interactions
will be the leading order operators as organized into a scalar
potential V. We can expand this as

VðϕÞ¼ 1

2
m2

ϕϕ
2þλ3mϕ

3!
ϕ3þλ4

4!
ϕ4þ λ5

5!mϕ
ϕ5þ��� ; ð2Þ

where λn are dimensionless couplings. There could be a
tower of higher dimension operators, including higher
order derivative operators in the effective theory, but these
leading terms will be sufficient to describe the most
relevant effects in this work. This formalism is obviously
also applicable to other scalars, including elementary
scalars with a renormalizable potential. So our analysis
will be quite general. In the case of glueballs formed from
the group SUðNÞ, the couplings are expected to scale as
λn ∼ ð4π=NÞn−2, with n ¼ 3; 4;…. For a generic real scalar
the same hierarchy of couplings may occur too

λn ∼ λðn−2Þ=2 ðλ≡ λ4Þ: ð3Þ

But we do not suppose that the prefactors are necessarily
close to 1. In the case of a real scalar, one can also imagine
that it is endowed with some discrete Z2 symmetry
ϕ → −ϕ, forbidding all the odd powers. We shall consider
this case in this work also.
Of course, the field is also coupled to gravity with action

(we use units c ¼ ℏ ¼ 1 and signature −þþþ)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð4Þ

where R is the Ricci scalar, G is Newton’s gravitational
constant, and gμν is the metric of spacetime.

A. Spherical symmetry

Under some conditions, the scalars can condense into
states of high occupancy, which is usually well described
by classical field theory (we shall return to quantum
corrections in the next section). A condensate for a system
with gravity is a localized system: either a gravitationally
bound “boson star” or a potentially bound (for attractive
interactions) “oscillon.” This work will focus on repulsive
interactions mainly (though some of our reasoning will be
relevant for attractive interactions, too), so the only relevant
solution is the gravitationally bound boson star. The lowest
energy configurations are expected to be spherically
symmetric.
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In this case, it is useful to go to spherical coordinates
ðr; θ;φÞ, where quantities only depend on radius r (as well
as time t). Any spherically symmetric spacetime metric can
be written in the Schwarzschild coordinates

ds2¼−Bðr;tÞdt2þAðr; tÞdr2þ r2ðdθ2þ sin2 θdφ2Þ; ð5Þ

where grr ¼ A and gtt ¼ B are functions that can depend on
radius and time that we need to solve for; we also need to
solve for the scalar field ϕðr; tÞ.

B. Einstein-Klein-Gordon equations

The Einstein equations Gμν ¼ 8πGTμν follow from
varying the action S above with respect to gμν and extrem-
izing. Here Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor provided by the scalar field ϕ. Because
of spherical symmetry, we only need to report on the time
and radius components of the Einstein equations. The
Einstein tensor can be shown to be

Gtt ¼ B

�
A0

rA2
þ 1

r2

�
1 −

1

A

��
; ð6Þ

Grr ¼ A

�
B0

rAB
−

1

r2

�
1 −

1

A

��
: ð7Þ

Here we use a notation in which a prime means a derivative
with respect to radius r and a dot means a derivative with
respect to time t.
The energy momentum tensor arises from varying the

scalar field contribution of S with respect to the metric

Tμν ¼ ∂μϕ∂νϕþ gμνLϕ: ð8Þ

The time and radius components are readily found to be

Ttt ¼
1

2
_ϕ2 þ B

2A
ðϕ0Þ2 þ BV; ð9Þ

Trr ¼
A
2B

_ϕ2 þ 1

2
ðϕ0Þ2 − AV: ð10Þ

Combining Eqs. (6) and (7) with Eqs. (9) and (10) we have
a pair of Einstein equations for A and B. Note that these
equations only involve spatial derivatives for A and B,
which reflects the fact that these are constrained variables;
there are no dynamical (tensor) components of the metric
due to spherical symmetry.
Finally, we need the equation of motion for the scalar

field ϕ. This comes from varying the action S with respect
to ϕ, giving

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂μϕÞ ¼

ffiffiffiffiffiffi
−g

p
V 0: ð11Þ

Substituting in the above metric and carrying out the
derivatives leads to

ϕ00þ
�
2

r
þ B0

2B
−
A0

2A

�
ϕ0−

A
B

�
ϕ̈þ

�
_A
2A

−
_B
2B

�
_ϕ

�
¼AV 0: ð12Þ

There is also a third Einstein equation from the time-space
components, which arises from Gtr ¼ _A=ðrAÞ and
Ttr ¼ _ϕϕ0. However, this is redundant with the above set
of equations and so is not needed.

C. Single harmonic approximation

In general a solution for a real scalar field will have a
complicated time dependence. A boson star ϕ� or oscillon
is a periodic solution of the classical equations of motion. It
can therefore be expanded in a harmonic expansion

ϕ�ðr; tÞ ¼
X
n¼1

ΦnðrÞ cosðωntÞ ð13Þ

(this solution exists up to exponentially small corrections,
which we will return to in Sec. VII). For small amplitude
stars one can be sure that this expansion is dominated by
the first harmonic with ω close to, but slightly less than, the
mass mϕ. For very large amplitude stars, especially those
that are at masses approaching the maximum mass, higher
order terms can become more important. By inserting this
into the above equations of motion, along with a similar
harmonic expansion for metric components Aðr; tÞ and
Bðr; tÞ, one obtains an infinite tower of coupled nonlinear
ordinary differential equations for the prefactors ΦnðrÞ;
AnðrÞ; BnðrÞ. In principle, one can numerically solve this
complicated system. Interesting work on this was done in
Refs. [44,45] for the ϕ4 potential, where the tower of
harmonics was constructed and numerical investigations
were done. However, we leave a full treatment of all this for
future work.
A useful approximation is to assume that the system

is dominated by only one harmonic of frequency ω. We
write

ϕ�ðr; tÞ ≈
ffiffiffi
2

p
ΦðrÞ cosðωtÞ ð14Þ

(the factor of
ffiffiffi
2

p
is for convenience). This is accurate at

small amplitudes, as it is dominated by the fundamental in
that case anyhow, and provides a rough estimate of the
behavior at high amplitudes, too. Of course, by inserting
this into the equations of motion it will not satisfy them
precisely as it will generate higher harmonics. So the idea
of the single harmonic approximation is to time average the
equations of motion over a period of oscillation T ¼ 2π=ω.
Self-consistently then, we need to approximate the
metric as time independent, writing Aðr; tÞ ≈ ĀðrÞ and
Bðr; tÞ ≈ B̄ðrÞ. On the right-hand side of the Einstein
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equations we need the time average of the energy momen-
tum tensor, which is

hTtti ¼
1

2
ω2Φ2 þ B

2A
ðΦ0Þ2 þ BhVi; ð15Þ

hTrri ¼
A
2B

ω2Φ2 þ 1

2
ðΦ0Þ2 − AhVi: ð16Þ

In addition, a usefulway to handle theKlein-Gordon equation
in Eq. (12) is to multiply throughout by

ffiffiffi
2

p
cosðωtÞ and then

time average. This gives

Φ00 þ
�
2

r
þ B0

2B
−
A0

2A

�
Φ0 þA

B
ω2Φ¼

ffiffiffi
2

p
AhcosðωtÞV 0i: ð17Þ

The time average of the potential V is simple if the
potential has only even powers of ϕ. If there are odd powers
of ϕ, such as ∼λ3mϕϕ

3, then the averaging is more subtle.
Naively one just time averages those terms to zero. But, in
fact, the presence of those terms means that the field
undergoes asymmetric oscillations; it spends more time on
one side of the potential than the other. A proper treatment
of this would include a time independent term in ϕ,
providing a nonzero mean hϕi ≠ 0 (e.g., see the asym-
metric terms in the study of oscillons in Ref. [46]).
However, we can instead pass to the low momentum

effective theory; this is valid since we will only be studying
boson star solutions whose size is much larger than the
inverse mass of the scalar mϕ. Here one integrates out
intermediate ϕ exchange processes from ∼λ3mϕϕ

3. This
replaces interactions by only contact ∼λϕ4 interactions; i.e.,
at large distances the interaction between scalars acts a kind
of delta-function interaction. In the low momentum effec-
tive theory this leads simply to a shift in the effective
quartic coupling, which one can readily show is (e.g., see
Ref. [47])

λ4eff ¼ λ4 −
5

3
λ23: ð18Þ

In the effective theory one needs λ4eff > 0 in order to have
the repulsive interaction needed to support the stars of
interest in this work (stars supported by quantum pressure
are discussed briefly in Sec. VIII). The corresponding time
averages are then (we truncate the potential to quartic order
here for simplicity)

hVi ¼ 1

2
m2

ϕΦ2 þ λ4eff
16

Φ4; ð19Þ

ffiffiffi
2

p
hcosðωtÞV 0i ¼ m2

ϕΦþ λ4eff
4

Φ3: ð20Þ

Bound state solutions are found by numerically search-
ing for configurations that obey the boundary conditions

Ā → 1; B̄ → 1;Φ → 0 as r → ∞ andΦ0 → 0 as r → 0. The
ground state solution is identified by having no nodes.
One can readily integrate up the hGtti ¼ 8πGhTtti

equation to solve for Ā in terms of the enclosed mass
MencðrÞ as

ĀðrÞ ¼
�
1 −

2GMencðrÞ
r

�
−1
: ð21Þ

The enclosed mass is just defined as the (weighted) integral
of the energy density

MencðrÞ ¼ 4π

Z
r

0

dr0r02hTttðr0Þi=B̄ðr0Þ: ð22Þ

The corresponding mass of the star, or total energy, is

M� ¼ Mencð∞Þ: ð23Þ

Note that Ā → 1 as r → 0. However, the value of B̄ or Φ
as r → 0 is not specified uniquely. Let us call them
B̄0 ≡ B̄ð0Þ and Φ0 ≡Φð0Þ, respectively. Their values are
related to the value of ω. It is useful to trade in B̄ for another
dimensionless function as

βðrÞ≡ ω2

m2
ϕB̄ðrÞ

: ð24Þ

By scanning different values of β0 ≡ βð0Þ, or equivalently
by scanning different values for Φ0, and numerically
solving the equations, one finds a range of boson star
solutions. An example is given in Fig. 1 (orange curve) for

Exact Solution for g=100

Large g Approximation

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020

0.025

0.030

FIG. 1. Exact versus large g approximation profile. Boson star
profile ΦðrÞ for the core value Φ0 ≈ 0.028MPl and parameter
g ¼ 100. The orange is the exact numerical solution, while the
purple is from scaling the large g approximation (this is similar in
form to a plot in Ref. [34]).
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the choice Φ0 ≈ 0.028MPl, where we have defined the
Planck mass MPl ≡ 1=

ffiffiffiffi
G

p
.

D. Large coupling regime

As shown in Ref. [34], the structure of the solutions is
controlled by the following dimensionless parameter:

g≡ λ4effM2
Pl

16πm2
ϕ

: ð25Þ

(Note: our g is what Ref. [34] callsΛ, but we have usedΛ as
the strong coupling scale, and our λ4eff=4 is effectively
playing the role of λ in Ref. [34].) If g is small, then the self-
interactions are negligible and the solution is just provided
by gravity balanced by quantum pressure of the bosons
(which is classical pressure within the field formalism); we
shall study this in Sec. VIII. However, if g is large, then the
behavior changes: there exist massive solutions in which
gravity is balanced by the repulsive self-interaction, which
will be themain focus of this work (in addition, there always
exist very light solutions in which one can once again ignore
self-interactions, but they are less interesting to us here). For
glueballs, one anticipates mϕ ⋘ MPl and λ4eff a parameter
that is not especially small, with λ4eff ∼ ð4π=NÞ2. If we take
N ¼ Oð2Þ and mϕ ∼ 0.1 GeV, then g ∼ 1040; i.e., it is
extremely large.
In this large g regime, one can further simplify the

equations of motion (as pointed out in Ref. [34]). To make
it manifest which terms are important and which terms can
be ignored at large g, it is useful to pass to the dimension-
less variables

r̂≡mϕr=
ffiffiffi
g

p
; Φ̂≡Φ

ffiffiffiffiffiffiffiffi
4πg

p
=MPl: ð26Þ

By rewriting the above Einstein-Klein-Gordon equations in
terms of these variables and rescaled metric component β
and then neglecting all terms that are subdominant in the
g → ∞ limit, one obtains the following simplified form of
the equations:

Ā0̂

r̂Ā2
þ 1

r̂2

�
1 −

1

Ā

�
¼ ðβ þ 1ÞΦ̂2 þ 1

2
Φ̂4; ð27Þ

−
β0

r̂ Ā β
−

1

r̂2

�
1 −

1

Ā

�
¼ðβ − 1ÞΦ̂2 −

1

2
Φ̂4; ð28Þ

βΦ̂ ¼ Φ̂þ Φ̂3: ð29Þ

One can readily integrate up the equation for Ā, as above, to
obtain the enclosed mass in this limit as

Mencðr̂Þ ¼
ffiffiffiffiffiffiffiffi
λ4eff

p
M3

Pl

4
ffiffiffi
π

p
m2

ϕ

Iðr̂Þ; ð30Þ

where

Iðr̂Þ ¼
Z

r̂

0

dr̂0r̂02
�
1

2
ðβ þ 1ÞΦ̂2 þ 1

4
Φ̂4

�
: ð31Þ

In these dimensionless variables, one can anticipate
that the maximum value of the integral here, when
integrating over the whole star, is Imax ¼ Oð1Þ (in addition
to a family of lighter stars with I ≪ 1). In fact, a precise
calculation reveals that Imax ≈ 0.2. Thus when multiplying
by the prefactor in Eq. (30) gives the maximum star
mass Mmax ≈ 0.03

ffiffiffiffiffiffiffiffi
λ4eff

p
M3

Pl=m
2
ϕ (see ahead to Fig. 7),

consistent with our earlier discussion in the Introduction.
The corresponding radius of the star is R� ∼ few ×GMmax;
i.e., it is comparable to, though a little larger than, the
Schwarzschild radius.
The Klein-Gordon equation (29) can now be trivially

solved, Φ̂ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðrÞ − 1

p
. This evidently only makes

sense in the regime β > 1. For β < 1 the above approx-
imations break down. This is because even though g is
large, the validity of this scaling rests upon the assumption
that Φ̂ remains appreciable, say Oð1Þ. However, at a large
radius the exact solution has an exponentially small tail, as
seen in Fig. 1 (orange curve), and so this assumption no
longer holds. Instead, this approximation is accurate in the
bulk of the star. One can easily solve these approximate
equations to compare. Figure 1 (purple curve) shows a plot
for g ¼ 100, where the approximation is seen to be some-
what accurate in the bulk. However, as mentioned above,
we are mainly interested in extremely large values of g, in
which the approximation becomes extremely accurate
(away from the exponentially suppressed tail).
Furthermore, we can compare the star’s total massM� in

the exact versus approximate methods as a function of the
dimensionless parameter g. We have fixed β0 ¼ 1.585 and
numerically obtained the exact equations as well as the
approximate result. The ratio of the masses is plotted as a
function of g in Fig. 2. Note that the ratioMapprox=Mexact →
1 as g increases, as expected. For very large g it becomes
prohibitively difficult to solve the exact equations. This is
because at fixedΦ0, one has to search for the corresponding
value of β0 to obtain a zero node solution that asymptotes to
a flat space at large radii. This requires continually
increasing precision. So instead bypassing to the large g
equations we can readily make progress in this regime.

III. QUANTUM ANNIHILATION IN CORES

The above analysis is all rigorous in the case of a
complex scalar field ψ with a globalUð1Þ symmetry. In that
case the above solution is closely related to an exactly
harmonic solution by writing ψðr; tÞ ¼ ΦðrÞe−iωt. This
corresponds to a boson star made out of a collection of
particles (or antiparticles). The particles are then stable
against annihilation into one another due to the symmetry.
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One may not expect global symmetries to be exact, but we
put aside the discussion of this issue here. For the present
purposes of a glueball or single elementary scalar ϕ, the
boson star is made of ϕ particles which are their own
antiparticles. Their stability against annihilations is there-
fore not protected by any symmetry. Since the above very
dense stars exist due to the self-interactions λnϕ

n, one
should be concerned that these same interactions may lead
to rapid annihilation in the star’s core. Previous work on
this topic has often ignored these details. A notable
exception is the work of Ref. [43], which studied
3ϕ → 1ϕ annihilations (with a focus on axion stars); we
shall return to a discussion of that work in Sec. VII.

A. Perturbative rates

To discuss this issue, suppose we had the full classical
field boson star solution, including its full time dependence.
As we will return to in Sec. VII, this can never be exact due
to outgoing classical radiation, but that turns out to be
typically very small. On the other hand, at any order in the
harmonic expansion, one can find a periodic solution that
we can refer to as the classical star solution ϕ�ðr; tÞ; that
will suffice in this section. The approximate classicality can
be justified by various considerations, including averaging
and decoherence at high occupancy [48,49]. To discuss the
inevitable quantum fluctuations on top of this, we can work
in the Heisenberg picture and write the field operator as

ϕ̂ðx; tÞ ¼ ϕ�ðr; tÞ þ δϕ̂ðx; tÞ: ð32Þ

By treating the quantum fluctuations as small δϕ̂ ≪ ϕ�, we
can write down the Heisenberg equations of motion and

linearize them. At small couplings, one can then further
obtain solutions for δϕ̂ working perturbatively. One
assumes that the operator begins in the Minkowski vacuum
and then evolves the system from there. Since the equations
are linear, this is doable in principle. If the background ϕ�
were homogeneous, the perturbations would easily be
diagonalized in k space, leading to standard Floquet theory.
However, since our background of interest ϕ� (along with
the metric components A and B) depend on space, all the k
modes are coupled to one another. This makes the analysis
nontrivial, even though the system is linear, but can be
formulated as a generalized type of Floquet theory.
This was all studied by some of us systematically in

Refs. [47,50]; other work appears in Refs. [51–57]. The
important result was that when one is in a small coupling
regime, the final resonance matches the result from
standard perturbation theory of particles annihilating in
vacuum; i.e., the Bose enhancement is shut off for
sufficiently small coupling. As shown in that work, the
requirement for this is that the maximum parametric
resonance Floquet rate μ from a homogeneous oscillating
condensate is smaller than the inverse size of the star 1=R�.
The reason for this is that in this regime the resonantly
produced scalar particles escape the condensate before
Bose-Einstein statistics can be effective. The regime of
parametric resonance will be studied next in Sec. V.
In any case, the perturbative decay rates normally act as a

lower bound on the true decay rate. The only reasonable
ways they could be shut off is (i) if the decay products were
fermions, then there is the issue of Pauli blocking [58]
(however, this is irrelevant here since our decay products
are the bosons ϕ themselves); or (ii) if the star carried
sufficient binding energy to make the process kinematically
impossible. This is not an issue for dilute stars which carry
very small binding energy, while highly compact stars will
be addressed in Sec. VI.
These perturbative rates can be readily calculated. The

boson star (at least away from very high compactness) can
be viewed as a condensate of nonrelativistic particles. Their
large de Broglie wavelengths mean that they overlap with
one another and can therefore annihilate through the
contact interactions of the potential. This leads to the star
emitting energy in the form of pairs of scalar particles. As
shown in Ref. [47] the normalized perturbative rates for
energy output Γd ¼ jdE�=dtj=E� (where E� ¼ M� is the
energy of the star) for 3ϕ → 2ϕ and 4ϕ → 2ϕ annihilation
processes are given by

Γdð3ϕ → 2ϕÞ ¼ λ332
ð3!Þ224

π5=2k32
Γð3

2
Þð2πÞ3m6

ϕ

R
d3xn3�ðxÞR
d3xn�ðxÞ

; ð33Þ

Γdð4ϕ → 2ϕÞ ¼ λ442
ð4!Þ225

π5=2k42
Γð3

2
Þð2πÞ3m9

ϕ

R
d3xn4�ðxÞR
d3xn�ðxÞ

; ð34Þ
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FIG. 2. Exact versus large g approximation mass. Ratio of the
mass of a boson star using the large g approximation scheme to
the exact mass using the full equations (albeit always in the single
harmonic approximation) with β0 ¼ 1.585. Note that the ratio
approaches 1 at large g.

DECAY OF BOSON STARS WITH APPLICATION TO … PHYS. REV. D 103, 023536 (2021)

023536-7



where k32 ≈
ffiffiffi
5

p
mϕ=2 and k42 ≈

ffiffiffi
3

p
mϕ are the momenta of

the two outgoing particles in each process, respectively. Here
n�ðxÞ is the number density of particleswithin the boson star,
which can be approximated as n�ðxÞ ¼ ρ�ðxÞ=mϕ, where
ρ�ðxÞ is the local energy/mass density. Here the coefficients
are given by λ332 ≡ ð5λ3ðλ23 þ 3λ4Þ=12þ λ5Þ2 ∼ λ3 and
λ442 ≡ ðλ24 − λ6Þ2 ∼ λ4, where for completeness we have
included the sextic term λ6ϕ

6=ð6!m2
ϕÞ in Eq. (34) (although

we did not include it earlierwhen discussing the profile of the
star). We note that for special choices of couplings, such as
λ24 ¼ λ6, these rates can be shut off; but this is not the generic
situation. Interestingly, this condition λ24 ¼ λ6 occurs when
one Taylor expands a cosine potential, which may describe
some kinds of axions; however, since it has attractive
interactions, it is not of direct relevance here.

B. Application to boson stars

To evaluate these rates we need the star’s density n�ðxÞ.
It is difficult to provide exact analytical results as one needs
to solve nonlinear differential equations to obtain the star’s
profile ΦðrÞ; important work includes Refs. [59,60]. To
proceed it is useful to use an approximate form for the
shape of a star, which captures the following two basic
ideas: (i) it is flat near its core, i.e., Φ0ð0Þ ¼ 0, and (ii) it
falls off exponentially at large distances. For example, as
used in Ref. [61], a useful representation that has these
properties and is somewhat accurate (at least for stars that
are not too compact) is a sech ansatz

ΦðrÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M�

π3m2
ϕR

3

s
sechðr=RÞ; ð35Þ

where R is a length scale that should be adjusted to
minimize the energy to obtain the most accurate solution.
The corresponding energy/mass density is ρ�ðxÞ¼m2

ϕjΦj2,
and the normalization ensures that the mass of the star is
M�. This analysis is quite accurate in the nonrelativistic
regime of low compactness stars, as shown in Ref. [61]. For
compact stars, they involve orbital boson speeds that are
Oð1=2Þ that of light. In that regime these estimates are
anticipated to still be correct to within a factor of a few,
which suffices for our main results.
Star solutions involve a relationship between the total

mass/energy of the star M� and its physical radius R�. A
precise definition of the physical radius of a star is the
region that contains a fixed percentage of the mass of the
star. For definiteness we will take this to be the radius that
encloses 90% of the mass. This turns out to be related to the
scale that appears in the argument of the above sech profile
by R� ≈ dR, with d ≈ 2.8 for the sech profile. However, an
Oð1Þ change in this definition will not be important for our
main results.

The radius-mass relationship for the condensate arises
from minimizing the energy from kinetic energy (pressure),
repulsive self-interaction, and gravitation. It can be shown
this leads to [59–61]

R̃ ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 3bcM̃2�

p
bM̃�

; ð36Þ

where a, b, c are numerical constants that depend on the
choice of ansatz. For example, for the above sech ansatz
they are a ¼ ð12þ π2Þ=ð6π2Þ, b ¼ 6ð12ζð3Þ − π2Þ=π4,
and c ¼ ðπ2 − 6Þ=ð8π5Þ. Here we are using dimensionless
variables R̃≡m2

ϕR=ð
ffiffiffiffiffiffiffiffi
λ4eff

p
MPlÞ and M̃� ≡ ffiffiffiffiffiffiffiffi

λ4eff
p

M�=MPl.

Note that at large M̃� ≫ 1 the radius approaches a constant
R̃ →

ffiffiffiffiffiffiffiffiffiffi
3c=b

p
, giving a star size of

R� →
d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3cλ4eff

p
MPlffiffiffi

b
p

m2
ϕ

�
M� ≫ MPl=

ffiffiffiffiffiffiffiffi
λ4eff

p �
: ð37Þ

This is as expected from the scalings of the full Einstein-
Klein-Gordon equations in the previous section.
Let us focus on this asymptotic regime of the more

massive stars, since they are of most interest astrophysi-
cally. We can readily carry out the above integrals to obtain
the decay rates as

Γdð3ϕ → 2ϕÞ ¼ α3
λ332m

5
ϕM

2�
λ34effM

6
Pl

; ð38Þ

Γdð4ϕ → 2ϕÞ ¼ α4
λ442m

7
ϕM

3�
λ9=24 M9

Pl

; ð39Þ

where α3 and α4 are Oð1Þ prefactors. The sech ansatz
estimates their values to be α3 ≈ 0.04 and α4 ≈ 0.05. Note
that in the denominator of the Γdð4ϕ → 2ϕÞ result we have
replaced λ4eff → λ4 since it is relevant only if the cubic term
∼λ3mϕϕ

3 is negligible.
Recall that for glueballs we anticipate λn ∼ ð4π=NÞn−2.

So λ332=λ
3
4eff ¼ Oð1Þ in the expression for Γdð3ϕ → 2ϕÞ,

making it essentially independent of the size of the gauge
group. While λ442=λ

9=2
4 ∼ 1=

ffiffiffi
λ

p
∼ N=ð4πÞ in the expression

for Γdð4ϕ → 2ϕÞ, making it increase linearly with the size
of the gauge group (if other parameters are kept fixed).

IV. ASTROPHYSICAL BOUNDS

If the above annihilation rates (38) and (39) are much
bigger than the current Hubble rate H0 of the universe,
then the stars are unlikely to be cosmologically relevant.
As an example, consider the case with λ ¼ Oð1Þ and
mϕ ∼ 0.1 GeV, giving rise to Mmax of the order of 10s
of solar masses. Then, in order for the decay rates
Eqs. (38) and (39) to be smaller than today’s Hubble rate
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H0 ≈ 10−33 eV, we obtain the following bound on the
mass of the star:M� ≲ 10−18Msun if 3ϕ → 2ϕ processes are
active and M� ≲ 10−11Msun if 4ϕ → 2ϕ processes are
active. Such stars have very low compactness and are no-
where close to being relevant to the LIGO/LISA bands.
This already undermines the claims of Refs. [27,38–40], as
well as other work on real scalars, including Ref. [62], since
the heavy stars of these analyses would be too short-lived.
A much more general exploration of the constrained

parameter space is provided in Figs. 3–6, where we have
included detailed information in their captions. The decay
rates Γd are plotted versus star mass M� in Figs. 3 and 4,
with the coupling λ ¼ ð2πÞ2 fixed in Fig. 3, and the
scattering cross section fixed in Fig. 4 (see the next
subsection for an explanation). Then in Figs. 5 and 6 we
fix the decay rate to be today’s Hubble rate Γd ¼ H0, with
contours of fixed mass M� indicated; these provided upper
bounds on the allowed mass for the star to live to present
time. We also indicated the compactness (see the upcoming
subsection for an explanation).
In the remainder of this section and the next section we

would like to provide more details on the ingredients that
have gone into these figures.

A. Scattering in galaxies

Apart from the boson stars, one expects there to be a
large collection of diffuse ϕ particles acting as a form of
dark matter. Beccause of the above self-interactions they
will undergo scattering in the galaxy. The 2ϕ → 2ϕ
scattering cross section for nonrelativistic particles is
readily obtained as

σ2→2 ¼
λ24eff

128πm2
ϕ

: ð40Þ

If the scalar particles ϕ make up a significant fraction, or
all, of the dark matter, then there are bounds on this
scattering. Some of the best bounds come from observa-
tions of collisions of galaxies, such as the bullet cluster,
which are essentially consistent with noninteracting dark
matter. This imposes an observational upper bound on the
scattering cross section of [28,29]

σ2→2

mϕ
≲ ζu cm2=g; ð41Þ

where ζu is argued to be Oð1Þ, depending on the analysis.
For concreteness, wewill take the bound with ζu ¼ 1 in this
work. In Figs. 3, 5, and 6, we have imposed this bound,
which rules out the green region. We add that if the scalar
particles ϕ only make up a tiny fraction of the dark matter
(yet there is still enough to provide some boson stars), then
these bounds are significantly weakened; in this case the
green region can largely be ignored.

On the other hand, it has been argued that the cores of
galaxies are explained precisely by the presence of such
scattering [63]. To do so requires a lower bound on the

FIG. 3. Fixing coupling λ to its maximum value. Decay
rates Γd (in units Gyr−1) of boson stars as a function of the
star’s mass M� (units Msun) for different choices of particle
mass mϕ (solid red lines) and compactness C (dotted gray
lines). Here we have imposed the coupling λ ¼ ð2πÞ2, which
is on the order of the maximum allowed by unitarity
(appropriate for small gauge groups). The black dashed line
is the present Hubble rate H0. In the upper right orange region
the stars would collapse to black holes. The lower right
green shaded region is excluded by bullet cluster bounds. The
yellow band is LISA, and the blue band is LIGO, which is
only appreciable at the top right where the stars are compact.
The light blue shaded region indicates where parametric
resonance may occur according to a simple analysis. Upper
panel: 3ϕ → 2ϕ processes when there are odd powers of ϕ in
V. Lower panel: 4ϕ → 2ϕ processes when there are only even
powers of ϕ in V.
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cross section of σ2→2=mϕ ≳ ζl cm2=g, where ζl has
also argued to be Oð1Þ. Altogether this provides some
motivation to consider the case of σ2→2=mϕ ∼ cm2=g,
although it is still controversial. (See Ref. [64] for a critical

FIG. 4. Fixing scattering to core-cusp preferred value.
Decay rates Γd (in units Gyr−1) of boson stars as a function
of the star’s mass M� (units Msun) for different choices of
coupling λ ¼ ð4π=NÞ2 (solid blue lines). Here we have
imposed the scattering cross section σ2→2=mϕ ¼ 1 cm2=g to
possibly explain the cores of galaxies. The black dashed line
is the present Hubble rate H0. In the upper right orange region
the stars would collapse to black holes. In the upper left green
region there are no stars, since once would need couplings
λ ≫ 1 violating unitarity. The yellow band is LISA, and the
blue band is LIGO, which is only appreciable at the top right
where the stars are compact. The light blue shaded region
indicates where parametric resonance may occur according to
a simple analysis. Upper panel: 3ϕ → 2ϕ processes when
there are odd powers of ϕ in V. Lower panel: 4ϕ → 2ϕ
processes when there are only even powers of ϕ in V.

FIG. 5. Fixing perturbative decay rate to Hubble and
exploring fmϕ; λg parameter space. Parameter space of
solutions after imposing the decay rate is equal to the current
Hubble rate Γd ¼ H0. The solid brown lines are contours
of fixed star mass M� and the dotted black lines are contours
of fixed compactness C. The lower right green shaded
region is excluded by bullet cluster bounds. The lower left
shaded orange region would have compactness so high the
stars would collapse to black holes. The yellow band is
LISA, and the blue band is LIGO, which is only appreciable
at the lower left where the stars are compact. The light blue
shaded region indicates where parametric resonance may
occur according to a simple analysis. Upper panel: 3ϕ →
2ϕ processes when there are odd powers of ϕ in V. Lower
panel: 4ϕ → 2ϕ processes when there are only even powers
of ϕ in V.
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examination of using ultralight scalars to solve this prob-
lem.) We have fixed the scattering to be σ2→2=mϕ ∼ cm2=g
in Fig. 4. In that plot we are showing decay rate versus star
mass M� for different choices of the coupling λ. In the
upper left region one would have λ ≫ 1, which is forbidden
by unitarity. For concreteness we take λ ¼ ð2πÞ2 as the
upper value (although one could argue for even smaller
values to be safer from unitarity considerations).

B. Compactness

Of particular interest for the production of gravitational
waves is the compactness C of a star. We shall define this
as the ratio of the corresponding Schwarzschild radius
RS ¼ 2GM� and the physical radius of the star R�,

C≡ RS

R�
: ð42Þ

If the compactness is Oð1Þ, then it is undergoing strong
gravity in its vicinity. When M� → Mmax, as defined in
Sec. II D, then we are indeed in this regime. The compact-
ness there is roughly C ∼ 1=2, and mergers can produce
gravitational waves with significant amplitudes. Of course,
the compactness parameter cannot be larger than 1 or the
system would have collapsed to a black hole. In Figs. 3–5
we have indicated this in the orange region (in Fig. 6 this
occurs at much higher values of C than those displayed).
On the other hand, the compactness can be small C ≪ 1,
describing the dilute boson star. In this regime the
gravitational wave signal from mergers is expected to be
suppressed.
We can consider a family of solutions that exist at some

compactness C. For example, one may imagine that the
stars will continue to accrete until they have achieved their
maximum compactness C ∼ 1=2. For any particle mass mϕ

we can consider this possibility. So we use Eqs. (37) and
(42), eliminate mϕ in favor of C, and insert into the decay
rate formulas to obtain

Γdð3ϕ → 2ϕÞ ¼ β3
λ332M

3=2
Pl C

5=2

λ7=44eff

ffiffiffiffiffi
M

p
�

; ð43Þ

Γdð4ϕ → 2ϕÞ ¼ β4
λ442M

3=2
Pl C

7=2

λ11=44

ffiffiffiffiffi
M

p
�

; ð44Þ

where β3, β4 areOð1Þ prefactors. The sech ansatz estimates
their values to be β3 ≈ 0.005, β4 ≈ 0.0001. Contours of
fixed compactness are provided in Fig. 3 for fixed coupling
and in Fig. 5 for fixed decay rate.

C. Implications for gravitational waves

Importantly, by fixing the decay rate to be Hubble, we
plot contours of maximum allowed star mass M� in the
fC; λg plane in Fig. 6. This shows that for reasonable

FIG. 6. Fixing perturbative decay rate to Hubble and
exploring fC; λg parameter space. Parameter space of sol-
utions after imposing the decay rate is equal to the current
Hubble rate Γd ¼ H0. The solid brown lines are contours of
fixed star mass M�. The upper right green shaded region is
excluded by bullet cluster bounds. In this figure we have not
indicated the LISA or LIGO bands or the black hole regime
since these are only important at high compactness, which is
far off the top of the plot. The light blue shaded region
indicates where parametric resonance may occur according to
a simple analysis. Upper panel: 3ϕ → 2ϕ processes when
there are odd powers of ϕ in V. Lower panel: 4ϕ → 2ϕ
processes when there are only even powers of ϕ in V.
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couplings, and to obey the bullet cluster bound, the mass
and compactness need to be small for longevity. This has
significant implications for gravitational waves from pos-
sible mergers of these stars. It implies that one is well
outside of both the LIGO and LISA bands. Gravitational
wave detection requiresOð10–106Þ solar mass objects with
high compactness. However, these results indicate that the
decay rates are too fast to achieve this. For completeness,
we have indicated both the LIGO and the LISA bands in
Figs. 3. In Figs. 3 and 4 the signals are only appreciable in
the upper right-hand region, which involves rapid decay.
While in Fig. 5, where the decay is fixed to Hubble, the
signal is only appreciable in the lower left-hand region,
involving extremely tiny self-couplings, and may be
unlikely to persist due to the phenomenon of parametric
resonance, which we turn to now.

V. PARAMETRIC RESONANCE

In addition to the quantum mechanical perturbative
decays discussed above, one can also enter a regime in
which the coherently oscillating boson star condensate
drives the parametric resonance of its own field fluctua-
tions. Since the stars of interest are wide compared to the
inverse mass of the particle (R� ∼

ffiffiffi
g

p
=mϕ ≫ 1=mϕ), they

are susceptible to parametric resonance. This would re-
present a type of instability against linear perturbations;
differing views on this have been expressed in the literature
[65,66]. As mentioned earlier, the criteria for this to occur is

μR� > 1; ð45Þ

where μ is the maximum exponential growth rate (“Floquet
exponent”) within the homogeneous background approxi-
mation. The intuition behind this is that when this inequal-
ity is not satisfied, the produced particles escape the
condensate before Bose-Einstein statistics are effective.
In any case, it was earlier established in Ref. [47] (also see
earlier work in the context of axion photons in
Refs. [51,52,57]), so we shall not repeat the derivation
here. Hence we do not need to consider the full compli-
cations of expanding around the inhomogeneous star
background; we can focus on the corresponding homo-
geneous configuration with amplitude matching the star’s
core amplitude, obtain μ, and check on this inequality.
Let us perturb around the background as

ϕðx; tÞ ¼ ϕ0ðtÞ þ δϕðx; tÞ: ð46Þ

Here one should, in principle, also allow for fluctuations in
the metric. However, the metric fluctuations are primarily
only important to describe long wavelength perturbations
around the homogeneous background. This leads very
importantly to the collapse of homogeneous structure
and is the source of structure formation, and ultimately
to the formation of boson stars, etc. However, what we are

interested in is to imagine a star has formed, and we are
only interested in these annihilation processes inside its
core. These are particle number changing processes, are
mediated by self-interactions of the potential, and are not
mediated by gravity (one could consider resonance into
gravitons but this is normally highly suppressed). Hence we
can focus on flat space fluctuations for the purpose of this
discussion. The perturbed equation of motion is

δ̈ϕ −∇2δϕþm2
ϕδϕþ V 00

I ðϕ0ðtÞÞδϕ ¼ 0; ð47Þ

where VI is the interaction potential. The advantage of
studying this homogeneous condensate is that it can be
readily diagonalized by passing to Fourier space δϕ → δϕk

and −∇2δϕ → k2δϕk. This makes Eq. (47) a form of Hill’s
equation since it is a linear differential equation with a
periodically changing prefactor V 00

I ðϕ0ðtÞÞ.

A. Floquet exponents

Let us begin with the case when both odd and even
powers in the potential are included. The most obvious
version is the cubic term λ3mϕϕ

3=3! and quartic λ4ϕ
4=4!.

However to obtain the relevant resonance is slightly
complicated (as can be appreciated by drawing all the
corresponding Feynman diagrams). So for the sake of
simplicity, let us focus on an interaction provided by
VI ¼ λ5ϕ

5=ð5!mÞ, which provides 3ϕ → 2ϕ with no inter-
mediate propagators. Although one should also anticipate
the presence of cubic terms, the final result will have a
similar scaling (assuming λn ∼ λðn−2Þ=2).
To first approximation, the oscillating condensate is

mainly driven by the mass term. So the oscillations of
the background are

ϕ0ðtÞ ≈ ϕa cosðω0tÞ; ð48Þ

where ω0 ≈mϕ and ϕa is the amplitude of oscillations. By
inserting this back into Eq. (47) one obtains the interaction
term as a pair of harmonics due to the factor

V 00
I ðϕ0ðtÞÞ ∝ ϕ3

0ðtÞ ¼
ϕ3
a

4
ð3 cosðω0tÞ þ cosð3ω0tÞÞ: ð49Þ

One can then expand δϕ in harmonics, too. One can have
resonance from long wavelength perturbations, which can
be driven by the leading harmonic term. However, as
mentioned above this is not important for us. We know that
this only leads to the destabilization of the homogeneous
condensate toward a boson star, etc. Instead, we are
interested in the possible resonance at the higher harmonic
3ω0 ≈ 3mϕ. This is potentially resonant for δϕk ∝ ei3ω0=2,
since when we insert this into the equation of motion,
the driving term will have a frequency that matches the
input frequency. In turn this matches the natural frequency
for ωk ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼ 3ω0=2 ≈ 3mϕ=2, which means
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k ≈ k32 ≈
ffiffiffi
5

p
mϕ=2 is the outgoing wave number men-

tioned earlier in our perturbative analysis in Eq. (33).
Hence in the vicinity of this resonance of interest, we can

write the equation of motion as

δ̈ϕk þ ω2
kδϕk þ

λ5ϕ
3
a

4 · 3!mϕ
cosð3ω0tÞδϕk ¼ n:r; ð50Þ

where “n.r” refers to the nonresonant term from the
cosðω0tÞ in Eq. (49). Ignoring the nonresonant piece, this
is a form of the Mathieu equation

d2

dτ2
δϕk þ ðAk þ 2B cosð2τÞÞ ¼ 0; ð51Þ

which is known to possess exponential growth in
some band of wave numbers. Here we can identify
Ak ¼ ω2

k=ð3ω0=2Þ2, B ¼ λ5ϕ
3
a=ð8 · 3!mϕÞ=ð3ω0=2Þ2. For

small amplitudes, the Floquet exponent is known to be [67]

μk ¼
3ω0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − ðAk − 1Þ2

q
: ð52Þ

As we scan over different k values this is clearly maximal
when Ak ¼ 1, i.e., for ωk ¼ 3ω0=2 as expected. This gives
the maximum Floquet exponent of (using ω0 ≈mϕ)

μ3→2 ¼
jλ5jϕ3

a

144m2
ϕ

→
λ3=232 ϕ3

a

144m2
ϕ

; ð53Þ

where we have indicated in the final step that when we
include the cubic and quartic couplings, we can generalize
the result to jλ5j → jλ5 þ 5λ3ðλ23 þ 3λ4Þ=12j ¼ λ3=232 , since
we know this arises from the scattering amplitudes.
If there are no odd powers of ϕ in the potential, we can

still have parametric resonance from the quartic term
VI ¼ λ4ϕ

4=4!. In this case the analysis is rather more
complicated. This can be seen by the fact that there are now
several Feynman diagrams associated with the 4ϕ → 2ϕ
process. The full details of this analysis was carried out by
some of us in Ref. [67]. A simpler calculation arises from a
sextic term VI ¼ λ6ϕ

6=ð6!m2
ϕÞ because it occurs through

a process without any intermediate processes. For this
we can again follow the above analysis, this time expanding
V 00
I ðϕ0ðtÞÞ ∝ ϕ4

0ðtÞ in harmonics and focusing on the
cosð4ω0tÞ term. The result is

μ4→2 ¼
jλ6jϕ4

a

1536m3
ϕ

→
λ242ϕ

4
a

1536m3
ϕ

; ð54Þ

where we have indicated that we can generalize this to
λ6 → jλ6 − λ24j ¼ λ242, since we know this is the relevant
contribution from both processes.

B. Application to boson stars

We now would like to apply these results to the boson
star. First, we need to relate ϕa to the properties of the star.
The idea of the criteria μR� > 1 for resonance is that one
replaces the amplitude of the homogeneous configuration
ϕa by the corresponding amplitude at the core of the
star, i.e.,

ϕa →
ffiffiffi
2

p
Φ0 ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffi
2M�
m2

ϕR
3�

s
; ð55Þ

where f is yet another Oð1Þ prefactor; in the sech ansatz it
is given by f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3d3=π3

p
≈ 1.46. Hence the product of

interest is found to be

μ3→2R� ¼ γ3
λ3=232 m2

ϕM
3=2
�

λ7=44effM
7=2
Pl

; ð56Þ

μ4→2R� ¼ γ4
λ242m

3
ϕM

2�
λ5=24 M5

Pl

; ð57Þ

where γ3¼f3b7=4=ð108 ffiffiffi
2

p
33=4c7=4d7=2Þ and γ4 ¼ f4b5=2=

ð3456 ffiffiffi
3

p
d5c5=2Þ. In the sech ansatz they are given by

γ3 ≈ 2.1 and γ4 ≈ 1.8.
The region in which the inequality for parametric

resonance is obeyed μR� > 1 is indicated by the light
blue region in Figs. 3–6. We see that it can constrain the
allowed parameter space considerably. However, its scaling
is different from the perturbative decays, so it is often
complementary.
If we now eliminate the particle mass mϕ to rewrite μR�

in terms of the compactness C, as we did in Sec. IV B, we
obtain

μ3→2R� ¼ δ3
λ3=232 C

ffiffiffiffiffiffiffi
M�

p

λ5=44eff

ffiffiffiffiffiffiffiffi
MPl

p ; ð58Þ

μ4→2R� ¼ δ4
λ242C

3=2 ffiffiffiffiffiffiffi
M�

p

λ7=44

ffiffiffiffiffiffiffiffi
MPl

p ; ð59Þ

where δ3, δ4 areOð1Þ prefactors. The sech ansatz estimates
their values to be δ3 ≈ 0.4, δ4 ≈ 0.1. This result suggests
something important: By imposing the bound on mass
M� ≫ MPl=

ffiffiffiffiffiffiffiffi
λ4eff

p
, so that we are in the self-interaction

supported regime (as opposed to the quantum pressure
supported regime), and using λn ∼ λðn−2Þ=2, we have
μ3→2R� ≫ C and μ4→2R� ≫ C3=2. This means that if one
considers stars of large compactness, say C ∼ 1=2, then the
inequality Eq. (45) is satisfied and parametric resonance is
expected to occur. This suggests very compact stars that
could undergo mergers and be relevant to LIGO/LISA
are likely to be quite unstable to parametric resonance.
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However, since we have not solved for the time dependence
fully, we cannot be certain of this conclusion. This leads us
to search for additional clues, as we do in the next section.

VI. BINDING ENERGY

The results of the previous sections indicate that any
massive compact stars will decay rapidly. However, one
might consider the possibility that the boson stars carry so
much binding energy that these processes are shut off. The
above analyses were done reliably in the weak gravitational
field regime, where the binding energy is small and is
unlikely to be able to shut off these processes. However, in
the strong gravity regime this becomes at least conceivable.
To examine this fully for a real scalar, we would really

need to solve the full set of time dependents equations by
expanding in a tower of harmonics, as we described in
Sec. II C. However, as we also discussed there, this is a
rather difficult task and will be left for future work.
For now we will simply take our clues from the much

simpler case of a complex scalar field theory. To define this,
we can return to our starting action Eqs. (4), replace the real
scalar ϕ by a complex scalar ψ, and endow the theory with a
global Uð1Þ symmetry. To be concrete, the kinetic term is
now ΔL ¼ −j∂ψ j2=2, and we choose the potential now as
V ¼ m2

ϕjψ j2=2þ λ4jψ j4=16. The Uð1Þ symmetry ensures
there is a conserved current [68]

Jμ ¼ i
ffiffiffiffiffi
jgj

p
gμνðψ�∂νψ − ψ∂νψ

�Þ=2 ð60Þ

with a corresponding conserved particle number

N� ¼
Z

d3xJ0ðx; tÞ: ð61Þ

One can now rigorously define the boson star as a state that
minimizes the energy subject to the constraint of a fixed
particle number. It is simple to show that such solutions
have exactly the simple time dependence

ψðr; tÞ ¼ ΦðrÞe−iωt ð62Þ

[or ψðr; tÞ ¼ ΦðrÞeþiωt for a star of antiparticles]. The
conserved particle number is

N� ¼ 4πω

Z
∞

0

drr2

ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s
Φ2ðrÞ: ð63Þ

Note that for the complex scalar, the metric of a single
boson star is exactly static, so we could write Ā ¼ A and
B̄ ¼ B here. By solving the large g Einstein-Klein-Gordon
equations, we can determine the star’s energy/mass and
number for a family of solutions; this is given in Fig. 7. The
left-hand solid curves are the usual solutions that we have
focused on in this work; they are stable for a complex

scalar. The right-hand dashed curves may have instabilities
of a variety we have not discussed in this work; we leave
their analysis for future work.
Now wewould like to infer any ramifications for the case

of a real scalar. We can be concrete about this in the
following way: Suppose we have the above complex scalar
with a Uð1Þ symmetry, and now we introduce small Uð1Þ
breaking terms, which can in principle mediate particle
number changing processes. For gravity to prevent an
annihilation process of the form nϕ → 2ϕ, the change in
energy with respect to the particle number would need to be
less than 2mϕ=n. So to kinematically forbid 3 → 2 anni-
hilations one would need dE�=dN� < 2mϕ=3, while to
kinematically forbid 4ϕ → 2ϕ annihilations one would
need dE�=dN� < mϕ=2. In Fig. 8 we show our results
for dE�=dN� as a function of the particle number. We see
that for all stars up to the maximum value allowed (solid
branch), we find

dE�
dN�

> 0.82mϕ ð64Þ

(and dE�=dN� > 0.79mϕ including the dashed branch).
So, while there can be an appreciable amount of binding
energy for the most massive stars, it does not appear to be
quite enough to prevent annihilations. So although we have
not performed the full analysis for the real scalar, this
provides some circumstantial evidence that binding energy,
even for the most compact stars, will not be enough to
prevent the decay processes computed in the previous
sections.
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The right dashed curves might suffer from other sorts of
instabilities.)
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VII. CLASSICAL “ANNIHILATION” IN CORES

So far we have considered quantum annihilation in the
core of a star. What we mean by this is the expansion given
in Eq. (32); i.e., we take the star solution ϕ�ðr; tÞ, which we
take to be exactly periodic and localized, and we add the
inevitable fluctuations required by quantum mechanics
by the operator δϕ̂ðx; tÞ. This is very important in the
perturbative regime, since it is this bath of quantum
fluctuations that get driven through forced resonance to
provide a stream of outgoing particles, with corresponding
annihilation rates Γdð3ϕ → 2ϕÞ or Γdð4ϕ → 2ϕÞ. As a
matter of principle it is also important for the parametric
resonance, even though the growth (Floquet) rates can be
computed classically. That is because one also needs to
perturb the solution in order to see the growth. Such
perturbations can very easily happen from imperfect initial
conditions around the star solutions, and so could be seen
classically, but if one starts exactly on the star solution, then
it is quantum fluctuations that are important.
However, in addition to this is the fact that the boson

star solution ϕ�ðr; tÞ is in general not expected to be an
exact solution of the classical equations of motion. This is
because it is generally very difficult to have any exact
periodic solutions of nonlinear partial differential equa-
tions. One of the only known counterexamples is the
sine-Gordon breather in 1þ 1 dimensions, but that is
not our focus here. So if one expands the solution in
harmonics at small amplitudes, one anticipates that the
expansion is only an asymptotic series, missing exponen-
tially small terms. These corrections are sometimes referred
to as part of a “hyperasymptotic series” [69]. Such series
have been addressed in the literature for quite some
time [70], so we will only report on some of its basic
features here.

To address this, one can write the full classical boson star
solution as

ϕðr; tÞ ¼
XP
n¼1

ΦnðrÞ cosðωntÞ þ χðr; tÞ; ð65Þ

where the sum is the exact periodic piece, summed up
to P terms in the harmonic expansion, and χðr; tÞ is the
inevitable correction that survives at that order. If we then
insert this into the full equations of motion and expand to
linear order in χ (since χ is expected to be very small), the
structure of the resulting equation is

□χ −m2
ϕχ ¼ Jðr; tÞ; ð66Þ

where Jðr; tÞ arises from the star solution which is never
exact at any order P in the expansion. Because of the
presence of nonlinear terms, the driving term J will take the
form

Jðr; tÞ ¼ jðrÞ cosðω2tÞ þ � � � ; ð67Þ
where ω2 is the frequency of the leading harmonic that is
generated by the nonlinear equations of motion from
the fundamental ω1. For a theory with odd powers of ϕ
in the potential, ω2 ¼ 2ω1, while for a theory with only
even powers of ϕ in the potential, ω2 ¼ 3ω1. Here jðrÞ is a
function of the radius that is determined by the star
solutions ΦnðrÞ. Equations (66) and (67) imply that
the boson star acts as a coherent oscillating source that
is generating its own classical scalar radiation χ. The
relevant solution of Eq. (66) is the particular solution,
which is readily obtained in Fourier space as χ ¼R
d4k=ð2πÞ4Jðk;ωÞeiðk·x−ωtÞ=ð−ω2 þ k2Þ. In the far dis-

tance regime, well outside the star, the tail of this radiation
takes the form

χðr; tÞ ∼ cosðk2rþ γÞ
r

cosðω2tÞjðk2Þ; ð68Þ

where k2 is the wave number of the outgoing on-shell

radiation with ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þm2

ϕ

q
and jðk2Þ is the Fourier

transform of jðrÞ evaluated at k2.
As demonstrated in Ref. [47] the value jðk2Þ is on the

order of the star’s solution itself jðk2Þ ∼m2
ϕϕ�ðk2Þ (evalu-

ated at, say, t ¼ 0); this is reasonable since it is the star
solution that provides the source for its own radiation.
Then using Eq. (68) the corresponding power output is
therefore 				 dEdt

				 ∼ jm3
ϕϕ�ðk2Þj2 ∼ jm3

ϕΦðk2Þj2; ð69Þ

where in the last step we are using the single harmonic
approximation, which was studied in detail in Sec. II C, and
we are using ω ∼mϕ here.
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FIG. 8. Change in boson star’s energy with respect to the
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For the sake of concrete analytical results, let us use the
sech ansatz of Eq. (35), which is most trustworthy for dilute
stars. We can readily obtain its Fourier transform as

ΦðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π3 M�R
k2m2

ϕ

s
tanh

�
πkR
2

�
sech

�
πkR
2

�
: ð70Þ

We need to evaluate this at the on-shell wave number

k ¼ k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
2 −m2

ϕ

q
. For stars of low compactness, we

have ω1 ≈mϕ. So then can write k2 ¼ κ2mϕ, where

κ2 ¼
ffiffiffi
3

p
when there are odd powers of ϕ in the potential,

and κ2 ¼
ffiffiffi
8

p
when there are only even powers of ϕ in the

potential. The stars of interest are much wider than the
inverse mass of the field, i.e., Rmϕ ≫ 1. So we are deep
into the tails of both the tanh and sech functions above. In
this regime, we can approximate tanhðπk2R=2Þ ≈ 1 and
sechðπk2R=2Þ ≈ 2 expð−πκ2mϕR=2Þ. The corresponding
decay rate due to this classical radiation output is Γclass ¼
jdE�=dtj=E� (E� ¼ M� is energy of the star). This gives
[dropping Oð1Þ factors]

Γclass ∼ R�m2
ϕ expð−cκ2mϕR�Þ; ð71Þ

where c is an Oð1Þ number, which has the value c ¼
π=d ≈ 1.1within the sech ansatz. However, we expect there
to be an Oð1Þ correction to c from the real solution, so its
specific value here is not the focus. This leads to the
expectation of exponential suppression.
However, we note that the above Fourier transform is

really only valid in a small amplitude expansion, ensuring
that the star is wide and dilute and enters a scaling regime
controlled by one scale R (we shall return to study this case
in detail in Sec. VIII). In the more massive branch of
solutions of most interest in this paper, the star actually has
new features; including the somewhat more vertical shape
at the edge of the star seen in Fig. 1 when g is large. Hence
this simple estimate of the Fourier transform is only
trustworthy for dilute stars, and may be less applicable
for dense stars with another scale entering the analysis.
Nevertheless, we only wish to comment on a very basic
qualitative feature of the solution: In particular, for stars of
large radius mϕR� ≫ 1, one can still anticipate the Fourier
transform is somewhat small at k ¼ k2 ¼ κ2mϕ ∼mϕ.
Indeed, we know that for boson stars supported by
repulsive self-interactions, the radius is on the order the
coupling introduced earlier R�mϕ ∼

ffiffiffi
g

p ∼
ffiffiffiffiffiffiffiffi
λ4eff

p
MPl=mϕ,

which is assumed to be large so far in our work.
Hence, the classical radiation for M� ≪ Mmax boson

stars is expected to be small. There may be a large change
in this conclusion for somewhat compact stars, wherein
more bosons are circulating in a relativistic fashion. In this
case the Fourier transform could have appreciable support
at the relevant wave number k2 ¼ κ2mϕ ∼mϕ, and the

classical radiation could be significant. But from our
analyses in earlier sections, quite compact stars are already
anticipated to have significant perturbative, and possible
parametric, decays anyhow.

A. Comparison to literature

The above analysis involves the star itself driving its own
classical radiation. In a sense this can be viewed as a kind of
2 → 1 process, in the case in which there are odd powers of
ϕ in the potential, or a kind of 3 → 1 process, in the case in
which there are only even powers of ϕ in the potential.
While this does not immediately seem to be compatible
with momentum conservation, if we recall that the outgoing
waves are spherically symmetric, there is no real problem.
In Ref. [43], a similar type of 3 → 1 process was

considered. There the focus was on axions in which there
are expected to be only even powers of ϕ in the potential. In
that work they considered the limit in which gravity is
decoupled. In this regime, one is not, in fact, even studying
boson stars. Instead, in this regime these are oscillons
(“axitons” in Ref. [71]); scalar field solutions in which the
attractive self-interactions (λ4 < 0) are balanced by the
field’s gradient pressure (“quantum pressure”). (For con-
nections to dark matter, see Ref. [72].) Even though this is a
different regime from what we are mainly focusing on in
this work, we can nevertheless compare the basic form of
the radiation formulas.
In this case there is a well-defined small amplitude

expansion (although it suffers from a collapse instability in
3þ 1 dimensions), and one can compute the radiation
output from oscillons (for example, see Refs. [47,73]).
Again defining an instantaneous rate Γclass ≡ jdE�=dtj=E�
for convenience, one finds

Γclass ¼ K
mϕ

ε
expð−c̄κ2=εÞ; ð72Þ

where the coefficient of the exponential can be reliably
found to be c̄ ≈ 1.2. Here ε ≪ 1 is a small expansion
parameter; it is related to the shift in frequency of the
fundamental by ω2

1 ¼ m2
ϕð1 − ε2Þ. In this small amplitude

regime, it also sets the size of the oscillon to be
mϕR� ∼ 1=ε. Hence the scaling here is similar to the case
above in Eq. (71), albeit a difference is that R� is fixed by
the gravitational mass-radius relation Eq. (36) for the stars
of interest, while it is not fixed to this value for the oscillon.
The coefficient K depends on the specific form of the
potential. It is normally K ¼ Oð1Þ for a generic even
potential. This should include the QCD axion, whose
potential is expected to be complicated due to contributions
from many instantons [74]. However, if one considers the
special case of a single cosine potential (from a single
instanton that may be relevant to other kinds of axions), it is
suppressed by cancellations (one can see similar behavior
in our earlier results of Eqs. (34) and (54) which had
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prefactors proportional to λ242 ¼ jλ24 − λ6j vanishing for the
expansion of the cosine); in this case the value is only K ¼
Oðε2Þ [73].
On the other hand, in Ref. [43] they studied decay within

the single cosine potential, and the corresponding 3 → 1
process was claimed to be quantum mechanical. They
considered transition matrix elements between the jN�i and
jN� − 3i axion quantum states. This led them to obtain the
scaling for the rate of 3 → 1 annihilations as

Γ3 ∼
mϕ

λε2
expð−c̄κ2=εÞ: ð73Þ

To compare notation to Ref. [43] replace ε → Δ and
λ → m2

ϕ=f
2
a, where fa is the Peccei-Quinn (PQ) scale of

the axion. We note that the exponent is the same as our
results above. This is the rate at which three particles are
converted into one particle. Then to obtain the decay rate of
the entire condensate, one divides by the number of
particles in the condensate (or, say, half the number) in
order to obtain the characteristic time for an appreciable
fraction (say half) of the condensate to radiate away.
The number of particles in the oscillon condensate, in this
small amplitude expansion, can be readily shown to be
N� ∼ 1=ðλεÞ. So by forming Γ=N�, one obtains a form of
the scaling in Eq. (72) with K ¼ Oð1Þ. While this would be
correct for a generic even potential, this misses the
important cancellations that take place for a pure cosine
potential, in which one should actually obtain K ¼ Oðε2Þ.
Since modern treatments of the QCD axion indicate that it
is not too close to a pure cosine [74], then K ¼ Oð1Þ
should, in fact, be correct for the QCD axion. However, the
pure cosine was the subject of Refs. [43,75], so their scaling
was partially incorrect.
We note that if one analyzes Eq. (73) as a decay rate, one

finds something worthy of note: if we were to reinstate
factors of ℏ, starting with the classical field theory, one can
readily show that it is proportional to 1=ℏ. This means its
classical field theory limit is badly behaved. Instead, by
noting that this is not the physical rate of decay of the
macroscopic condensate, but, instead, we need to divide by
a factor on the order ∼N� ∼ 1ðℏλεÞ, we then obtain the
scaling of Eq. (72) [with K ¼ Oð1Þ], which is independent
of ℏ and is indeed classical. Hence even though Ref. [43]
derived this decay rate through a quantum mechanical
analysis, the corresponding physical decay rate is ulti-
mately purely a property of the classical field theory.
Instead, the actual quantum rates appear very differently
and are not exponentially suppressed; see Eqs. (33)
and (34).

VIII. QUANTUM PRESSURE
SUPPORTED STARS

For completeness, let us also briefly discuss more
familiar boson stars: those that are not supported by

repulsive λϕ4 interactions, but instead are supported by
the field’s gradient pressure (which is often referred to as
“quantum pressure,” as it is quantum mechanical from
the particle point of view, since it originates from the
de Broglie wavelength of the bosons). In this regime the
couplings can, in fact, be taken to zero λ → 0 and the stars
still persist. It can be readily shown that in the λ → 0 limit
the maximum mass of such stars is on the order (e.g., see
Ref. [76])

Mmax ∼
M2

Pl

mϕ
; ð74Þ

which is a very different scaling from the maximummass in
the self-interaction supported regime of Mmax∼

ffiffiffi
λ

p
M3

Pl=m
2
ϕ

which has been the focus of this paper up until now. In
particular, this now requires extremely small particle masses
mϕ for the maximummass to be astrophysically significant.
The regime of quantum pressure supported stars is when

the condition in Eq. (37) is no longer satisfied; i.e., consider
now the opposite regime M� ≪ MPl=

ffiffiffiffiffiffiffiffi
λ4eff

p
. In this regime

the radius of the star is inverse proportional to the star’s
mass [see Eq. (36)]

R� ≈
2adM2

Pl

bm2
ϕ M�

�
M� ≪ MPl=

ffiffiffiffiffiffiffiffi
λ4eff

p �
: ð75Þ

This is sometimes referred to as the “dilute boson star.”
However, we note that so long as λ4eff is extremely small,
namely λ4eff ≲m2

ϕ=M
2
Pl, this can still be rather compact in

this regime.

A. Perturbative decays

By inserting this scaling of the radius into the perturba-
tive decay rate Eqs. (33) and (34), we obtain

Γdð3ϕ → 2ϕÞ ¼ ϵ3
λ332m

5
ϕM

8�
M12

Pl

; ð76Þ

Γdð4ϕ → 2ϕÞ ¼ ϵ4
λ442m

7
ϕM

12�
M18

Pl

; ð77Þ

where the coefficients ϵ3 and ϵ4 are prefactors that turn out
to be rather small. In the sech ansatz they are given by
ϵ3 ≈ 6 × 10−10 and ϵ4 ≈ 9 × 10−14.
It is convenient to introduce the parametrization

λ ∼ gm2
ϕ=M

2
Pl. We can then readily bound the decay rates.

In the regime g≳ 1 it is useful to use the fact that to stay
within this regime we need M� ≪ MPl=

ffiffiffiffiffiffiffiffi
λ4eff

p
. While if

g≲ 1, it is convenient to use the fact that there is a
maximum mass in this regime M� ≲Mmax ∼M2

Pl=mϕ.
By imposing these inequalities on the decay rate we obtain
the bounds
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Γdð3ϕ → 2ϕÞ≲ ϵ3
m3

ϕ

M2
Pl

Min½g−1; g3�; ð78Þ

Γdð4ϕ → 2ϕÞ≲ ϵ4
m3

ϕ

M2
Pl

Min½g−2; g4�: ð79Þ

Hence these rates are extremely small for any interesting
values of mϕ, since we need extremely small mϕ to have
massive stars by Eq. (74). This implies that perturbative
decays are negligible in this regime.

B. Parametric resonance

We can also evaluate the parametric resonance rates by
inserting into Eqs. (56) and (57), and we obtain

μ3→2R� ¼ η3
λ3=232 m2

ϕM
5�

M7
Pl

; ð80Þ

μ4→2R� ¼ η4
λ242m

3
ϕM

7�
M10

Pl

; ð81Þ

where the coefficients η3 and η4 are prefactors that again
turn out to be somewhat small. In the sech ansatz they are
given by η3 ≈ 6 × 10−5 and η4 ≈ 5 × 10−7.
We can again form inequalities as we did earlier,

by making use of M� ≪ MPl=
ffiffiffiffiffiffiffiffi
λ4eff

p
for g≳ 1 and M� ≲

Mmax ∼M2
Pl=mϕ for g≲ 1. Together this gives the bounds

μ3→2R� ≲ η3Min½g−1; g3=2�; ð82Þ

μ4→2R� ≲ η4Min½g−3=2; g2�: ð83Þ

Hence we always have μR� ≪ 1 and the inequality for
resonance is never satisfied. This implies that parametric
resonance is also negligible in this regime.
Altogether then, boson stars formed out of real scalars

that are supported by quantum pressure are robust again
decays, while bosons stars supported by self-interactions
that we analyzed in earlier sections are often not.

IX. SUMMARY AND OUTLOOK

In this work we have analyzed the stability of boson stars
built out of dark matter scalars due to repulsive self-
interactions. Since the mass of such stars can be as large
as Mmax ∼

ffiffiffi
λ

p
M3

Pl=m
2
ϕ, they are potentially astrophysically

relevant. For glueballs, or any other motivated scalar
particle, one may consider mϕ ∼ 0.1 GeV and λ ¼ Oð1Þ
and obtain stars of several solar masses at high compact-
ness. In the literature it was suggested that this may
potentially produce interesting gravitational wave signa-
tures if mergers occur. However, since glueball stars are
built out of real scalars in the effective theory, rather than a
complex scalar with a global Uð1Þ symmetry, they have no

conserved particle number. We computed the perturbative
annihilation rates Γd in Eqs. (38) and (39) in terms of
fundamental parameters mϕ, λn, and the star’s mass M�, or
if we eliminate mϕ in favor of the star’s compactness C in
Eqs. (43) and (44). For mϕ ∼ 0.1 GeV and λ ¼ Oð1Þ these
decays rates are found to be much quicker than the current
Hubble rate, unless the stars are many orders of magnitude
lighter than a solar mass. Such tiny stars would not be
astrophysically relevant and would have tiny compactness.
We explored the full parameter space of possibilities in

Sec. IV, finding that there is essentially no reasonable
parameters for which the star is massive, compact, and
long-lived. We further investigated the possibility of para-
metric resonance of fluctuations in Sec. V, with the relevant
dimensionless parameter being μR� to indicate whether the
Bose-Einstein statistics are effective or not, given in
Eqs. (56) and (57) or Eqs. (58) and (59). We found that
the resonance becomes the dominant mechanism for
stability at smaller couplings and can considerably con-
strain the parameter space further.
An important caveat is that all of our analysis was done

with a simple starting point for the star, in which we
describe it within the time averaged single harmonic
approximation. To then ascertain decay rates, we then
perturb around this to obtain quantum decay rates by the
Heisenberg equation of motion due to forced resonance or
exponential growth rates due to parametric resonance. This
strategy should be valid for low compactness stars, which
are essentially nonrelativistic and possess a reasonable
single harmonic approximation. However, this could be
less accurate at high compactness, where many harmonics
are expected to play a role, and this simple analysis could
conceivably miss out on some of the physics. We did study
the binding energy of the star in Sec. VI within this
simplified treatment, finding that it does not appear to
be enough to prevent decays, but a full treatment would be
preferable.
Important future work is therefore to include the full time

dependence, which can be written as a collection of
harmonics, and then to solve a system of ordinary differ-
ential equations (ODEs) for the coefficient functions of
radius. Alternatively, one could run full simulations, which
has the advantage of not only capturing all harmonics, but
identifying instabilities readily. This is at least true for the
instabilities associated with parametric resonance, while
quantum radiation can be much harder to see in a classical
simulation, as it requires seeding the fluctuations with a
bath of zero point fluctuations, which can be difficult to
track reliably in a finite simulation.
We also examined the classical decay rate in Sec. VII,

which is ordinarily much smaller because the stars are
wide. This means that, except perhaps for somewhat
compact stars, their Fourier transform is typically small
at the relevant resonant wave number, so they do not
efficiently emit their own classical radiation. Conversely,
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the quantum radiation is set by ℏ and is not suppressed in
most regimes of interest. We compared the basic structure
of the classical rate to existing claims in the literature [43],
regarding 3 → 1 processes for dilute axions, in which they
studied the limit in which gravity is decoupled. Here the
condensate is, in fact, a type of oscillon (or “axiton”) and is
held together by attractive self-interactions. The work of
Ref. [43] quite rightly claimed the process was exponen-
tially suppressed at small amplitudes, but claimed that this
effect is quantum mechanical. They obtained the quantum
rate Γ3 to transition from the jN�i to jN� − 3i axion states,
which indeed depends on ℏ. Instead, we explained that
once one divides the rate by the number of particles in the
condensate to obtain the physical decay rate, rather than
merely the rate for any particle to meet others, one obtains a
final result which is independent of ℏ and is therefore
classical, as expected. (Moreover, their prefactor missed
cancellations that occur for a pure cosine.) Since the
classical rate is exponentially suppressed (at small ampli-
tude) it is normally very small compared to the truly
quantum decay rates that we computed here; see Eqs. (33)
and (34).
For completeness, we then considered the more regular

branch of solutions of boson stars in Sec. VIII, namely
those that are supported against gravity by “quantum
pressure,” rather than repulsive self-interactions. In this
regime, we found that both the perturbative and parametric
resonance rates are suppressed. This is not too surprising,
since the appearance of this branch only emerges in the
limit in which self-interactions are small, but it is those
same terms that are trying to drive the number changing
processes. In any case, these stars are therefore the
most robust against decays. On the other hand, they have

the parametrically much smaller maximum mass of
Mmax ∼M2

Pl=mϕ, which can only be astrophysically sig-
nificant for extremely small mϕ, requiring extremely small
λ≲m2

ϕ=M
2
Pl to avoid the self-interaction corrections.

Other future directions are to return to consider the
complex scalar ψ with a global Uð1Þ symmetry [34]. This
immediately prevents the decay processes studied here,
since it has a conserved particle number. However, there are
suggestions from quantum gravity that all global sym-
metries should be explicitly broken. This could introduce
terms such as ΔL ∼ ψ4þn=Mn

Pl þ c:c:, and leads to the
expectation that there may be particle number changing
processes allowed in the star. If n ¼ 1, this is roughly
equivalent to replacing λ3=232 → mϕ=MPl in our above decay
rates, or if n ¼ 2, this is roughly equivalent to replacing
λ242 → m2

ϕ=M
2
Pl. This can be such a large suppression that it

significantly opens up much more parameter space where
the stars are stable; however, we leave a full investigation
for future work.
Furthermore, one can consider other types of novel

compact stars that may be allowed by other interesting
dynamics in dark sectors. Alternatively, one may focus on
other kinds of observational consequences that may arise
from dilute stars, including fast radio bursts [53] or pulsar
timing [77].
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[72] J. Ollé, O. Pujolàs, and F. Rompineve, Oscillons and dark
matter, J. Cosmol. Astropart. Phys. 02 (2020) 006.

[73] G. Fodor, P. Forgacs, Z. Horvath, and M. Mezei, Radiation
of scalar oscillons in 2 and 3 dimensions, Phys. Lett. B 674,
319 (2009).

[74] G. G. di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro,
The QCD axion, precisely, J. High Energy Phys. 01 (2016)
034.

[75] J. Eby, M. Ma, P. Suranyi, and L. C. R. Wijewardhana,
Decay of ultralight axion condensates, J. High Energy Phys.
01 (2018) 066.

[76] T. Helfer, D. J. E. Marsh, K. Clough, M. Fairbairn, E. A.
Lim, and R. Becerril, Black hole formation from axion stars,
J. Cosmol. Astropart. Phys. 03 (2017) 055.

[77] E. R. Siegel, M. P. Hertzberg, and J. N. Fry, Probing dark
matter substructure with pulsar timing, Mon. Not. R. Astron.
Soc. 382, 879 (2007).

DECAY OF BOSON STARS WITH APPLICATION TO … PHYS. REV. D 103, 023536 (2021)

023536-21

https://doi.org/10.1016/0550-3213(86)90004-0
https://doi.org/10.1016/0550-3213(86)90004-0
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1088/1475-7516/2018/01/037
https://doi.org/10.1088/1475-7516/2018/01/037
https://doi.org/10.1088/1475-7516/2018/03/E01
https://doi.org/10.1088/1475-7516/2018/03/E01
https://doi.org/10.1007/JHEP02(2016)028
https://doi.org/10.1007/JHEP02(2016)028
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevD.98.023513
https://doi.org/10.1103/PhysRevD.98.023513
https://doi.org/10.1016/0375-9601(92)90797-P
https://doi.org/10.1016/S0375-9601(98)00646-X
https://doi.org/10.1016/S0375-9601(98)00646-X
https://doi.org/10.1103/PhysRevD.90.123529
https://doi.org/10.1103/PhysRevD.35.3640
https://doi.org/10.1006/jcph.1995.1146
https://doi.org/10.1103/PhysRevLett.58.747
https://doi.org/10.1103/PhysRevLett.58.747
https://doi.org/10.1103/PhysRevD.49.5040
https://doi.org/10.1103/PhysRevD.49.5040
https://doi.org/10.1088/1475-7516/2020/02/006
https://doi.org/10.1016/j.physletb.2009.03.054
https://doi.org/10.1016/j.physletb.2009.03.054
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1007/JHEP01(2018)066
https://doi.org/10.1007/JHEP01(2018)066
https://doi.org/10.1088/1475-7516/2017/03/055
https://doi.org/10.1111/j.1365-2966.2007.12435.x
https://doi.org/10.1111/j.1365-2966.2007.12435.x

